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Introduction. This is a continuation of Part I, which appears in the same
Journal.

In the previous paper we take a Grassmann bundle GS(TM) over a compact
simply connected irreducible riemannian symmetric space M and consider a
G-orbit CV in GS(TM) by the isometry group G of M. For each Q? we can
define a class of submanifolds in M, so is called, a ^-geometry. We more-
over assume that ̂  is a G-orbit which contains an ^-dimensional strongly
curvature-invariant subspace. Then ^l? corresponds to a PSLA (g, σ, T) of com-
pact semisimple Lie algebra g and two commutative involutions σ, r. PSLA's
are algebraicaly divided into those of inner type and those of outer type.

Our aim in this article is to prove the following

Main Theorem. Let M be an irreducible compact simply connected rieman-
nian symmetric space and C(? a G-orbit of inner type. Then the Lie algebra g of

Killing vector fields on M is compact simple and the following hold for g of classical
type:

(1) Let g be the Lie algebra of type Ah l>\. In this case the £(?-geometry

admits non-totally geodesic ^-submanifolds if and only if it is one of the cl̂ ?-
geometrίes in Example 2, (1).

(2) Let g be the Lie algebra of type Bh l>2. In this case the °^'-geometry
admits non-totally geodesic ^-submanifolds if and only if it is one of the CV-
geometries in Example 1 (m: even and r: even).

(3) Let g be a Lie algebra of type Chl>3. In this case the £(?-geometry
admits non-totally geodesic ^-submanifolds if and only if it is one of the CV-

geometries in Example 3, (2).
(4) Let g be the Lie algebra of type Dh l>4. In this case the £{?-geometry

does not admit non-totally geodesic ^-submanifolds.

Examples appeared here are known ones as ^-geometries in rank one sym-
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metric spaces of classical type: The ^-geometries in Example 2, (1) are the
classes of complex submanifolds in the complex projective space The CV-
geometries in Example 1 are the classes of even-dimensional submanifolds in the
even-dimensional sphere; The ^-geometries in Example 3, (2) are the classes

of half-dimensional totally complex submanifolds in the quaternion projective

space. (For details see Part I.)
The claims (1), (2) have been proved in Part I and the claims (3), (4) will be

proved in the present Part II. The procedure is similarly done to Part I;

In these cases we first classify the PSLA's of inner type and then for each PSLA
we apply the representation-theoretic method which is prepared in §§1, 2, Part I.

We retain the definitions and notations in Part I. Main notations are here

described:
(1) ϊ, \> mean the (i^-eigenspaces by σ and !±(resp. t>±) mean the (±1)-

eigenspaces in ϊ (resp. t>) by τ;
(2) Take a suitable maximal abelian subspace ϊj in ϊ+. Then ϊjc is a Cartan

subalgebra of Lie algebras ϊj, Q°. The set Δ (resp. Δϊ+) means the set of roots
for QC (resp. ϊ?) and the sets Δ f_, Δp± mean the sets of weights for 1+-modules

(3) Π (resp. Πs) means a fundamental root system for gc(resp. the semisi-
mple part of If). The vectors {ί/,-} (resp. {£/}) mean the dual vectors of Π
(resp. Πs). The notations θiy θjk mean the following involutions:

θi = exp ad (^/^Λπ H{) , θjk = exp ad ( ̂ /^

Moreover compare §1, Part I for the homomorphism p associated with a
PSLA, §2, Part I for the notion "decomposable", and §3, Part I for the notion
"the equivalence of first or second type".

5. The PSLA's with Lie algebra g of type Ct

Let g be the Lie algebra of type C/, />3, that is, the Lie algebra §£(/) of
skew symmetric matrices of degree / over quaternions. Then the Dynkin dia-
gram of the fundamental root system Π is given as follows:

O — O ----- O «- O -Ob = 2α1+2αa+-+2α,.1

Put 0, , θjk as in §3 and let CJ9 !</</, Cij9 !</</</, Ciljk, \<j<i<k<l, be
the families which contain the PSLA's (g, θh 0y), (g, Θί9 0/), (g, 0, , θjk)9 respec-
tively.

Lemma 5.1. A PSLA (g, σ, τ) of inner type is equivalent to a PSLA which
belongs to one of the families Cjf C^ or C{ , jkί by an inner automorphism of g.

Proof. We may assume that σ=θ{. We divide into the following cases:
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(1) !</</, (2) i=L
Case (1): \<i<L Then l=ΐs and the Dynkin diagram of Us is given as

follows:

0=^0 ----- o o — o ----- 0^=0
a0 #! α,.-! ai+ί ai+2 a^ at

If we put f=exρ ad (^/—\π K), the following cases are considerable: (1) K=

#y,0<;</-l,(2)^=^,*H-l<^^
By Lemma 1.2 (1) we may moreover suppose the following: /Φθ for (1); &Φ/
for (2); (a)/=0, k=l or (b) j Φθ, &Φ/ for (3). As above, we represent the vec-
tors Kr by the vectors Hlt •••,#/. Fot Case (1) it follows that Kj=—Hi+Hj
and thus the PSLA (g, cr, r) belongs to £t y. For Case (2) it follows that Kk=Hk

—Hf and thus the PSLA (g, σ, r) belongs to Cki. For Case (3) (a), it follows
that Ko+Kt^—Hf+Hj and thus the PSLA (g, <r, r) belongs to C{. For Case
(3) (b), it follows that ^y+^=#y-2tfί+/f, and thus the PSLA (g, σ, r) be-
longs tO Ci jk

Case (2): i=L Then ΐ=tζ&ls and the Dynkin diagram of Πs is given as
follows:

o-o ----- o

Put f^exp ad (\/— lπ Kj), l<j<l, and represent the vectors Kj by Hly •••, H^
Then K—Hj+aHj for some αeΛ and thus the PSLA (g, <r, r) belongs to

£y. D

From the above proof, we can see that the subalgebras l+ for Ciy Ci}, Ci . jk
are different and thus these families are never equivalent to each other.

We first see the equivalences among the families £, y and the equivalences
among the PSLA's which belong to each C{j.

Put V— \/— if) and take an orthonormal basis -fo, •••, et} which satisfies that
ai=ei—ei+1 for \<i<l— 1, and α/— 2et. Then it holds that Hi=e1+> -\-ei for
\<i<l and ̂ =(1/2) (^+ +^/). The Weyl group PF(Δ) is generated by the
permutations of e^ •••, el and the mappings α>Γ, l<i<l: wj(ei)=—ei and
zuγ(ej)=ej for y Φi. Define elements zϋo(l<^</) and wίk(j,k>l, j+k<l) in

in the same way as in §3. Then it similarly follows that

{) = 2H,-Hl.i (ί<k = /) ,
( ̂  (k<i<l) ,

(Hί+k-Hk (i=j,j+k
w{\Ht) = 2H,-Hk (i = j, j+k = /) ,
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Let <PQ, φίk

y φ~ΐ be inner automorphisms of g induced by wl, w{k

y wT, respectively.
For a family dj put i=j-\-k and l=i-\-r. Theny, ky r>l and the follow-

ing holds.

Proposition 5.2. Two families Cίjy £,-// are equivalent to each other if and
only if the triples (jy ky r), ( j r , k' y r') coincide except order.

By virtue of this proposition we may consider only the families C{J with
triple (j, k, r) such that j <k<r. Such a family is said to be a proper family of
type CI and a family without the above condition is said to be simply a family of

type CI.

Proposition 5.3. Let Cfj be a proper family of type CI with triple (j, k, r)

and set (g, σ, τ)=(g, θh θj). Then the following hold:
(1) Ifj<k<r, all the PSLAys in Cfj are non-equivalent to each other
(2) If j=k<ry only the equivalences of first type hold;
(3) If j<k—r, only the equivalences of second type hold;
(4) Ifj=k=r, all the PSLA's in dj are equivalent to each other.

Proposition 5.2, 5.3 can be proved in the same way as Propositions 3.2, 3.3.
We next see the equivalences among families £, . jk and the equivalences

among the PSLA's which belong to each d; jk

For a family £f ; jk put j=ct9 ί=j-}-by k=i-\-cy l=k-}-d. Then a, b, cy d>\
and the following hold.

Proposition 5.4. Two families C{; jk) C^; y/ Λ / are equivalent to each other if
and only if the quadruples (a) b, cy d}, (a'y b'} cr d') coincide except order.

By virtue of this proposition we may consider only the families C{; jk with
quadruple (α, by cy d) such that a<b<c<d. Such a family is said to be a proper
family of type CII and a family without the above condition is said to be simply
a family of type CII.

Proposition 5.5. Let C{ , jk be a proper family of type CII with quadruple
(ay by cy d) and set (g, σy T)=(Q, θiy θjk). Then the following hold:

(1) If a<b<c<dy all the PSLA's in C{ jk are non-equivalent to each other
(2) If a=b<c<d or a<b<c=dy only the equivalences of first type hold;
(3) If a<b=c<dy only the equivalences of second type hold;
(4) // a=b=c<d, a<b=c=d, or a=b=c=d} all the PSLA's in C{ jk are

equivalent to each other.

Propositions 5.4, 5.5 can be proved in the same way as Propositions 3.4, 3.5.

We last see the equivalences among families Cj and the equivalences among
the PSLA's which belong to each Cj.

For a family Cj put l=j+k. Theny, k> 1 and the following holds.
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Proposition 5.6. Two families Cj} Cj> are equivalent to each other if and
only if the pairs (j, k), (jr , k') coincide except order.

Proof. Consider the PSLA's (g, θh 0y), (g, θh 0y/). Then the semisimple
part of ϊ+(resρ. ϊ+) is the sum of Lie algebras of type Aj^ (resp. A^^) and type

Suppose that Cj is equivalent to C^. Since I+ is isomorphic to ϊ+, it fol-
lows that pairs (7, k), (/', k') coincide except order.

To prove the converse we may prove the following equivalence: C^Ck

where Ck has the pair (&,/). This is given by φl. Π

By virtue of this proposition we may consider only the families Cj with
pair (/, k) such that j<k. Such a family is said to be a proper family of type
CIΠ and a family without the above condition is said to be simply a family of
type CΠI.

Proposition 5.7. Let Cj be a proper family of type CHI with pair (j, k)
and set (g, σ, τ)=(g, #/, θj). Then only the equivalences of second type hold.

Proof. The equivalences of second type are obtained by the following
inner automorphism: φ=φj+ι φj. We next note that

1. = βp(/)/u(/) θ $>(k)ln(k) , t>± = Stt(/)/8(uO')0tt(ft)) .

Hence, as f+-modules, ϊ_ is not isomorphic to \)±. This implies the non-
equivalences of the other pairs. Π

We now see the injectivity of the ϊ+-homomorphism p for each PSLA in the

families of types CI, CΠ, GUI.
Similarly to in §3, fix a positive integer r and set

r; α>0, b^Q,
a b c

R2 = {-[-(<Po~ 2^2)<ΞZr; α>0, δ>0,

R = RI U R-2 > *^ :=r: *^ι U R 2 >

R2 = {(?); α, βeR} , R'2 = {(j{); α,

Moreover let Λ2[(?), ], /P[(ί),, (ί) j, ΛJ[*] be subsets of R2 defined as in §3. The
subsets Λ'2[(?), ], R'2[(l)i, (fijl Λi*[*] may be also denned similarly. Then we can
check the following lemma by a usual argument.

