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Abstract
The isovariant Borsuk-Ulam theorem provides nonexistereselts on isovariant
maps between representations. In this paper we shall ddaltivé existence problem
of isovariant maps as a converse to the isovariant Borsakaltheorem, and show
that the converse holds for representations of an abglignoup or a cyclic groups
of order p"g™ or pqr, wherep, q,r are distinct primes.

0. Introduction

A map f: X — Y betweenG-spaces is calle@-isovariantif it is G-equivariant
and preserves the isotropy groups, i€.5x = Gy for all x € X. Throughout this
paper all maps are understood to be continuous. Isovariapsmften play important
roles in equivariant topology, see, for example, [2], [3}].[The existence problem
of isovariant maps is, therefore, fundamental and importas well as that of equi-
variant maps.

We shall study isovariant maps between representatiomgciedly the existence
problem of isovariant maps between representations of sareBan groups. A starting
point of this study is the isovariant Borsuk-Ulam theoren®][Iwhich provides non-
existence results on isovariant maps between represargati

Theorem 0.1 (Isovariant Borsuk-Ulam theorem)Let G be a finite solvable
group. If there exists a G-isovariant map: V. — W between representatignghen
the following inequality holds

dimV — dimVC® < dimW — dimW®¢.

We say thatG has thelB-property (isovariant Borsuk-Ulam property) if it holds that
dimV —dimVC® < dimW — dimW®€ for every pair ¥, W) of G-representations such
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690 I. NAGASAKI

that there is aG-isovariant map fromV to W. As a result, every finite solvable group
has the IB-property.

REMARK. It is known [10] that some kind of nonsolvable groups have 8-
property, and [6] that a weaker version of the isovariantsBkfUlam theorem holds
for an arbitrary compact Lie group; the author, however,sdoet know whether an
arbitrary compact Lie group has the IB-property.

Let G be a finite solvable group, and Ist and W be G-representations. Suppose that
there exists &-isovariant mapf: V — W. For any pair of subgroupsl < K (H is
normal in K), the restriction off to the H-fixed point sets yields & /H-isovariant
map fH: V" - WH, SinceK/H is also solvable, it follows from Theorem 0.1 that

(Cv.w): dimVH —dimVK < dimWH" —dimWKX for any pairH <« K.
Moreover the pair {, W) obviously satisfies
(Iv.w): I1soV C IsoW,

where IsovV denotes the set of isotropy subgroups \6f For the converse of these
facts, we shall give the following definition and question.

DEFINITION. We say that a finite solvable group has thecomplete IB-property
if for every pair (V, W) of G-representations satisfying conditiorSy(w) and (v, w),
there exists a@-isovariant map fromv to W.

QUESTION. Which finite solvable groups have the complete IB-property

REMARK. As seen in§l, if G is nilpotent, Cy w) implies (Iy.w). In the case,
(Iv.w) can be removed from the above definition.

Concerning this question, we shall show in this paper theaceabelian groups have
the complete IB-property; precisely,

Theorem A. Let p,q,r be distinct primesThe following groups have the com-
plete IB-property
(1) abelian p-groups
(2) Cpmgn, the cyclic group of order Bg" (m > 1, n > 1),
(3) Cpqr, the cyclic group of order pgr

REMARK. S. Kdno announces thal g has an analogous property for complex
representations.
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Since conditions @y w) and Cvgu.veu) are equivalent, as a consequence, one can
see the following.

Corollary B. Let G be one of abelian groups listed Wheorem A.Then there
exists a G-isovariant map from V to W if and only if there ex&stG-isovariant map
from Ve U to We U for some representation U

This paper is organized as follows. $4 we shall recollect basic properties of iso-
variant maps. Irt2 we shall show that an arbitrary abelig\mgroup has the complete
IB-property after recalling some facts from representativeory.§53 and 4 will be de-
voted to showing Theorem A (2); ig3 we shall introduce the notion of an elementary
isovariant map, and i§4, construct an isovariant map combining elementary isamar
maps. In§5 we shall show Theorem A (3). To do that, in addition to elemagniso-
variant maps, we need another kind of isovariant map. Wel shalw the existence
of such a map using equivariant obstruction theory disaligsg7].

1. Basic properties of isovariant maps

We first recall basic notations and facts on isovariant magsch are freely used
throughout this paper.

Let G be a finite group. We writeH < K when H is a subgroup ofK, and
H < K when H is a proper subgroup oK. Let X,Y be G-spaces andf: X — Y
a G-map. LetH be a subgroup ofs. Restricting the action, we obtain ad-map
Res; f: Res; X — Resy Y, and restrictingf to the H-fixed point setX", we ob-
tain an Ng(H)/H-map f": X" — YH where Ng(H) denotes the normalizer dfl
in G. Suppose next thaH is normal. LetX,Y be G/H-spaces andf: X — Y a
G/H-map. Via the projectionp: G — G/H, X andY are thought of ass-spaces,
denoted by In‘g/H X and Ing/H Y respectively, andf is thought of as a&5-map, de-
noted by InE/H f. These are called thieflation of a G/H-space or & /H-map. We
often omit the symbols R@sand In@/H for simplicity if there is no misunderstanding
in context. We first note

Lemma 1.1. The following hold
(1) If f is G-isovariant thenRegy f is H-isovariant for any H< G.
(2) Let H be a normal subgrougdf f is G-isovariant then " is G/H-isovariant
(3) Let H be a normal subgroudf f: X — Y is G/H-isovariant then Im‘g/H fis
G-isovariant
4) If f: Xy — Y and g X, — Y, are G-isovarianf then so is fx g: X1 x X; —
Y]_ X Y2.
(B) If f: Xy — Yy and g X, — Yy are G-isovariant then so is fx g: X3 % Xy —
Y1 * Y2, where x means join in particular, the cone of f Cf: CX; — CYi, is G-
isovariant
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6) If f: X—>Y and g Y — Z are G-isovariantthen sois g f: X — Z.
(7) If f: X— Y is H-isovarianfthen Gxy f: Gxy X > G xy Y is G-isovariant

REMARK. This lemma still holds for topological group actions.

Proof. It is clear that all maps are equivariant. It sufficesshow that the maps
preserve the isotropy groups.

(2): This follows fromHy = Gy N H.

