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Introduction.

Let X be a space and let p be a prime number. The E,-term of the Adams-
Novikov spectral sequence associated with BP-theory at p converging to the p-
localized homotopy group of X is given by Extpp,pp(BPsx, BP«(X)) ([1], [4]).
This motivates to study Extgp,zs(BPy, M) for a BPyBP-comodule M. If X is a
finite complex, BP4(X) is a finitely presented BP-module ([3]). Recall ([1],
[14]) that BPy=2Z,)[v, vy, ***], deg v,=2(p"—1), and I, denotes an invariant
prime ideal (p, v, v;, ***, ¥,-,) of BPy. Landweber proved the following theorem.

Theorem ([6]). Let M be a BPyBP-comodule which is finitely presented as
a BPy-module. Then, M has a finite filtration by BPyBP-subcomodules 0=M,
CM,C - CMy=M such ihat for 1<i<k, M;/M,;_, is isomorphic to BPy/I,,
for some n,2>0 as a BPyBP-comodule up to shifting degrees.

s+t

By virtue of the above and a spectral sequence E3'*=Ext}%, s p(BPy, M,/
M,_))=>Extg 5 p(BPy, M) (See section 2) for M as above, we can relate
Extpp,5p(BPy, BP«/I,) (n=0, 1, 2, --+) with Extgp, zp(BPy, M). Hence it is neces-
sary to know Extgp,5p(BPx, BP/I,) before we study the general case.

For small #n, Extgp,zp(BPx, BP/I,) also has a geometric significance since
there is a spectrum V(n) whose BP-homology is isomorphic to BPy/I,,,, gene-
ralizing the Moore spectrum, if p>2xn and »=0, 1,2, 3 ([2], [15]). Hence
Extpp,5p(BPx, BPg/I,,,) is the E,-term of the Adams-Novikov spectral sequence
converging to the homotopy group of V(n). We note that V(n) is a ring spec-
trum if p>2n-+2 ([15]).

Since multiplication by v, on BPy/I, is a BPyBP-comodule homomorphism,
v;'BPy/I, is a BP4¢BP-comodule and Extgp, zp(BPy, BPy/I,) is a module over
F,[v,] if n>0. Infact, Extpp,5p(BPx, BP4/I,) is a graded commutative algebra
and Ext}p,sp(BPx, BP4/1,) is isomorphic to F,[v,] if #>0 ([5], [11]). Thus
05 'Extpp,pp(BPx, BP[I,) makes sense and it is obviously isomorphic to
Extgp,5p(BPx, vi"BPy/1,).
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We put K(n)x=F,[v,, v;'] and 3(n)=K(n)x® 5p,BPx+BPQ s K(n)x, then
3(n) is a Hopf algebra over K(n)sx. It is shown in [9] that Extgp zp(BPx,
v;'BPy/1,) is isomorphic to Exts,)(K(n)x, K(n)sx). Regarding F, as a K(n)x-
algebra by p: K(n)x—F,, p(v,)=1, we put S(n)=Z(n)Q@xu.F, Sn) is a
Z/|2(p"—1)-graded Hopf algebra over F, and the dual Hopf algebra of S(r) is
called Morava stabilizer algebra. A functor from the category of graded =(n)-
comodules to the category of Z/2(p"—1)-graded S(n)-comodules which assigns
M to M@k F, is an equivalence of these categories. Thus Exts,)(K(n)x,
K(n)x)® g(w),F'y is isomorphic to Exts)(F,, F,) and Exts(,)(K(n)x, K(n)x) can
be recovered from Extgq)(F,, F,). Therefore, the v,-torsion free part of
Extpp,5p(BPx, BPy/1,) can be detected by the cohomology of Morava stabilizer
algebra Extg,)(F,, F',) by the preceding argument.

Moreover, the chromatic spectral sequence Ei‘(n)=Exts,sp(BPy, BPx/I,)
is constructed in [10], having the following properties; E}*(n) is isomorphic to
Exti)(K(n)x, K(n)x) and the edge homomorphism Extsp,sp(BPy, BPy/I,)—
EY*(n) can be identified with the localization map away from v,. There is a

Bockstein long exact sequence:--—E{~"!(n+1)—E}*(n) =3 Ei'(n)—Ei~"""(n)
—-+. Hence Exts,)(K(m)x, K(m)s) for m=n, n+1, --- relate with Extgp,z5(BPx,
BPy/I,) through the Bockstein spectral sequences and the chromatic spectral
sequence.