Lemma 5.8. Let λ be an r-tuples in Z'. Then the following hold :

(1) The following each set has at most 2 elements :
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(2) .For the following sets Lemma 4.6 (2) through (7) Ao/tf:

(3) The set R'\[(~ι)ι, ("ό1),] has at most 1 elememt if λφ(2—21), and has just
r—1 elements with form

/_! 1 _2 2 -IN
V 1 ... 1 0 ». 0 0 )

if\=(2-21)-,
a b

(4) The set R(Z[(~Q)I, (li)r] has at most 1 elememt if λ=t=(l l 0—0) (a>0,
), and has just r—l elements with forms

a b

-\
0

-1
0

1 -2 ---- 2 -2 ---- 2 -IN
0 -1 ---- 1 -2 ---- 2 -I/'

. _ι _ι 1 _2 2 -1\

. o -1 1 -2 2 -ij

(5) Γ/w set R(2 [(I1)!, (?)J Λβί αί woίί 1
, α«ί/ has just r—l elements with forms

ZJ λφ(l l 2-21) (α>0,

/_! ---- 1 _i ---- 1 o-O ON
V 0 ..- 0 1 - 1 2-2 I/ '

l ...-\ o-O ( ί O N
0 ... 0 1 ... 1 2-2 l)

if\=(l-12-21);
(6) The set Λf[(ΐ)ι] has at most 2 elements if λφ(O O), and has just 2r—2

elements with forms

l\ ... 1 0-0 ON /l l 2-2 IN
U .» 1 0-0 O/' U - 1 2-2 l)

if\=(Q-Q)andτΦl;
(7) The set R(2[(~ιl)ι] has at most 2 elements if λφ(2—21), and has just

2r—2 elements with forms
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/-I
V i -

1 0 - 0 0\ /-I ---- 1 -2
i 2-2 ι)> \ i - i o

2 -1\
o o

a b e d

(8) The set Rl[(ll)r] has at most 2 elements if λφ(0 θΓ^Ϊ 2^2 3^
(tf S>0, b>0, c>0, */>0), and has just 3 elements with form

a b c d

/O Q 0-0 0-0 -1- -1\
V O - 0 1- 1 2 - 2 2 - 2 )•

/Q... o 0-0 -1- -1 -1 IN
V θ - 0 1-1 1 - 1 2 - 2 )'

/O ... 0 -1 1 -1 1 -1 1\
iθ-0 0 - 0 1 ... 1 2 .» 2 )

a b e d

if χ=((Pδ 1̂ 1 2^2 3^3)
(9) The set ^[(Ί1)^ (I1),] has at most 2 elements if

a b e d

""̂ 4 2^2 3~̂ 3 4—42) (a>0, b>Q, c>0,

αnrf has just 3 elements with forms

_1 ... _1 _1 1 _1 1 -2 2 -
0 - 0 1 - 1 2 - 2 2 - 2

a b c d

1\
1 )•

/_! ... _i _ι ---- 1 _2 ... -2 -2 ---- 2 -1\
2 - 2 1 )'

/_! ... _i _ι ---- 1 _2 ... -
^ 0 - 0 1 . . . 1 1 - 1

/_! ---- 1
V 0 .» 0
_! ---- 1 _2 ---- 2 -2 ---- 2 -2 ---- 2 -1\

0 - 0 1 ». 1 2 - 2 1 /
a t e d

if λ=(Γ?4 2^2 CT 4^42)
(10) The set R(\(~o)ι, (-°ι)Γ] has at most 2 elements if

a b c d

λΦ(Γ^O^^Ϊ^^Ϊ^2^^2-ϊ) (α>0, b>0,

and has just 3 elements with forms

/_! ... _u ... ί
a

-1 1
o ... o

1 O
) O

-1
-l

•0 (
•0 -

• -1
-1

) ... 0 ί
.1 1 _

c

o ... o
-1 1

) ...
-2-

0
-2

0 (
-2 -

d
... o

2

) \

0
— ]
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_! ---- 1 _ι ---- 1 _ι ---- 1 0 - 0 0 \
Q ... Q -1 - -1 -2 .» -2 -2 ---- 2 -I/

if λ=( " " 0 - - 2 - 2 -).

In the following we represent a root of type C, by a linear combination of
the fundamental root system Π and identify it with an /-tuple of coefficients.

Case CI: The families Cv with triple (;', k, r)

Put σ— θ{ and τ=θj. Then, for each PSLA in £, ; , the corresponding sym-
metric space M and the totally geodesic CF-submanifold N are given as follows:
(N is locally described.)

(a) q^=(g, σ, τ) : M=Sp(l)/Sp(j+k) X Sp(r). In this case

(b) ^=(9, σ, σr): M=Sp(l)/Sp(j+k) X Sp(r). In this case
ΛΓ=§l>(£+r)/§t>(Λ)θ§ί>(r);
(c) ^=(9, T, σ) : M=Sp(Γ)ISp(j) x Sp(k+r). In this case

JV=^(y+r)/8t>(y)θ§ϊ>(7 );
(d) ^=(9, T, α τ) : M=Sp(l)ISp(j) X Sp(k+r). In this case

Λ/ =δ}>0 +&)/§l>(., )θW;
(e) c^=(g( σT) σ): M=Sp(Γ)ISp(k) X Sp(j+r). In this case
^=§t?(^+r)/§ί)(*)e€t)(r);
(f ) c^=(g, O-T, T) : M=Sp(l)ISp(k) X Sp(j+r). In this case

For the PSLA (g, <r, T), the subsets Δjί"+, Δ,+_, Δp+, Δp_ of Δ+ are given as follows:

(O-Ql-10-O-O-O)

(O . .0-01-10-0-0)

δ = (0 . 0 . -0-01-10-0)

(0-01-12-2-2-21)

(0...d-01 12-2-21)

(0...0-0-01-12-21)

Δf. = {δeΔ+;δ,. = θ,2,δy = i}

δ = (0-01 -ί-10-0-0)

(0...θl-ί."12-2-21)

., (θ--Ol--10-0)o = v j i '
(0-0-01-1-12-21)
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(0-01-1-1-12-21)

Moreover the dominant weights in Δ f_, Δp+, Δp_ are given by (5.2), (5.3),
(5.4), respectively:

(5.2) (l-12-2" -21),

(5.3) (0-01-12-21),

(5.4) (l-ί-12-21).

We now see the injectivity of p for Case (a): q^(g, σ, r). Then p is a
homomorphism of (t>5)*(g)ϊ5 to Λ2^)*®^?. The minus multiple of dominant
weight in Δp_ and the dominant weight in Δt_ are given by (αl), (/31), respec-
tively:

(al) -(l-ί-12-21), (/31) (1-12-.. 2-21) .

Case(l): /(#)=!. Represent u as follows: u—a ωΛ®Xβ. Then the pair
(α, β) is given by ((αl), (/31)). Applying Lemma 2.3, we obtain that p(w)Φθ.

Case (2): l(u)=2. In this case there exists no decomposable u and thus
we suppose that u is indecomposable. We consider such the triples (α, /3'; μ)
as in §3, Case (2). Consider the following elements in Δ!+:

(μ\) (lO-O-O-O), (μ2) (2».2-21) (; = 1).

Then such the triples are given in the following:

(1) ((al),(β\);(μl)),j>2, (2) ((al

Lemma 2.4 is available for (1) and Lemma 2.2 is available for (2). Hence it fol-
lows that p(tf)φO.

Case (3): l(u)>3. Note that iφ/. Then, by the same way as Case (3)
for Case BI §4, we see that p(w)Φθ.

Summing up the above arguments, we have the following result for the
PSLA of Case (a); the homomorphism p is always injective. Similarly for the

other cases p is always injective.

Theorem 5.9. Let ^V be the G-orbit which corresponds to a PSLA in a
family of type CL Then the cψ -geometry does not admit non-totally geodesic CV-

submanifolds.

Case CΠ: The families £, , Jk with quadruple (a, by c, d)

Put σ— 0t and τ=θjk. Then, for each PSLA in Ciljk the corresponding
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symmetric space M and the totally geodesic Cϊ^-submanifold N are given in the
following: (N is locally described.)

(a) q>=(β, σ, r) : M=Sp(l)ISp(a+b) X Sp(c+d).
In this case N=8p(a+c)l8Jί>(d)@8t>(c) φ &t>(b+d)l8lp(b)@$lp(d);
(b) q^=(β, σ, or): M=Sp(ΐ)ISp(a+V) X Sp(c+d).

In this case JV=βt>(ft+c)/βp(A)θβ()(c) θ βp(ώ+έί)/β|)(β)θ8t)(<0;
(c) q>=(g, r, σ) : M=Sp(l)ISp(b+c) x Sp(a+d).
In this case ΛΓ=§ί>(fl+c)/§t>(α)®§:p(c) φ &\>(b+d)lSφ(b)®83p(d) t

(d) Cl>=(β, T, err) : M=Sp(l)ISp(b+c) X Sp(a+d).
In this case ΛΓ=§ϊ>(α+ό)/§ί>(α)®§t>(δ) φ ®p(c+d)l8p(c)®83f>(d);
(e) Cl>=(β, σr, σ): M=Sp(l)ISp(a+c)χSp(b+d).
In this case Λ7=§t>(δ+c)/§£(δ)φ§t>(c) φ §})(α+<ί)/§t
(f) q>=(β, σr, r): M=Sp(l)ISp(a+c)χSp(b+d).
In this case N=§)ί>(a+b)l^(a)φ^(b) φ §p(c+£?)/δt

For the PSLA (g, σ, T), the subsets Δf±, Δp± of Δ+ are given as follows.

(5.5) Δ,+

+ = {SeΔ+; 8, = 0, 2, (δy, δ») = (0, 0), (0, 2), (2, 0), (1, 1), (2, 2)}

(Q-Ql lO Q O Q-0)

(O...p... 01-10 0-0)

y »• *
(0-01-12-2-2— 2-21)

JL = {8eΔ+; S,- = 0, 2, (δy, δ») - (0, 1), (1, 0), (1, 2), (2, 1)}

(O...Ql...ί...lO d-0 0)

s (O-O-O-Ol-i-lO-Q)δ = v j , k '
(O...pl »l 12 2 »2 »21)

Δp

+

+ ; δ, = 1, (δy, δ») - (0, 0), (0, 2), (2, 0), (1, 1), (2, 2)}

(O......01 . 10 0 0)

(0...0-01-1-12-2-21)

(O-Ol-l-ί-1-12-21),

= {δeΔ

+; 8, = 1, (δy, δA) - (0,1), (1,0), (1,2), (2,1)}
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(O-pl-ί-ί-lO-O-O)

s (O O Ol i ί lO O)o = v j i k '
(0 01 1 1 12 2 21)

(0 0 01 ί ϊ 12 21)J

Moreover the dominant weights in Δ f_, Δp+, Δp_ are given by (5.6), (5.7),
(5.8), respectively:

(5.6)

(5.7)

(5.8)

(0...0-01-12-21), (1-12-2-2-21),

(0-01-12-2-21), (l-ί-ί-12-21),

(O-Ol-ΐ-12-21), (l-ί-12-2-21).

We now see the injectivity of p for Case (a): ^=(8, σ, T). Then p is a
homomorphism of (ίj£)*®ϊ£ to Λ2(f£)*®t>?

The minus multiple of dominant weights in Δ«_ are given by (αl), (α2) and
the dominant weights in Δ{_ are given by (/SI), (/Q2):

(αl)-(0-01-ΐ-ί2-21), (α2)-(l-ί- 12-2-21) ,

081) (Q-ό-όl- 12-21), 082) (l-12-2-2...21).

Case (1): /(«)=!. Represent u as follows: M=αωβ®Jίβ. Then the pair
(a, β) is one of the following pairs: ((αr)), (/3s)), where r,s=l,2. Applying
Lemma 2.3, we obtain that p(u) Φθ for all the pairs.