(2) and (3): These follow fromG/H)yx = Gx/H.

(4): This follows fromGy.y) = Gx N Gy.

(5): Foranyz=tx@sye Xi1x X, t+s=1,t>0,s >0, one can see that
G;=Gx NGy whent # 0 ands # 0, G, = Gy whens =0, andG; = Gy whent =0.
This leads to theG-isovariance off x g.

(6): This follows fromGg.t(x) = Gt(x) = Gx.

(7):  This follows fromGg = gHxg™t. O

By definition, a real representation @ is a homomorphisnp: G — GL(V),
where GL(V) is the general linear group of a (finite dimensional) reattee space
V. Via this homomorphismV becomes aG-space with linear action, called @-
representation space, or simpBrrepresentation. By representation theory, cf. [9], any
real representation is isomorphic to an orthogonal reptasien, i.e., a homomorphism
from G to O(V) the orthogonal group o¥ with inner product. In particular ang-
representation i$-diffeomorphic to some orthogon#&-representation; hence for our
purpose it is sufficient to treat only orthogonal represgonta, and aG-representation
hereafter means an orthogoratrepresentation. Since the action @f is orthogonal,
the unit sphereS(V) and the unit diskD(V) of V are G-invariant, called theepre-
sentation spherand therepresentation dislof V, respectively. LetvG" denote the
subrepresentation defined by the orthogonal complerivert V€ of V€ in V. The
following lemma says that the existence of an isovariant fefveen representations
is equivalent to that of an isovariant map between the reptation spheres or disks.

Lemma 1.2. Let V, W be G-representationdhe following statements are equiv-
alent
(1) There exists a G-isovariant map: ¥ — W.
(2) There exists a G-isovariant map: /G — We™.
(3) There exists a G-isovariant map: §(V) - S(W).
(4) There exists a G-isovariant map: S(VGL) — S(WGL).
(5) There exists a G-isovariant map: D(V) — D(W).
(6) There exists a G-isovariant map: D(VGL) — D(WGL).

REMARK. This lemma still holds for representations of a compact dgrieup.
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Proof. (1)= (2): The inclusioni: Vet L Vs clearly G-isovariant, and the
projection p: W = We" @ W& — WE™ s also G-isovariant, sinceG acts trivially on
WE. Hence the composite mapo f oi: V& — WS is G-isovariant.

(2) = (4): Since (VGL)G = (WGL)G = 0, we havef~1(0) = {0}, and hence a
G-isovariant mapy: S(VGL) — S(WGL) can be defined byg(x) = f(x)/|| f(X)|.

(4) = (3): SinceG act trivially on V& and W€, any mapg: S(V€) — S(W©®)
is G-isovariant. Taking join, we obtain &-isovariant map

fag: SV) ¥ S(VOT) % S(VE) - S(WET) x S(WC) = S(W).

(3) = (1): Taking the open cone of : S(V) - S(W), we obtain aG-isovariant
map f:v=int D(V) - W = Int D(W). Thus (1)-(4) are equivalent.

(4) = (6): Taking the cone off : S(VGL) — S(WGL), we obtain aG-isovariant
map f: D(VE*) — D(WE™).

(6) = (5): Since any mag: D(V®) — D(W®) is G-isovariant, taking product,
we obtain aG-isovariant map

f x g: D(V) ¥ D(V®') x D(V®) — D(W) = D(W®") x D(WC).

(5) = (1): Let f: D(V) - D(W) be aG-isovariant map. We defing: D(V) —
D(W) by g(x) = f(x)/2, theng is G-isovariant and mapB® (V) to the interior IntD (W)
of D(W). Hence we obtain &-isovariant mapg|incpvy: V' = IntD(V) - W =
Int D(W).

Thus the proof is complete. ]

In the rest of this section, we shall give some remarks réladecondition Cy,w).
Consider the following condition

(C{w): dimVH —dimWX < dimWH — dimWX for any pairH < K with K/H of
prime order.

As the first Remark,

Proposition 1.3. Let G be a solvable grougConditions(Cy w) and (Cy, \,) are
equivalent Moreover if G is nilpotentthen these conditions are equivalent to the fol-
lowing condition

(Cy w): dmVH —dimWK < dimW" — dimwK for any pair H < K of subgroups

Proof. It is trivial that Cy w) implies Cy, \y). For any pairH <K of subgroups,
since K/H is solvable, one can take subgroulds i =0,...,r, such that

H=Hp<H;<---<aH =K,
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and H; /H;_ is of prime order for each. By (Cy, ,,) we have

.
dimV" —dimV* =3 "(dimV"™— — dimV*™)
i=1

:

<) (dimwH-t —dimw")
i=1

=dimwH" — dimwk.

Thus Cy ) implies Cv.w).

If G is nilpotent, then every subgroup is also nilpotent. One assume thak =
G by restricting the action. It is known from group theory thia¢ normalizerNg(H)
of every proper subgroupd is strictly larger thanH, i.e., H < Ng(H). Using this
fact repeatedly, we have a sequence of subgroups:

H=Hy<xHy<---<H =G.
From the same argument as abov@y (y) implies that
dimV" —dimVv® < dmw" — dimwe. O

The following proposition shows that, i& is nilpotent, condition Ky ) can be
removed from the definition of the IB-property.

Proposition 1.4. Let G be a nilpotent groupThen (Cy ) implies (v w).

Proof. Note that, for any representatith H € IsoU if and only if dimU" >
dimUX for every K with H < K. By Proposition 1.3, we have

dimV" —dimVvK <dimwH" —dimwX, H <K.

If H elsoV, then dimvH —dimVX > 0, and hence dinv? — dimWX > 0. Thus it
follows thatH € IsoW. Ol

Finally we list some properties ofC{, ), which are easily verified.

Proposition 1.5. (1) (Cv.w) implies (Cres, v.res, w) for any subgroup H
(2) (Cy.w) implies (Cyn wn) for any normal subgroup H
(3) (Cyw) for G/H-representationsH < G, implies (Cmfgmv,mfg/H -
(4) (Cv.w) and (Cy.w) imply (Cvav: wew)-
(5) (Cv.u) and (Cy,w) imply (Cv.w).
(6) (Cveu.weu) implies (Cv.w).
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2. The case of abeliamp-groups

In this sectionG is a finite abelian group. We shall recall several facts frap-r
resentation theory and transformation group theory. Vebe a G-representation and
V=VieV®- --®V; the irreducible decomposition. Sin€g is abelian, eachy; is
(real) 1- or 2-dimensional. For any subgrotp of G, we setV(H) = D;. kervi=n Vis
where KenV; denotes the kernel of the representation homomorphigmG — O(k),
k =1 or 2; if there are no irreducible representations witmkéH, we setV(H) = 0.
ThusV is decomposed intép,, V(H).

