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We have studied left serial rings with (*, 1) or (*, 2) in [7] and [8] as a gen-
eralization of Nakayama ring (generalized uniserial ring).

In this note, we shall replace the assumption "left serial" to "hereditary",
and give, in Sections 2^5, characterizations of an artinian hereditary ring with
(*, n) in terms of the structure of R; w<3. In Section 6, we shall study another
type of hereditary algebras over an algebraically closed field, i.e., right US-w
hereditary algebras.

1. Hereditary rings

Throughout this paper we assume that a ring R is a left and right artinian
ring with identity. We shall use the notations and terminologies given in [ 2 ] ^

[8]
First we recall the definition of (*, ή).

(*,#) Every maximal submodule of a direct sum of n hollow modules is

also a direct sum of hollow modules [2] and [4]

In this case we may restrict ourselves to a direct sum of hollow modules
of a form eR/K, where e is a primitive idempotent and K is a submodule of

Let R be an artinian hereditary ring. Then R is isomorphic to the ring
of generalized tri-angular matrices over simple rings [1]. We are interested in
a hereditary ring with (*,ή), and so we may assume that R is basic. Then

(1) R

M12 Mln

Δ 2 M 2 3 M 2 Λ

where the Δf are division rings and the M{j are left Δ, and right Δ ; modules. It
is clear that Mij=eiRej (£,•=£,•,- matrix units).
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Lemma 1. Let R be a hereditary ring as above. Then for any t,
Σ φRej (resp. Σ ®e:R) is an ideal and i?/Σ ®Re} (resp. # / Σ ®ejR) is also

hereditary.

Proof. This is clear from [1], Theorem 1.

Lemma 2. Every non-zero element in HomΛ(eί J?, βjR)
phism.

is a monomor-

Proof. Since e{R is indecomposable and/(^ i?) is projective for /GHom 5

(e{R9 ejR), this is clear.

Let R be a ring as (1). We may study hollow modules e^RjA by the initial
remark. Put e=e{ and H= {h\MtAΦ0}, / = {j|Mo =0} , and further put E{=
Σ eh, R^EiREi and Xs= Σ Φe.-R® Σ θ ^ Since R is hereditary, ekRe:=0
Λeίr j *<«

for h^H and j^J (cf. [1]), and so X{ is a two sided ideal in R by Lemma
1 and RiX^O. If epReqΦ0 for p^H, then ^^eiRepepReq<Z.eiReq by [1], and so

Hence epR=epREi and

(2) and RiXi = 0 .

It is clear that i?=i2, φ X i as i?-modules and i?, is hereditary (cf. [1]).
Hence every i?rsubmodule in i?, is nothing but an i?-submodule in ϋ f from
(2). Further let A1</r2< <A/, (hi^H), then we note that eAllte^=t=O for all
q. Therefore we obtain

Lemma 3. Let R be a hereditary ring as in (1) and let R{ be as above.

Then (*, n) holds for any n hollow modules if and only if, for any i, the same holds

on any Rrmodules. Further R{ satisfies ehχRehq Φ 0 for all hq>hv

Next we shall observe a construction of hereditary (basic) rings. In order
to make the observation clear, we shall first give an example.
Let

lKn 0

0

κκ

Ku 0

K2i 0

Ku 0

Kit 0

0

0

0

0

0

0

0

0

£55 K* 0

Kca 0 Kg*,

κ
v

where Kij=K is a field.
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We take non-zero entries in exR and put

,Kn Kιz Jv14 Is

κH o o
Ku 0 0

Since K& does not appear in Rx (since Λfl2=0), we take

ιK22 K2A

0
\

Since K55 does not appear in Rx and R2y put

^55 Λ 5 6 Λ 5 ί

0 î ge K&

Similarly to the above, we put

τ> _ f 7 7 ^ 7 8 |
7 " V o KJ

Then
/^44 0 0

A12 = 0 ^ Xβg

\ 0 0 ΛΓ»

is the common components between Rx and i?2. Similarly we can define

i 4 1 7 = -427 z r = -^57 =

We note that the products in R of two components in i?f and Rj not contained
in i4f y are zero. Now Rλ and R2 are of right local type (see §5) and i?3 and i?4 are
right serial. Further we know from the above note that R is the subring of
Rx(&R2®Rs®R7 given by identifying elements in the same Kijy namely in Ai}-.
If we carefully observe the above constructions, we know that only some right
ideals contained in (1, — £(i°)i?t are identified, where l f is the identity of # f and
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e{!) is the matrix unit in i?, .
We shall study the above fact in general. Let

(3) R =

Mln\

ί . M2«

0
Mj

where M{i= A{ are division rings. We define R: as before Lemma 3 and
express 2?f as

(4) Ri=\ 0 '••,

where M # is equal to some M/IM in (3) (Mft^Af,.,. in (3)) and ΛΓφΦO for all k.
We note first the following fact: Assume MabΦ0 for some a and b. Put

Ia={x\Max*0} 3ndIb=iy\Mby*0}. Since MabR^ebR^m) (direct sum of m-
copies of ebR)y

(5) /.c/,.