Case (2): /(«)=2. In this case there exists no decomposable u and thus we
suppose that u is indecomposable. Consider the following elements in Δl+ :

(μί) (O όlO-ό-O O), (μ2) (O-O-O-OIO-O),

(μS) (0-02-2-21) (ί=j+l), (ί*4) (10-6-0-0-0) ,

(μ5) (0-O-Ol-δ-O), (μ6) (0-0-02-21) (k = i+1) ,

(μ7) (1-2-2-21) (; = 1).

Then such the triples (a, β'; μ) as in §3, Case (2) are given in the following:

(1) ((αl), 092); (μl)), i-j>2, (2) ((αl), 081); (μ2)) ,

(3) ((αl), (β2); (μS)), i =j+\, (4) ((α2), 082); (̂ 4)) , j>2 ,

(5) ((α2), 031); (μ5)), k-i^2, (6) ((α2), (βί); (μ6)) ,k = i

(7) ((α2),082);

Lemma 2.4 is available for all cases and thus it follows that p(u)Φθ.
Case (3): /(w)>3. By the same way as Case (3) for Case BII §4, we see
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thatp(tt)φO.

Summing up the above arguments, we have the following result for the
PSLA of Case (a) the homomorphism p is always injective. Similarly for the
other cases p is injective.

Theorem 5.10. Let ^V be the G-orbit which corresponds to a PSLA in a
family of type CΠ. Then the ^-geometry does not admit non-totally geodesic
CV-submanifolds.

Case CΠI: The families Cs with pair (;', k)

Put σ=θι and τ=θj. Then, for each PSLA in Cjy the corresponding sym-
metric space M and the totally geodesic ^-submanifold N are given as fol-
lows: (N is locally described.)

(a) q>=(fl, σ, T): M=Sp(l)jU(l). In this case ΛΓ=βu(/)/β(tt(;)θ«(*));
(b) cV=(Q,σ,στ):M=Sp(l)IU(l). In this case

(c) qp=(β, T, σ) : M=Sρ(l)ISρ(j) x Sρ(k). In this case
ΛΓ=βu(/)/β(tt(;)θtt(A)).

For the the PSLA (g, σ, T), the subsets Δ^+, Δjίl, Δp+, Δp_ of Δ+ are given as
follows:

(5.9) Δ,+

+ = {δ e Δ+ 8, = 0, δ, = 0, 2}

J Λ ( = A + . Λ (O-Ol-lO-O-O)= iδeΔ δ == v j ι'
( (O . O Ol-lO O)

= ίδeΔ+; δ = (Q Ql-ί-10-0) } ,

(0 Q1 12 2

= ίδeΔ+; δ = (0-01 ί 12 21) } .

Moreover the dominant weights in Δ t_, Δn.t, ΔB_ are given by (5.10), (5.11),
(5.12), respectively:

(5.10) (1-ί lO), -(0-θίθ O) ,

(5.11) (0-02-21), (2-2-21),

-(0-O-θί), -(0-02-21),
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(5.12) (1-12-21) , -(0-01-ί) .

We first see the injectivity of p for Case (a): ^=(3, σ, r). Then p is a
homomorphism of (t>?)*®ϊ£ to Λ2(t>-)*®t>? The minus multiple of dominant
weights in Δp_ are given by (αl), (a2) and the dominant weights in Δj are given
by(βl),(β2):

(αl)-(l-ί2 2ί), («2) (O-Ol-ί),

(/31) (1...1...10), 082)-(0" θίθ.»0) .

Case (1): /(#)— 1. Represent u as follows: f/=αωΛ®-X0. Then the pair
(α, /3) is one of ((αr), (/3s)), where r, ί=l,2. Applying Lemma 2.3 for each
pair, we obtain that p(w)Φθ.

Case (2): l(u)—2. In this case there exists no decomposable u and thus we
suppose that u is indecomposable. Consider the following elements in Δϊ+ :

(μl) (10-0-0), (μ2) (O-OIO-O),

(μ3) (0-QlO O), (μA) (0-0-010).

Then such the triples (α, β'\ μ) as in §3, Case (2) are given in the following:

(1) ((αl), (/SI); (At!)),;' £2, (2) ((αl), (/32); („!)), ; = 2 ,

(3) ((αl), 031); (μ2)), l-j = 2, (4) ((αl), 092); (μ2)), l>2 ,

(5) ((α2), (βl); (μ3)), j = 2, (6) ((«2), 092); (M3)), ;>2 ,

(7) ((o2), (/81); (μ4)), /-j>2 , (8) ((«2), 092); (^4)), /-/ = 2 .

Lemma 2.4 is available for the cases (1), (4), (6), (7) and Lemma 2.2 is available
for the other cases. Hence it follows that p(#)Φθ.

Case (3): /(z/)>3. We see the weight spaces with dim>3. Let λ be a
weight in Λ and let a, β be weights such that \=—a+β, where a^Δ^_ and
/3eΔj_. Denote by aky bk, \k the &-th components of α, β, λ, respectively.
Since at=±l and ft/=0, it follows by (5.9) that λ/=±l.

Consider the case that λ/=l. (For the case that λ/= — 1 we can similarly
do the argument mentioned below.) Then it follows by (5.9) that λy=0, 2.

Suppose that λ;=0 (resp. λ.— 2). Then the pair ( ?) has the form:
™ ' '

ί ~- "I J (resp. ί ~f ~π ))• If the weight space for X has the dimension

more than 3, it follows by Lemma 5.8 that

X = (0 0 Ql 12 2i) (resp. λ - (0 01 12 2 2ί))

and the pair ( 2 ) has either of the forms
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(5.13)
u

0
0

...o-i ...

...0-1-

...0-1-

_ι ...
i

_1...

-1

-1
-1

0

2
-2

... 0

2
1

0 -

-2-
o ...

ώ

0

2
0

0
I

-Γ
0 ,

/resp.

/π .../υ
lo -
/o ...

WL
0

π

0

1

o -
1 ...

i ...

1

0
1

1

1

1

i

1

1
... i

i

... i

1

... i

1

... i

9

0
9

0

9

... o
9

... o

/
1
I

0
/
i

0

\

>

/

Hence for a maximal vector u in this weight space, it follows by Lemma 2.2
thatp(w)Φθ.

We next see the injectivity of p for Case (c): C[S=(Qy r, σ). Note that in

this case p is a homomorphism of (t>£)*(8Ψ+ to Λ2(t>£)*®ϊ?. The minus multi-
ple of dominant weights in Δp_ are given by (αl), (cί2) and the dominant weights
in Δp+ are given by (/31)<^(/34):

(α2) (0-θί ί),

082) (2...2...21),

(/84)-(0 . 02 2ί).

(αl)-(l ..12-..2ί)!

081) (0...02...21),

083)-(0-0 . θί),

Case (1): /(«)=!. Represent u as follows: u=aωa®Xβ. Then the pair
(a, β) is one of ((αr), (/3s)), where r=l, 2 and ί=l, 2, 3, 4. Applying Lemma
2.3 for each pair, we obtain that p(w)=0 only for the following cases: ((αl), (/?!))
(/=!), ((αl), OS2)) 0=/-1), ((«2), 083)) (;=1), ((«2), 084)) (;=/-!).

Case (2): /(&)—2. In this case there exists no decomposable u and thus
we suppose that u is indecomposable. Consider the following elements in ΔΪ+ :

(μl) (10-d O), (μ2) (O OIO O),

(μ3) (O-Όlό-ό), (0-0...010).

Then such the triples (a, β'\ μ) as in §3 (Case (2) of type AI) are given in the
following:

(3) ((αl), 081); (μ2)), l-j>.1, (4) ((αl), 083); (μ2)), l-j = 2 ,

(5) ((α2), (/32); (μ3)), j=2, (6) ((α2), 084); (^3)), j>.2,

(7) ((α2), 081); (μ4)), l-j = 2, (8) ((α2), 053); (^4)), l-j^2 .

Lemma 2.2 is available for the cases (2), (4), (5), (7), while Lemmas 2.2 and 2.4
are not available for the other cases. But for the cases thatj Φ1 in (3), (8) and the
cases that j'Φ/—1 in (1), (6), we see that Propostion 2.1 (1) does not hold and
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thus p(tf)Φθ. By virtue of Case (1), we do not need to see the remaining cases
that j= 1,7—1.

Case (3): l(u)>3. We see the weight spaces with dim>3. Let λ be a

weight in Λ and let a, β be weights such that λ— — tf+/3, where αGΔp. and
/?eΔp+ Since at=±l and i|=±l, it follows by (5.9) that λ/=0, ±2.

We first consider the case that λ/—2. (For the case that λ/=—2 we can
similarly do the argument mentioned below.) Then it follows by (5.9) that

Suppose that λy= 1 (resp. λy=3). Then the pair (p) has the form
i i j i ^P'

(o ~0 "1" ) (resP ( ~9 2~ΐ ))• If the weight space for λ has the dimen-

sion more than 3, it follows by Lemma 5.8 that

λ = (0 01 ί 12 23 -34-42)
a b

(resp. λ = (0 --01 ̂ 2-23.. 3.. 34---42Λ
V "T^^T" /

where tf>0, έ>0, and the weight space has just dimension 3. Then the pair

ί a ] has one of the following forms:

(5.14) /O - 0 -1 - -1 1 -1 1 -1 1 -2 2 -1
lO O 0 - 0 -. 0 1 - 1 2 ... 2 2 - 2 1

y
... π i ... i ... i i ... i ?... ? ?... ? iV 1 1 J. 1 JL ^ ώrf £< ••• Lί 1

-0 0 .. 0 ... 0 1 ... 1 1 ... 1 2 .» 2 1

0 ... 0 -1 -1 1 -2 2 -2 2 -2 2 -1
1,0-0 0 - 0 .» 0 0 .» 0 1 .» 1 2 .» 2

/
I1)

/O ... 0 0 ... 0 0 ... 0 -1 -1 1 -2 2 -Ί\
VO O 1 ... 1 2-2 2 .» 2 - 2 2 - 2 1 / '

/O .» 0 0 - 0 -1 1 -1.» -1 1 -2 2 -1\
resP ^0 - Q 1 - 1 1 - 1 2 ». 2 - 2 2 - 2 1 ) '

/O ... 0 -1 1 -1 1 -1 1 1 -2 2 -
^ ^0-0 0 - 0 1 .» 1 2 - 2 - 2 2 - 2 1 }/

Hence for a maximal vector u in this weight space, it follows by Lemma 2.4

that p(w)φO.
We next consider the case that λ/=0. Then it follows by (5.9) that λ/=

±1.
Suppose that λ, =l. (For the case that λy= — 1 we can similarly do the

argument mentioned below.) Then the pair ( 2) has either of the forms
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/ / J I

(θ...~0 — l) '( 2 2 l)* ^ ̂  wei&ht space for λ has the dimension

more than 3, it follows by Lemma 5.8 that

λ = (0 Ql ί 10 Q)

and the pair ί ΐ\ has one of the following forms:

(5.15)

(o\u

/π/u
In\u

(°

(0
0

-0
-0

... π
-0

•0
π

O
O
1

1

-1 .
π ..

1 ..

0 ..•

- 0 0
-0 1

. . 1 1

- 1 2

. ... n ..

. ... 1 ..

-0 1 -
... 1 2-

... 1 1 ...

...2 2-

• -1

1

π• U

J

2-

1 ...

2-

-2
1
J.

J

... i
-2

... 1

-2

1

Λ
U

2
2

2

-2-
o ...

