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Introduction

This work is a continuation of a previous work [2] on super differential
calculus. We develop herein a foundation of super manifolds according to the
same principle used in [2]. That is, we describe the concepts on a super manifold
in terms of the non-super differential calculus on the underlying manifold of a
super manifolds. Thus, we treat a super manifold as a non-super infinite-
dimensional manifold with an additional geometric structure. A model of our
argument is a study of complex manifolds in which a complex manifold is treated
as a real manifold with a complex structure. In section 1 we give some pre-
liminary arguments of a non-super differential calculus on some kind of infinite-
dimensional Euclidean space and some algebraic preparations on super vector
spaces. Also we review the super differential calculus studied in [2] and give a
new version of the Cauchy-Riemann equations, which is more practical than the
previous one in [2]. Section 2 deals with the definitions of a super manifold
and its underlying non-super manifold. In seciton 3 we discuss tangent vectors
and show how a super manifold can be regarded as a non-super infintie-dimen-
sional manifold with a geometric structure, called an almost suepr structure.
In section 4 we study super vector fields and define a local one-parameter group
of local transformations for an even super vector field. In section 5 we prove
one of the main theorem in this note, the super version of Frobenius’ theorem,
which will serve as a basic theorem for the study of super manifolds and super
Lie groups.

The author would like to thank his friend Professor T. Ochiai who en-
couraged him constantly during this work.

1. Preliminary

1.1. Affine bundles

Let R" denote the space of all z-column real vectors y=(3") (y»*ER,
1<v<m). When R" is regarded as an affine space in a natural way, it is some-
times denoted by A". An affine mapping @ of R" into R" is given by @ (y)=
Ay+b(yE R") where A=(a%) is a real (m, n)-matrix and b=(s*)eR"(1<v<n,
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1<u<m). The Lie group of all affine transformations of R" is denoted by
A(n), which is given by

= (O )

A vector field v on R" is said to be affine if v is written as follows: v= }E‘_. ( é
v=1 p=1

ap y“+bY) 6—37 A smooth fibre bundle 4 over a base space B is called an affine

bundle if the standard fibre is a real affine space A" and the transition functions
are A(n)-valued. That is, there exists a family {(U,, f,, g.p)} of local trivializa-
tions satisfying the following 1)~3).

1) {U,} is an open covering of B.

2) f, is a smooth mapping of U,=~"Y(U,) onto A" such that the mapping
n X f, of U, onto U"x A" is a diffeomorphism and the following diagram is com-
mutative.

~ X
w(U) = T, 2505 1

7::\ - / the 1st projection

where z denotes the projection of 4 onto B.

3) The transition function g,g is a smooth mapping of U,N U, into A(n)
such that f,,=g,s(x)ofs, on the fibre 4,==""(x) for x& U, N U, where f,, is the
restriction of f, to the fibre 4,=="*(x).

Then each fibre 4,=7z"Y(x) can be regarded as an affine space. Let (Yry, U,)
be a local coordinate system of the manifold B. Then ¥,=(+,,f,) is a local
coordinate on z~'(U,) C 4, which is called an affine local coordinate on =~ (U,)C A.
Let A and 4 be affine bundles over B and B, respectively. A smooth bundle
mapping @ of 4 into 4 is said to be affine if the restriction $|,, of @ to each
fibr e, (x=B) is an affine mapping of 4, into A, where @ is the correspond-
ing mapping of B into B.

1.2. Non-super differential calculus

Let {Ey} >0 be a family of finite dimensional real vector spaces and py*' a
linear mapping of Ey,, onto Ey. Such a family will be called a projective family
of finite dimensional real vector spaces. 'Then the projective limit E =li(r_n Ey is

naturally defined as follows: E={(zy)& I; Ey: pN* ' (2y4+)=2y(IN=0)}. The
N20
natural projection of E onto E, will be denoted by py. For 2€E, py()EEy

will be denoted by zy. Considering the natural topology on a finite dimensional
vector space, the projective limit E has a Fréchet space topology so that the
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projection py of E onto Ej is continuous and open for each N >0. For N=0,
E, and p, and 2,=p,(2) (R E) will be denoted by Ep and pp and 2z, respectively.
A subset U of E will be called a domain in E if Ug=pz(U) is an open subset of
Ep and U=p3'(Up).

Let E=lim E} be the projective limit of another projective family of finite
dimensional real vector spaces and p the natural projection of E onto E,. Let
U be a domain of E. A real-valued function f defined on U is said to be admis-
sible on U if there exist some integer N and a real-valued C* function g on Uy
such that f=gopy on U. A mapping @ of U into E is said to be admissible if
Pyop is admissible on U for each N>0. A mapping @ of U into F is said to
be projectable if for each N >0 there exists a C*-mapping @ on Uy, into Ey such
that gyopy=Pyo@ on U. In this case @y is called the N-th projection of .
Thus a projectable mapping is admissible. A mapping @ of U into E is said
to be regular if @ is projectable and for each N >0 the following diagram is an
affine bundle mapping:

PN+1,
Uyy — Eyy,

lpx«f-l lﬁﬁ-ﬂ

Uy 2% E,

where Uy, and Ey,, are regarded as trivial affine bundles over base spaces Uy
and Ey, respectively. That is, for each 2y & Uy, @y, is an affine mapping of an
affine subspace (p¥*')}(2x) (C Uy4 CEy4,) into an affine subspace (B¥*!) Yoy
(2x)) (CEy4y). If a one-to-one mapping @ of a domain UCE onto a domain
UCE is projectable (regular) and the inverse mapping of ¢ is also projectable
(regular), the ¢ is called a projectable (regular) diffeomorphism of U onto U.

Let @ be a projectable mapping of a domain UCE into E. For each z 1/,

the Jacobi matrix Jp(2) of @ at 2z is defined as follows: é’¢(z)h=% P(2+1th),—o

(h€E). Then the Jacobi matrix J¢(2) is a projectable linear mapping of E into
E. Moreover the N-th projection of J@(2) is the ordinary Jacobi matrix J@, of
the N-th projection @y of @: That is, as a linear mapping of Ey into Ey,
(Fp(2))v=Jpn(2y) for each zE and N>0.