The cohomology of Morava stabilizer algebra Extg,)(F,, F,) is calculated
for n=1,2 in [13] and the Poincare series of Extg(F,, F,) is also given for
p=>5. In this paper we determine the algebra structure of Extgq(F,, F,) for
p=5. By the above explanation, our result is a part of the initial input for the
chromatic spectral sequences and it also gives the v;-localization of the E,-term
of the Adams-Novikov spectral sequence converging to z4(V(2)). Since v,
E**#-Y is known to be a permanent cycle and V(2) is a ring spectrum if p>7,
7x(V(2)) is a module over F,[v;]. Thus our result is expected to give some in-
formation on the v;-torsion free part of z4(V(2)).

For the calculation, we apply the method of May and Ravenel ([13]), name-
ly, define a certain filtration on S(3) such that the dual of the associated graded
Hopf algebra is primitively generated. By the theorem of Milnor-Moore [8],
(EoS(3))* is isomorphic to the universal enveloping algebra of a restricted Lie
algebra L(3)=P(E,(S(3))*. Let L*3) denote the unrestricted Lie algebra ob-
tained by forgetting the restriction of L(3). We use the following spectral se-
quences which we review in section 2; E''=Extzoss)(F,, F,)~Ext54 (F,, F,)
and E3* =Ext us))(Fy, F,) @ P(SmL(3)*)'=Extit] a)(Fy F,)=Extios (F,, F,).
The unrestricted Lie algebra L*(3) turns out to be a product of a nine-dimension-
al Lie algebra M(3) and an abelian Lie algebra 1(3), and the edge homomorphism
of the latter spectral sequence gives an isomorphism Extkoss)(F,, F,)—»E% =
E3*=Exthus)(Fy, F,). After we calculate the cohomololgy of M(3), by show-
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ing that the former spectral sequence collapses and the extension is trivial, we
prove that the cohomology of S(3) is isomorphic to that of M(3).

In section 1, we review how to construst an economical resolution for the
universal enveloping algebra of a restricted Lie algebra according to [4], [7]. We
also summarize a part of Ravenel’s work [13] needed for our calculation. In
section 2, we set up two kinds of spectral sequences we mentioned above. Sec-
tions 3 and 4 are devoted to calculate the cohomology a certain nine-dimensional
Lie algebra M(3), applying a sort of Cartan-Eilenberg spectral sequence. In
section 5, we show that the cohomology of S(3) is isomorphic to that of M(3).

1. Recollections

First, we recall from [4] and [7] how to construct economical resolutions.

NotaTtions. For a graded vector space V' and an integer I, we denote by
'V a bigraded vector space given by (s'V), ;=0 if i1, (s'V), .=V, and =V
denotes 2 graded vector space given by (zV),=0 if p does not divide i, (zV),;=
V,. We denote by ® and % the elements of (sV'), ; and (s°zV),,,; corresponding
to an element x of ;. We also denote by E(V), P(V') and I'(V) the exterior al-
gebra, the polynomial algebra and the divided polynomial algebra generated by
V, respectively. For an element x of V, let {x> and 7,(x) be typical generators
of E(V') and T'(V), respectively. For a bigraded vector space W and IEZ, we
put W,=33,W, ;.

Let K be a field of characteristic p=0, and let L=3);5,L; be a graded
restricted Lie algebra over K with restriction £. We denote by L* the unres-
tricted Lie algebra obtained from L by forgetting the restriction of L. We put
L*=350 Ly;, L~ =330 Ly;1; if p>2, and L*=L, L-=0 if p=2. Let us denote
by U(L") and V(L) the universal enveloping algebras of an unresticted Lie alge-
bra L* and a restricted Lie algebra L, respectively. J.P. May ([7], see also [4])
constructed a U(L")-free resolution Y(L*) of K as follows; Y(L*)=U(L"*)QE(sL")
QT'(sL™) as a left U(L*)-module. Give Y(L*) a K-algebra structure such that the
canonical inclusions of U(L"), E(sL*) and T'(sL~) into each factor of Y(L") are
monomorphism of K-algebras and that the following relations hold for x, x;,€
L7y, 3. €L*(i=1,2); <Ipy:= LI + <[y, y2s <x=—a<F> + 7Ly, #]),
Vi(2)y =y7(&) + 7e([%, Y1)V 1), Ve(R)2y= 227 (Fy) + <[22, DY - 1(%r), V(B)TD
=<{P>7,(%), We note that Y(L") is a bigraded algebra and, for wEL, the bide-
grees of we U(L"), <wy><E(sL*) and v,(W)ET(sL™) are (0, deg w), (1, deg w)
and (¢,t deg w) respectively. The differential d ot Y(L*) is given by du=&(u)
for uc U(L"), d{Fp>=y for yEL*, dv,(®)=x7,_(®)+1<[x, x]>7,-o(X) for x€L"
satisfying the Leibniz formula d(xy)=(dx)y+(—1)"*'xdy, where &: U(L*)—K is
the augmentation and |x| is the total degree of x&€Y(L"). We also define
a coproduct @: Y(L*)—>Y(L*)Q Y(L") by p(2)=1Q2+2Q1 for 2EL, p({I>)=
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1QLI> DRI for yEL*, p(7(E) =4 ;= 7:(%)®7 (%) for xEL™ so that
Y(L") has a structure of differential Hopf algebra.