Starting with R1 (=Rtl), from the initial observation we can construct Rth so
that M(ιJ does not appear on the diagonal of Rtft/ for all th'<i=th and so that
each component MPq in (3) appears at least once in some Rts. Take i?, and
R. (th = i<j=th')y and assume that M% = Ma

sl> ( = MPq in (3)) are common
components between R{ and Rj. Then M$ = M[j)={Mpp in (3)) are also
common ones between R{ and Rj by the definition of Rtfι and i?ίA/. We shall
consider those components in (3). It is clear from (5) that

(6)

Now let

el'% = (0-0 0 M¥it) = MψkιΦθ ,

Then e(jl}Ri=e?sJ}Rj for all /<£ from (5). By ^4tV we shall denote the right ideal
whose components appear in R{ and Ry. Let /t and /y be as before (5) where
i=th and j=th' and put IiΓ\Ij = iπ1<π2<-- <πs}. Then we know from the
argument above that

i) iί*y = Σ Θ ^ Λ ,
(7) ii) AijepR=0 for ί Φ W » . , f f | } ,

and so
iii) the lattice of right i?-modules of A{j is equal to the lattice of right

^-modules of Aijt
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Finally we assume for some b (1 <ό<τz) that (Mab in (3)) = M(JJ 4=0 and (Mbc in
(3)) = Mψy ΦO. Then bG/, Π /, and so Aίg? c A v from (7)-i) and ii). Hence
the product in R of an entry of i?t and one of Rj is zero if the latter (and hence
two of them) is not contained in A{j. Thus we can find a set {i?, ,} of hereditary
rings such that ei^Ri^ΦO for all k and a set {AMt,} of right ideals as (7), and
R is the subring of Σ θ ^ , / such that the entries in Aiuit, of Rit are equal to the
entries in Aiuit» of Rit,. Conversely, let {Ri}?=i be a set of hereditary (basic)
rings and {A^} a set of right ideals in i?, and Rj which satisfy (7) where we
replace R with R{ and R}. Then we can easily show that the subring of Σ Θ-R*
whose components in ^4,7 are identified for all i,j is a hereditary ring. We shall
call such a ring the patched ring of {i?, } with respect to (briefly w.r.t.) {A^}, (the
name comes from the following examples).

We shall give some examples of the patched ring. In the following exam-
ples, tri-angules and squares mean tri-angular matrices and matrices over a field
K, respectively and straight lines do vector spaces over K.

1

Then

a n d AΛ% =

is the patched ring

of i?j and R2 to. r. t

X 0

V
d:

and Bn= \J\

Then N. ί

N . I

\ί'

0

\

—r
1
1
1

0

a

\

b

! * '
1

0

\

is the patched ring of R3

and R4 w.r.t. Bn.
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We note that Rj, and R2 are left and right serial, but R is not left serial.
Rz and RA are of right local type, but R is not and (*, 3) holds (see §§4 and 5).
We shall show in §5 that every hereditary (basic) algebras over an algebraically
closed field with (*, 3) is obtained as the patched ring of Rx

ys and Rz's above.

Thus we obtain

Proposition 1. Let R be a hereditary (basic) ring. Then R is the patched
ring of hereditary rings (R{} such that ei^R^i0 =j= 0 for all k, where 4 ° & the
matrix unit epp in i?, .

REMARK 1. Let R be a hereditary ring which is one of R{ given in Proposi-
tion 1. Since ejiβj ΦO, βjR is monomorphic to exR. Hence, if the structure
of eλR is known as right i?-modules, then we can see those of e{R (cf. Theorem
2).

2. Hereditary rings with (* ,1)

We shall first give some remarks on (*, 1). If R satisfies (*, 1), for eJ'Z)C

eJIC=iz®Ai9 with A{ hollow. Since A{ is hollow, AJ= Σ Θ-B,v with B{j
1 = 1 j

hollow by (*, 1). Hence e]2\C= Σ ®AJ= Σ Σ ®B{j. By induction
* * j

(8) eJ'/C is a direct sum of hollow modules.

In general, we assume that a module M is a direct sum of submodules
M, . For submodules iV, of Mh we call Σ θ i V ) a standard submodule of M

i

(with respect to the decomposition Σ θ - M , )

Proposition 2. Let N be a finitely generated R-module. Then the following
are equivalent'.

1) N is a direct sum of hollow modules.

2) Let P be a projective cover of N(P -> N). Then her f is a standard
submodule of P with respect to a suitable direct decomposition of indecomposable
modules.

3) Let Pr be projective and / ' : P'-*N an epimorphsim. Then ker f is a
standard submodule of P' as 2).

Proof. Every hollow module is of a form eR/A. Hence l)<-»2) and 3)->
2) are clear.
2)->3) Let
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be exact with P' projective. Since P is a protective cover of N9 there exist

g: P-+P' and h: P'->P such that hg= \p. Let P = Σ Θ P , and k e r / = i Γ = Σ Θ ^

by 2), where the P, are indecomposable and K{ c P f . It is clear that ^(iC)®/*"1^)

=ΣΘ«(^)θA" 1 (O)cker/ / and Pf=g(P)®h-\ϋ). Hence

We shall study, in this section, a hereditary ring with (*, 1) as a right R-

module. Hence we may assume that R is basic. We shall give a characterization

of a hereditary ring with (*, 1).

In the following, a, β, ••• mean indices and \i>a, β, •••, η\ means a natural

number related with the index (i, a, β> •••, η). If i? is a basic hereditary ring,

J(e<R) = ej = N(i, a)®N(i, β)®N(if

where N(iy a)**eUtΛ\R, N(iy β)^eUfβ]Ry ••• ,

(9) J(N(iy a)) - N(iy a, aJθNd a, α ί ) ® - ,

where N(i, ay a,)« eUt0CtΛl]Ry N(i, α, a{)« βUiβliβl/|jR ,

and so on. It is clear that i< \i, a\ < \i, a, aλ\ < \i, α, aiy a21 and so on, and

(10) e Rej = Mi} = Jl ®N(i, - , Ύ)βj.

Theorem 1. Let R be a hereditary (basic) ring and N(i, •••, γ) be as in (9).

Then the following conditions are equivalent:

1) (*, 1) holds for any hollow right R-module.