1.3. Super differential calculus

We review the super differential calculus developed in [2] and add some
new results. Let {{¥: N>1} be a set of countably infinite distinct letters. Ay
denotes the Grassmann algebra of the vector space generated by {¢, &%, -+, £V}
over the real number field R where for N=0, Aj=R. The family {Ay: N >0}
and the natural projection of Ay, onto Ay form a projective family, which defines
the projective limit A, called the super number algebra. A can be identified with
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the algebra of all formal series of the following form:

=22 ¥

KeT
where T={K=(k,, -+, k}): 1<k <. <k}, 2xER and {¥=h.. - tW({*=1€R).
The natural projection py of A onto Ay maps the above 2 A to the following
yEAN:
Fy= 3 2 t¥
Kel )y

where T'y={K=(k,, ***, k;): 1<k <:--<k,<N}. For each K=(k,, -+, k,)ET,
the parity | K| of K is defined by |K|=k mod 2&€Z,={[0], [1]}. For peZ,
T, and A, are defined as follows:

I'y=A{Kerl: |K| =p}
A ={zeEA1 2= 3 25 2R} .
KeT,

If a super number z is in A,, then the parity |2| of 2 is, by definition, p=Z,.
If |2|=[0] ([1]), then 2 is said to be even (odd). The super Euclidean space R™*
of dimension (m|#) is the product space (Agy)” X (Ary)” where there are m copies
of Ay and % copies of A3 The projection py of A onto Ay induces the projec-
tion of R™"* onto Ry which is, by definition, the product space ((Ag)y)" X
((Ara)w)" where (A,)y=pn(A,) (pPEZ,). The space RF'"™ is called the N-th
skeleton of the super Euclidean space R™!*. The super Euclidean space R™" is
identified with the projective limit of the projective family {R¥": N >0} of finite
dimensional real vector spaces. Thus R™" is a Fréchet space and the projection
pn of R™* onto R} is continuous and open for N>0. The 0-th skeleton, R",
is called the body of R™". 'The projection of R™" onto the i-th component A,
(p=[0] ([1]) if 1<i<m (m+1<i<m-n), respectively) will be denoted by 2 for
1<i<m+n. For 1<i<m (m+1<i<m-n), sometimes 2* will be denoted by
x* (0?), respectively where 1<y <m and 1< p<n. Thus as usual, each z& R™*
can be written as follows:

P (zl’ oo, zm+n) — (2")
= (&, -, &", 6, o0, 07) = (2, 0?) = (, ).
The parity |i| of the coordinate index 7 is defined as follows: |7|=[0] ([1]) if
1<i<m (m+1<i<m+mn). On the N-th skeleton R} of R™!" we consider the

following natural coordinate system {zk: 1<i<m-+n, KTy, |K|=|i|}. For
each 2=(2‘)€ R™", the component 2’ can be written as follows:

2= 3] 2k t¥ where p=|i|.
KeT,

Thus zy=(2k)E R}'" has the coordinate {zk: 1<i<m-{n, K&Ty, |K|=]i|}.
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Formally {zk: 1<i<m-+n, KET, |K|=|i|} can be regarded as a natural co-
ordinate system of R™*, Since the super Euclidean space R™* is a projective
limit of {R%": N>0}, we have the differential calculus as developed in the
previous section. This differential calculus on R™* will be called the non-super
differential calculus on R™"".

Here we give a revised version of Cauchy-Riemann equations of a super
smooth function. We shall follow the definitions in [2]. Let K and L be ele-
ments in T" such that KNL=¢. Then KV L denotes the element in T" such
that the set of entries of K/ L is the union of K and L. Then for K, LET, we
define €(K, L) as follows: If KNL=#¢, then (K, L)=0. If KNL=¢, then
&K, L)y=+-1 is defined by ¢% tf=&(K, L) ¢t¥VE. For 1<i<m+n and KT

with |Z|=|K], 6'. is defined as in [2]. For K, LET, we define — as fol-
lows: 0z 2kl
9 0 if KNL=*¢,
02k, | €K L) ,.6 if KNL=¢.
0zkve

Then we have the following revised Cauchy-Riemann equations.

Theorem 1.1. Let f be a A-valued projectable function defined on a domain
Uin R™*. Then the following conditions 1)~5) are equivalent.

1) f(z): G'on U.

2) f(z) satisfies the following equations on U :

a?c;: )= aig ()¢5 (1<p<m, KeT: |K|=[0]),
8 ay 0 L= . — -
agr J@) 5 f(R) 4 =0 (I<p<n L, HET: |L|=|H|=[1]).

3) f(2) satisfies the following equations on U :

(]
63§+H

4)  f(2): super smooth on U.

5) f(2) can be written as follows :

[ 0) = 35 ¢p(%):07 (P = (py, -+, pa): IS p<e--<py<m),

f6) = 5o f&)-" (1<i<m-tn, K, HET: il = K[, 1H|=[0).

where $p(x) is the Z-expansion of a A-valued smooth function ¢p(t) on t€ UyC R™
and 0P =0@%1..- G,

Proof. The conditions 1), 2), 4) and 5) are equivalent as shown in [2].
First we show that 1) implies 3). As shown in [2], if f(2) is G on U, then it
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satisfies the following on U:
8
0z

%%f(z)zf (2):¢% (I<i<m+n, KET: |i|=]|K]).

If KNH=#¢, then §¥ §#=0. Thus 3) holds if KN H=¢. Suppose KNH=¢.

O f@)=e(K, H) 5 — fR)=e(K, H) | 2 (@)-vi—f (@)%

Rk+H 0=kva

Then

bl :& f(2):¢%. Now we show that 3) implies 2). Clearly 3) implies the first

equations of 2). By a straight calculation, we can show that 3) implies the
following equations.

0 " 0]
(agli S0

for 1<j, 1<p<n, L, HET: |L|=|H|=[1]. This holds for each j>1.
Therefore the second equations of 2) hold.

f@&)-£+)-5 = 0

We shall call the equations of 3) in the above theorem the Cauchy-Riemann
equations of a super smooth function.

Theorem 1.2. If f(2) is a super smooth function on a domain U in R™*,
then f(2) is a regular mapping of U into A in the sense of the non-super differential
calculus.

Proof. By a straight calculation, we obtain the following:
)
0zt

This shows that f(2) is regular in the sense of the non-super differential calculus.