Put W(L)=V(L)QE(sL*)QT(sL~) and let ¢: Y(L*)—W(L) be the canoni-
cal projection induced by U(L*)—V(L)=U(L")/(y»*—E&(y)|y€EL), then W(L)
has a unique structure of differential Hopf algebra over K such that ¢ is a mor-
phism of differential Hopf algebras. The following is obvious.

Lemma 1.1. g induces an isomorphism Hom¥ . ,(W(L), K)—Hom# ., Y(L"),
K) of chain complexes. Hence the cohomology of {Hom¥ .(W(L), K), d*} is
isomorphic to Exty (K, K).

We choose a K-basis {y,|¢EA} of L*. For each index a €A, let Z; be a
copy of a monoid of non-negative integers. For an element R=(%,),er€
BucnZ;, we set Y(R)=T1lner Viu(¥)- Then {y(R)|RE D, ecn Z,} forms a K-
basis of I'(s’zL*). The bidegree of ¥(R)is (2|R|,p Zluen L, deg y,), where we
put | R| =S,y #, for R=(t,)ucs.

Lemma 1.2 ([4],[7]). 1) There exists a twisting cochain 6=(0y), 0y:
T(S*wL*)y—W(L)y; -, satisfying 0,(vy(F))=y""KF>—<E(y)) for yEL*.
2) There exists a twisting diagonal cochain A=(\y), \y;: T($z2L*)y—(W(L)Q
W(L))z satisfying x(1)=1Q@1, M(7y(F)) =221 (— 1)y DRy 7 KF).

Consider a left V(L)-module X(L)=W(L)QT(s’zL*) and define a differenti-
al dy and a coproduct D by dy(w®¥(R))=dw@¥(R)+(—1)"' sir-p w-0(7(S))
QY(T), D(w@v(R))=¢(w)* Xs+r=r MY(S))-VY(T), where ¢ is the coproduct
of W(L) and V is the standard coproduct of I'(s’zL*).

Theorem 1.3 ([4], [7]). The complex {X(L), do} is a V(L)-free resolution of
K. It is also a differential coalgebra with coproduct D.

We set Y (L)=E(sL*)QT'(sL") and define a filtration on X(L) by F,X(L)=
V(L)QF,X(L) whete F,X(L)=)<m Y (L)p_;QT(szL*);. We state the follow-

ing obvious fact for later use.

Proposition 1.4. 1) 0=F_, X(L),C W(L),=F,X(L),C - CF,X(L),=X(L),,
Fou X(L)=Fyp,X(L).
2) The inclusion F,_\X(L)—>F,X(L) is a split monomorphism of V(L)-modules.
3) {X(L),dy, D} is a filtered differential coalgebra and for each w®y(R)E
FopX(L), d(w®Y(R)) = dw®Y(R) modulo Fz-,X(L), D(w®v(R)) = p(w)-
VY(R) modulo Fypi-o(X(L)QX(L)).

Next we recall some facts on Morava stabilizer algebra from [12].
Let (BPy, BP+BP) be the Hopf algebroid associated with BP-theory at a
fixed prime p (See [14], for example). Put K(n)x=F,[v,, v;'] and regard this as
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a BPy-algebra by z: BPy—K(n)s, n(v;)=0 if i%n, z(v,)=v,. We set Z(n)=
K(n)x®5pp BP4+BPQ®3p K(n)s, then it is known that Z(n) is isomorphic to
K(n)s[ty, thy+] /(02 —ob't)) (deg t;=2(p'—1)) as a K(n)4-algebra. Note that
Hopf algebroid (K(n)x, Z(n)) is in fact a Hopf algebra. Regarding F, as a K(n)s-
algebra by p: K(n)x—F, p(v,)=1, put S()==(m)®xcn. Fy. S() is a ZJ2(p'—
1)-graded Hopf algebra over F, which is isomorphic to F,[t;, t,, ---]/(t8"—t;) as
an F,-algebra.

Thoerem 1.5 ([12]). Define integers d; for i€ Z recursively by d;=0 if
1<0, d;=max{z, pd;_,} if i>0. Then, there is a unique increasing Hopf algebra
filtration on S(n) with t' € F, S(n)—F,_,S(n).