2) The following conditions are satisfied.

i) Let i<k=\i, a\ <j= \i, β\(aφβ), i.e., e{] contains two direct summands

isomorphic to ekR and βjR, respectively. If N(i, a, •••, γ) and N(i> β, •••, γ7) with

\iy cc, •••, 71 = \i, β, •• , γ / | = A appear in (9), i.e., for some h, simultaneously

ekReh3=0 and ejRe^O, then e^R is uniserial, and hence [ M y ^ : Δ j < l for q>j.

Further if we denote exactly N(i, a> •••, γ) as N(i, a, a2f •••, ^ = 7 ) , ίfer^ exists a

(unique) s such that \ i, a, a2, •••, as \ =j.

ii) If Mjq=xAq (q>j), there exists an isomorphism σ of Aq onto Δ, such that

xS=σ(S)xfor all δ in Aq.

3) For any submodule A in e{]
k for any k, there exists a direct decomposition

ei]k=Y^®PΛ such that 4 = Σ θ 4 ; Λ c P Λ andPΛ is indecomposable, i.e., A is

a standard submodule of erf* with respect to the decomposition Σ Θ-P*.

4) For any submodule A in e{], there exists a direct decomposition e{j= Σ θ

N(i,a)' such that A=^®AΛ\ AΛcN(i, a)' and N(i,a)'&N(i,a), i.e., A is a

standard submodule of e{j vήth respect to the decomposition Σ Θ-ΛΓ(*\ a)',

Proof. l)->2) Assume (*, 1) and i=l from Lemma 1. Put i i = 11, oc|

and / 2 = | l , β | . Assume N(lyay « ,7) and N(l,β, •••, </) appear in (9) for
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A = | l , α , ,7l = |l,/3, , 7 / | . Then M1AΦO, M^ΦO and M ί f A Φθ. First
we shall show £IJ}i? is monomorphic to eiχR and [M,- :̂ Δ J = 1 . Γf we can show
that eiχR contains a non-zero element y in Miχi2? e^R-^yRde^R (ei2-*y) is a
monomorphism from Lemma 2. Hence we may assume Δ Λ + 1 = = Δ ί l = 0 from
Lemma 1. We shall identify JV(1, α) with έ?tVR (resp. iV(l, /3) with ei2R). From

the above assumption let Mhk = Σ 6 i ; ; the A} are simple i?-modules and

[-4,-: ΔA] = 1. Since eilRz^Miχk'DN{\, a, •••, 7)ΦO, there exists a natural homo-
morphism

From the assumption (*, 1), / is extendible to an element hr in ^ ^ / Σ

i4y, ehR) by [6], Theorem 4 (note that Hom^^jR, £, 2 # / Σ ® Λ') = ° by Lemma

2 in case of iγ=i2 and j > 2 and that we identify β̂ /2 and ei2R with iV(l, α) and
N(ί, β), respectively). Consider a homomorphism

A: ei2R -> ̂ 2Λ/ Σ θ A 3 -> ̂ Λ .

Since AΦO is a monomorphism by Lemma 2, Mi2k—Av Therefore

(11) ei2R is monomorphic to eiχR and [Mi2k: Ak] — 1, provided M, 2i&Φθ .

We shall show similarly to (11) that ei2R is uniserial. Put ei2 = e and ej* ̂  Σ ®

(̂y)/2 for some ί, since i? is hereditary. Let B b e a simple submodule of
Then we obtain a monomorphism of ( β © Σ ®ebn)R)j Σ ®^bn)R^B to

j>2 y>2

(see (11)). From the argument before (11), S $ ^ ) j R = 0 , and so e^
j>2

and ej*lejt+1 is simple. Therefore &R is uniserial. Next assume Mi2k=xAk and
we show ii). Hence we may assume Δ*+ 1= = Δ Λ = 0 from Lemma 1. For any
δ in Ak, define an endomorphism φ of Mizk by setting <p(x8')=xδδ'. We may
regard φ as an isomorphism of Mi2k onto iV(l, a, •••, 7) ( |1, α, •• , 7 | = A ) .
Further, for an extension g (in Homi?(^i2, ̂ i?) C Horn^&R, ̂ i?)) of 9? by [6],
Theorem 4, ^ ( A ) C ^ , 2 = M l ί 2 = Σ Θ^V(1, α, •••, S)eh. Noting the structure
(9) *nd g(Mi2k)=φ(Mi2k)=N(l, a, - ,7), we obtain

(12) some ΛΓ(1, α, —, &) contains N(ί, a, •••, 7) and JV(1, a, •••, S')^eR .

Therefore φ is extendible to an element in HomR(eR, eR)=Ai2 (take the projec-
tion to iV(l, α, •• ,£/)), which implies that there exists δ* in Δ, 2 such that
δ*#=#δ. It is clear that the mapping: δ-»σ(δ)=δ* is a monomorphism. We
shall show that σ is an isomorphism. Let δ** be an element in Δ, 2. Since
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Mi2k=xAk is a left Δ^-module, 8**x=xS" for some 8" in Ak. Hence δ**=σ(δ").
The last part of i) is clear from (12) and its argument.