A representation with trivial kernel is calle@ithful. Let V be an irreducibleG-
representation with kernéd ; thenVK (= V) is a faithful irreducibleG /K -representation.
Conversely ifU is a faithful irreducibleG/K-representation, then Ing U is an ir-

reducible G-representation with kernek. Since (Infg U)K =U and I (VX) =
V, the irreducibleG-representations with kerndl stand in one-to-one correspondence
with the faithful irreducibleG/K -representations.

Lemma 2.1. If K is the kernel of an irreducible G-representation Yhen G/K
is cyclic

Proof. The representation homomorphigm: G — O(k), k = 1, 2, induces the
injective homomorphismpy : G/K — O(k), which is the representation homomorphism
of the irreducibleG/K -representation/X (= V). HenceG/K is cyclic, or isomorphic
to C, x Cy, but it does not happen th&/K is isomorphic toC, x C,. In fact every
irreducible real representation 6% xC, is 1-dimensional, and hendgg/K (= C;xCy)
must be a subgroup dD(1) =Cy; this is a contradiction. ]

Let D denote the set of subgroupgd such thatG/H is cyclic. Note thatD is
a closed family in the sense of [3], i.,e, H < K andH € D, thenK € D. For
a G-representatiorVV, we setD(V) = {H | V(H) # 0}, and thenV is expressed as
V = @Hep(V)V(H). By Lemma 2.1,V(H) =0 for H ¢ D, and henceD(V) C D.
Thus the representations of an abelian group are essgnialliced to those of cyclic
groups. We here recall the irreducible representationshefdyclic groupC, of or-
der n. Let g be a generator o€,,. The unitary C,-representatiort; with underlying
spaceC is defined by settinggz = £lz, wherez € C and & = exp(2rv/—1/n).
Representation theory shows that0 < i < n— 1, represent all irreducible unitary
Ch-representations. Over the real number figldturns to an orthogonal representation
(not necessarily irreducible), denoted By. ThenT, for 1 < i < [(n — 1)/2] repre-
sent all 2-dimensional irreducible representations, @Her denotes the greatest inte-
ger not larger thaimm, and T, = T,_; as orthogonal representations. The 1-dimensional
irreducible C,-representations arR, the trivial 1-dimensional representation, aRd,
the nontrivial 1-dimensional representation (i.g@.acts onR~ by gx = —x), wheren
must be even in the latter case. Note thigtTn/2, n is even in the latter case, are not
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irreducible and isomorphic to twice as many as a l-dimemsiomeducible represen-
tation; To = 2R =R PR, Ty = 2R™ :=R™ @ R™. Note also that Kef; = C; ), and
in particular T; is faithful if and only if i is prime ton, which is equivalent to that
C, acts freely on(T;).

We next show the following.

Proposition 2.2. Let V be a representation of an abelian group G
(1) For any nonempty subset C D(V), (4o H € IsoV. Conversely for any v €
V, there is a subse# C D(V) such that G =y H.
(2) V is faithful if and only if1 € IsoV.

Proof. (1): For anyH € D(V), sinceG/H acts freely onvV(H)\ {0}, it follows
that Iso{(H) \ {0}) = {H}, i.e., for any nonzeray € V(H), G,, = H. Takev =
(vy) eV = @HeD(V)V(H) such thatvy #0 for H € 7 andvy =0 for H € D(V)\F.
Then G, = Myepv) Guw = s H € IsoV. Conversely, for anw = (vq) € V =
BPrepy V(H), setF ={H | vy #0}. ThenG, =+ H.

(2): Since KeV = (,.y Gu, by (1) KerV is expressed as an intersection of
some elements oD(V); this shows that ifV is faithful, then 1 IsoV. Conversely,
if 1 € IsoV, then 1 is expressed as an intersection of some element¥\d§; this
shows that Ke¥ = 1. ]

In order to prove Theorem A (1), we shall prepare the follagyin

Lemma 2.3. Let G be an abelian grouplf V and W are irreducible G-
representations with the same kerriblen there exists a G-isovariant map ¥ — W.

Proof. If V,U are trivial, this is obvious. Suppose th¥t W are nontrivial. By
Lemmas 1.1 (3) and 2.1, it suffices to show this in the case eeand W are faith-
ful Cp-representations. One may Sét=T;, W =T; (i, j are prime ton) whenn # 2,
andV =W =R~ whenn = 2. In the first case &,-isovariant map is constructed as
follows: Choose a positive integdr with ik = 1 modn, and definef: T, — T; by
setting f(z) = 2. Then f is equivariant, in fact, for a generatgrof C,

£(92) = (6,2 =52 = 5129 = gf(2).
Moreover f~1(0) = {0}, and C, acts freely onT; \ {0} and T; \ {O}; hence f pre-

serves the isotropy groups. In the second case the identify can be taken as an
isovariant map. O

As a consequence of Lemma 2.3, one can see



THE CONVERSE OFISOVARIANT BORSUK-ULAM RESULTS 697

Proposition 2.4. Let V and W be representations of an abelian group 1G
dimV(H) < dimW(H) for every He D\ {G}, then there exists a G-isovariant map
f:vV—->W.

Proof. It suffices to show that there is G-isovariant map betweeW (H) and
W(H) for every H € D\ {G}. Let V(H) = @i_, Vi and W(H) = B;_; Wi, where
Vi and W, are irreducible representations with kerr¢l Sincer < s, by Lemma 2.3
there is an isovariant map frod to Wi for every 1<i <r, and hence an isovariant
map f: V(H) - @_; W c W(H). O

We now show Theorem A (1).

Theorem 2.5. An arbitrary abelian p-group G has the complete IB-property
namely for any pair (V, W) of representations satisfying conditig@y ), there exists
a G-isovariant map fV — W.