Instead of considering the above filtration, we consider a new filtration
{F.S(n)} defined by F,,S(n)=F,.,S(n)=F,S(n) so that the associated (Zx Z/
2(p"—1))-graded Hopf algebra E°S(n) becomes graded commutative. Let ¢; ;
denote the the element of E3;S(#)z,i(si-1 corresponding to #¥', where j&Z/n,
then E°S(n) is isomorphic to F,[t; .|i>1,7E Z[n]/(t; ;) as an algebra. Con-
sider the (ZxZ[2(p"—1))-graded dual (E°S(n))* of E°S(n), and let x; ;€
(E°S(n))?*@# =D, be the dual of ¢, ; with respect to the monomial basis. We set
L(n)=P(E°S(n))*, then {x; ;|i>1, jE Z|n} spans L(n). We note that this L(n)
is different from the one in [12], [13], [14], which coincides with an unrestricted
Lie algebra M(n) defined in the next section if #<<p—1. Since the p-th power
map on E°S(n) is trivial, it follows from [8] that (E°S(n))* is the universal enve-
loping algebra of the restricted Lie algebra L(n). The bracket and the restriction
are given by the following.

Theorem 1.6 ([12]). [x; ;, %4/ ]=08}4%pis ;— Ohuittinns of i+E<pn/(p—1),
otherwise the bracket is trivial, where 8;=1 if s=t mod n, 8;=0 otherwise.

E(x;, )=01f i<n/(p—1), E(%; ;)=—%;14, ;1 Otherwise.

RemARrk 1.7. The p-th power map 5 on S(#) is an automorphism of order
n. Since 7 preserves the filtration, it induces an automorphism of E°S(zn)
which we also denote by ». We note that » maps ¢ ; to ¢ ;4; and that 5 in-
duces an automorphism %* of L(n).

2. Spectral Sequences

Let R be a graded commutative ring. For a filtered R-modules M and N,
we filter M@N by F(MQeN)=Im(Z,,,-s F;MQzF;N—-MQN) as usual.
Then there is a natural epimorphism 33, E{M QRzE;N—>E{(MQ;N), where
we put E{M=F;M|F;_,M. Note that this epimorphism is an isomorphism if
F;M is flat over R for any 1.

Let C be a filtered R-coalgebra which is flat over R, and let M be a filtered
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left C-comodule. By the above remark, E°C is an R-coalgebra and E°M is
a left E°C-comodule. We give a decreasing filtration on the cobar complex
QX(C; M) ([9], [10], [14]) by FQ™(C; M)=Im(Z; +.+ip=m-s F:;;C QpF;,C Qg+
®:F;,CQRF,,M—-Q"(C; M)). Then the differential d of Q*(C;M) maps
FQ™(C; M) into FH'Q»*(C; M) and E§'=FQ+(C; M)/FHQ+(C; M) is
isomorphic to Q(E°C; E°M),=+..4:, =t E},C@ELC ®p- QrEn, | ,C Q%
E} M. We rather call ¢t of Ej’ the filtration degree below. Put Di‘=
HHYFQ¥(C; M)). Ei*=H*(Ey*) and let ix: Di*"*"'—>Dj* and jy: Di*—
E$* be the maps induced by inclusion i: F**'Q*(C; M)—F°Q*(C; M) and pro-
jection j: F°Q*(M; C)—E}* respectively. 9: E{*—Di*":* denotes the bounda-
ry homomorphism associated with a short exact sequence of complexes 0—
FHQ*(C; M)—FQ*C; M)—Ey*—0. Consider the spectral sequence asso-
ciated with exact couple (D3}, E{**, ix, j, 0. Then E{*<=E¢* and the E,-term
is given by E3+*=H**(Q*(E°C’; E°M)),=Extzoc(R, E%, M),. Filter H¥(Q*(C; M))
=Ext§(R, M) by putting F*!=Im(H*"(F'Q*(C; M))—=H*"(Q*(C; M))). We
assume that C= U, F,C and M= U, F,M hold and that F,C=F,M=0 for suf-
ficiently small s. Then the above spectral sequence converges to Ext¥(R, M).

Applying the above spectral sequence to the case R=M=F,, C=S(n),
we have a spectral sequence

(2.1) E3* = Extiosw(F,, F,), = Extsih(F,, F,).

Let A be a graded algebra (not necessarily commutative) over a commuta-
tive ring. Let X be a filtered A-complex with differential d: X;—X,_,. Put
E} ;=FX,.,/F,_ X, Let M be a graded A-module. Consider a complex
{C*, d*} given by C'=Homj(X, M). Filter C* by F*C*=XKer(Hom¥}(X, M)
—Hom¥(F,.,X, M)). We assume that the inclusions F,.X/F, ;X< X|F, ;X are
split monomorphism of A-modules for any s (This holds if the inclusions F,_,.X
< F,X split for any s). Then we have short exact sequences of complexes 0 —

perick 5 pro J, Ey* — 0, where we set E*=Homyi**(E? 4, M). Let A:
H*(E§*)—H**(F**'C*) be the boundary homomorphism. Putting Di‘=
Hs*(FC*¥*), E}-*=H**'(Ey*), we consider a spectral sequence associated with an
exact couple {Di**, E{*', i, jx, A>. We define a filtration on H*(C*) by F*!=
Im(H*(F°C*)—H**'(C*)). Suppose that, for each integer m, there exist inte-
gers a(m) and b(m) such that F,X,=X,, if s>a(m), F,X,=0 if s<b(m). Then
the spectral sequence converges to H*(C¥*).