" ' "" LJ

1 ..." " A

1 ..— 1 •••

2 ί\2 ly
9 ι \Z 1 \

2 i

-2
9• Zί

1

1— 1

-2 2
o ... o1 £* "" ^

2 ••• 2

~l)
/

1\
' j,
— l/

Hence for a maximal vector u in this weight space, it follows by Lemma 2.2
thatp(w)Φθ.

We last see the injectivity of p for Case (b): CV=(Q, σ, σr). Note that in
this case p is a homomorphism of (t>?)*®t>ίi to Λ2(t>ίO*®ϊ- Hence we may
regard roots α, β in this case as roots — /?, — a in Case (c), respectively. We
retain the notations in Case (c).

Case (1): l(u)=l. The pair (£\ is one of (— (β s), —(ar)\ where s=

1, 2, 3, 4 and r=l, 2. By Lemma 2.3 it follows that />(*/) 4=0 for all cases.
Case (2): l(u)=2. In this case there eixsts no decomposable u. Suppose

that u is indecomposable. Then the triples (a, β'\ μ) are given as follows:

(1) (-(02), -(αl); (μl)) , (2) (-(yS4), -(αl); (μl)) ,

(3) (-(/SI), -(αl); (μ2)) , (4) (-(

(5) (-082), -(«2); (μ3)) , (6) (-(

(7) (-081), -(*2); (M)) , (8) (-(03), -(α

Lemma 2.2 is available for the cases (2), (4), (5), (7) and Lemma 2.4 is available
for the other cases. Hence it follows that ρ(w)Φθ.

Case (3): /(w)>3. Similarly to Case (3) for Case (c), we have the cases
which correspond to (5.14), (5.15). Lemma 2.4 is available for the former
case and Lemma 2.2 is available for the latter case. Hence it follows that

Summing up the above arguments, we have the following result for PSLA's
in Cj\ the homomorphism p is not injective only for Case (c))j=l> /—I. These
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cases imply the cases of Example 3, (2) in §1.

Theorem 5.11. Let C(? be the G-orbit which corresponds to a PSLA in a
family of type CHI. Then the ^-geometry admits non-totally geodesic Cψ-
submanifolds if and only if it is one of the CV -geometries in Example 3, (2).

6. The PSLA's with Lie algebra g of type Z>,

Let g be the Lie algebra of type Dh />4, that is, the Lie algebra £o(2/) of
real skew symmetric matrices of degree 21. Then the Dynkin diagram of the
fundamental root system Π is given as follows:

O-o ----- 0-0
αx a2 α,.2 | a^ —

O

Put 0, , θjk as in §3 and moreover put

θjkr = exp ad(v

for \<j<k<r<l. Let 3
(!</</— 3), 3)ι-2 '.ι-ι,ι be the families which contain the PSLA's (g, Θi9 0y),
(0, 0;» θjk), (g, 0,-2, ̂  ,/-ι,/), (g, (9/-2, 0/-1./), respectively.

Lemma 6.1. A PSLA (g, σy τ) of inner type is equivalent to a PSLA
which belongs to one of the following families, by an inner automorphism of g:

(1) S)φ l<j<i<l-2 , (2) 3)t.l

(3) ^/y,l<;</-2, (4) 3)U_19

(5) S), ; Jk, 2<j<i<k<l-2 , (6) 3), , Itt.l9 2<ί<l-2 ,

(7) ^.:u,2<z</-2, (8) .02;

(9) ^2;Jtl-1>h2<j<l-3y (10) ̂ 2;l3

Proof. We may assume that σ=θ{. We divide into the following cases:
(1) ί=l; (2) i=2 (7^5); (3) 2<i<l-2 (7>6); (4) i=/-2 (7^5); (5) ί=7-l;
(6) *=7; (7)*=2(7=4).

Case (1): t=l. Then l=c+Ij and the Dynkin diagram of Π4 is given as
follows:

o-o ----- o-o
α2 α3 a,.2 \ α,_!

O
a,
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Hence we may assume that the restriction f of r is given as follows:
τ=exp ad (\7^Tτr Kj), where 2<j<L Then it follows that K—aH^H^ for
some a^R, and thus the PSLA (g, σ, r) belongs to 3)^.

Case (2): i=2 (7>5). Then Ϊ=Ϊ4 and the Dynkin diagram of Π4 is given as
follows:

o o o-o o-o
α0 <*ι #3 a* tf/-2 \ &ι-ι

O
<*l

If we put τ=expad(\/r^ϊπ K)9 the following cases are considerable: K=KQ;
K=K^ K=Kk9 3<&</; K=KQ+K^ K=KQ+Kk> 3<&<7; K=K1+Kky 3<k
</; K=K0+K1+Kk9 3<k<l. By Lemma 1.2 (1), the following cases more-
over have involutive extensions of f: (i) K=Kk, 3<&</—2; (ii) K=K0+K1;
(iii) K=K0+K^ (iv) K=K0+Kr, (v) K^K.+K^ (vi) K=K1+Krί (vii)
K=KQ+K1+Kk, 3<k<l—2. We represent the vectors Kr by the vectors

HI> •••> ί̂ /
For Case (i) it follows that Kk=—H2+Hk and thus the PSLA (g, σ, T) be-

longs to ίDfr For Case (ii) it follows that K^K^H^Hz and thus the PSLA
(g, σ, r) belongs to 3)2l. For Case (iii) it follows that KQ+Kj-^Hj-i—Hz and
thus the PSLA (g, σ, r) belongs to ^/_ι,2. For Case (iv) it follows that K0+Kt

=Hj—H2 and thus the PSLA (g, σ, r) belongs to 3)12. For Case (v) it follows
that K1+Kl-1=H1+Hl.1—H2 and thus the PSLA (g, σ, T) belongs to -Φ2:u-ι
For Case (vi) it follows that K1+Kl=H1+Hl—H2 and thus the PSLA (g, σ, r)
belongs to 3)M. For Case (vii) it follows that K0+K1+Kk=H1—H2+Hk and
thus the PSLA (g, <r, r) belongs to j2)2. lk.

Case (3): 2<z</—2 (/>6). Then f=ϊs and the Dynkin diagram of Us is
given as follows:

O-o O O-O O-O
<*1 I #2 tfί-1 «/+! <^/+2 <^/-2 I <*/-!

O O
α0 <*/

If we put f=exp ad(\/— lπ K), the following cases are considerable: K=Kjy

0<y</-l; ί:=ί:Λ, /+!<&</; K=Kj+Kk, 0<j<i-l, i+\<k<l By
Lemma 1.2 (1), the following cases moreover have involutive extensions of f:
(i) K=Kί9 2<j<i-\\ (ii) K=K* i+l<k<l-2; (iii) ̂ -̂ 0+ .̂ι; (iv) K=
Ko+Kr, (v) K^K.+K^ (vi) K^+Kr, (vϋ) κ=κj+κk, 2<j<i-ι, i+ι
<sk<l—2. We represent the vectors ^Γr by the vectors //j, •••, Ht.

For Case (i) follows that KJ=^—Hi+HJ and thus the PSLA (g, σ, r) belongs
to 3){j. For Case (ii) it follows that Kk=—Hi+Hk and thus the PSLA (g, σ, r)
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belongs to 3)ki. For Case (iii) it follows that Kt+Ki-^H^—Hi and thus the

PSLA (g, σ, T) belongs to S)u-ι. For Case (ίv) it follows that Ko+K^fy—Hf

and thus the PSLA (g, σ, r) belongs to <£„. For Case (v) it follows that
Kί+Kj-^Hί+Hj^—Hi and thus the PSLA (g, σ-, r) belongs to 3)t ; lf,.lβ For
Case (vi) it follows that Kί+K^H^Ht—Hj and thus the PSLA (g, <r, T) be-
longs to 3)iMi. For Case (vii) it follows that KJ+Kk=HJ—2Hi+Hk and thus

thePSLA (g, <r, T) belongs to 3)t . jk.

Case (4): i=l—2(l>5). Then l=ts and the Dynkin diagram of Πs is given

as follows:

o-o ----- o o o
«! I a2 aM or/-! aξ

O
a0

Put τ= exp ad(\/— lπ K). Similarly to Case (2), the following cases have invo-
lutive extensions of f: (i) K=KJ9 2 <;'</- 3; (ii) K=KQ+Kί,1-9 (iii) K=KQ+

KΛ (iv) K=K1+Kl.l] (v) K^+K,; (vi) K=K^l+Klι (vii) K^K^

For Case (i) the PSLA (g, σ , r) belongs to 3)ι-2^ For Case (ii) the PSLA

(β> σ"> T) belongs to ^)/_u_2. For Case (iii) the PSLA (g, σ, r) belongs to -Φ/,/-2.
For Case (iv) the PSLA (g, σ, r) belongs to ^_2 ; M_!. For Case (v) the PSLA

(9> <*"> T) belongs to 5)/-2;ι,/ For Case (vi) the PSLA (g, σ, r) belongs to
3)ι-2 ; /-i,/. For Case (vii) the PSLA (g, σ, r) belongs to ^)/_2 ; /_u.

Case (5): i=l—l. Then ί— c+ϊs and the Dynkin diagram of Πs is given as
follows :

o-o ----- o-o
α?ι a2 cίι-2 ott

Put τ=Qxpad(^/^ϊπKj)y where ^=1, •••, /— 2, /. Similarly to Case (1), the

PSLA (g, σ, r) belongs to 3)^ltj (1 <; </-2) or ̂ -i.
Case (6): i=L Then l=c+ls and the Dynkin diagram of Πs is given as

follows:

o-o ----- o-o

Put T— exp 2iά(^/^\π Kj), where 1 <j<l—l. Similarly to Case (1), the PSLA

(g, σ, T) belongs to <Dίtj.
Case (7): i=2 (/=4). Then t=ls and the Dynkin diagram of Πs is given as

follows:

0 0 0 0
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Put τ=exp ad(v/— \π K). Similarly to Case (2), the following cases have in-

volutive extensions of f : (i) K=K0+K1ι (ii) K=K0+K3; (iii) K=K0+K^ (iv)

K=K1+K3'ί (v) K^+Ks, (vi) K=K3+K> (vii) K^Ko+K^Ks+K*. We

represent the vectors Kr by the vectors H19 •••, H4.

For Case (i) the PSLA (g, σ, r) belongs to 3)^. For Case (ii) the PSLA

(g, σ, r) belongs to 3)&. For Case (iii) the PSLA (g, <τ, r) belongs to ^42. For

Case (iv) the PSLA (g, σ, r) belongs to jS2 ; J3. For Case (v) the PSLA (g, σ, r)

belongs to 3)2 ; M. For Case (vi) the PSLA (g, σ, r) belongs to 3)2 ; 34. For Case

(vii) the PSLA (g, σ, r) belongs to 5)2 . 134. Π

Pur V=\/— 1̂  and take an orthonormal basis -fo, ••*,£/} which satisfies

that ai—ei—ei+1 for !</</—!, and α/^^/-^^/. Then it holds that

ff, = *!+•••+*! for

The Weyl group W(Δ) is generated by the permutations of eί9 •••, ^/ and the fol-

lowing mappings w~: Let S=(S(l)y •••, 6(/)), where £(ί)=±l.and Πi«ι £(ί)=l.
Then 20~(£t.)=£(/) ̂  for all /.