) () (@i —2)

fun(@y) = fun(@Ev+Eva—2x) = fyulzn)+ "-‘g: ( f

1.4. Super vector spaces

The notion of super vector space is given in [1], which also develops the
linear algebra over super vector spaces. Here we restrict ourselves to the real
case. For details, see [1]. A two-sided A-module S is called a Z,-graded A-
module if S has two subspaces Sg and Sy such that S= S+ Sy (direct sum)
and A,+S,CS,;, and S, A, CS,,, for p,qeZ,. If an element x of S is in Spy
or Sp, then x is said to be homogeneous. And if x& St (St), then x is said to
be even (odd) and the parity |x| of x is, by definition, [0] ([1]). A Z,-graded
A-module S is called a super vector space if ax=(—1)** xa for any homogeneous
elements a€ A and xS where a and x in (—1)* denote their parities |a| and
|x]. A finite set {u,, -+, #,} of vectors in S is called a base of S if each element
in S is written uniquely as a linear combination of {u,, -+, %}. Then & is called
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the total dimension of the super vector space S. If each vector in a base of S is
homogeneous then the base is called a homogeneous base.  If {u,, +++, tty, vy, **+, Vp}
and {#, -+, #;, 0, -+, Oz} are homogeneous bases of S such that u;, #; are even
and v, 07 are odd, then we have that m=# and n=#. The pair (m|n) is called
the dimension of the super vector space S. If a super vector space .S has a base,
then S has a homogeneous base. Let .S be a finite dimensional super vector
space and {u,, -*+, %} a base of S. We define an equivalence relation, ¥, on S
as follows: Let ¥= 3] u;/x and y= 3} u;'y where ‘x, ’yeA. Then x% y if and
only if (x)y=(y)»EAy for each i. This definition is independent of a choice
of a base of S. Then the N-th skeleton Sy of S is, by definition, the quotient
space Sy==S/5 of S by the relation 3. Then Sy is a Z,-graded A y-module and
{Sy} forms in a natural way a projective family of finite dimensional real vector
spaces whose projective limit is S.

Lemma 1.3. Let S be a finite dimensional super vector space and {u,, -+-, u,}
a set of super vectors of S. If {(u)p, *+, (u,)p} s linearly independent over R,
then there exist vectors {v,, «--,v,} in S such that {w, -+, u,, v, -+, v} forms a
base of S where dim S=p+-q.

Proof. Let A be a (p+gq, p)-matrix whose components are in A. Then
if rank Ap=p, there exists an invertible (p+g)-matrix P such that A=P-

(ﬁ) where E denotes the identity p-matrix. In fact three exists a real invertible
(p-+¢)-matrix Q such that ABzQ-<€"). Let P=Q+(A—A4s, 0) where 0 de-

notes the (p-+¢, g)-zero matrix. Then P has the desired property. The above
lemma follows from this assertion.

A subset S of a super vector space S is called a super subspace of S if S is a Z,-
graded A-submodule of S. Let S be a finite dimentional super vector space.
A super subspace S is said to be normal if there exists a base {u, -, u} of
S such that {u, ---, ug} (E<R) is a base of S. Then a normal super subspace S
is a finite dimensional super vector space itself and if dim S=(m|n) and dim
S=(m|#%) and {u,, -+, uz, vy, -, vi} a homogeneous base of S, then there exist
VECtOrs Umi1, ***y Uy, Vis1, ***, VoS such that {u,, -, u,, v,, -+, v,} forms a
homogeneous base of S. This follows from Lemma 1.3.

Lemma 1.4. Let S be a finite dimensional super vector space and S a normal
super subspace of S. If a vector x in S satisfies that x€ is in S for each €€ Ay,
then x is in S.

_Proof. Let {u,, **+, uzg} be a base of .S such that {u,, -, uz} (F<R) is a base
of S. Let =3 u;c where icisin A. Then x6=3] u;(‘c€) S for each € Ay
Thus ‘c€=0 for €€ Ay and k<i<k. Therefore ic=0 for E<i<k and hence x
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isin S.

Let S and S be super vector spaces and @ a mapping of S into S whose image
of xS is denoted by @(¥)ES. Then D is called a super linear mapping of S
into S if ®(x+y)=>(x)+D(y) and P(xa)=P(x)a for x, y=S and aEA. Let
@ be a super linear mapping of S into S. The parity |®| of a super linear
mapping @ is defined in a natural way, which is characterized by |®(z)|=
|®@]-|z| (€S). Let S and S be finite dimensional super vector spaces and @
an even super linear mapping of S into S. Then if the rank of ®@; is equal to

dim S, the image ®(S) of S by @ is a normal super subspace of S. This follows
from Lemma 1.3.

ExampLE 1.1. Let ®*A be a set of all m—+n column vectors z=(’2) whose
components are super numbers. For an odd super number €€ Ay, the scalar
multiplications €z and =€ are defined as follows:

€(z) = ((=1)¢')
(fz)€ = (%=¢)

where 7 in (—1)f denotes the parity |i| of the coordinate index. The addition
and the scalar multiplication by an even super number are defined as usual.
Let ¢; be the column vector whose i-th component is 1 and others are 0. Then
each 2=(‘2)e"!"A can be written as =>]¢; ‘2. Thus {¢;} is a homogeneous
base of A and the dimension of ™A is (m|n).

2. Manifolds

2.1. Non-super manifolds
Let E=lim Ey be a projective limit of a projective family of a finite di-
-«

mensional real vector spaces. A topological space M is called a projectable
(regular) manifold modeled after the projective limit E=lim Ey if there is a local

coordinate system {(U,, vr,)} such that 1) {U,} is an open covering of M, 2) +,
is a homeomorphism of U,C M onto a domain r(U,)CE and 3) o’ is a
projectable (regular) diffeomorphism of a domain rg(U, N Up) onto a domain +r,
(U,NUg)in E. On a projectable manifold M, we define an equivalence relation,
N, as follows: If x and y in M are in a coordinate neighbourhood U with a local
coordinate 4 such that yr(x)y=+(y)y in Ey, then x3 y. Then this relation is
an equivalence relation on M. The quotient space M/ is denoted by My, called
the N-th skeleton of M. The projection of M onto My will be denoted by py.
For N=0, M, and p, will be denoted by M and pg, respectively. The local
coordinate system {(U,, ¥r,)} of M induces a local coordinate system {(U,x, Yrun)}
of M), which makes My an ordinary smooth manifold of dimension dim E
where U,y=py(U,)C My and 4,y is the induced one-to-one mapping of U,y
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onto Yun(Uuy)=re(U,))yCEy. Then M can be regarded as the projective
limit lir_n My of the family {My} of finite dimensional smooth manifolds. A

subset U of M will be called a domain if Us=p5(U) is a connected open subset
of My and U=p3'(Us). A domain of M can be regarded as a projectable
manifold modeled after E =lir_£1 Ey itself. If M is a projectable manifold then M

is a fibre bundle over a base space My and My is a smooth fibre bundle over M.
Moreover if M is a regular manifold then in a natural way My, is an affine
bundle over a base space My for N >0.

Let M be a projectable (regular) manifold modeled after E =1<iin Ey and

E_=Ii<r_n E, a subspace of E where E, is a vector subspace of Ey for N>0.

Then a subset M of M is called a projectable (regular) submanifold of M model-
ed after E :ﬁ(r_l’l E, if for each point oM there exists a local projectable (regular)

coordinate (U, 1) of M such that o€ U, y(0)=0 and M N U={z€ U: Y(z)=E}.