Proof. By Proposition 2.4 it suffices to show that diftH) < dimW(H) for any
H € D\ {G}. SinceG is an abelianp-group, for anyH € D\ {G}, there is a unique
minimal subgroupK in D strictly containingH. In fact, suppose tha,;, K, € D are
minimal subgroups strictly containingl. Since K;/H, i = 1,2, are subgroups of a
cyclic p-group G/H, it follows that K; < K, or K; > K5, and the minimality shows
Kl = K2.

Let (V, W) be a pair of representations satisfying conditi@y (v). We may set
V=@ V(L) andW = P, ., W(L). Let H € D\ {G} and K € D a unique
minimal subgroup strictly containingd. ThenVH =@, _, .» V(L), and

vk= @ vivy= @ V)

K<LeD H<LeD
by the minimality of K. Consequently we obtain that
dimvH —dimVvX =dimV(H),
and similarly
dimWH — dimW¥ = dimW(H).
Thus we have dinv(H) < dimW(H) by (Cv.w). ]

3. Elementary isovariant maps

Throughout this sectios is an abelian group not of prime power order. We shall
introduce a special kind of isovariant map, called an elgargnisovariant map, be-
tween certainG-representations.



698 I. NAGASAKI

DEFINITION. Let p, g be distinct prime divisors ofG|. A sequence of subgroups
of G: {Hy, ..., Hr; Kq, ..., Kua}, r > 1, is called aW-sequenceof type (p, q) (with
lengthr) if the following conditions are satisfied:

(1) Hi, K; e D\ {G} for anyi, j,
(2) Hi < K;j andH; < Kj4; for any 1<i <r,
(3) Ki/H;i is of p-power order anK;.1/H; is of gq-power order for any Ki <r.

For H € D\ {G}, let Ty denote theG-representation inflated from th&/H-
representationl; of the cyclic groupG/H, i.e., Ty = Infg/H T;. Note that KefTy =
H. If G/H # C,, thenTy is irreducible as an orthogon&-representation, and if
G/H = C,, thenTy is twice as many as the nontrivial 1-dimensional represiemnta
Ry =Infg,, R™; Ty =R}, ® Ry,

DEFINITION. Let {Hi,..., Hr; Ky, ..., Ki41} be aW-sequence. AG-isovariant
map fromTy, @--- Ty, to Tx, ®--- D Tk,,, iS called anelementary Gisovariant map
(with respect to thaV-sequence).

Proposition 3.1. For any W-sequencéHs, ..., Hy; Ky, ..., Ki11} of type(p, q),
there exists an elementary G-isovariant map

fiTh,® - @®Ty, > Tk, ®--- D Tk,

In order to prove this proposition, we shall first show basioperties of aWw-
sequence.

Lemma 3.2. Let{Hi,..., H; Kq,..., K41} be a W-sequence of tyde, q).
(1) Hi £H; and H # H; fori #j, and similarly K £ K; and K # K; fori Z j.
(2 Forany H,,...,H, 1<ii<---<ix=r), ﬂzzl Hi. = Hi, N Hi,. Similarly for
any Ki,...,Ki (1<ip<---<ix<r+1), N5, Ki, =K, NK;,.
(3) HHNH; eD (i #]); namely G/(H; N H;) is cyclic
(4) KinKj=H NHj_1 (i <j), in particular, K; N Kj.+1 = H;.

Proof. For eachH, decomposeH into the form of H, x Hq x H’, where H
denotes a Sylow-group of H, | = p,q, and H’ = ]’[,mq Hi.

(1): LetH = Hip x Hig x H and K; = K , x Kj 4 x K/. SinceK;/H; is of
p-power order andKj.1/H; is of g-power order, we obtain

(@) Hi.p < Ki.p, (b) Hi.q = Ki.q, (c) Hi.p = Ki+1.p,
(d) Hig < Kisg, (e) K{=H =K/,

for everyi. It follows from (e) thatH; =--- = H/ = K] =--- = K/,,. We denote byL
this common subgroup. Moreover we obtain

(f) Hi.p > Hi+1,p, (g) Hi.q < Hi+1.C]v (h) Ki.p > Ki+1,p, (') Ki.q < Ki+1.q-
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In fact (f) follows from (c) and (a), and (g) follows from (b)d (d); the others are
similar. The inclusions (f)—(i) show (1).
(2): The inclusions (f)—(i) imply that

ﬂ Hi, = ﬂ Hi.p X Hiq x L
S S

= Hik.p X Hil.q x L

= Hik n Hil,

and similarly () Ki, = Ki, N Kj,.

(3): Supposeé < j. The above inclusions show th&t N H; = Hj p x Hi g x L.
Since G/H; = Gp/Hip x Ggq/Hiq x G'/L and G/H; = Gp/Hj p x Gq/Hjq x G'/L
are cyclic, Gp/Hj p, Gq/Hi,q and G’/L are also cyclic, and their orders are pairwise
coprime. HenceG/(Hi N Hj) = G,/Hj » x Gq/Hiq x G'/L is cyclic.

(4): Similarly we obtain thaK;NK; = Kj p xKjgxL andH NHj_1 = Hj_1px
Hiq x L. By (c) and (b),K;, = Hj_1p and K; 4 = Hiq. HenceK; N K; = H; N
Hj_1. O

Lemma 3.3. LetU=T,, & ---® T_,, Li € D\ {G}. Then for any nonzero z
(z, ..., %) € U, the isotropy group G is equal toﬂi:zﬁo L.

Proof. This follows from Proposition 2.2 (1). ]
We now prove Proposition 3.1.

Proof of Proposition 3.1. Se&f =Ty, ®---® Ty, andW =Tk, ®--- & Tk,,,, and
setg = |Kj/Hi| andb; = |Kj.1/Hi|. We define a mapf : V — W by setting

f(zl,...,z,):(zi‘l,zg’l+z§2,...,z:"_j+zra',zr').

We claim that this map i§-isovariant. Sincen,: Ty — Tk; he(2) = 2, k= |K/H]|, is

G-equivariant for any paiH < K in D\ {G}, it follows that f is G-equivariant. Let
z=(z3,...,%) be any nonzero vector of. Lets=min{i | z # 0} andt = maxi |

z #0}. Then f(2) is expressed as

f(2) = (0,...,0,225,ng+2:_5:11,...,th‘:11+Z?‘,Zb‘,0,...,0).