By 1) and 2) of (1,4), we can apply the above spectral sequence to the
case A=V(L), X=X(L), M=K, and obtain a spectral sequence converging to
H*(Homy;)(X(L), K))=Ext§ (K, K). We note that the coproduct D of X(L)
makes this spectral sequence multiplicative. Identifying Ef, with W(L)®
T(s°zL*),, it follows from (1, 4), 3) that dy and D induce d®1: E 4—E? , and
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PQV: EL 4 — 1 ;s E} «QE) «. Therefore the E,-term is isomorphic to
P(s’n(L*)*)@Ext¥1«(K, K) as an algebra by (1, 1), where (L*)* denotes the
graded K-dual of L*. Since Ei*=0 if s is odd or s<<0 or <0, E5*=Ej'* holds
and we have the edge homomorphism. Thus we have shown

Theorem 2.2 ([7]). There is a multiplicative spectral sequence Ej*
= P(s’n(L*)*)’ @Exth (K, K) = Extit! (K, K), whose edge homomorphism
Exty1)(K, K)=F* —>E%*ES* = Ext}«(K, K) is induced by the composite

YL 4wy x(w).

In particular, in the case K=F,, L=L(n), let M(n) and I(n) be subspaces of
L(n) spanned by {; ;|i<pn/(p—1),jEZ[n} and {x; ;|i>pn/(p—1), jEZ|n}
respectively. It follows from (1, 6) that M(n) is a Lie subalgebra of L*(n) and
I(n) is an ideal of L“(n). Obviously, I(n) is an abelian Lie algebra and L*“(n) is
isomorphic to M(n) X I(n) as a Lie algebra. Therefore U(L*(n)) is isomorphic to
UM(n))®@P(I(n)). This implies that Exty*.),(#, F,) is isomorphic to
Ex_t,,(M(,,))(F,,, F,)QEKE; >li>pn/(p—1), jEZ|n) where deg<i; > = (1,2d,
2p'(p'—1)). Hence the E,-term of the spectral sequence is isomorphic to
P(Zi,j li>1, jE€Z[n)QExtyuu)(F), Fp)®E(<Zi,,’> |¢> pnf(p—1), j€EZ|n). By
(1, 2) and (1, 6), we have the following fact on the differential d,.

Lemma 2.3. ([13]). dxZ; >=—%,_, ;-1 for i>pn/(p—1). Thusif n<p—
1, EX'=E5*=0 unless s=0, and the edge homomorphism maps Exty 1y (F,, F,)
bijectively onto E%' =E3* =Extyany(F,, F,)CE%"*.

3. Auxiliary Calculation

Let L be a graded unrestricted Lie algebra over a field K of finite type such
that L~=0, and let {x,| A E A} be a totally ordered basis of L. L* denotes the
graded dual of L. Take the dual basis {x¥|AEA} of {x,|NEA}. Define
8: E(sL*); — E(sL¥*);4, by 3(<ﬁ>): — Sy <x¥, [, 2,]> <> <> satisfying
the Leibniz formula, where {,>: L*QL—K is the canonical pairing. It is
straightforward to verify the following.

Lemma 3.1. {E(sL*),8} s a differential algebra isomorphic to
{Homp.(Y(L), K), d*}. Hence H*(E(sL*); 8) is isomorphic to Ext%y.\(K, K).

Now we concentrate on the computation of ExtFua(F, F,) for p>5.
M(3) is spanned by {x; ;|i=1,2,3,j€Z[3} over F,. Then E(sM(3)*)=E(t; ;|
=1, 2, 3,j € Z|3) where we put ti,j=<aF,'>. It follows from (1.6) and (3.1) that
8 is given by 8(t; ;)=0, 8(t,,;)=—11 jt1, j+1, O(ts,;)="11,j-1t2,;—t1,;—t2,;11 fOr jE
Z[3. Let A be an ideal of M(3) spanned by {xs,, %3,, ¥;3,} and we regard
{E(s(M(3)/A)*), 8} as a subcomplex of {E(sM(3)*),8}. We remark that M(3)
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and M(3)/A are denoted by L(3,3) and L(3, 2) respectively in [13], [14]. We
can manage to compute the cohomology of {E(s(M(3)/4)*), 8} directly by hand
and the structure of Exty(s)4)(F;, F,) is described below.

For a cocycle 2z of E(s(M(3)/A4)*), we denote by [2] the cohomology class re-

presented by z.