Let f be a real valued function on M. Then f is said to be admissible if
foyr™! is an admissible function on a domain y+(U) in E for each local coordinate
(U, ¥) of M. We denote the algebra of all germs of admissible functions at 2 in
M by (). Let M and M be projectable manifolds and  a mapping of M into
M. Then ¢ is said to be projectable if for each N >0 there exists a smooth
mapping @y of M)y into My such that @yopy=pyop on M where 5, denotes
the projection of M onto M,. The mapping ¢y is called the N-th projection of
@. Let M and M be regular manifolds and ¢ a projectable mapping of M into
M. Then ¢ is said to be regular if the N-1-th projection @y, of My,, into
M, ., is an affine bundle homomorphism over a base mapping ¢y of My into M
for each N >0.

2.2. Super manifolds

A topological space M is called a super manifold of dimension (m|n) if there
exists a local coordinate system {(U,, ¥,)} such that 1) {U,} is an open covering
of M, 2) 4rg is a homeomorphism cf U,CM onto a domain r,(U,)C R™"* and
3) Yrgoyrg! is a super diffeomorphism of a domain rg(U, N Ug) onto a domain
Vo (U, N Ug) in R™*, It follows from Theorem 1.2 that a super manifold of
dimension (m|n) can be regarded as a regular manifold modeled after R""”:l(igl

R}'". This regular manifold is called the underlying non-super manifold of the
super manifold M. Then a domain of a super manifold is a super manifold
itself. A A-valued function f on a super manfiold M is said to be super smooth
if for~! is a super smooth function on a domain »(U)C R™"* for each local co-
ordinate (U, 4) of M. We denote by O(2) the set of all germs of super smooth
functions at 2 in M. In a natural way O(2) is a super vector space. That is,
f€0() is even (odd) if the value of f is in Agy (Ar), respectively. A(z; A)
denotes the set of all germs of A-valued admissible functions at 2 in M, which
is a super vector space containing ((2) as a super subspace.
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Let M (M) be a super manifold of dimension (m|z) (72| #1)), respectively and
@ a mapping of M into M. Then ¢ is said to be super smooth if F,oporr;' is a
super smooth mapping of a domain ,(U,)C R™* into R™!* where (U,, v{,) is a
local coordinate of M and (U,, ,) is a local coordinate of M such that o(U,)C
U,. A super smooth mapping g is regular on the underlying non-super manifold
and particularly @ induces a smooth mapping @, of the N-th skeleton M, into
M,, the N-th projection of @. Let (U, ) be a local coordinate of a super
manifold M. We denote 2'ov)r simply by 2. Thenyr={2k:1<i<m+n, KET,
|Z] == | K|} is a local coordinate of the underlying non-super manifold of M where
zizxg‘ 2k t¥. Let M be a super manifold of dimension (m|n). A subset M of

M is called a super submanifold of M of dimension (7% |#) if for each o= M there
exists a local coordinate (U, +r) around o in M such that yr=(2f)=(x", 6?) and
Y(0)=0and UNM={z€U: 8™ '=-.=ax"=0"*'=...=0"=0}. Then M itself
is a super manifold in a natural way.

For £>0, I,C R is defined by I,={rR"%: |75|<&}. A super smooth
mapping of I, into a super manifold M is called an even super curve on M. By
Z-expansion, a non-super curve ¢(¢) on a super manifold M(|¢]| <€) defines
uniquely an even super curve &(7) on M(r&1,) such that &(#)=c(¢) for |t]| <é&.
Conversely each even super curve on M can be obtained from a non-super curve
in such a way.

3. Tangent spaces

3.1. Non-super tangent spaces

Let M be a projectable manifold modeled after E =li(1_1_1 Ey. Foreach ze M,
Ty, (My) denotes the tangent space of the manifold My at zy. Then the pro-
jection p¥*' of My,, onto M) induces the differential (p¥*")x of Tz, (My4,)
onto Tz (My) and {7z, (My)} is a projective family of finite dimensional real
vector spaces. The projective limit of this projective family will be denoted by
g(M), called the tangent space at 2 M of the projectable manifold M. Then
9,(M) is the vector space of all derivations of the algebra A(2).

Let M and M be projectable manifolds and ¢ a projectable mapping of M
into M. Then a projectable linear mapping @4 of T, (M) into Ty, (M), called
the differential of @ at 2= M, is defined in a natural way so that (@y)xo(Py)s=
(Pw)xops on I,(M) for N >0.

Let c(t) be a curve on a projectable manifold M. Then as usual we can
define a tangent vector ¢(t) € I,,y(M), called the tangent vector of a curve c(2) at
¢, so that (¢(8))y=Cy(t) in T¢pq(My) where cy(t)=(c(2))y is the N-th projection
of the curve c(z).

We shall prove the following theorem of the inverse mapping.

Theorem 3.1. Let M and M be regular manifolds and @ a regular mapping
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of M into M such that the differential @y of @ at each €M is an isomorphism of
G(M) onto Dypy(M). Then for each x M there exists a domain UCM con-
taining % such that @ is a regular diffeomorphism of U onto ¢(U).

Proof. In order to prove the theorem, we condider the case only locally.
Let U be a domain in E containing 0 and @ a regular mapping of U into E whose
Jacobi matrix Jp(2) is a projectable linear isomorphism of E onto E for each
zeU. Then we have to prove that there exists a domain V' of E containing 0
such that ¢ is a regular diffeomorphism of ¥ onto a domain @(V) in E. Now
the Jacobi matrix of each N-th projection gy is invertible at each point in U since
the Jacobi matrix of @ is invertible. Therefore by the ordinary inverse mapping
theorem there exists an open set ¥, containing 0 in Ej such that ¢ is a dif-
eomorphism of ¥ onto an poen set @y(V;) in E;.  We define a domain V in E
by V=p~(V;) and an open set Vy in Ey by Vy=py(V) (N=>0). By induction
we shall prove that @y is a diffiomorphism of Vy onto @y(Vy). Now suppose
that this holds at N. Since the mapping @y, is an affine bundle homomorphism
over the base space mapping @y of Vy into Ey, @y, is an affine mapping on
each fibre (pi*!)~*(zy) which is, by assumption, invertible for each zy&Vy.
Therefore @y, is a diffeomorphism of V., onto @y, (Vys). And hence ¢ is
a regular diffeomorphism of V" onto ¢(F’).

Let M and M be regular manifolds and ¢ a regular mapping of M into M
such that the differential @4 of @ at each z& M is an isomorphism of Z,(M) into
Doy(M). Then for each & M there exists a domain UC M containing z such
that @ is a regular diffeomorphism of U onto a regular submanifold (U) of M.