2)->l) Assume that i) and ii) are satisfied. We shall show that the condition
ii) of [6], Theorem 4 is fulfiled, and so we may study a case e=e1 by Lemma 1.
Let

eJ = N(l,a)®N(l9β)®~

and C1Z)D1 (rtsp. C2Z)D2) submodules in iV(l, α ^ ^ i ? (resp. N(l,β)t*seizR,
h<i2) such that CJD1 is simple and/" 1: C^Ό^C^Ώ^ We shall show that / is
extendible to an element in HomΛ(iV(l, β)/D2y iV(l, αO/A) First we note for
any i?-module E in ekR,

(13) E = E(Σej) = Ίl®Eej and

Since CJD^CJD^ N(l, a, •••, γ) and ΛΓ(1, /3, •••, </) appear in ̂ Λ for some
11, a, - , τ | = 11, yS, -., γ ' | =A from (13). Hence JV(1, /8) ( « ^ ) is uniserial
byi) and C ^ M ^ Θ M ^ Θ φ M ^ p D ^ M ^ Θ Θ M ^ from (13), where
A<A1< <Aί. We may identify iV(l, α) with ^Λ. Let Mi2h=xAh and take a
representative/^) of/^+Dj) in M/χA from ( 1 3 ) ; / ( Λ ? ) = Σ ^ 5 OφxpGN(l,a, •••,
γ,) from ( 1 0 ) ( | l , a , - , ^ | = A ) . Since *,Φ0, JV(1, α, - , 7,)ciV(l, α, •••, δ,)
( | i ,α, —,δ,l = ί,) from i), and iV(l, α, •••, δ ^ Φ ^ l , α, •• , δ / ) if ^ Φ ^ ' , since
ehR is uniserial. Put ΛΓ= Σ ®N(1, a, •••, δ^cΛΓ(l, α), C{ = C1ΠN and

,̂ /(Λ?) being in C[ and f(x)<£Dv Q - C ί + A , and so Q / A ^
c'ί/-Dί O n t h e o t n e r h a n d , xp = xpeh for all ̂ >. Hence the

mapping: x1-^xp is extendible to an element gp in HomΛ(iV(l, α, •••, δx), ΛΓ(1, ,α
..., δ,))(«Δ, f) from i) and ii). Then JV=JV(1, α, - , δx) ( Σ f t ) θ Σ θ

iV(l, α, •••, δff) and /(Λ?)eiV(l, α, —, δθ ( Σ & ) (=JV*), where Γ(M) means the

graph of a module Γ with respect to a homomorphism M. Further CJD^
(Cί Π ΛΓ*)/(Z>ί Π N*) as above. Now Cί cΛΓ* c iV* ( « ί | f R)cNczN(l , a) and
Z)( Π N*=J(C{ Π N*)*&D2. Hence we obtain the natural homomorphism

JV(1, β)ID, Z. N*/(Dί Π N*) -+ N(ί, α)/φί Π AT*) -*

{x+D2) -*/(*)+(Dί ΠΛΓ ) -/(*)+(JDί

where w is an extension of/ given by i) and ii),
which is an extension of /.

4)->l) This is clear from the definition of (*, 1).
3)->4) This is trivial.
l)->3) This is clear from (8) and Proposition 2.
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REMARK 2. We shall study the situation of 2)—ii) of Theorem 1. Let
eji and βjR be as in i). Assume

ehR = 0 MJΛ
0), (j=j\ and MPqΦθ).

Then

(14)

= (0 0 Δy2 0 My2y3

«(0 0 MjΛ 0 Λfy^

0)

0)

O •0 0 Δy* 0),

since e^R is uniserial. Further Mj^^rn^^Aj^ In order to simplify the
notations, we express j{ by /. Then M, yΦθ for £ < j . Every element in
ΈndR(MlsRIMls+ιR) is extendible to an element in EndR(e1RIMls+1R) by the proof
after (12). Further, since (O O Mls-Mιt)™(0-Mu-Mu) for all / and ί,
every element in EndΛ (MlsRjMls+ιR) = As is extendible to an element in
ΈndR(eιRIMls+1R)=Aί. Hence there exists an isomorphism φΊs\ ΔS—>Δ/ (since
Mls=m'ιsASj φ'u is an epimorphism) such that

(15) m'tsX = <pΊs(x)mΊs, where x^Asand Mls=rnΊsAs

from the proof of Theorem 1. We fix generators tniti+1 of Miti+1 for all i and
9?t>, + 1 : Δ +i-^Δ; related with the fixed miti+1 in (15). Then miti+1mi+lti+2--
mi+kti+k+1=miti+k+1 is a generator of Λfίtf + i k + 1 and <Pi,i+k+i=<Piti+i'-'<Pi+k,i+k+i'

Ai+k+^Ai is an isomorphism and satisfies (15) (cf [1], Lemma 13). Hence we
may assume

(16) (ejι+ "+eh)R(eil+-+ejt)
0

V
Next assume that βjR is uniserial only as in (14). Then by the similar

argument as above, we obtain

(16') +eit)
0

\ Δy/

and the £>0 : Δ -^Δy (ι<y) are monomorphisms (cf. [1], Lemma 13). By T#(Δyx)
and T^Δ/j, Δy2, •••, Δŷ ) we denote the above rings (16) and (16J), respectively.

3. Hereditary rings with (*, 2)

We shall give a characterization of hereditary rings with (*, 2).
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Theorem 2. Let R be a hereditary {basic) ring. Then (*, 2) holds for any
two hollow right R-modules if and only if, for each et (=£,,),

eiJ=^Σ®Ak, where the Ak are unίserial modules, which satisfy the following

conditions \
i) // AkfyAk' for kφk', any sub-factor modules of Ak are not isomorphic to

ones of Ak'.
ii) If Akt&Ak', (^ejR) (kφkf) and MjP=xAp (j<p), there exists an isomor-

phism δ: Ap-*Άj as in 2)-ii) of Theorem 1.

Proof. Assume that (*, 2) holds. Then the A{ are uniserial by [8], Pro-

poistion 7. As in the proof of Theorem 1, we consider a case ί = l from Lemma

1. Let

ej = Nn 0 ΛΓ12 θ θ NUl

®NΛ®Nn® @N2t2

Φ -tV qι φ iVq2 φ φ ^qtq y

where Nj^Nj^βijR for all7, s and NJ^NJΊ if j Φ / and iι<i2< <iq .