Define elements Wo(l<k<l) and «;{*(y, k>l,j+k<l) in W^(Δ) in the same

way as in §3. Then the following similarly hold:

(1 <i<k = 1-1),

-Ht (i=j,j+k = l-l),
f ) TT J_T f * i Z. 7 L ̂  Ί O\Ltii—fik (t —J)J-rκ = I) κ<^l—Δ) ,

Ht

Let <po, φίk be inner automorphisms of g induced by MO, α>ί*, respectively.
Moreover let -ψ 0 be an automorphism of g induced by the following Dynkin

automorphism v0 of Π: vΰ(a,)=a{(l<i<l— 1), ̂ 0(α,_1)=α/, and v^a^a,-^

i.e., vάet) = et(\<,i<,l—\) and v0(e,)=—e,. For £ = (1 1 —1 l l—Ί) put

vj=w~ v0 and let ψ Γ(l <ί </— 1) be automorphisms of g induced by t>7. Then

the following equivalences moreover hold:

(1) ^,_w«^,χi <j<l-2) and ̂ , : ̂ atfy -,.,.
These are obtained by -ψ 0;
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(2) 3)j,n^^i-j (2<j<l-2). This is obtained by ψ 0 φt,;
(3) ^2:ιy^^;.2;/-y./-ι,/(3^y</-2), 2̂1«-0,-2:,.,., and S)n^3)u.,.

These are obtained by φt,.

Hence we may consider only the families of the following cases:

(1) ^,v(l<y<*</-2); (2) ^,χi<y</~2);
(3) 3)i.jk(2<j<i<k<l-2orl=j<i=2<k<l-2); (4) 3)2 m.

From the proof of Lemma 6.1, we can see that the subalgebras 1+ for Cases
(1), (2), (3), (4) are different from each other. Hence these families are never
equivalent to each other.

We first see the equivalences among the families 3)ij(\<j<i<l—2) and the
equivalences among the PSLA's which belong to each family. For a family 3)^
put i=j+k and /=ί+r. Then;, k> 1, r>2 and the following holds.

Proposition 6.2. Two families 3)ijy 3)^^ are equivalent to each other if
and only if the triples (j, k, r), (jf, k'} r'} coincide except order.

Proof. The proof is done in the same way as that of Proposition 3.2. Con-
sider the PSLA's (g, θh θj), (g, <9,./, 0y/). Then it follows that dim ϊ_=4/&,
dim\)+=4kr, dimt>_— 4/V, and that dim 11=4j'k f, dim^ί=4Λ'r', dim£1=4;V.
(See (6.1) later.) If 3)ij is equivalent to ^/y/, the triples (jk, kr, rj), (j'k'y k'r',
r'j') coincide except order and so the triples (j, k, r), (j*', k', r') coincide except
order.

To prove the converse we may recall the proof of Proposition 3.2. Then
the following equivalences similarly hold:

(1) 3)^3)*, ;>l,^>l,r>2; (2) ^j^3)r+k>ry &>l,j>l,r>2.

Using these equivalences we see that the family 3)^ is equivalent to a family
with triple to which the triple (7, A, r) is rearranged in smaller order. Hence,
if triples (*',/, k), (i'y /', k'} coincide except order, the family 3)^ is equivalent to
the family JZVy/. Π

By virtue of this proposition we may consider only the families 3)ij with
triple (j, k, r) such thaty<Λ<r. Such a family is said to be a proper family of
tpye DI and a family without the above condition is said to be simply a family of
type DI. The following proposition can be proved in the same way as Propo-
sition 3.3.

Proposition 6.3. Let 3)^ be a proper family of type DI with triple (j, k, r)
and set (g, σ, τ)=(g, θit θj). Then the following hold:

(1) Ifj<k<r, all the PSLA's in 3){j are non-equivalent to each other
(2) Ifj=k<r, only the equivalences of first type hold;
(3) Ifj<k=r, only the equivalences of second type hold;
(4) Ifj=k=r, all the PSLA's in 3)^ are equivalent to each other.
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We next see the equivalences among families S){; jk (l<j<i<k<l—2) and
the equivalences among the PSLA's which belong to each family. For a family
3)i; jk putj=a, i=j-\-by k=i+c, l=k+d. Then a, b, c>l, d>2 and the follow-
ing holds.

Proposition 6.4. Two families 3){; jky 3)^; y/Λ/ are equivalent to each other if

and only if the quadruples (a, by c, d)y (a'y b'y c' y d
r) coincide except order.

Proof. This is done in the same way as that of Proposition 3.4. Consider
the PSLA's (g, 0;, θjk) (g, 0,./, 0yv). Then it follows that dim ϊ_—4(ab+cd),
dim \>+=4 (bc+ad), dim $.=4 (ac+bd) and that dim ϊi=4 (a'b'+c'd') dim t>i =
4(b'c'+a'd')y dim$L=4(a'c'+b'd'). (See (6.5) later.) If 3)t , ,*, $>>; /v are
equivalent to each other, the triples (ab+cd, bc+ad, ac+bd), (a'b'+c'd', b'c'+
a'd'', a'c'+b'd') coincide except order. Noting that a+bj

rc+d=a'+br+c'+d'
—ly we see that the quadruples (a, b, c, d), (a1, b1', c'} d') also coincide except
order.

To prove the converse we may recall the proof of Proposition 3.4. Then
we similarly have the following equivalences:

(1) 2)r,jk^3)r,bk

(2) ^i;jk^^k-
(3) ^,;yA«^+c

Using these equivalences we see that 3)^; jk is equivalent to a family with quad-
ruple to which the quadruple (α, δ, c, d) is rearranged in smaller order. Hence,
if quadruples (a, έ, c, d), (0', b1', c', d') coincide except order, the family 3){; jk is

equivalent to the family 3)^ j'k' D

By virtue of this proposition we may consider only the families 3)ι; & with
quadruple (a, by cy d) such that a<b<c<d. Such a family is said to be a proper
family of type DII and a family without the above condition is said to be simply
a family of type DII. The following proposition can be proved in the same
way as Proposition 3.5.

Proposition 6.5. Let 3){. jk be a proper family of type DII with quadruple
(ay b, cy d) and set (g, σy T)=(Q, θh θjk). Then the following hold:

(1) If a<b<c<dy all the PSLA's in ^){. jk are non-equivalent to each other;
(2) If a=b<c<d or a<b<c=dy only the equivalences of first type hold;
(3) If a<b=c<dy only the equivalences of second type hold;
(4) // a=b=c<d, a<b=c=dy or a=b=c=d, all the PSLA's in <Dt. Jk

are equivalent to each other.

We next see the equivalences among families 3)ίί(\<j<l—2) and the
equivalences among the PSLA's which belong to each family. In the following
the families 3)tί are denoted by 3)jt For a family 3)f put l=j-}-k. Theny>l,
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k>2 and the following holds.

Proposition 6.6. Two families 3)jt 3)^ are eqivalent to each other if and
only if the pairs (j, k), (j', k') coincide except order.

Proof. This is done in the same way as that of Propostion 5.6. Con-
sider the PSLA's (g, θh 0y), (g, θlt 0/). Then the semisimple part of l+(resp. 1 )̂
is the sum of Lie algebras of types A^i (resp. Aj'-λ) and Ak^ (resp. Ak'~ι).

Suppose that 3)j is equivalent to 3)^. Since ϊ+ is isomorphic to ϊ+, it fol-
lows that pairs (/, k), (/, k') coincide except order.

To prove the converse we may recall the proof of Propostion 5.6. Then the
following equivalence similarly holds: 3)^3)^ 2<j<l—2. Using this equiva-
lence we see that 3)j is equivalent to a family with pair to which the pair (j, k) is
rearranged in smaller order. Hence, if pairs (j, k), (/, kf) coincide except
order, the family 3)j is equivalent to the family 3)^. Π

By virtue of this proposition we may consider only the families 3)j with
pair (/, k) such that j<k. Such a family is said to be a proper family of type
Dili and a family without the above condition is said to be simply a family of
type Dili.

Proposition 6.7. Let 3)j be a proper family of type Dili with pair (j, k)
and set (g, σ> τ)=(g, θh θj). Then the following hold:

(1) // />5 or 1=4, j=2, only the equivalences of second type hold;
(2) //1=4, j= I, all PSLA's in 3)γ are equivalent to each other.

Proof. For general / the equivalences of second type are obtained by
-ψv+i Λ/rί"-! ψ0. (See the proof of Proposition 5.7.) We also note that

f_ = βtt(/-l)/β(tt(y)θu(Λ-l)), p± = βo(2j)ln(j) θ βo(2ft)/u(ft).

(1) In this case, as ϊ+-modules, ϊ_ is not isomorphic to t>±. This implies
the non-equivalence of the other pairs.

(2) In this case, ϊ_, p± are isomorphic to each other as ϊ+-modules. We
may show the equivalence: (g, σ, τ)^(g, r, σ). Since /—4, we moreover have
the following Dynkin automorphism v14 of Π; vu(a^)=a^ U14(α4)=α1, and

Vu(ai}=ai for i=2, 3,. Let ψ 14 be an automorphism of g induced by v14. Then
the equivalence is given by ψ 14. Π

We last see the equivalences among PSLA's which belong to 3)2 m This
is said to be the family of type D0.

Proposition 6.8. All PSLA's in the family of type 3)Q are equivlent to each

other.
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Proof. Set (g, σ, τ)=(g, Θ2, θm). We may show the following equiva-
lences:

(1) (9, σ, r) ̂  (g, σ, <rτ) and (2) (g, σ, r) ̂  (g, <ττ, r).

The equivalences (1) and (2) are obtained by φ\l and (φ\lγl φl φ\l, respec-
tively. Π

We now see the injectivity of the f^-homomorphism p for each PSLA in
the families of types DI, DΠ, Dili, D0. Similarly to in §3, fix a positive
integer r and set

R" = { ± ( 0 0 1 O | θ ) e Z ' ; α>0, ό>0, c>0>
a b

U 1

U {±(00 | l ) e Z r ; α^O,
a b

2
* c

r-1 r

R

R" = {±(0—-0 1 — 1 2—2(1 l)eZr; a>Q, b>0,,

R = Rί U R2 >

R2 = {(«); α, β*ΞR} , Λ//2 - {(ϊ); α,,

Moreover let /?[(»),•], R2[(t)i, (5)y], Λχ[*] be subsets of #2 defined as in §3. The
subsets Λ"2[(Z), ], Λ//2[(i),, (5)y], ̂ ί/2[*] may be also defined similarly. Then we
can check the following lemma by a usual argument.

Lemma 6.9. Let \ be an r-tuples in Z" . Then the following hold :
(1) The following each set has at most 2 elements :

Λ;κ?)ι,(J)J, Λ![(ί)ι, (2),] , ΛH(i)ι,(ί)J,
(2) For the following sets Lemma 4.6 ((2) through (7)) «w<ί Lemma 5.8, (8)

AoW:

(3) ΓAe f«f ΛHd1)!. (=l)r] (resp. RC*[(-J)lt (?)J) to αί wiorf 1 element if λ
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is none ofr-tuples

(1-1 1 10), (1-10-0|.OQ)
a b

. (1-1 101), (1-1 2^2| 11))

where a>0, b>0.
If λ=(l — 1 1 10) (resp. (1 — 1 (01)), the set has just r—2 elements with form

(V:::'-I ---- 1 _2 ---- 2 I -1 -1\
0 -1 ---- 1 I 0 -l)

// λ=(l-10-0|00)(m/>. (1-12—2| 11)), the set has just r-1 elements
with forms

_! 1 _2 2 -2 2 I -1 -1\
o - 0 -1 1 -2 2 I -1 -I/'

-1 1 -1 1 -2 2 I -1 -1
0 ... 0 -1 1 -2 2 -1 -l

/_! ... _ι _ι ... _ι i o -1\
V 0 - 0 -1- -1 I 0 -l)

/-I - -1 0 - 0 0 - 0 1 0 0\
V 0 - 0 1 - 1 2-2 I 1 I / '

a

resP ("ό1".'. Ίo1 I1'

/_ι...
I ( o ...