3.2. Super tangent spaces

Let M be a super manifold of dimension (m|#) and 2 a point in M. A map-
ping v of O(2) into A is called a super tangent vector at 2 if v satisfies the following
conditions where f+v denotes the image of f€0(2) by v. For each f, ge0(2)
and a€EA,

1) (ftg-v=/fotgwv
2) (af)-v=a(fv)
3) (fg)v=f(2)(g-v)+(—1)"%g(=) (f-v)

where f, g in (—1)7¢ of 3) denote the parities of f, g. We denote by T,(M) the
set of super tangent vectors at 2 C M, called the super tangent space of M at
2€M. The parity |v| of a super tangent vector v is defined by | f-o|=]|f|+[v|
for feO(z) and ve T(M). Then the super tangent space T,(M) of M at z€M
is a super vector space in a natural way. Let (U, ¥»=(z)) be a local coordinate

around *€M. Then as in an ordinary way a tangent vector (56——) eT,(M) is
2t /2
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defined: f(_aa?)‘z( for™) (66z‘ ),,,(,) for feO(z) where the right hand side is

defined in a super differential calculus [2]. Then the parity of (i) is the
. . . . . 02/
parity |Z| of the coordinate index i.

Theorem 3.2. The super tangent space T, (M) is a super vector space of di-

mension (m|n). Moreover {(%),} forms a homogeneous base of T, (M) and for
each veT(M), v=3 (ai) ‘v where 'v=z'-v (1<i<m-n).
2t /2

Proof. Applying the following lemma the theorem will be obtained as usual.

Lemma 3.3. Let f be a super smooth function on a domain U of R™" con-
taining 0.  Then there exist super smooth functions F;; on U such that for each € U

-«

1@ = O+ 5 -2 05+ ZFile)-a-.
Proof. By Theorem 1.1, f(2) can be written as follows:
f(2)= ;‘ Pp(x)+07  where z=(x0).

By the ordinary differential calculus, each @(f) (¢ Uy) can be written as follows:
m a v
Pe(t) = @p(0)+ P g P#(0) "+ %?’pm(t)'t“'t

for some smooth functions @pu,(f) (1< p<v<m).
Therefore we have

F(@) = S @o0)+ 33 Po -2 (0)-a+ 33 P () 5+ 5%) 67 .
P k=1 0x By

-

For P=g, po(0)=/(0) and s -2 (0) = £ 2. (0).

And for P=(), Pep(0) = f%’ (0). Thus

£&) = FO+ 33 2 O+ 5 Po()- 4"

+ 35 (o5 OF 53800 205 (0 + 3 P () --57) 67

-

+ 21,’ (¢P(O)+ é Pp 52_“ (0)-x"’+ Ev ¢P“v(x) .xﬂ.xv).gf'



SuPER MANIFOLDS 921

where in the last term the sum, 3}, is taken over {P=(p,, -, ps): h=>2}.
This completes the proof of the lemma.

For peZ,, the subspace T, (M), of T, (M) is defined by T,(M),={veET,(M):
|v|=p}. Since the super tangent space T,(M) is a super vector space with a
finite dimension, the N-th skeleton T,(M)y is well-defined.

Let M and M be super manifolds and ¢ a super smooth mapping of M into
M. Then the super differential @y of @ is defined as usual: For each zEM,
@« is a mapping of T(M) into Ty, (M) defined by f+(pxv)=(fop)-v for fEO
(p(2)) and veT,(M). Then @y is an even super linear mapping of T,(M) into
Toy)(M): That is, @px(u+v)=@xt+@xv and @x(va)=(pxv)a and |@xv|=|v|
for u, veT,(M) and a€A. In terms of local coordinates, the super differential
can be expressed as follows:

D) n(2) (p2)
P 0= /2 2 037/ e ? 02/

where (2°) is a local coordinate around 2 and (') is a local coordinate around ()
and ¢’=%’op. Since @y is a super linear mapping, we have the N-th projection,
(@x)n> Of @4 which is a mapping of T,(M)y into Ty, (M)y. In particular, the
0-th projection is called the body of @4, denoted by (@4)s, which is a R-linear
mapping of T,(M)g into Ty, (M), where

T(M);=1{X (61;')4 iv: ivER} .

Let () be an even super curve on M(r<1,). Then the super tangent vector
¥(7) € Ty (M) of y(7) is defined as usual: For fe O(y(7)), f-¥(v)=( fo'y)—j—(—r).
T

In other words, ')"(-r)='y*(7d—> . Thus () is an even super tangent vector.
T /T

In terms of local coordinates, T,(M) can be indentified with the super vector
space ""A. Then the super differential g4 is a super linear mapping defined by
the super Jacobi matrix Jo(2) and the body (@s)s of @4 is a linear mapping
defined by the body (J@(2))s of the matrix Jp(z).

Now we obtain the following theorem by the inverse mapping theorem in a
super differential calculus [2].

Theorem 3.4. Let @ be a super smooth mapping of a super manifold M into
a super manifold M such that the super differential @y of @ at a point xM is a
linear isomorphism of T(M) onto Teuy(M). Then there exists a domain U of M
cantaining the point z such that @ is a super diffeomorphism of U onto a domain

@(U) of M.
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3.3. Almost super structures
Let M be a super manifold of dimension (m|#) and (U, 4r=(2%)) a local co-

i

ordinate of M. Then {(56——)} is a base of the super vector space T,(M) and
2 /s
the even subspace T,(M)q of T,(M) is given by

TMyn = {2 (2;) o 'oeh, p = lil}
The local coordinate yr=(2") of M gives a local coordinate J»=(z%) of the under-
lying non-super manifold of M. That is, ¥ry=(2k)=(2k) is a local coordinate
of My where KET'y, and |K|=|i|. Therefore the tangent space I, (M) of the
underlying non-super manifold of M is given by

i
K

9,(M) = {3} (6%) . aieR, KeT, |K|=|i|}.

Then the following correspondence of T,(M)r to I(M) gives an R-isomor-
phism.

T(Myg>0 = 33 (6%) w0 =530, (0) egon

i 0K 2

where ‘v:xgrfvx ¢¥ (|K|=|7]). By a straight computation we see that the
above correspondence is independent of the choice of local coordinate. Moreover
we have that f-o=2-f for ve T,(M)g and feO(z)C A(z; A). In fact this fol-
lows from the Cauchy-Riemann equations of a super smooth function. Let M
and M be super manifolds and ¢ a super smooth mapping of M into M. Then
the following diagram is commutative.

P —
T (M)t —— Tocy (M)1a1

9,(11;) AN sfi);w)

For each HETYy, we define a linear endomorphism J# of (M) by J# d=(¢¥ v)
for each vEe T (M), We call the family {J#: HET 1} of endomorphisms of
9 (M) the almost super structure on the underlying non-super manifold of a super

manifold M. In particular, we have J# (i') = ( ? ) for HET 3 and
KeT with |K|=|i|. 0zk/:  \02k.n/:

We can prove the following theorem from the Cauchy-Riemann equations
of a super smooth function.