Assume that iV21 contains a non-zero sub-factor module isomorphic to one of Nn.
Then N2l is monomorphic (via g) to iVn by (13) and Theorem 1. It is clear
that ΛΓ2l(^)φiV220 0iV2ί2(«ΛΓ21©...©iV2/2) is a direct summand of ej.
Hence from the assumptions (17) above and [8], Proposition 12, there exists j
ineJe^^O) such that (^+i)(ΛΓ210...0ΛΓ2/2)=ΛΓ21(^)eiV22e eΛΓ2/2. Hence
g must be zero, ii) is clear from Theorem 1, since (*, 1) holds. Conversely,
we assume i) and ii). Then (*, 1) holds by Theorem 1. We shall quote here
the similar argument given in [8], Proposition 8. Let e be a primitive idempo-
tent and let eRlEx®eRIE2 be a direct sum of two hollow modules. We may
consider only a maximal submodule M' (ZϊΈλ®Έ2) in F=eRξ&eR (see [8],
Proposition 8). There exists a unit x in eRe such that F=eR(f)@eRZ)M' =
eR(f)®eJ, where f(r)=xr for r^eR. We shall define g': eR(f)->eR by setting
g'(r+xr)= -xr. Then E1®E2 = E1(f) (g')®E2. Let ψ\ F^eR{f)@eRjE2 be
the natural epimorphism. Then M=Mtl{Eι®E2) = {eR{f)®eJjE2)l{Eι{f){gf)).
If we identify eR(f) with eR, M=(eRφeJIE2)jφ(Eι(g)), where g=—f. First
we consider the structure of φ(E1(g)). If eR\Ex is simple, either M'\{Ex®E2)Zϊ
eR\Ex or M'KE&EJQeRIE^FKE&E,). Hence M'&E&Et) is a direct sum
of hollow modules, since (*, 1) holds. Therefore we may assume Ex^eJ. Let

ej= Σ θ A the A{ are hollow. From i) of the theorem, we can express the
1 = 1

index set / = {1, •••, m} as the disjoint union 7=/ 1 U/ 2 U ••• Hip such that

j if i,j&It, and A&Aj if ίeJ^je/,/ and



430 M. HARADA

P

We put Fi= Σ ®Ak then ej= Σ ®Fh (cf. (17)). Since these F{ have the parti-

cular property above, £ Ί = Σ Θ C , ; Q c F . , £ 2 = Σ Θ G , ; ^ c F , - an

FijGh where g is induced from g. Hence

(18) M~(eR® eJjE2)j Σ θ

Next we consider C2(^). Assume that Ax has the structure given in ii) of the
theorem. Now Ax has the structure of ejχR in (16), and so every element in the
endomorphism ring of sub-factor module TjL of A1 is extendible to an element
in End(AJL). Further TJL^Tί/Lί for sub-factor modules TJL,, Tί/L{ if
and only if T1=T[ (and Li—LΊ). From this remark and the following fact:
since Cι(g)czeJ®F1IG1, for any submodule L in eJ®Fly {eRJ^F^jL^eRfXi®
FJGΊ, where G{ is a (standard) submodule of Fί and X[ is a submodule of
ς/ (cf. [8], Proposition 8), we can find an isomorphism:

(19) (eR 0 eJIE2)ICx{g)« ei?/Xί θ ί\/Gί θ Σ θ Fk\Gh

and Σ ΘCffllC^CeRIXί 0 Σθf*/G*,

(see the proof of Theorem 5 below and [8], Proposition 8).

Finally assume F1=A1> i.e., Ix is a singlton. Then C1/Xι^ίg(C1)f where
Xl=g'\0) Π Cv Since g is an isomorphism of A1 to JFX and Ax is uniserial,
5r(-X1)=G1. Hence we have the same situation as above (take^"1). According-
ly we finally obtain from (19)

M « eR/Σl I ! Θ Σ Θ F'ijG'r. F'{ « F{,

which is a direct sum of hollow modules by Theorem 1.

Let R be a hereditary ring with (*, 2). We shall assume ^1/?=(Δ1M12M18

Mlrt) and Ml3Φ0 for all; from Lemma 3. eJ=(QM12-~Mln)= Σ θ - F . as in
ί = l

the proof of Theorem 2. Following fF,-}?.! we divide the index set {2, 3, —, n}
into j-parts 7 = ^ U /a U U /ff such that F^j =t= 0 «->;' e 7, . Then 7, Γ\Ij = φ if
i φ j by i) of Theorem 2. Put \FiIFJ\=pi. Iίpt=l, F , is uniserial, and so
-Pff==w|if1Δl 1®m l f 2Δ ί 2 © 0m l f /Δf /, where the i, runs through over 7, and
C CΔ,-, are division rings (see (16')). If pi>29 F^m^Ai^Φim^
®"*®(fnUtAi^pi\ where (rn^Ai^^) means a direct sum of p copies of m^A^
Since 2̂2̂ -4=0 and R is hereditary, eέR is monomorphic to exR by Lemma 2. On
the other hand, the image of e{R is a submodule o f ^ for some j by i) of Theorem
2. Hence ^ Λ « m ^ Δ y , 0 m i y ,+1Δ,'*+i© ••• @mιhAh or ^mιJkAjk®mιJk+ιAjk

ζB (Bnι1jtAjk(l<i=jk) from Lemma 2. Therefore i? is determined by {ί1,},
provided eJte^O for all /. Since R is hereditary and 7f f)Ij=φ (i^j), Mlm=0
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/, and me/y (ί=f=j).
Next let RQ be a hereditary ring as in (1) and assume

Then after renumbering {ei=eii}y we may assume
,- as rings.

(Si

s2

0

0

SJ .