By Lemmas 3.2 (2) and 3.3, it follows th&, = HsN H; and G, = KsN K1, hence
G; = Gty by Lemma 3.2 (4). Ifz=0, then f(2) =0, and soG; = G = G¢(». Thus
f is G-isovariant. O
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4. The case of the cyclic group of ordep"g™

The aim of this section is to give a proof of the following risu

Theorem 4.1. The cyclic group of order ™ has the complete IB-property
where pq are distinct primes

In general, condition@y ) does not imply that dinv(H) < dimW(H), and the
argument in§3 does not work. For example, considepq-representationy/ = T, and
W =T, @ Ty, where p, q are distinct primes. Then the pai¥/ (W) satisfies Cy, w).
On the other hand, div(1) =dimT; =2 > dimW(1) = 0.

Let G be an abelian group not of prime power order. Suppose thaira paw)
of G-representations satisfies conditioBy(w). In order to show the existence of an
isovariant map fromV to W, one may assume that® = W€ = 0 by Lemma 1.2. Set
aw,yv(H) =dimW(H) — dimV(H) for H < G. If aw v(H) > 0, from Proposition 2.4
there is an isovariant map frond(H) to some subrepresentatiofh’ of W(H) with
dimV(H) = dimW’. Similarly, if awyv(H) < 0, then there is an isovariant map from
some subrepresentatiofy of V(H) with dimV’ =dimW(H) to W(H).

Lemma 4.2. With the notation abovea pair of V :=V — V(H) =
satisfies(Cy w) whenaw,yv(H) > 0. Similarly a pair of V :=V —V’, W := W —W(H)
satisfies(Cy ) whenaw,v(H) < 0.

Proof. Note first that for anys-representatiot and for any subgroupk, M, it
holds thatU (L) =U(L) if M < L and thatU(L)M =0 if M £ L. Whenayw,y(H) >
0, we obtain that

s .
dimS = dfmv | !f S%H
dimVS —dimV(H) if S<H,
and
. s .
dimWS = dimw if SZH
dimws —dimw’ if S<H.

Since dimV(H) = dimW/,
. _S . _S — . S - S
dimV™ —dimW =dimV>—-dimW
for any subgroupS. Noting that Cy w) is equivalent to the following condition
dimVS — dimWS < dimV"T —dimW" for every pair S<T,

one can see thaC{, ) implies Cy ). The other case is similar. O
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By this lemma and Lemma 1.1 (4), the existence problem of awaitant map
is reduced to a simpler case; namely, it suffices to consigerptoblem for any pair
(V, W) of representations satisfying the following condition

(Dv.w): (1) For eachH € D\ {G}, (&) V(H) = 0, W(H) # 0, (b) V(H) # 0,
W(H) =0, or (c)V(H) =0, W(H) =0,
(2) V(G)=W(G) =0.

Set

5+(V, W) = {H | aw_v(H) > O, H ? G},
E(V,W)={H | awv(H) <0, H #G}.

For simplicity we denotef.(V,W) by & and £_(V, W) by £ . If (V, W) satisfies
condition Dv.w), then&; [resp.£_] coincides with the set of subgroups satisfying (a)
[resp. (b)] of Ov.w). Note also that., & c D\ {G}.

REMARK. Condition Ov,w) is equivalent to thatv = @, V(H) and W =
@He& W(H)

Lemma 4.3. If (V, W) satisfies condition§Cy w) and (Dy w), then G/H # C,
for any He £_, in particular, dimV(H) is even for any He £_.

Proof. If G/H = C,, then Cy.w) for the pair H, G) implies aw v(H) > 0. [

One can further reduce the problem as follows.

Lemma 4.4. If (V, W) satisfies condition§Cy ) and (Dy ), then the existence
problem is reduced to the cadd): V(H) is isomorphic to a direct sum of copies
of Ty for every He £_. In addition if G is cyclig it is also reduced to the casR):
W(H) is a direct sum of copies ofyTfor every He &,.

Proof. (1): From Lemma 4.3 there is no 1-dimensional irrdalecsubrepresen-
tation of V(H). Using Lemma 2.3, one may assume thatH) is a direct sum of
copies of Ty.

(2): WhenG/H # C,, in the same way, one may assume thatH) is a direct
sum of copies ofTy. SupposeG/H = C,. ThenW(H) = bRy, b=dimW(H). If b is
even, thenW(H) = (b/2)Ty sinceTy = 2R|;. Whenb is odd, we seWW’ = W—-R, C
W. Then the pair Y, W’) satisfies Cy.w'), in fact, for any pair ofL < K, we have

dimVt —dimVK <dimwt — dimwk
using Cv.w). If K < H or L £ H, then it can be seen that

dimW" — dimwWK = dimw" — dimw’K.



702 I. NAGASAKI
Hence it follows that
dimVt —dimVX < dimw™" — dimw’.
If K £ H andL < H, then dimW(H)" —dimW(H)X =b is odd, and dinw(S)- —

dimW(S)K is even for everyS # H, since G is cyclic. Consequently we obtain that
dimW! — dimWK is odd. Moreover we have

dimW": — dimWK = dimwW™* — dimw’* + 1.
Since dimvt —dimVK is even by Lemma 4.3, it turns out that
dimVt —dimVv* < dimw" — dimw¥X,
and hence
dimVt —dimVX < dimw" — dimw’K.

Thus Cv.w) is satisfied. Since di’'(H) is even andW’'(H) = ((b — 1)/2)Ty, the
problem is reduced to the case whé&tH) is a direct sum of copies ofy. L]

We shall give the following definition.

DEFINITION. A pair (V, W) of representations is callegducedif
(1) (V,W) satisfies condition Dy ),
(2) V(H) = ayTy for H € & and W(H) = by Ty for H € &, whereay, by are
some positive integers.

From the argument above we conclude the following.

Proposition 4.5. Let G be a cyclic grouplf there exists a G-isovariant map from
V to W for every reduced paifVv, W) satisfying condition(Cy ), then G has the
complete IB-property

We hereafter focus on the case of the cyclic graBp= Cpgn of order p"g™
(p, g: distinct primes andn, n > 1).