Theorem 3.5. Let M and M be super manifolds and @ a projectable mapp-
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ing of M into M w.r.t. the underlying non-super manifold structures. Then @ is
super smooth if and only if @yoJ¥=]Hopy on the tangent space I (M) for each
2eM and HET .

4. Vector fields

4.1. Vector fields on an affine bundle

Let 4 be an affine bundle over a base space B with projection = and the
standard fibre A", A vector field X on A is said to be projectable if there exists
a vector field X on B such that z4(X,)=X,, for each ye4. A projectable
vector field X is said to be affine if (f,)x(X]|4,) is an affine vector field on A" for
each x& U, where X|,_ denotes the vector field defined cn the fibre 4, and
(Usgs f2 848) 1s a local trivialization of the affine bundle 4 over B. Let ¥,=
(Yu=(*%), f=(3")) be a local affine coordinate on =~ (U,)C A wbere yr,=(x%) is
a local coordinate on U,CB and (»") is a natural coordinate of A". Then a
vector field X is affine if and only if X is written as follows:

X =50 Tt DDA 50 5

where Au(x), b*(x) and ¢'(x) are smooth functions on U and dim B=m. An
affine vectsr field X in the above from is said to be parallel if ¢ and A} vanish
identically for 1<i<m and 1<», p<n.

Theorem 4.1. Let X be an affine vector fiell on A and X=nw(X) the
vector field on B. Let ¢, be a local one-parameter group of local transformations
generating X which is defined on |t| <€ and an open set VCB. Then there exists
a local ome-parameter group &, of local transformations generating X which is
defined on |t| <& and V=n"YV) and each &, is an affine bundle mapping with the
base mapping ¢, for each |t|<€.

Proof. Suppose that X is written in the above from in terms of a local
affine coordinate ((xf), (3")) on z~%(U,). Then the differential equation for
&i(x, ) is given as follows:

% al=c(x) (1<i<m)
Ay — AUy B (I<v<n).
dt =

Thus ¢,(x) is the solution of the first p equations with ¢py(x)=x. Then we
consider the last ¢ equations. That is,

4y — A=) (B
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where y=(y"), A=(4L) and b=(8") (1<v, u<n). Let Y(¢, x) be a smooth
mapping into GL(n; R) defined on |¢| <& and x&€ U, such that % Y(t, x)=4

(pe(x))* Y (2, x) and Y (0, x)=E. Since A(p,(x)) is smooth on |t| <€ and xE U,,
the above Y(t, x) exists uniquely. Now let

W) = Y(t, )+ Y6, 07153, ) ).
Then &(x, y) is given by &(x, y)=(¢:(*), ¥«(x,¥)). This completes the proof.

4.2. Non-super vector fields
Let M be a projectable (regular) manifold modeled after E=lim Ey. Then
the tangent bundle I(M)= U Z,(M) of M can be regarded as a projectable
zZEM

(regular) manifold modeled after E XE:li_n_“ EyXx Ey in a natural way. That is,
when (U, 4) is a local coordinate of M, the differential 1y induces a one-to-one
mapping of I(U) onto U X E which gives a local coordinate of (M). In other
words, the tangent bundle J(M) is the projective limit of the family {T'(My)} of
the tangent bundles of {M}. A section v of the tangent bundle (M) over M
is called a projectable (regular) wector field on M if the section is a projectable
(regular) mapping of M into J(M). That is, in terms of local coordinate (U, ),
the mapping 2—=>vr4(v,) € Ty,y(E)=E is a projectable (regular) mapping of U into
E. Then the N-th projection v, of a projectable vector field v gives a vector
field on My. As usual we denote by v, the 0-th projection of v, a vector field
on M. Let u and v be projectable (regular) vector fields on M. Then the
vector field [, v] is defined in a natural way, so that [, v]y=[uy, vy] on My.

Let v be a projectable vector field on a projectable manifold M. Then ¢,
is called a local one-parameter group of local transformation of M generating
the projectable vector field v if ¢, is defined on |t| <& and a domain U of M
and satisfies the following conditions:

1) the mapping (—¢&, &) X U (¢, 2)—¢,(2)E M is projectable,

2) if |t], [s], [t+s]| <€ and 2, p(z)E U, then

Pr45(2) = Pi(Ps(2))
3) for each z€ U, v, is the tangent vector of the curve ¢,(z) at t=0.

For a regular vector field we have the following theorem.

Theorem 4.2. Let M be a regular manifold modeled after E—-:li(r_n Ey and

v a regular vector field on M. Let ¢7 be a local one-parameter group of local
transformations generating the vector field vy on My such that ¢f is defined on
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|t]| <& and an open set Uy of M. Then there exists a local one-parameter group
¢ of local transformations generating the vector field v on M such that ¢, is
defined on |t| <& and the domain U=p3 (Uy) of M and the mapping (t, 2)—>p,(2)
is a regular mapping.

Proof. This theorem follows immediately from Theorem 4.1.
As usual the bracket of vecor fields is given as follows.

Theorem 4.3. Let u be a regular vector field on a regular manifold M
and ¢, a local one-parameter group of local transformations generating the vector
field u. Then for each projective vector field v on M, we have

[, o] = lim 1 (o— g1 (0) .

4.3. Super vector fields

Let M be a super manifold of dimension (m|#z). Then the super tangent
bundle T(M)= Ux T(M) of M can be regarded as a super manifold of dimension

(2m|2n) in a natural way. That is, when (U, 4) is a local coordinate of M, the
differential +Jry induces a one-to-one mapping of 7(U) onto U X R™"C R
which gives a local coordinate of T(M). A section of the super tangent bundle
T(M) over M is called a super vector field on M if the section is a super smooth
mapping of M into T(M). Let X be a super vector field on M. Then for
z€ M, we have X, T,(M) and for a super smooth function f on M, f-X is a
super smooth function on M where (f-X) (2)=f-X, for z&M. A super vector
field X on M is said to be even (odd) if X, is an even (odd) tangent vector at each
zeM. In terms of local coordinate (U, ¥=(2%)), a super vector field X can be

written as follows: X== E 5 ‘X where X=z2-X. A super Lie bracket of
2!

vector fields X and Y on M is defined as follows: For a super smooth function
fon M, f-[X, Y]=(f-X)Y—(—1)**(f-Y)-X where X and Y in (—1)*Y de-
note the parities of X and Y. Then [X, Y] is a super vector field on M.