ι -i
o i

• -1 0-0 I 0 0\
• 1 2 - 2 | 1 I / '

-1 I -1 0
1 1 0 1

(4) The set tfrtto1),-!, (l!)J (r«p. /?ί/2[(ί)r-ι, (?),]) A«
λ w none of the r-tuples

a k

((Pθ 1-1 1 10) (resp. (0-0|-11))

1 element if

where αϊ>0, b>0.

l\lϋ)(resp. (0 0|—1 1)), the set has just r— 1 elements with
forms
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0 ... 0 -1 1 -2 2 I -1 -1\
O....Q -1 1 -1 1 I 0 -l)

,0 -1 1 -2 2 I -1 -IN
o o ... o -i —11 o -ιy

resP (o... 0 1 ... 1 I 0 l)) '

(5) The set R('2[(~^)ι, (V),-ι, (~o)r] has at most 1 element if λ is not the r-
tuple (2-2111).

If λ=(2—2| 11), the set has just r—2 elements with form

/_! 1 _2 2 I -1 -1\
\ 1 .» 1 0 »• 0 I 0 0 I '

tuple
(6) The set R"2[(~ι)ι] (resp. R"*[(\)ι]) has at most 2 elements if\is not the r-

(2« 2|11) (resp. (0 0|00)).

If\=(2—2\ 11) (resp. (0 0|00)), the set has just 2r—2 elements with forms

/-I 1 0-0 I 0 0\
\ 1 ». 1 2-2 I 1 l)'

-1 1 -2 2 I -1 -1\
1 - 1 0 ». 0 I 0 0 / '

( 1 - 1 |1 0 )' ( 1 ... 1 I 0 l)

(resp.

/I ». 1 0-0 I 0 0\ /I »• 1 2-2 I 1 1\
\ι... i o-o i o o u -1 2 - 2 1 1 i)'

(7) The set R\[(~o)ι, (I2)r] has at most 2 elements if\is none of the r-tuples

(a>0, b>0, c>Q, d>ΰ) ,

and it has just 3 elements with forms

/_! 1 _ι 1 _ι 1 _2 2\
( 0 .» 0 1 - 1 2 «. 2 2 - 2 )'

/__! 1 _ι 1 _2 2 -2 2\
V 0 «. 0 1 - 1 1 .» 1 2 ... 2 )•
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/_! ---- 1 _2 ---- 2 -2 ---- 2 -2 ---- 2\
V 0 ». 0 0 - 0 1 - 1 2 .- 2 y

α b c d

if λ=(T^Ϊ 2^2 3^3 CT)
(8) The set ̂ '"[(A, (I1),] (retp. RC2^, (?),]) has at most 2 ekmemts if λ

is none of r-tuples

a b c

( 1 2 - 2 3 3 1 12) (α>0, 6>0, c>0) ,
a b e d

(1-1 2-2 3-3 4-4J22) («>0,b>0, c>0,
/ a b c

\ (-1- -ί 2| 11)

3 | 1 2 ) (retf. ( ^ 1 0 0 l | 0 1 ) , ί/ze
ments with forms

/_! 1 _i 1 _l 1 I o -1\
V 0 .» 0 1 - 1 2 - 2 I 1 1 )>

0 - 0 1 .» 1 1

-1 1 -2 2 -2
0 - 0 0 - 0 1

/ a b

-2 1-1 -1i i o i ).
-2 I -i -:

1 I 0 1

I f χ=( 3 4
set has just 3 elements with forms

1... 1 0 - 0 0 - 0 1 0 0\
Q... o 0-0 1- 1 I 0 I/ '

resp. (\ — 1 Γ^T 0 — 0 I 0 0\
VO O 1-1 1-1 I 0 I/ '

a b c

V O - 0 1-1 2-2 I 1 l) /

(resp. (-

e d

3 ele-

, the

-1 1 -1 1 -1 1 -2 2 I -1 -1\
0 - 0 1 - 1 2 - 2 2 - 2 I 1 1 )'
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-1 1 -2 2 -2 2 I -1 —Γv
1 2 - 2 I 1 1 J '0 -. 0 1 -. 1 1

a b

o 1 2 - 2 I
-1 -1\
1 1 )

-1 1 -2 2 -2 2 -2 2 | -1 -P
0 0 - 0 1

a b e d

~~^~ϊ δ~^~δ <Γ^~δ ό~^o i o o>
-0 0 - 0 1 - 1 2 - 2 | 1
a b e d

resp. (Γ^~\ fT?Γ"ϊ (f^Ίδ 0~ 0̂ | 0 0\
)'O . O 1 ... 1 1 ... 1 2 - 2 | 1 1,

a b c d

/f^~ϊ Γ^i ΓΠ <ΓΠ) i o o\
V O - O 1-1 2 - 2 2 - 2 | 1 I/ /

o1),-!, (l1),] has at most 2 elements if \ is none of the r-(9) The set R
tuples

a b e d

(0^0 Ώ 2^23^3112) («>0,ά>0,c>0,</Ξ>0).
a b e d

If\=(Q. Q 1 — 1 2 2 3—3112), the set has just 3 elements with forms

/O .» 00-0-1 1 -2 2 I -1 -IN
VO O i ...i i ... i 1 ... 1 I 0 1 )'
a t c d

/oT^Γo -i —i -i.".. -i -2 - -21 -i -ι\
^0-0 0 - 0 1 .. . 1 1 - 1 ( 0 1 ) '

... 0 -1 1 -2 2 -2 2 I -1 -1\

. .Q o ... o o ... o i ... i | o i
In this lemma, if we change a subset R"[*, (?)r] for a subset Λ^f*, (2)r-ι]> we

can get the elements in ./?"[*, (?)r-J from the elements in ̂ x[*> (?)r]> by chang-
ing the r-term for the (r— l)-term.

In the following we represent a root of type Z>/ by a linear combination
of the fundamental root system Π and identify it with an /-tuple of coefficients.
Note that the /-tuples ±(0 Q| 11) are not roots.

Case DI: The families 3)^ with triple (j, k, r)

Put σ=θi and τ=θj. Then, for each PSLA in 3)^, the corresponding sym-
metric space M and the totally geodesic ^-submanifold N are given as follows:
(N is locally described.)

(a) qP=(β, σ, τ): M=SO(2l)/SO(2j+2k)xSO(2r).
In this case Λ/r=8o(2/+2r)/δo(2;)®δo(2r);
(b) ^=(8, σ, o-r): M=SO(2l)/SO(2j+2k) XSO(2r).
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In this case ΛΓ=§o(2Λ+2r)/§o(2&)φ§o(2r);
(c) c^=(g, T, β ): M=SO(2l)ISO(2j) x SO(2k+2r).
In this case JV=8o(2/+2r)/8o(2;)φ8o(2r);
(d) cι>=(β, r, στ>: M=SO(2l)ISO(2j)x SO(2k+2r).
In this case N=8o(2/+2Λ)/«o(2/)e«o(2Λ);
(e) ^=(g, σ-T, o ): M=SO((2l)ISO(2k)xSO(2j+2r).
In this case Λ/"=8o(2Λ+2r)/8o(2ft)φ8o(2r);
(f) cp=(βf o.T) τ): M=SO(2l)ISO(2k)xSO(2j+2r).
In this case ΛΓ=8o(2y+2Λ)/8o(2;)φ8o(2Λ).

For the PSLA (g, σ, T), the subsets Δ .̂, Δ^_, Δp+, Δp_ of Δ+ are given as follows:

(6.1) Δ,+

+ = {δ<=Δ+; 8, = 8y = 0, 2}

(0» 01 »10 0 »0» 0|00)'

(o...d...oi-io-o-o|oo)
(O...0 0 -01 -10 0|00)

(0 ..0 0 01 1|10)

(0-01-12.. .2-2 2|ll)

(Q... 0-0-01-12-21 11)

;δ, = 0,2,8,= !}

(0-01-l-12-2-2| 11))

l,δΛ=0,2}

(O...0-01-ί-10-0|00))

(O . .0-01-1-12-2111)

Δί-
(0.

3 i

δeΔ+; δ = (0-01-ί— ί-l|01)
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Moreover the dominant weights in Δ,_, Δp+, Δp_ are given by (6.2), (6.3), (6.4),
respectively:

(6.2) (I ..ί2 . 2 »2|ll), (l ίO 0|00) (ί =;+!),

-(ίθ.»0 »0|00) (; = 1), -(12...2|11) (/ = 1,* = 2).

(6.3) (O Ol . .12-2| 11), -(0» 0iθ «0|00) (/=;+!).

(6.4) (I ί ί2 2|ll), -(ί ίθ-0|00) (; = 1) .

We now see the injectivity of p for Case (a): CV=(Q, σ, r). Then p is a
homomorphism of (t)£)*®ϊ£ to Λ2(t>-)*<SΨ+ The minus multiple of dominant
weights in Δp_ are given by (αl), (oc2) and the dominant weights in Δ(_ are given
by (/31M/34):

(αl)-(l l-ί2;»2|ll), (α2) (ί-ίo-OlOO) (; = 1) ,

081) (1...12...2...2|11), (β2) (I-IO-OIOO) (ί =>+!),

083)-(iθ »0 »0|00) 0'= 1), (/34)-(12...2|ll) (;= 1,£=2).

Case (1): /(#)=!. Represent w as fololws: w=αω*®X0. Then the pair
(α, yS) is one of ((a r), (/? s)), where r=l, 2 and $=1, 2, 3, 4. Applying Lemma
2.3 for each pair, we obtain that p(#)Φθ.

Case (2): l(u)=2. We first suppose that u is indecomposable. Consider
the following elements in ΔΪ+ :

(μl) (10 0 d 0|QO), (μ2) (12 ..2.. 2|11) (/=2).

Then such the triples (a, β'\ μ) as in Case (2) of type ^47 are given in the fol-
lowing:

(1) ((αl), (/31); (μl)), j>2 , (2) ((αl), 092); (/.I)), ^2, * =j+l ,

(3) ((αl), (01); (,£)), j = 2 , (4) ((αl), 092); (μ2)), j = 2,i = 3.

Lemma 2.4 is available for all the cases and thus it follows that p(w)=f=0.
We next suppose that u is decomposable. Put u=a ω-1®-X^1

Then the weights λ are roots and the following cases are possible:
(1) The pairs (α,, &) are ((αl), (/33)), ((α2), (/31)), where y= 1

andλ=(01 ..ί2-2|ll);
(2) The pairs (α,, /3;) are ((αl), (/S4)), ((α2), (yS2)), where j= 1, ί=2

and χ=-(0iθ- 0(00).
Lemma 2.2 is available for these cases and thus it follows that p(#)Φθ.

Case (3): l(u)>3. Note that i<l—2. Then, by the same way as Case (3)
for Case BI §4, we see that p
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Summing up the above arguments, we have the following result for the
PSLA of Case (a); the homomorphism p is always injective. Similarly for the
other cases p is always injective.

Theorem 6.10. Let Cl? be the G-orbit which corresponds to a PSLA in a
family of type DI. Then the CIS-geometry does not admit non-totally geodesic
Cl?-submanifolds.

Case DΠ: The families 3){. Jk with quadruple (α, b, c3 d)

Put (r=0f and τ=θjk. Then for each PSLA in 3>i;jk9 the corresponding
symmetric space M and the totally geodesic Q^-submanifold N are given in the
following: (ΛΓis locally described.)