Lemma 4.6. Let G = Cygn. Suppose that a paifV, W) of G-representations
satisfies condition(Cy.w) and (Dy.w). For any H e &_, there exist subgroups KK’
in & containing H such that K K’ = H. In the case K/H is a cyclic I-group and
K’/H a cyclic I'-group, where | is one of p and ,gand I' the other one
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Proof. SinceW = Py .., W(K) [resp.V = Py V(K)], every isotropy group
Gx of W [resp.V] is described as an intersection of some subgrdtps &, [resp.£_],
and vice versa, cf. Proposition 2.2. Sinkk € IsoV, it follows from Proposition 1.4
that H is in IsoW, and thatH is described as an intersection of some subgrddps
&, say, H = NI Ki, Ki € &. SinceH ¢ &,, eachK; is strictly larger thanH.
Let H = Hy, x Hq and K; = K , x Kj 4 be the decompositions into product of Sylow
subgroups. Since ead;,, | = p,q, is a cyclicl-group, there are the minimg;, ,
and K, q of {K; p} and {K; 4}, respectively. Therefore

H= ﬂ Ki.p x ﬂ Ki.p = Kig.p X Kiq = Kiy N Ki,.
I 1

In the case, sinck/H N K'/H = 1, [K/H| and [K'/H| are coprime; hence
K/H, K’/H are of prime power order. U

Now we prove Theorem 4.1.

Proof of Theorem 4.1. We show the theorem by induction on\dinkf V = 0,
then the theorem is trivial. Suppose di#n> 0. By Proposition 4.5, we may assume
that (V, W) is a reduced pair satisfyingC(, ). Take a subgrouH € £ . By Lem-
ma 4.6, there exisK, K’ € &, such thatK/H is a cyclic p-group andK’/H is a
cyclic g-group. ThenS, = {H ; K, K’} is a W-sequence of typep; q). Take a maximal
W-sequenceS= {Hs, ..., Hr; Ky, ..., K11} of type (p,q) in the following sense:

(1) {Hy,...,H}c & and{Kqy,..., K1} C &,

(2) there is noW-sequence strictly containing§ with property (1).

SetV’' = @; Ty, and W' := @, Tk,. By Proposition 3.1 there is an isovariant map
f:V — W. SetV =V —V andW =W — W'. Then the next lemma says that the
pair (V, W) satisfies Cy w), and hence there is an isovariant mépV — W by the
inductive assumption. Thus we obtain an isovariant niag f @ f': V — W. ]

The remainder of proof is to show the following:
Lemma 4.7. The pair (V, W) satisfies(Cy w).

Proof. It suffices to check(; ) by Proposition 1.3. LeH < K with K/H =
Ci, | = p,g. One may supposk= p without loss of generality. We set

SMH)={LIH<L<G and L/H is of g-power ordey}.



704 I. NAGASAKI
Let H={Hy,...,H} and £ = {Kq, ..., K;+1}. Note first that
dimvH —dimv< =" 3" dimVv(L),
LeSq(H)NE-
dimWH —dimwX = 3" dimV(L),
LeSq(H)NE.
dimV*" —dimv* =" %" dimT,
LeSg(H)NH
dimwW* —dimw® =Y dimT,.
LeSq(H)NK
From condition Cy w), it holds that
dimV" —dimVvK <dimw" — dimwk.

Looking at the diagram of the subgroup lattice Gfnqm, One can see from Lem-
ma 3.2 (1) that there are the following three possibilities:
(1) H)NH ={H;}, §(H)NK = {Kj+1} for somei,
(2) SH)NH =0, H(H)NK = {Kq},
B) FH)NH=S(H)NK =20.
In case (1), it follows that

dimV'H —dimV’K =dimWH —dimWK(= 2),
and hence
dimV'"™ — dmV" < dmW" — dimW".

In case (2), one can see th&f(H)NE_ is empty, in fact if there iHy € Sq(H)N
E_, then there isKq € &, such thatKqy/Hp is a cyclic p-group by Lemma 4.6. Then
{Ho, H1, ..., Hr; Kg, Kq, ..., Ki+1} is a largerW-sequence containin§ = {Hg, ..., H:;
Ki,..., Krs1); this contradicts the maximality oS. Thus we see that divi" —
dimVK = 0. On the other hand ditv"? — dimWK > 2, sinceK; € Sq(H) N &
Moreover, since dinv’" —dimV’X =0 and dimW'" — dimW’K =2, it follows that

0=dimV" —dimV" < dimW" — dimW".
In case (3), obviously
dimV'" —dimv’X =0, dimw" —dimwX =0,
and hence

dimV" — dimV" < dimW" — dimW".
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Thus the proof is complete. ]

REMARK. From the proof of Theorem 4.1, we see that for any reduced@aWw)
satisfying Cv.w), an isovariant map fronV to W is constructed as a direct sum of
elementary isovariant maps.

5. The case of the cyclic group of ordempqr

Let G = Cyqr. Generally an isovariant map betwe@irepresentations is not con-
structed by using only elementary isovariant maps as destrin §3 For example, a
pair of G-representation¥ = T,@Tq@ T, andW = T1 @ Tpq® Ty @ Trp Satisfies condi-
tion (Cy.w), but an isovariant map fronv to W cannot be constructed by using only
elementary isovariant maps. We shall show the existencendb@variant map using
equivariant obstruction theory.

Proposition 5.1. Let G= Cyq, where pq,r are distinct primes. Then there ex-
ists a G-isovariant map from ¥ T, @ Ty @ T, to W=T; @ Tpq @ Tgr © Trp.