Let X be an even super vector field on M. Then by the correspondence of
T (M) onto I,(M) at each z&M, X defines a non-super regular vector field
X on the underlying non-super manifold of M. In terms of local coordinate, X

is giver. by X = E'Xx'a—a— where ‘X= E Xg ¥ (li|=|K]). Then for even
super vector fields X and Y on M we have X, Y]-_—[X Y]
Theorem 4.4. Let u be a non-super regular vector field on a super manifold

M and ¢, a local one-parameter group of local transformation generating the re-
gular vector field u which is defined on |t| <& and a domain UCM. Then the
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following conditions are equivalent.
1) There exists an even super vector field X on M such that u=X on M.
2) [u, JHv]=]"[u, v] for each HE Ty and each non-super projectable vector
field v on M.
3) ¢ is a super smooth mapping of U into M for |t]| <<E.
Proof. Suppose that u is written locally as follows: u= Then

let 4= 2 uk ¢X. 'Then u=2X for some even super vector field X if and only if

each ' is super smooth. By a straight calculation, for |j|=|K| and |H|=[0],
we have

[, J* <6z’ )] :x(azml ) 2 - —2 62" <6;ﬁu'>

7 =1 (-2 () i) = — 5 2 ()¢

under the identification of I,(M) with T,(M)r. Thus the equivalence of 1)
and 2) follows from the Cauchy-Riemann equations of a super smooth function.
It follows from Theorem 4.3 and Theorem 3.5 that 3) implies 2). Conversely,
applying the usual procedure we can show that 2) implies 3).

Let X be an even super vector field on M and X the non-super regular
vector field corresponding to X and ¢, a local one-parameter group of local
transformations generating the non-super regular vector field X on M such that
¢, is defined on |#| <€ and a domain UCM. Then for each |#]| <&, the mapping
z—>¢,(2) is super smooth by Theorem 4.4. On the other hand, for each z€ U,
the mapping t—¢,(2) is a curve on M and, by Z-expansion, the curve defines an
even super curve, denoted by ®,(z), defined on 71, so that ¢,(2)=>(z) for
|t] <& and € U. Then P, satisfies the following conditions:

1) the mapping I, X U>(r, 2)—>P,(2) €M is super smooth,

2) if 7,0 and 740 €1, and 2, D, ()= U, then

D,1(2) = PA(Ds(2)) ,

3) for each z€ U, X, is the super tangent vector of the even super curve
@, (2) at 7=0.
@, is called the local even super one-parameter group of local super transformations
generating the even super vector field X. Therefore we have the following
theorem.

Theorem 4.5. Let X be an even super vector field on M. Let ¢f be a
local one-parameter group of local transformations generating the vector field X,
on My such that ¢f is defined on |t| <€ and an open set Uy of My. Then there
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exists a local even super one-parameter group of local super transformations gen-
erating the even wvector field X on M such that @, is defined on v<1, and the
domain U=p3"(Uy) of M.

5. Frobenius’ Theorem

5.1. Frobenius’ Theorem on an affine bundle

A differential system D of dimension 7 on a smooth manifold 3 is a sub-
bundle of the tangent bundle T(M) of M with a local base around each point of
M. 'Thatis, for each x& M there exist vector fields X}, «-+, X, on a neighborhood
U of x which form a base of D, for each yeU. D is said to be involutive if,
for any vector fields X and Y belonging to D, [X, Y] also belongs to D.

Let A be an affine bundle over B with standard fibre A" and projection
m. An involutive differential system D on A is said to be affine if D has a
local base {X;, Y,} where each X; is an affine vector field and each Y, is a paral-
lel vector field such that {=«(X;)} is linearly independent. Then an affine
differential system D on A induces an involutive differential system D on the
base space B so that z4(D)=D and {z4(X;)} forms a local base for D.

Theorem 5.1. Let D be an affine differential system on an affine bundle A
over a base space B and D the induced involutive differential systemon B. Let V
be an integral submanifold of D and 6 a point in z~(V)CA. Then there exists
an integral submanifold V of D such that 6&V and V is an affine subbundle of
Aly over V where A|y is the restriction of the affine bundle A to VCB.

Proof. This follows from the following.

Lemma 5.2. Let (&', --+, &™) and (&%, -+, x™, 3", +++, y") be the natural
coordinates on R™ and R™**, respectively, and n the natural projection of R™** onto
R" and U={x€R": |x¥'| <& and U=n"YU). Let D (D) be an involutive
differential system on R™(R™*"), respectively, such that my(Dc, ,)=D, for each
(%, y)ER™* and dim D=a and dim D=a+b. Suppose that {x& U : x**'=c**,
e, x"=c"} is an integral submanifold of D for each c=()eR™* with || <&
(a+1<j <m) and that there exists a local base {X,, ---, X,, Y}, -+, Y3} of D on U
such that

a L v 6 .
Xi= 5;‘1" Eai(x,y) 67, (1<i<a)

Ti= 360 g (<ks<h)

where aj(x, y)= glA}’,‘(x) Y4bi(x) (1<i<a, 1<v<n) and A}u(x), bi(x) and Bi(x)

are smooth functions on U.
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Then there exist smooth mappings @(x) of U into GL(n; R) and £(x) of U into
R” such that ®: 2=x, y=gp(x) y+E(x) is a diffeomorphism of U and
q)—l( {(x) y)e ﬁ: xa+l=ca+l’ ) xm_:cm’ J—"'“:d"“, °t ynzdn})
is an integral submanifold of D for each (c,d)ER™ *X R*™® with || <€ (a+1<
i<m).
Proof. When a function is written as the above aj(x, y), the function is

called an affine function along each fibre. The above expression of X; and Y,
will be written as follows.

o 0 E, 0
(X, V) = (__ KA
ox 0y 0 0
ax,y) B(x)
Since the rank of the (n, b)-matrix B(x) is b, there exists a smooth mapping C(x)
of U into GL(n; R) such that C(x) ﬁ(x)z(gb). Define a diffeomorphism @ of

U by ®: #=x, y=C(x)y. Then we have
9 0 E, O
DX, Y)=(—, — a
X ) (6x ay) 0 0
f(x,y) E,
8(x,) 0

where each component of f(x, y) and g(x, y) is an affine function along each fibre.