(a) qP=(a, σ, r): M=SO(2l)ISO(2a+2b)χSO(2c+2d).
In this case ΛΓ=(<
(b) qP=(β, σ, σr): M=SO(2l)ISO(2a+2b)xSO(2c+2d).
In this case N=(ί
(c) ct?=(β,τ,σ): M=,!
In this case ΛΓ-(§o(2^+2^)/§o(2β)0§o(2c))0(§o(2ά+2rf)/§o(26)0go(2ί/));

(d) cV=(fl,τ,στ):
In this case N=(i
(e) q;=(e, err, σ): M=SO(2l)jSO(2a+2c)χ SO(2b+2d).

(f) q^=(e, err, T): M=SO(2l)ISO(2a+2c)xSO(2b+2d).
In this case N=($

For the PSLA (g, σ, T), the subsets Δjί"±, Δp± of Δ+ are given as follows:

(6.5) Δt

+

+ = {δeΔ+; 8, - 0,2, (8y, δ.) = (0, 0), (0,2), (2,0), (1,1), (2,2)}

(0 01 10 4 0 0 0|00) )

(O..,o...qι...ιo ό-o...o|θθ)
(o...6 ό-oι "io δ-o|oo)
(O...0 0 0-01 10 0|00)

(O...0...0"-0 -01 l|10)

δeΔ+; δ = (0 ..p-q 0...01.. l |01)

(o...δ »ό . o «oι «ιi | ii)
(0-pl-12-2-2-2-2ln)

Δ+ = {δeΔ+; δ. - 0,2, (δy, δt) - (0,1), (1,0), (1, 2), (2,1)}
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(0,
k

"0

•10

-0(00)

10)

01)

in)
•••2(11)

l ,

-2| 11) ,

2), (2,0), (1,1), (2, 2)}

-0(00) \

-0|00)

•1(10)

1|

•11
k

—2

•12

(i,
k

-0

•10

01)

Hi)
•••2(11)

• t

-2(11) )

0), (1,2), (2,1)}

-0|00) \

-0(00)

•1 1 10)

i |
•11

k
-2

•12

01)

in)
-2(11)

—2(11) I

• .

Moreover the dominant weights in Δ t_, Δί)+,
(6.8), respectively:

^_ are given by (6.6), (6.7),

(6.6)

(6.7)

(0-0-01-12-2111),

(l...ίO-0-0|00) («• = /

-(10-0-0-0(00) (;= 1)

(1...12-2-2-2111),

-(0-0-0ίθ "0|00) (k = ί

-(ί2-2-2(ll)(y=l,ί =

(0-01 .12-2-2(11),
i k

(1-1-1-12-2111),

(0-01-10-0(00) (k = ί+l), -(0-010-0-0(00) (ί = ;+!),

-(ί-ί-10-0100) (;= 1), -(0-012-2(11) (i =j+l,k = ί+1).
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(O...01 ί-Ϊ2 . 2| l l), (I l ί2» 2» 2|ll),

(6.8) (l.. ί ίO 0|00) (£ = ί+l), -(0.. Oί. .ίθ .0|QO) (*=/+!),

-(ί...EΪQ ..0 0|00) (j= 1), -(ί ..ί2.. 2 | l l) (j = 1, A = *+!).

We now see the injectivity of p for Case (a): C(7=(g, σ, T). Then p is a
homomorphism of (p£)*®ϊ£ to A2(t>-)*®t>?. The minus multiple of dominant
weights in Δp_ are given by (αl)<^-{α6) and the dominant weights in Δt_ are
given by (/Sl)~(/36):

(αl)-(0» 01» i »12 2 | l l), (α2)-(l ..l .i2 2» 2 |/l l) ,

(α3)-(l-l-ίθ-0|00) (* = ί+l), (α4) (0 (jί ίθ 0|00) (ί =;

(α5) (ί...iθ.»0 »0 |00)(y=l), (06) (ί.»12.

093) (1— ίO" 0 ..0|00) (»=;+!), (^4)-(0 0 . Oίθ 0|00) (Λ = ί

(/85)-(ίθ...O...O...O|00) (j = 1), (/86)-(ί2.»2» 2|ll) (;= l, i=2).

Case(l): l(u)=l. Represent u as follows: u~ aωβ®X8. Then the pair
(α, /?) is one of the pairs ((a r), (/3 s)), where r, ί=l, 2, 3, 4, 5, 6. Applying
Lemma 2.3 for each pair, we obtain that p(w)Φθ.

Case (2): l(u)=2. We first suppose that u is indecomposable. Consider
the following elements in Δϊ+ :

(μl) (0 010...0. .0.. 0|00),

(μ2) (o-ό-ό-oio-oioo), (o ό ό ..ό|io), (o-d-
(μ3) (O...012v.2-2|ll) (i = ;+2), (/*4) (lO-O-O-O

(12.. 2.. 2.. 2|11) (y=

Then such the triples (α, β'\ μ) as in Case (2) of type AI are given in the fol-
lowing:

(1) ((al),(β2) >(μl)),i-j^2, (2)

(3) ((αl),081);(A*2)), (4)
(5) ((ol),082);(M3)),«-y = 2, (6) ((αl),095);(/d)),/= l,ί= 3,
(7) ((α2),(/32);(M)),;>2, (8) ((o2)>(/83);(At4))>; ̂ 2, *=;+!,
(9) ((α2),031);(At5)),ft-*>2, (10) ((α2), (&);(&)), j = 2,

(11) ((o2),(/83);(At6)),; = 2,ί =;+!,
(12) ((o2),081);(M7)),ft-t = 2, (13)

(14) ((o3), 093); (M)), Λ = *'+l, * =;+l
(15) ((α3), 092); (/*6)), A - »+l,; - 2,
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(16) ((«3)( 093); (μ6)), j = 2,i=3,k = 4,

(17) ((«4),G91); (μ2)), i-j = 1,
(18) ((α4), (/34

(19) ((«5), 091);

(20) ((α5), 081); („?)), / - 1, ft-* = 2.

Lemma 2.4 is available for all cases and thus it follows that ρ(ί/)Φθ.
We next suppose that u is decomposable. Put U=aωΛl(S)Xβ1-}-b ωΛ2(£)Xβ2.

Then the weight λ is a root and Lemma 2.2 is available for all the cases. Hence

it follows that p(tf)Φθ.
Case (3): 7(z/)>3. By the same way as Case (3) for Case BII §4, we see

that p(ιθΦθ.

Summing up the above arguments, we have the following result for the

PSLA of Case (a); the homomorphism p is always injective. Similarly for the
other cases p is always injective.

Theorem 6.11. Let <~V be the G-orbit which corresponds to a PSLA in a

family of type DIL Then the ^-geometry does not admit non-totally geodesic
CV-submanifolds.

Case DIΠ: The families 3); with pair ( , k)

Put σ=θl and τ=0y. Then, for each PSLA in 3)^ the corresponding sym-
metric space M and the totally geodesic ^-submanifold N are given as follows :
(N is locally described.)

(a) q;=(β,σ,τ):M=SO(2/)/l7(/). In this case ΛΓ=βtt(/)/8(u(y)θu(ft));
(b) ^=(8, <r, σr): M= SO (21) /[/(/). In this case

JV=βo(2;)/ttO )Θβo(2Λ)/tt(Λ);
(c) q^=(g, r, σ) : M=SO(2l)/SO(2j) X SO(2Λ). In this case

For the PSLA (g, σ, T), the subsets Δt

+

+, Δ^, Δ^+, Δ^_ of Δ+ are given as fol-
lows:

(6.9) Δ*. = {SeΔ+; δ, = 0, δy = 0, 2}

(O-OI-IO-O-OIOO)
1-; δ = (0 »0» 01 »10 0|00)

(0 . 0 01-1|10)

Δ*. = {δeΔ+; δ; = 0, δ, = 1}

= (°" 01" V 10

(0» 01 . 1 . 1|10)
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(θ--oι-i|θi)
+ _

δeΔ ;δ =

(0-Ql--llOl)

δ = (0-01-1-1 1 11)
(Q...Ql . ί 12 2 | l l ) J

Moreover the dominant weights in Δ,_, Δp+, Δp_ are given by (6.10), (6.11),
(6.12), respectively:

(6.10)

(6.11)

(6.12)

(1-1-1110), -(0-010-0(00).

(O

(0.

•012

(i

2(11), (12-2-2|ll),

0-0(01), -(0-012-2(11).

-(0-01-1(01).

We first see the injectivity of p for Case (a): C{?=(Q, σ, T). Then p is a
homomorphism of ({>£)* ®ϊ£ to Λ2(t>ί)*<SΨ+ The minus multiple of dominant
weights in Δ«_ are given by (αl), (a2) and the dominant weights in Δt_ are given~

(α2) (0-01-1(01),

(/32)-(0-θίθ-0|00).

Case (1): /(«)=!. Represent u as follows: u=aωa®Xβ Then the pair
(a, β) is one of the pairs ((a r), (β s)), where r, s=l, 2. Applying Lemma 2.3
for each pair, we obtain that p(tt)φO.

Case (2): /(w)=2. In this case there exists no decomposable u and thus
we suppose that u is indecomposable. Consider the following elements in ΔI+:

(10-0-0(00),

(0-010-0(00),

(μ2) (0-010-0100),

(μ4) (0-0-0|10).

Then such the triples (a, β'', μ) as in Case (2) of type AI are given in the fol-
lowing :

(1)
(3)
(5)

(2)
(4)
(6)
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(7) ((a2),(β2);(μ3)),j>2, (8) ((a2
(9) ((a2),(β2) (μ4)), l-j=2.

Lemma 2.4 is available for all the cases and it thus follows that p(w)=f=0.

Case (3): l(u)>3. We see the weight spaces with dim>3. Let λ be a

weight in Λ and let α, β be weights such that \=—a+β, where tf eΔp_ and

/3eΔ f_. Denote by ak,bk,\k the k-ih components of a, /?, λ, respectively.

Sine a~±l and b~±l, it follows that λ, =0, ±2.

We first suppose that λy=0. Then it follows by (6.9) that λ/=±l. We

suppose that λ/— 1. (For the case that λ/= — 1 we can similarly do the argument
mentioned below.) It moreover follows by (6.9) that X/^^O, ±1.

Case (i): λ/-ι= — 1. Then the pair ί^l has the form ( __.. ____ i __1 π )'

If the weight space for λ has the dimension more than 3, it follows by Lemma
6.9 that

χ = (0 Q 0|-ll)

and the pair ί ~ j has the form

,rλ~ /O - O -l - -1 ---- 1 I 0 -1\
(6 13) U O -1...-1...-1I-1 0 )'

Hence for a maximal vector u in this weight space, it follows by Lemma 2.4

thatp(w)Φ.O.

Case(ii): λ/.^O. Then the pair ί^J has either of the following forms:

j J

( ΞI Q o ) ' ( ' — i ____ i — i "ό )* If the weiεht sPace ^or λ has the

dimension more than 3, it follows by Lemma 6.9 that

λ = (0 0 01 l|01)

and the pair f ^ J has either of the following forms :

(6.14) /O ... 0-1 - -1 ---- 1 -1 ---- 1 I 0 -1\
^o . o-i — i — i o ... o i o o / '
/O ... 0-1 ---- 'l ---- 1 -2 ---- 2 I -1 -1\
^0-0-1 ---- 1 ---- 1 -1 ---- 1 I -1 0 )'

Hence for a maximal vector u in this weight space, it follows by Lemma 2.2

that p(x/)Φθ.