By E{ we denote the identity element in S{. On the other hand, for any here-
ditary ring R as in (1)

jR = exR 0 R'Q as Λ-modules,

where i?o=(l —e^Rfl—et) and ^i? is a two-sided ideal of i? by Lemma 1.
If i ? o ^ Σ θ 5 , as above, eJ=Σl®e1REj. Put Aj=e1REJ, and ^4y is a right
ideal in exR. We use those notations in the following theorem. Thus we
obtain

Theorem 3. Let R be a {basic) hereditary ring such that ejle; Φ 0 for all

j . Then the following conditions are equivalent:

1) (*, 2) holds for any two hollow modules.

2) RleλR is a direct sum of right serial rings Sj] 1) *5y=Tr(Δy1, Δy2, •••, Δ J

or 2) Tr(Δy) and AJ=(AJV Δyf, - , Δyr) in Case 1), Aj=(Aγj\ . - , Δ^>) is a left

Δ {=zexRe^ and right Aj-modules in Case 2), where Δ c Δ ^ C ••• c Δ / r are division

rings.

3) i? w isomorphtc to

/Δ

(20)

Ax\

ft, Δ
A2,

A f l k) or T r j f c(Δ»).

Theorem 3'. Let R be a {basic) hereditary ring. Then (*, 2) λo&fo z/

only if R is a patched ring of hereditary rings given in (20).

Lemma 4. Let R be a hereditary and connected {basic) ring. 1) If R is a

left serial ring, then e^βjΦO for all j>\. 2) Conversely, if eλRej 4= 0 for all j ,

and [Miji Δ y ] < l , [Mjyi Δ, ] < 1 for all i and j , then R is left serial.

Proof. 1) Let e1R = e1A®M12® — ®Mlu. We divide the index set

{2, 3, ••-,/*} into two sets I, J such that M l f =t=0 provided i G/ and Mυ=0 pro-

vided j G / . Take Mu and consider Mμ. If M ; ί φ 0 for j G / , i?Myt φ M l t ,
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since Mυ=0. Hence MjΊ=0 for all i e / by assumption. Hence R={enRξB
Σ θ**/2)θ( Σ 0e*/l?) as rings from (2). Therefore/=φ by assumption.

2) Assume O=t=β1jRtey=Δ1wi1y=111 /̂ for ally. Since R is hereditary, ^ / =
Σ 0-4$ the i4f are hollow and no sub-factor modules of A{ are isomorphic to
any ones of Aj{ί=tj) from (13) and the assumption [Λf iy:Δy]<l. Similarly
/ ( 4 ' ) = Σ Θ A i a n d soon (cf. [7]). Hence any indecomposable (projective)
module in ej is equal to some Aili2...ir Let Mit=mifAt—Aimit and Mjt=mjtAt=
AjtnjΊ (i<j) for a fixed £. Then m^R and £υ e, i? have a common sub-factor
module in exR. Hence e5R is monomorphic to exR from the initial remark, and
so e, 2fcyΦ0, which implies Rmit<Z.RmJt. Therefore R is left serial.

Theorem 4. Let R be a connected {basic) hereditary ring. Then R is a
left serial ring with (*,2) as right R-modules if and only if R is isomorphic to

/A A Δ Δ Δ Δ\

where Δ, CΔ are division rings.

Proof. Assume that R is a left serial ring with (*, 2) as right i?-modules.
Then R is isomorphic to the ring in (20) by Theorem 3 and Lemma 4. Since
R is left serail, the A{ in (20) are isomorphic to Δ as left Δ-modules and Akl=
Δk2= "=Akrk in (20). If we take a generator of Ai9 we know Δt c Δ . The
converse is clear from the structure of the diagram.

4. Hereditary rings with (*,3)

We have already obtained a characterization of artinian rings with (*, 3)
and \eJ/eJ2\^2 in [5]. As is seen in [5], Theorem 1, the structure of such
artinian rings is a little complicated. However if R is a hereditary ring with
\eiijleiij

2\ <2, we obtain the following theorem.
We quote here a particular property of a vector space (cf. [2] and [7]).

(#, m) Let Aλ and Δ2 be division rings and V a left Alf right A2-space. For
any two right A2-subspaces Vly V2 with \V1\ = \V2\=m, there exists x in Δj such
thatxVι=V2.

Theorem 5. Let R be a hereditary {basic) ring with \eJjeJ2\ < 2 for each
e=eit Then (*, 3) holds for any three hollow modules if and only if eJ=A1φA2

such that
1) The Aέ are as in Theorem 2, and further if A^A2y 2) [Δ: A{A1)]=2 and
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3) ej/ej2 satisfies (#, 1) as a left A-module and right Af-module, where
A=eRe, Ar=ejReji and A{Ax)={x\ e Δ , x

Proof. Assume eJ=A1φB1 as in the theorem. If Ax^Bly Δ(C)=Δ for
every submodule C in ej by i) of Theorem 2. Assume Aι^B1 (^sβj-R). Then
Ax and Bλ have the structure of eR as in (16). For any C, there exists sub-
modules C1ZDDι in Ax and C2ZDD2 in Bx such that /: CJD^CJDt and C= {x+
A+/(*)+A,I * G Q} F r o m (16)> / i s extendible to an element g: AJD^BJDr
Since (#, 1) is satisfied for eJleJ2=u1AJ ®v1Aj, there exist a in Δ and z in Δy such
that u1-\-g(u1)=au1z

Jrzϋ> w^ej2. However, since uly vx are in ej—ej2 and uxej=
uu v1=υ1ejy w=0. Hence C=C 1 (/)+D 1 φZ) 2 = ^ Q Φ A ) , (note that D1&DZ

and α(D 1φD 2)=Z) 10D 2 and that 4̂X is uniserial). It is clear that Δ(^41)cΔ(C1

©Z)1)=Δ(α"1C)=α-1Δ(C)α and so [Δ: Δ(C)]<2. Thus the conditions in [5],
Theorem 1 are fulίiled, and hence (*, 3) holds by [5]. Theorem 2. Conversely,
assume (*, 3) holds. Then 1) and 2) are clear from Theorem 2 and [5], Theorem
1. We shall show 3). We may assume from Lemma 1 and [2], Lemma 1 that
Δ i + 1 = = Δ n = 0 . Then 2) of [2], Theorem 1 is nothing but (if, 1).