Proof. Note that eachG-representationT, is obtained by restricting arS!-
representation. We regaM, W as S'-representations. By Lemmas 1.1 (1) and 1.2,
suffices to show that there exists &hisovariant map fromS(V) to S(W). The singu-
lar set S(V)~* := Uy, (V)" of S(V) consists of disjoint three circleS(Tp), S(Tq),
(Ty), which are exceptional orbits (in the sense of [1]) isonizpto St/Cp, S'/Cq
and S'/C,, respectively. LetN;, i = p,q or r, be a closedS'-tubular neighborhood
of (T;) in S(V) such thatN; are disjoint. The slice theorem (cf. [1], [4]) says thst
is equivariantly diffeomorphic t&' x¢, D(T;®Tk), wherei, j, k € {p, q,r} are distinct.
Similarly take an orbit inS(W) isomorphic toSt/C; and its closedS!-tubular neigh-
borhood A;, equivariantly diffeomorphic taSt xc, D(W;) for some C;-representation
W, such thatA; are disjoint. There is arg'-isovariant mapﬁ: N, — A such that
fi(ON;) c 9A, in fact, sinceC; acts freely onS(T; @& Tk) and S(W) \ S(W)>L,
and since

it

dim (Tj @ Ti) = 3 < dim S(W) — dim S(W,)~* = 4,

it follows that the pair Tj@® Tk, W) of Cj-representations satisfie€{¢ 1, w ), and from
Theorem 2.5 that there is @;-isovariant mapf;: S(T; @ Tx) — S(W). Taking cone,
we have aC;-isovariant mapC fi: D(T; @ Tx) — D(W), and hence arg!-isovariant
map f = St x¢ Cfi: Ny = A such thatf(aN;) c 9A;.

Next setY = S(W)\S(W)~%, X = S(V)\Int(Np [ Ng I N:), and fi = fi|on, : INi —
dA; C Y. SinceS! acts freely onX and, it suffices to see that there is &@t-map
from X to Y extendingf =[], fi: [[,aNi — []; A C Y. Note that dimX/S' = 4
and Y is 2-connected by an argument of general position. Note #iabn3(Y) =
Hs(Y) = Z3. The obstruction to an extension of lies in $% (X, 9X;m3(Y)) =
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H4(X/Sh X /St m3(Y)) = ma(Y), see [3, 11§3]. One can detect this obstruction us-
ing notion of the multidegree [7]. Here we shall recall neseeg facts from [7]. The
multidegree of arS-maph: aN; — Y is defined by setting

m-Degh = h.(((T; & T)]) € Hs(Y) = Z°,

where h = hismeny: S(Tj @ Tv) — Y, and [(T; @ Ty)] is the fundamental class
of (T & Ti). We identify Hs(Y) with Z* via the isomorphisms induced by the in-
clusions:

Ha(Y) = €D Hs(SW\ S(T)) < D Ha(S(Tj @ Ti)) = Z°.

Let di(h) € Z = H3(S(T; & Ti)) denote thei-component of m-Def for i = p,q,r;

namely, m-Degn = (dp(h), dq(h), d; (h)) € Z3. Note that there exists a&-mapFp: X —

Y (not necessarily extendingf), since the obstruction grougg (X, m.-1(Y)) =

H*(X/St; m,_1(Y)) vanishes. We fix such a maf and setfy; = Folyn,. The fol-
lowing facts are derived from [%3].

(1) di(fj)=0fori #j.

(2) m-Deg(f;) — m-Deg(fo;) € iZ2. )

(§) For anya € iZ there exists arBS™-isovariant mapf/: Ni — A; C SW such that
fi’(aNj) C 9A and such that (f) = di(fi)) +a andd;(f/) = 0 for j # i, where
£/ = floni-

(éll) Under identifying the obstruction group?, (X, X ; m3(Y)) with Z3, the obstruc-
tion classys(f) to an extension off is described as

va(f) = Z m-Deg f; —I m-Deg fo, .
i=p.,q.r
Using the facts (3) and (4), one can take suitaBlesovariant mapsﬁ’: Ni - A C
S(W) such thatys(f’) =0, where f’ =]]; f/, f/ = f’|aNi. Hence there exists a8!-
map F: X — Y extending f’. Attaching the boundaries, we obtain &h-isovariant
map FU] [ f': S(V) - S(W). O

The main result of this section is the following:

Theorem 5.2. Cpqr has the complete IB-propertwhere pq, r are distinct primes
We first show the following.

Lemma 5.3. Let(V, W) be a reduced pair of gy,-representationsLet i, j, k de-

note distinct primes if(p,q,r}. Then
(1) Gj¢c-.
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(2) If Ci € &£, thendimV (C;i) < dimW(C;;), in particular, Cj; € &s.
Proof. (1): By Cv,w) for the pair Cj;, G),
dimV(Cjj;) = dimV®i < dimW% =dimW(Cj).

This impliesC;; ¢ £_.
(2):  (Cy.w) for the pair Ci, Cik) says that

dimV% — dimVCSk < dimW¢% — dimW°Ck,

It is seen by (1) that dii® = dimV(C;) and dimv®« = 0. Noting thatC; ¢ &,
we have dinfWS = dimW(Cjj) + dimW(Cix). Since W< = W(Ciy), it follows from
the above inequality that diM(C;) < dimW(C;;). In particular dimW(C;;) > 0, and
henceC;; € &.. O

Proof of Theorem 5.2. By Proposition 4.5, one may assume dhpair /, W)
of representations satisfyin@C{ w) is a reduced pair; namely,

V=@ V(H), V(H)=auTy,
He&_

W= W(H). W(H)=byTy,
He&,

where ay, by are positive integers. The proof of Theorem 5.2 is dividei iseveral
cases. From Lemma 5.3 and a symmetrical rolepof|, r, it suffices to consider the
following seven cases: (13- = {1}, (2) &~ = {Cp}, (3) &~ = (L, Cp}, (4) &= =
{Cp,Cq}, (B) £ =1{1,Cy,Cqy}, (6) E- ={Cp, Cq,Ci}, (7) £~ ={1,C;, Cy, Cr ).

Case (1): In this case acts freely onS(V). By (Cy.w) of a pair (1 H), we see

dim (V) + 1 < dim S(W) — dim S(W)"
for any subgroupH, and hence
dim S(V) + 1 < dim S(W) — dim S(W)>1.

Setd = dim S(W) —dim S(W)>! and Y = S(W)\ S(W)>1. SinceY is (d — 2)-connected
by an argument of general position, the obstruction to thistemce of aG-map
f: (V) = SW) lies in HZ(S(V); m.—1(Y)) = H*(SV)/G; m.—1(Y)), * > d. The
above inequality, however, shows that the cohomology gotamish. Hence there is
a G-map f: (V) — Y, which is G-isovariant sinceG acts freely on§(V) and Y.
Composingf with the inclusionY ¢ S(W), we obtain aG-isovariant map fromS(V)
to S(W), which induces as-isovariant map fromv to W.
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CAsE (2): Note that the kernel oV is Cp. Since Cycp weo) is satisfied and
G/Cp = Cqr, there is aG/Cp-isovariant mapf: V = V& — WC by Theorem 4.1.
Thus we obtain &G-isovariant map Irﬁ/c f:V— WS cw.