Lemma 3.2. 1) Ext¥ sy a)F,, F,) is generated by the following seventeen
elements as an algebra ;
hi=[t,;], g;=[t, jt.;), £i=t, juite ;). fi=[trimstei— it i), dj=[11 2 j-1t2, ]
e;=[ty ;ts jt2 jrt+1, jits, jrte 51, for 1, j EZ]3, i£2.
2)  ExtyueyayF,, F,)=0 for s>6. A basis of Extyuusya Fy, F,) (0<5<6) is
given as follows ;
s=0; 1.
s=1; hy, hy, hs.
S:2; 8os 815 &2» g(,b gf: gé’ﬂbfl'
§=3; hygo, g1, hog2, Moo, hogy, Migr, do, 4y, @y, €0, €1, €.
s=4; 8081, 8182, 8280 8180, 8381, 8187, 8081, 8185
§=5; g1dy, £24,, 80>
§=6; 208185

The operator %' of L(3) induces an algebra automorphism of
Ext$ sy a)(Fy, F,) of order three, which we denote by n4. Obviously, we have
niho="h;, nkgo=g;, % 80=8!, vk fo=F:, nido=d;, and nie,=e; for iEZ|3 where
we put f,=—f,—fi.

Lemma 3.3. Relations of Ext§mayay(F,, F,) are given by the following

and the relations obtained by applying i (i=1, 2) to them;

hoh; =0, fod; =0, dyd;=dpe;=ee;=0 for i€ Z|3, hygy=0, hogo=—h,g,

hogi= —hig, hog£=0, hofo:hof1= —hag, g§=g62=gog6=gogé=gofo=0

8ofr=8480, 8 fo=—80 =881, £280=—gog1—8:8%, [1=2g0g1, fofr=2g:80,

hody=0, hod\=—gog,, hedy=g183, hoey=—2185, heer=—go81+8:8%, hoez=g:80,

&odo=god=gote=gee,=0, gody= — &2, 8o1=—g1dy, gédo———géd] =g6eo=géel=0,

goe:=gidy, foeo=g:do, foer=28:1, foer=—280d;, £0818:=2o£1£2-

4. Main Calculation

Let D be a subcomplex of E(sM(3)*) generated by {t;;|i=1,2,3,j€Z/3,
jEEZ l:f i:3}. We put §3:t3,0+t3,1+t3,2.

Lemma 4.1. 8(¢;)=0 and {E(sM(3)*), 8} is isomorphic to {DQE((;),
3Q®1}. Therefore ExtFs)(F,, F,) is isomorphic to H*(D)QE(Ls) as an algebra.

We filter E(sM(3)*) and D by F°E(sM(3)*)"=3)i<m-s E((M(3)/A)*)" Q@
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E(sA*)', F'D"=D"NF°E(sM(3)*)". Then F°E(sM(3)*)" = F°’D"+Fs~'D»"1¢,
and 0=F""'D"C F"D"=E(s(M(3)/A)*)"C F»'D"C F»~*D"=D" hold. Also
note that §(F°E(sM(3)*)*)CFH'E(sM(3)*¥)****!. Thus we have spectral se-
quences E{'*=>Extjitsy(F,, F,) and E$*=H*(D) associated with these filtra-
tions. By the above lemma, the former spectral sequence is isomorphic to
{Es ®E(§ 3),d,®1}. Hence it suffices to compute the latter. The E -term is
given by E} ‘—H‘*’(F’D/F‘“D) E(s(M(3)]A)*)’QE(ts 0, t5,)" and d; coincides
with 8®1. Therefore E3* =Ext¥ousa\Fp Fp) @E(ts0, t5,)" and d, is given by
dy(t; ;)=f(j=0, 1). By computing the Ey-term, we find that Es=E., for dimen-
sional reasons. It is not difficult (but very tedious) to solve the extension prob-
lem and we can determine the structure of Ext# sy (F,, F,) as given below.

Theorem 4.2. 1) ExtF ) (F,, F,) is generated by the following twenty-
six elements ;
h,': [tl,j]) £3= [ts0Fts0+252], 8i= [tl,jtZ,j]) gi= [tl,j+1t2,j]’ ay=t;,0t30— 11,0311
tz,ztz,o], a= [t1,1t3,o+2t1,1t3,1+ tZ,OtZ,I]’ ay= [_Ztl,zta,o“ t1,2t3,1+t2,1t2,2]; b= [tl,otz,ots,o],
b1: [t1,1t2,1t3,1]: b2: [t1,zt2,2(_ ts,o— t3,1)]; bé: [t1,1t2,o(— t3,o'_t3,1)], bi= [t1,2t2,lt3,0]: bé:
[t1,0t2,23,1], €=[ts stz ot3,0—L1,ot2 185,07ty 2ta 03 111,12 2ls 1 B ot 1t 2], Uo=[t1,082 282 oF3,0],
w=[t11ts 02,183, e=[t1 2212 2( —t30—131)], W;=[t1, jta, ;12 jEs3.08s,1) for JEZ[3.
H*(D) is generated by the above elements except for {s.
2) H(D)=0 for s>8. A basis of H(D) (0<s<38) is given as follows

s=0; 1.

s=1; hy, hy, h,.