As in Lemma 3, if ^ifcyΦO for all j , R in Theorem 5 is isomorphic to

î Δ2 Δ, Δ,+1 Δf+,\

T, (Δx Δ2 Δf) 0

\0 0 T,(Δ f+1. .Δ f+J)

where AcAtCZ' czΔr and Δ c Δ , + 1 C CΔ r + J , or

/Δ Δί2) Δi2) ΔP\

Vθ T f(Δ x) ) .

where A{2) is a left Δ and right Δx space satisfying (#, 1) and [Δ: Δ(Δ1( •••, Δx)
]=2.

In the former ring, eJ=A1@A2 and AxfyA2. Hence (*,w) holds for all
n by [5], Theorem 3. We do not know this fact for the latter ring.

5. Hereditary algebras

In this section we consider particular algebras over a field K such that

(21) ejRei/eJej = efK ([2], Condition I I " ) .

(e.g. an algebraically closed field.)

Under the assumption (21), every Δ, in (1) is equal to K. In this case,
if eR is uniserial, [eϋe'i K]<1 (cf. (14)). Hence

(22) End*(A/A') ^K& End*(eR/A')
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for any submodules A~DA' in eR. Accordingly, from the proof of Theorem 2
(cf. [8], Theorem 2) we obtain

Theorem 6. Let R be a hereditary K-algebra satisfying (21). Then the
following conditions are equivalent:

1) (*,2) holds for any two hollow modules.
2) Every factor module of e/?©ς/(m) is a direct sum of hollow modules for

each primitive idempotent e and any integer m. (It is sufficient in case m=l.)

If every finitely generated i?-module is a direct sum of hollow modules, R
is called a ring of right local type [10]. It is clear from the definition that
(*, ή) holds for a ring of right local type. By TΛ(Δ) we denoted the ring of
upper tri-angular matrices over a division ring Δ (see (14)).

Theorem 7. Let R be a hereditary (basic) K-algebra satisfying (21). Then
the following are equivalent:

1) (*, 3) holds for any three hollow modules, and ^Λ^ ΦO for all j , (and
hence (*, n) holds for all n).

2) R is isomorphic to (Tmi(K) K K—K\

[o τm2(K)J.
3) R is of right local type and connected.

Proof. l)-*2). Since \eJjeJ2\ < 2 from [4], Theorem 3, we obtain it from
the remark after (21) and the last part in §4.

2)->3). It is clear that the ring in 2) is connected and of right local type
from Lemma 4 and [10] (see [9]).

3)->l). (*, 3) holds for any three hollow modules. Since R is left serial
by [10], and connected, M υ 4=0 by Lemma 4.

Theorem 8. Let R be a hereditary algebra as above. Then the following
conditions are equivalent:

1) (*, 3) holds for any three hollow right R-modules.
2) eJ=A1@A2, where the A{ are uniserial, and any non-trivial sub-factor

modules of Aλ are not isomorphic to ones of A2. In this case (*, n) holds for
all n.

3) Let {Ni}k

iaι be any set of submodules in eR. Then every factor module
of Σ θN^i /} is a direct sum of hollow modules.

4) Every factor modules of eR(n)(BeJ(m) is a direct sum of hollow modules for
any integers n and m. (It is sufficient in case n—2 and m=l).

Proof. l)<-»2) This is clear from Theorem 5 and [2], Theorem 2'.
l)->3). Let e=e{ and let Rt and X{ be as before Lemma 3. Then i?, is

of a right local type by Theorem 7. Since i?t Xt = 0 and RjXi=Rh every sub-
module in eR is an i? rmodule. Hence every factor module of Σ ΘΛ^Λ0 is also
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an i?rmodule. Therefore it is a direct sum of i?rhollow (and hence 72-
hollow) modules.

3)->4). This is clear. (We can show directly l)-*4) in the similar manner
to [8], Theorem 2, cf. the proof of Theorem 2.)

3

3)->l). Let D= Σ (BeR/Ei and M a maximal submodule in D. Then

D'=eR™ contains the submodule M' such that Λf D Σ ®E{ and Λf'/Σ θ # , =
ι = l

M. Since D' has the lifting property of simple modules modulo the radical, D'

has a decomposition Σ Θ-F1,- such that F^eR and Mr=Fι®F2®J(Fs). Hence

M is a factor module of eR^ζ&eJ. Therefore M is a diect sum of hollow mo-
dules from 3).

Theorem 9. Lei R be as in Theorem 8. Then (*, 3) λo/ώ for any three
hollow modules if and only if R is the patched ring of serial rings Tr(K) and rings
of right local type (Ύr,(K) K K-K\

V 0 T>, (K) ) .

Proof. This is clear from Proposition 1 and Theorem 7.

6. US-n algebras

We have studied special types of hereditary algebras in §5. We shall show,
in this section, that they are related with US-w algebras defined in [4].

As another generalization of right serial ring (cf. (*,«)), we considered

(**,w) Every maximal submodule in a direct sum D of n hollow modules

contains a non-zero direct summand of D [4].