CAsE (3): By Lemma 5.3, we have diM(Cp) < dimW(Cy;), j = q,r. Take a
subrepresentatiolV’(Cp;) € W(Cpj) with dimW’'(Cy;) = dimV(C,). Using Proposi-
tion 3.1, we obtain aG-isovariant mapf;: V(Cp) — W/(Cpq) & W/(Cpyr). SetV =
V —V(Cp) andW = W — W/(Cpq) ® W'(Cpr). One can easily verify thatQg ) are
satisfied. SinceV is of case (1), there exists G-isovariant mapf,: V — W, and
hence aG-isovariant mapf; @ f,: V. — W.

CAsE (4): One may suppose that dv{Cp) > dimV(Cy) =: m without loss
of generality. Since dir(C;) < dmW(C;;) fori Z j (i € {p.d}, j € {p,q,r}) by
Lemma 5.3, one can take-dimensional subrepresentatiodqC,) c V(Cp), W'(Cj;) C
W(C;ij). Using Proposition 3.1, we have G-isovariant map

fi: V/(Cp) ®V(Cqy) — W/(Cpr) ©® W/(Cpq) ® W/(qu)-

SetV =V = V/(Cp) ® V(Cq) and W = W — W/(Cpr) & W/(Cpq) ® W'(Cqr). Then one
can see thatGy ) are satisfied. Sinc& is of case (2), there exists G-isovariant
map f,: V — W, and hence &-isovariant mapf, @ fo: V. — W.

CasEe (5): With the same notation and argument as in case (4), onesea that
there is aG-isovariant map

f1: V'(Cp) ® V(Cq) — W(Cpr) © W'(Cpq) © W'(Cypr).

Since Cy w) are satisfied and is of case (3) or (1), there exists@isovariant map
f,: V - W, and hence &-isovariant mapf; @ f,: V. — W.

CAsE (6): One may suppose that dM{C,) > dimV(Cy) > dimV(C;) = m
without loss of generality. By Lemma 5.3, dM(C;) < dimW(Cj;) fori #Zj (i, ] €
{p.q,r}).

SuBCASE (i): dimW(1) > m. In this case, one can tak®-dimensional sub-
representation®/'(Cs) € V/(Cs) (s = p,a), W(Cij) ¢ W(Cij), i 7 (i, ] € (p.a,r}),
and W'(1) c W(1). By Proposition 5.1, we have @-isovariant map

fy: V/(Cp) @ V/(Cq) eV(EC)->WQDe W/(Cpq) @ W/(qu) @ W/(Crp)-

SetV =V = V/'(Cp) ® V'(Cq) ® V(Cr) and W = W — W/ (Cpq) @ W (Cqr) @ W(Crp).
Then one can verify that( ) is satisfied. Sincé/ is of case (4) or (2), there exists
a G-isovariant mapf,: V — W, and hence &-isovariant mapf; @ f,: V — W.
SUBCASE (ii): dimW(1) < m. Setn = dimW(1) and taken-dimensional sub-
representation¥’(Cs) C V(Cs) (s = p,q,r), W(Cij) cW(C;;) (i 7.1, ] €{p,qa,r}).



THE CONVERSE OFISOVARIANT BORSUK-ULAM RESULTS 709
By Proposition 5.1, we have &-isovariant map
f1: V/(Cp) ® V/(Cq) @ V/'(Cr) — W(1) ® W/(Cpg) ® W'(Cqr) & W'(Crp).
Set

V=V -V'(CpaV(CyaV'C),
W =W — W(1) & W'(Cpq) ® W' (Cqr) ® W (Crp).

Then one can see thaC{ ) is satisfied, and that_(V,W) = {Cp, Cq,C;} and
E+(V, W) ={Cpq, Cqr, Cpr}. By assumption,

dimV(Cp) > dimV(Cq) > dimV/(C,).

Setm’ = dimV(C,). By Lemma 5.3, we have diM(Ci) < dimW(C;;) for i # |
(i,j € {p,q,r}). Take n’-dimensional subrepresentatioh_é(cs) c V(Cy), s=q,r,
and W/(Cij) C W(Cij), i #j (i, j € {p,q.r}). By Proposition 3.1 there exists @-
isovariant map

f1: V'(Cq) ® V(Cr) = W (Cpq) ® W (Cqr) @ W (Cpyr).

SetV =V —V'(Cy) @ V(C;) andW = W — W (Cpq) & W' (Cqr) ® W (Cpr). Then
one can see thatC{ ) is satisfied, for example,CGy w) for a pair Cp, Cy), i€,
dimV(Cy) < dimW(Cpq), can be verified as follows (other cases are easi€k.y)
for the pair (1C;) implies that

dimV/(Cp) +dimV(Cq) < W(Cpy),
and hence
dimV(Cp) = dimV(Cp) < dimW(Cpq) — dimV(Cq)

< dimW(Cpq) — dimV(C;)

= dimW(Cpq) — dimW (Cpq)

= dimW(Cpq).
Since V is of case (4) or (2), there exists G-isovariant map fromV_ to W. By the
same argument as before, one can see that thereGigsavariant map fromv to W.

Case (7): Suppose that di(C,) > dimV(Cy) > dimV(C;) =- m. By

Lemma 5.3, dinV(C;) < dimW(C;;), i 7 j (i,j € {p,q,r}). Take m-dimensional

subrepresentation¥’(C;) ¢ V(C;) and W'(C;;) € W(GC;jj). Then there exists &-
isovariant map

f1: V/(Cq) ® V(Cr) — W'(Cpq) ® W(Cqr) @ W'(Cpr).



710

I. NAGASAKI

SetV =V —V'(Cy)®V(C;) andW = W —W/(Cpq) ® W/ (Cqr) ® W'(Cpr). By a similar
argument as Case (6), one can verify th@y (y) is satisfied. Since/ is of Case (5)
or (3), there exists &-isovariant map fromV to W, and hence fronV to W.

(1]
(2]

(3]
(4]
(5]
(6]
(7]

(8]
9]

(10]

Thus the proof is complete. ]
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