Case (iii): λ,.1=l. Then the pair ί?) has the form ( ~j 1 0 0 )'

If the weight space for λ has the dimension more than 3, it follows by Lemma
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6.9 that

λ== (0-0-01-12-2| 11)

and the pair ( ^ j has either of the following forms:

(6.15) /O - 0-1 ••• -1 ---- 1 -1 ---- 1 -2 ---- 2 | -1 -1\
^O .O-l ---- 1 ---- 1 0 - 0 0 - 0 I 0 0 )'

/ O ... 0-1 .- -1 ---- 1 -2 ---- 2 -2 ---- 2 I -1 -1\
\Q ... o-l ---- 1 ---- 1 -1 ---- 1 0 ••• 0 I 0 0 ) *

For a maximal vector u in this weight space, Lemma 2.2 is available if X is a
root and Lemma 2.4 is available if X is not a root. Hence it follows that

We next suppose that \~ϊ. (For the case that Xy— — 2 we can similarly
do the argument mentioned below.) Then it follows by (6.9) that X/=l and
XM=0,1,2.

Suppose that λ/_ι=0 (resp. λ/-ι=2). Then the pair ( ^J has the following
3 J

form:( ~1'""1 j j ~^ (resp. ( ~J1...1j ~~\ ~^1)). By Lemma 6.9 the weight

space with this λ has at most dimension 2.

Suppose that X/_ι— 1 . Then the pair ί β j has either of the following forms :

_ι—iio-n / — i i — i — 1 \ τ£ Λ . v - £ . ,
! i i n , I i π n I* the weight space tor λ hasj. — i 11 u / \ i i u u /

mension more than 3, it follows by Lemma 6.9 that

λ = (0-01-12-2-2| 11)

and the pair ί ~) has one of the following forms:

(6.16) /O O O O -1 Ί 1 1 I 0 -1\
lO O i ... i i ... i ... 1 ... 1 l i 0 )>

0 ... o -1 1 -1 - -1 1 1 1 0 - 1
0-0 0 - 0 1 ••• 1 - 1 - 1 ( 1 0

o... o o - o -i —Ί —i -2 —2 i -i -i
O.. .Q i - i i - i - i o - o i o 0 7 '
0 ... 0 -1 ---- 1 -1 ---- l ---- 1 -2 ---- 2 I -1 -1
0-0 0 - 0 1 - 1 - 1 0 - 0 I 0 -o')

For a maximal vector u in this weight space, Lemma 2.2 is available if X is a
root and Lemma 2.4 is available if X is not a root. Hence it follows that ρ(u) ΦO.

We next see the injectivity of p for Case (c): ̂ — (g, r, σ). Note that in
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this case p is a homomorphism of ({>?)* <8ψ? to Λ2(P-)*®Ϊ-. The minus multi-
ple of dominant weights in Δp_ are given by (tfl), (α2) and the dominant weights
in Δp+ are given by (/31)~(/34):

(βl) (0-012-2| 11), (β2) (12 .2 . 2|11),

(/33)-(0 0 0|01), (/?4)-(0 012 2 | l l) .

Case (1): /(tι)=l. Represent u as follows: u=aωΛ®Xβ. Then the pair
(α, β) is one of the pairs ((a r), (β s)), where r=l, 2 and ί=l, 2, 3, 4. Apply-
ing Lemma 2.3 for each pair, we obtain that p(w)Φθ.

Case (2): l(u)=2. We first suppose that u is indecomposable. Consider
the following elements in Δϊ+ :

(io -ό o|oo), (μ2) (o-dιo o|oo),
(0-010-0100), (μ4) (0 0-0|1Q).

Then such the triples (α, β'\ μ) as in Case (2) of type AI are given in the fol-
lowing:

(1) ((al),(β4)',(μl)),j=3, (2) ((«!), (£3); (μZ», j = 7-3 ,

(3) ((eώJ.GSZJ GaS)),;^, (4) ((«2), (/31); (μ4)), j = 7-3 .

Lemma 2.2 is available for all the cases and thus p(ι/)Φθ.
We next suppose that u is decomposable. Put w=0 ωΛl®Xβl+b ω

Then there exists one possible case when 7—4, /=2, i.e., the pairs (orf , /9f) are
((αl), (y83)) and ((#2), (β2)). In this case λ is a root and Lemma 2.2 is also
available. Hence it follows that p(w)Φθ.

Case (3): l(u)>3. We see the weight spaces with dim>3. Let λ be a
weight in Λ and let a, β be weights such that λ=— a+β, where oreΔp_ and
/3eΔp+. Since a~±ί and δy=0, ±2, it follows by (6.9) that λy=±l, ±3.

We first suppose that λy=l. (For the case that λy= — 1 we can similarly do
the argument mentioned below.) Then it follows by (6.1) that λ/=0, 2.

Case (i): λ/=0. Then the pair ί 2) has either of the following forms:

i i i

(π 0 — 1 )' ( 2 2 1 1 )• ̂  t^ιe we^t sPace ^or ^ nas tne dimension

more than 3, it follows by Lemma 6.9 that

λ = (0-01-ί-10-0|00), (0-01-ί-l|10).

For the former λ the pair ί ^ j has one of the following forms:
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(6.17) /O ». 0 -1 .» -1 1 -2 2 -2 2 | -1 -1\
V O - 0 0 - 0 - 0 -1--1 -2 2 (-I -\)

/O ... 0 -1 -1 1 -1 1 -2 2 I -1 -IN
\0-0 0 - 0 - 0 -1 1-2 2 \-l-l)'

f O - 0 -i '-\ _ι 1 l o -1\
...0 0 - 0 -1 1 I 0 -I/'

/O... 0 0-0 I- ... 1 2-2 I 1 1\
M)-0 1 - 1 2-2-2 2-2 \ 1 ί ) '

/Ό-0 1-1 1 - ί - 1 2-2 I 1 1\
V O - 0 1 - 1 2-2-2 2 - 2 ) 1 \) '

Hence for a maximal vector u in this weight space, it follows by Lemma 2.2
that ρ(u) Φθ. For the latter λ it similarly follows that p(u) Φθ.

Case (ii): λ,=2. Then the pair ί £j has the form f Qι ι< Q j J. If the

weight space for λ has the dimension more than 3, it follows by Lemma 6.9 that
a b

λ = (O Ol ί l 2^2 3^3112) or
a b

(O Ql ί-12-23—34-4|22)

where α>0, έ>0, and the weight space for this λ has just dimension 3. For

the latter λ the pair ί ̂ J has one of the following forms:

(6.18)

0 — 0
0-0

0 — 0
o ... o
0 — 0
o ... o

_ι
0

— 1
0

-1
0

... __ι ...

... o -
i

... o -
j
1 ...

... o -

-1
0

1

0

J

0

_ι...
1 -

_ι ...
1 -

2 •••
0 -

-1
1

-1
1

-2
0

— 1 ...
2 -

— 2 ...
i ...

-2-
1 -

-1
2

-2
1

-2
1

2 —
2 -

-2-
2 -

-2-
2 -

_2
2

— 2
2

— 2
2

1 -i
1 i

1 -i
1 i

1 -i
1 i

_ι\
1 / '

— 1\
1 / '

-^
ι )

Hence for a maximal vector w in this weight space, it follows by Lemma 2.4
that p(w)φO. For the former λ it similarly follows that p(w)Φθ.

We next suppose that λ; =3. (For the case that λ/=—3 we can similarly

do the argument mentioned below.) Then, by (6.9), the pair (β j has the form

j

( 9 9 1 ~ϊ )• If t'ιe weight space for λ has the dimension more than 3, itV ^ * Z| 1 1 /
follows by Lemma 6.9 that
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λ = (0»

(O

•0

•0

β

T^Ϊ2

r>— s

-23

*>— V

-23

-3

1
-3

-3 1 12) or

» 34 »4|22)

where α>0, 6>0, and the weight space for this λ has just dimension 3. For

the latter λ the pair ( ^ 1 has one of the following forms:

(6.19)

/.
V

.O O O O 0-0 -1 ---- -1 ---- 1 -2 ---- 2 I -1 -1
O O 1 - 1 2 - 2 2 ..- 2 ... 2 2 - 2 1 1

.0 ... 0 0 - 0 -1 1 -1 1 1 -2 2 I -1 -1\
O O 1 ... 1 1 ... 1 2 -. 2 .- 2 2 - 2 I 1 1 / '

/O ... 0 -1 1 -1 1 -1 ... -1 1 -2 2 I -1 -1\
V O - 0 0 .- 0 1 -. 1 2 ... 2 .- 2 2 - 2 I 1 1 / '

For a maximal vector w in this weight space, it follows by Lemma 2.4 that
p(u)φO. For the former λ it similarly follows that ρ(u)φO.

We last see the injectivity of p for Case (b): CV=(& σ, σr). Note that in

this case p is a homomorphism of (t>5)*®t>ίi to Λ2(t>+)*®ϊ5. Hence we may
regard roots α, β in this case as roots —β, —a in Case (c), respectively. We
retain the notations in Case (c).

Case (1): l(u) = l. The pair ί ̂  J is one of the pairs (—(β s), —(a r)), where

ί=l, 2, 3, 4 and r=l, 2. It follows by Lemma 2.3 that p(w)φO for all cases.
Case (2): l(u)=2. We first suppose that u is indecomposable. Then the

triples (α, β'\ μ) are given as follows:

(1) (-(/34), -(αl); (/.I)); (2) (-(^3), -(αl);

(3) (-(/S2))-(α2);(/ί3)); (4) (-

Lemma 2.2 is available for all the cases and thus it follows that p
We next suppose that u is decomposable. Then there exists one possible

case when l==4,j=2y i.e., Pairs (at, β,) are (-(/33), -(αl)) and (—(02), — (α2)).
In this case λ is a root and Lemma 2.2 is also available. Hence it follows that

Case (3): l(u)>3. Similarly to Case (3) in Case (c), we have the cases
which correspond to (6.17), (6.18), (6.19). Lemma 2.2 is available for the former
one and Lemma 2.4 is available for the other cases. Hence it follows that
X«)ΦO.

Summing up the above arguments, we have the following result for PSLA's
in 3)j\ the homomorphism p is always injective.



LIE ALGEBRA AND SUBMANIFOLD II 731

Theorem 6.12. Let °(? be the G-orbit which corresponds to a PSLA in a
family of type DHL Then the ^-geometry does not admit non-totally geodesic
CV-submanifolds.

Case S)* : The family 3)2 ; 134.

In this case all PSLA's in 3)Q are equivalent to each other. Then the
corresponding symmetric space M is SO(8)/SO(4) X 5O(4) and the totally
geodesic ^-submanifold N is locally four copies of 3u(2)/3(u(l)0u(l)).

Put σ=θ2 and τ=0ι34 and consider the PSLA (g, σ, T). Then it holds that

Δ* = {(10 1 00), (00 1 10), (00 1 01), (12 1 11)} ,

Δp

+_- {(11100), (01 1 10), (01 1 01), (11 1 11)}

and so a weight λ in Λ is one of the following:

±(H|0-1), ±(01|1-1), ±(21|00), ±(21 1 11) ,

±(H 1 21), ±(01 1 02), ±(11 1 12), ±(23 1 11),

±(13 1 21), ±(13 1 12), ±(23 1 22).

Suppose that u is a maximal vector in this weight space. If λ is a root, Lemma
2.2 is available and thus ρ(w)Φθ. If λ is not a root, the weight space has just
dimension 1. It follows by Lemma 2.3 that p

Theorem 6.13. Let ^V be the G-orbit which corresponds to a PSLA in the
family £)Q. Then the £(? -geometry does not admit non-totally geodesic C
nifolds.
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