It is clear that if DjJ{D) is not homogeneous, D satisfies (**,?z). Hence
we may restrict ourselves to hollow modules of a form eRjE, where e is a primitive
idempotent and E is a submodule of eR. If (**, n) holds for any direct sum of
n hollow modules, we call R a right US-w ring [4]. We showed in [4] that R
is right US-1 (resp. US-2) if and only if R is semisimple (resp. right uniserial).
On the other hand,

Proposition 3 ([6], Proposition 8). Let R be a right artinίan ring. Then R
is a right US-m ring for some m if and only if the number of isomorphism classes of

hollow modules eR\A is finite and [Δ:

If R is an algebra of finite dimension over a field K, [A: Δ(A)] < oo. Hence
from Proposition 3, we know that an algebra of finite representation type is a
US-7Z algebra for some n. Further we note that if K is a finite field, R is a
finite ring. Then, since there are only finite non-isomorphic hollow modules,
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R is a US-rc algebra. Hence we may assume that K is an infinite field.
From now on we assume that R is a if-algebra satisfying (21). Let e be a

primitive idempotent in R. Let {Av A2, •••, ί,} be a set of submodules in eR
such that Aj\Aj for any pair i and 7, where A^Aj means that there exists a
unit element x in &Re such that xAidAj or xA^Aj. Let m(e) be the maximal
number t among the above sets.

Proposition 4. Let R be an algebra over K satisfying (21). Then R is a
right US-m if and only if m=max {m(e)} + 1 < °°.

Proof. This is clear from [3], Corollaries 1 and 2 of Theorem 2.

Theorem 10. Let R be as above. We assume further J2=0. Then R is a
right US-m algebra if and only if ej is square-free for each primitive idempotent e.

Proof. Assume that R is right US-m. Since J2=0, eJ=J]®A{ the Aέ

are simple, i.e. Ai^βiK, (R is basic). If A{^Ah {a^a^K ^ A{ and
(ai+ajk)K\(ai+ajk')K for any &Φ&' in K, where A{ = a{K ([6], Lemma
15). Then R is not right US-m for any m. Hence ej is square-free. Con-
versely if ejis square-free, every submodule in ej is a sum of some A{. Hence
the number of hollow modules is finite, and so R is right US-m for some m from
Proposition 4.

Corollary. Let R be as above. If R is right US-m, ej'leji+1 is square-
free for all i.

Proof. It is clear that if R is right US-m, so is RjJ* for any t (cf. [4],
Lemma 1). If Jn+1=0, ejn is semisimple and hence we can employ the same
argument given above. Therefore we obtain the corollary by induction on n
and the initial remark.

It is clear that the converse is not true provided J2 Φ 0.
Finally we study the ring of generalized tri-angular matrices over division

rings Aj as (1). If I? is a (basic) hereditary ring (more generally if gl dimR/J2

<oo), R has the structure of (1) [1],

Theorem 11. Let R be a {basic) algebra satisfying (21). Assume gl dim
R/J2< 00. Then R is a US-m algebra for some m if and only if [ îfey:
K]<\ for alii, j .

Proof. Assume that R is a US-m algebra for some m. We may assume
that Δifc+1 = — = Ak = 0 in (1) by [4], Lemma 1. Let Mik = x1K®x2K®"-.
Then [Mij:K]*ζl as the proof of Theorem 10. Conversely, if [Mik: K]<1,
eέR contains only finitely many right ideals. Hence R is a US-m algebra for
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some m.

7. Examples

We shall give several examples of hereditary algebras with (*, ή).
Let KczL be fields.

( 0 K) 1S a hereditary ring with (*, 2) 'and hence (*, 1). (If L =t=i£,

(*, 3) does not hold from Theorem 8.)

2. IK

0
0

\o

K
0
0

0
K
0

0
K
K I

is a hereditary ring with (*, 1) but not (*, 2). In this ring, ej is a direct sum
of uπiserial modules (cf. [8], Theorem 3).

L L\
L 0 is
0 L)

(K L L\
0 L 0 I is a hereditary ring satisfying (*, n) for all n by Theorem 8

• 0 . - i

IK K

0 K

Ί
0 0
0 0
0 0

U/

(i)
0
0

\κ)

(?)
A:

0

(f)
K
K
K

satisfies all conditions in Theorem 1 except the last one of i).

5. Let R be an algebra satisfying (21), and gl d ίmi?//2<oo. Then if R is
right US-«, i? is left US-m from Theorem 10 for some m. However nΦm
in general. For example R= IK 0 K\ . Then R is right US-2 and left US-3.

(*i)
If R does not satisfy (21), then the above fact is not true. Let LlD^be fields
with [L:K] = 5 (not small) and R = (K L\. Then R is right US-2 but not

0 LJ
left US-M for any n.

6. Let K be a field. We can give the complete list of connected algebras
given in Theorem 11, provided that R is hereditary and \RjJ\ is enough small.
For instance, let \RjJ\ =6 . We shall give some samples of them.
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US-ll(and(*,2))

IK K K K K K\
K 0 0 0 0

K 0 0 0
K 0 0

K 0

κι

0

eR

i i i i eJ

US-7 (and (*, 1))

IK K K K K K\
K 0 0 0 o

0 K K K
K 0

KI

US-5(and(*,2))

eR

US-8(and(*,2))

IK K K K K K\
K 0 0 0 0

K 0 0 0
K 0 0

K K
K)

0

US-6(and(*,2))

'K K K K K K\

K K 0 0
X 0 0

ί: K
KJ

US-4 (and (*, 3))

IK K K K K K\
J ί O O O O

ί O O O
K K K

K K
\ K

0

eR IK K K K K K\
K K 0 0 0

l O O f l

K K
K,

0

US-3 (and (*, 3)) US-2(and(*,3))

IK K K K K K\
1 0 0 0 0

K K K K
K K K

K K
KI

0

'K K K K K K\
K K K K K

K K K K
K K K

K K
KI

0

eR

ef

US-l(and(*,3))

IK \
K

K 0

0 K
K
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where e—ev

We do not have US-9 and US-10 algebras under the assumption |Jf?//|=6.
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