§=2; g0, £1, £2, £0, &1, &2, G0, 4y, A

s=3; hlgo, hzgn hogz, hoay, hay, hyas, hoay, hias, haay, b, by, by, bg, b1, b3, c.

s=4; hyby, hoby, hobs, hobo, hoby, huby, hobi, hibi, hobs, a3, a3, a3, agay, a\a,, asa0, U,

Uy, Us.
s=5; hotyay, hyagay, hai@y, hoayay, hoaoay, haiay, haayas, arby, azhy, aghy, azbo, by,
ab,, w,, w,, W,.

§s=6; hyashy, hyash,, hyaiby, hgw,, by, by, iy, hyw,, hyto,.

§=7; g1%o, 2Wo, L2

s=8; hyg\w,.

Remarks. 1) By (4,1) the basis given above is an E({;)-basis of
Extf e (Fy Fy).
2) An element x of Extyy)(F,, F,) is said to be of filtration degree ¢ if
the image of x by the isomorphism Exty(yc)(Fy F,)=Extya)(F,, F,)=
Extgoss(F,, F,) of (2,3) belongs to EF-* in the spectral sequence (2,1). We
denote by f-deg x the filtration degree of x. Then it is easy to see f-deg h;=2,
f-dge L=f-deg g ,/=f-deg g}=6, f-deg a;=8, f-deg b,=f-deg bj=f-deg c=12, f-
deg u,=16, f-deg w,=22 for j€ Z3.
The internal degree of an element of Extyya)(F,, F,) is the degree coming
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from the grading of S(3) which takes value in Z/2(p*—1). We denote by i-deg
x the internal degree of x. Put g=2(p—1). Noting that p’¢=(—p—1)g modulo
2(p°—1), the internal degrees of the generator are given as follows; i-deg h,=
i-deg a,=p’q, i-deg {y=i-deg c=0, i-deg g ;=i-deg b;=p'(p+2)q, i-deg gj=i-deg b;
=p/(2p+1)q, i-deg u;=i-deg w,=2p’q for jE Z|3.
These two kinds of degrees play an important role in the next section.

Let 7« denote the operator on Exty ) (F,, F,) induced by »*: L(3)—L(3).
By the definition of the generators in (4, 2), it is easy to verify the following

Proposition 4.3. k. =njh, g, =n}g. &i=nkg6 for j=1,2, L=nsls, ay=
nxao Ly, a=nia—hls, bi=n«by, by=nib—gLs, bl=nxbi-+gils, by =nibi+
8385, c=nxc, wy=mnuthy, wy=nitty—hya, 05, w,=nywo—u,L;, Wy =n5Wo+ L3 —a5C5/2.

Since %4¢3=Cs, 7% induces an automorphism 7y of H*(D)=Ext¥uus)
(Fy, F,)/(£;) which maps x; to x,,, for x=h,g,£',a,b,b',u,w and jEZ3.

Theorem 4.4. Relations of H*(D) are given by the following and the re-
lations obtained by applying 7} (j=1, 2) to them;
hoh;=0 for jEZ[3;
hogo=hog1=nog1=hogs=0, hogl=—hig, hotr=Ma,;
808, =80871=8187=0 for jEZ|3, hby=hb3=0, heb{=—hb,, hc=—3hsb,, asgo=
aog5=0, aog1:_3hobn aogz:-thbé‘_hobz, aog(,):hobé—hlbo, aog{: —3hb,;
hoaya,=h,a,a,=hyaya,, hoai=hgtg="hqgu,=0, hyai=h,a.a,, hu,=h,a,a,/2, gobo=_gobs=
2ob2=0, goby=—ha.a,/2, gob,=hea,a,2, gb1="hoa,a,/6, goc=—hoaoa,|2, gehy=goh,=
20b5=0, gtb,=hya,a,[6, goc=h,a,a,/2, gibi=hia,a,|2, gibs=—hga,a,[2, aghy=ab;=
0, aht=—a,by, ahi=—a,b,, ac=—23ab,;
hotyh, =0, hoagh,=Hh,a;b, Zotho=gothy=gitg=gou,=0, gty=—hoa,b,|2, goty=—hyash,,
haw,=0, aga,a,=ai=au,=0, aai=—6hmw, aas=6hw, amu=—hw, au=
2hgw,, b} =0 for j € Z |3, bob,= —how,, byby=—hyw,, bec=hw,, bibi=hw,, bsbi=
haw,, bie=—hw, ;
agw ;=biu, =0 for j€ Z[3, gav,=gw,=giw,=giw,=0, gow,=—gutt, boai=>bgu,=
bou, = cuy=0, boa§=2gowz, boalazzzgl‘wo, boua:gowz N
hyg1200=ho gy, =h, gow,, cwy=0, byw ;=bow ;=uw ;=0 for jE€ Z[3

This completes a description of the structure of Extfosy(F,, F,) by virtue
of (2.3) and (4,1).

5. The Algebra Structure of the Cohomology of S(3)

We consider the spectral sequence (2.1) for =3, p>5. This spectral
sequence is (Z X Zx Z[2(p*—1))-graded and we denote E;'*** and F*** the sub-
spaces of E;* and F*! spanned by elements of internal degree u. From the
calculation of the previous section, we have the following table of the E,-term,
where the numbers in the parentheses in the table indicate the filtration degree



MoRravAa STABILIZER ALGEBRA S(3) 357

t of the elements.

u\s+t 0 1 2 3 4 5
0 1(0) | {5(6) — ¢(12) cl5(18) hoayay(18)

g — | 82D | a;hLs8) | afs(14) hjy2b(14) aj42b).hy4 204 5(20)
Yo+ | — | — — | haier(10) | @y, yhia5,05(16) aa;,,05(22)
Pe+2q | — | — £,(6) b;g{3(12) 6,(5(18) hjaja;,,(18)
PQp+)g | — | — £5(6) bj.ei{5(12) b{5(18) hyy1aja;4,(18)
2+ | — | — — hi18/8) | hjurbjhibihieg;0s(14) | aj44b5h;4,8,{5(20)

2w — | - — hja(10) a2 u,hial4(16) wpallsul(22)

u\s+t 6 7 8 9
0 hoararl;(24) — hag,00(30) | hagywel(36)

Pq a;,20,{5(26) - — _
P+1) hjyiaj426(22) giv1wphje18;42643(28) | g;4,w;(3(34) —
Po+2)q hjv Wy hjaia;,,05(24) by wi05(30) — —
PRp+1)g | hjwys by ia5ai.,05(24) hjw; 1£5(30) — —
2p(p+1)g a;416;5(26) — — _

2 wi{(28) — _ _

The following facts are immediately verified from the table.

Lemma 5.1. If E¥~**=0, E7*'~*°=0 holds for s<<t. Therefore the spec-
tral sequence of (2, 1) collapses, that is, Ey'=E%".

Lemma 5.2. If 3 icm E3**=0 for given mEZ and u€ Z[2(p*—1), then
Ez=***=0 for all but only one t. Hence if Ext5i5\(F,, F,)=*0, there is a unique
t=r(m, u) such that F»~**1t"14=0 and F"~""*=Ext53)(F,, F,).

Thus there are unique elements %, {3, ¢,, 85, a;,b;, b5, ¢, u;,w; (JEZ[3) of
Extg)(F,, F)) correspondmg to the elements of the E,-term denoted by the same
symbols. Let B be a set of monomials of the above elements which corresponds
to the E(;)-basis of the E,-term given in the previous section. We put B=BU
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{xt;|xE B}, then B is a basis of Extg)(F,, F,). For x€Ext§y(F,, F;), we
denote by % the element of E7~*** corresponding to x where t=7(m,u). For
xEBNExt3s)(F,, F,), yEBNExtssy(F,, F,), suppose that =33, »,Z; holds
for v,EF,,2,€B in Eg+i-t=t' et wto where t=1(m, u), t'=7(l,v), in other words,
xy=>3 v;2; holds modulo Fn*i~t=t+Lt+t'~Lutv  If %40, (5.2) implies that
Fmti-t=t+Le+'~Lutv— () Hence xy exactly equals to 33; ;2 in this case. In the
case =0, we can verify xy=0 case by case. In fact, it suffices to deal with
the case F*#=+="#'%:(0. Then we only have to ckeck the cases (x, y)=(a;, b)),
(a;, bi_1), (aoty, @), (a?—, aj): (hj’ wj)’ (aj’ uj)) (b;, £3), (a;, wj)’ (% wj)’ (7, wj)’ (¢ w;),
(w;, u;) for i, j€Z[3. 1Inany of these cases, since Ext3%)“*"(F,, F,)=0, the as-
sertion follows. Similarly, for € B, nx¥=3]; u;3,(u; EF,, y; €B) implies pyx=
>3 wiy; where the latter 74 is the operation of Extgs(F,, F,) induced by the
p-th power map of S(3). Thus we have shown

Theorem 5.3. Extsq)(F,, F,) is isomorphic to Extyuea)(F,, F,) as an al-
gebra over F, and the isomorphism commutes with the operations induced by the p-th

power map of S(3).
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