Let (X, 17)=(X, Y) ( E, 0 ) Then {X;, ¥,} forms a local base of D on
- —f (x,%) E,
U. Let 2=(&, -, &%), u=(&°", .-+, 2"), y=(3", -*+, 3*) and 0=(3**}, .-+, J").
Then we have
DX, 7) = (i, 08 0 08Y) /EO
ox om 0y 00 00
0 E,
g2 0
where each component of g=go®~}(®, @, ¥, 0) is an affine function along each
fibre. That is,

ouX) = L+ Saiwn 5,0 L (<i<a)
DY) = 8 (1<k<D).

oy*

Since [®@ (X)), <I>*(l7,,)]=— :Z:_,f (5%_; gﬁ) ﬁ% is a linear combination of {®4(X)),
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®4(Y,)}, it must vanish and hence 2 is a function of (%, %, ©). Therefore g is
written as follows:

2i(®,1,0) = 2’ Gl(%, 1) 0 Lhi(r, 1) (1<i<a, 1<t<n—b)

where G, and A} are smooth functions of (%, %). Since [@4(X;), D4(X))] is a
linear combination of {82 } and also is a linear combination of {®4(X;), ®«(Y))},

it must vanish. Let G; be the square (7—b)-matrix whose (¢, s)-component is

Gi; and o= > > —Gy(®,m)dx a gl(n—b; R)-valued 1-form on U;={#R":

| % | <&} where zE R™* is regarded as a parameter. Then [@4(X;), Py(X;)]=
0 implies that do+wAw=0 on U; and hence there exists a smooth mapping G
of 2 U; into GL(n—b; R) with parameter Z& R™~° such that G"'"dG=w on Us;.

That is, az‘, G=—GG,; (1<i<m—a) on U={(x,8)cR": |#|, |¥|<c}. We

define a diffeomorphism ¥ of U by ¥: =%. a=0 j=3, 5=G(%,#)0. Then

V0,8, 7) = 2, (2, ai

where ki=—(GG;0)!. Then (k-+Gg)i= S‘_. G! ki and hence

S 0 0 o0 0 E, 0

\I’q) X,Y = A\ =y =y —— ¢
*Px(4, 1) <62 ou’ 0y a%) 00
0 E,
E O

where each component of kE=F(%, #) is a smooth function of (¥, #)U. There-
fore there exists a smooth mapping @(x, %) of U into GL(n; R) such that

X, 7)= (2, 02,2 08 E0
* ox’ on’ 8y’ 00 0 0

0 E
E O

where @: £=x, I=u, =y, 0=¢ (¥, u)v and k=FE(®,#). Then the components



930 K. Yacr

of k satisfy the following: 5%5; = 5%17!5 on U for 1<, j<a, 1<t<n—a.

Therefore there exists a smooth function K*(®, #) on U for 1<¢<q—a such that
73‘-:6—2',— K*on U for 1<i<a. Define a diffcomorphism ¥ of U by ¥: ==,

u=u,y=y,v=0—K(® #). Then
W, ®4(X, ¥) = (L 08 0 1) g. g

This completes the proof.

5.2. Non-super Frobenius’ Theorem
Let M be a projectable manifold modeled after E=lim Ey. A differential

system 4 on M can be defined as usual: That is, for each zeM, 9, is a vector
subspace of Z,(M). A differential system 9 on M is said to be projectable if for
each N >0 there exists a smooth differential system Dy on My such that (D),
=(pn)x(D,)C T, (My) for each zeM. Let 9 be a projectable differential
system on M. A projectable vector field  on M is said to belong to 9 if v, 9,
for each M. 4 is said to be involutive if, for any projectable vector fields u
and o belonging to 9, [u, v] also belongs to 9. A set {X;:i>1} of projectable
vector fields on a domain UCM is called a local base of 9 over U if for each
N>0 {(X;)y: 1<i<dy} forms a local base of the differential system Dy over an
open set UyC My and (X;)y=0 (dy+1<17) where dy denotes the dimension of
the differential system Dy. Let M be a regular manifold modeled after Ezligl Ey
and 9 a projectable differential system on M and {X;:>1} a local base of 9
over a domain UC M. The local base {X,::>1} is said to be regular if each
X, is a regular vector field on U and {(X;)y4;: dy+1<i<dy,} are parallel
vector fields on each fibre (p¥*')~(zy) where each fibre (pN*')7*(2y) is regarded
as an affine space. If for each point z& M there exists a regular local base of 9
over a domain U containing 2, then 9 is said to be regular. Let M be a pro-
jectable submanifold of M. Then M is said to be an integral submanifold of @
if 9,(M)=29, for each z&M. The following theorem follows from Theorem
5.1.

Theorem 5.3. Let M be a regular manifold modeled after Ezligx Ey and
9 an involutive regular differential system on M. Then for any point oM,
there exists an integral regular submanifold of 9 through o.
5.3. Super Frobenius’ Theorem

Let M be a super manifold of dimension (m|n). A super differential system
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D of (m|#)-dimension on M is a subbundle of T(AM) satisfying the following
condition: for each &M, there exist a domain U containing 2 and super vector
fields {X,, «+, Xp, Oy, ==+, ©,} on U such that X,(1<upu<m) is even and
8,(1<p<mn)is odd and {X, -+, X,,, ©,, -*+, ©,} forms a base of T,(M) at each
zeU and {X, -+, X5, 8, *-+, B;} forms a base of D, at each 2 U. Then
{X,, +++, Xi, Oy, +++, ©;} is called a local base of D on U. Thus each D, is a
normal super vector subspace of the super vector space T,(M). A super differ-
ential system D on M is said to be involutive if, for any super vector field X and
Y belonging to D, [X, Y] also belongs to D. A super differential system D on
M defines a differential system 9 on the non-super underlying manifold of M as
follows: For &M, 9, is a subspace of I,(M) corresponding to D,g;, the even
space of D,, under the identification between T,(M)iy and <, (M). The differ-
ential system 4 on M is called the associated differential system with D. Then
we can prove by Lemma 1.4 that D is involutive if and only if &) is involutive.

Theorem 5.4. Let D be a super differential system on a super manifold M
and 9 the associated differential system. Then the differential system 9 is
regular in the sense of non-super differential calculus.

Proof. Let {Xj, -, Xz, 8, +*-, ©;} be a local base of D on a domain
U. In terms of local coordinate (U, yr=(2)), X, and @, are written as follows:

a i 6 i — -
X’u = 2 5—2—' X,,, eq = 2 5—2—' Gq (lgvSm, lsqsn) .

For 1<v<im, 1<q<#, HET; and LETYy, let X¥=(X,¢#) and Of=(8,¢5).
Then {XZ, ®}} forms a local base for the associated differential system 4 on U:
That is,

{(Xf)N-H) (®§')N+1: 1<v<m, 1_qSﬁ, H,LETy,,, |H| = [0]» |L| = [1]}

is a local base of Dy, =pyx(D) on Uyyy=py+(U). Among these vector
fields, each of

(XD w1 By 1<v<m, 1<q<#, H, LE([Ty1,—T), |H|= [0], |L]=[1]}
vanishes by the projection py¥*! of Uy,, onto Uy. In terms of local coordinate
(U, ¥r=(%Y)), for 1<v<im, 1<q<#, HETy and LETY,.

0
6z§+L

K+H

(Xf)zvﬂ = § Xk and (®5)N+1 = i'zx ‘qu

where ‘X,= 31X,x t¥ (IK|=1i]) and ‘O,= 3 '@y t* (IK|=li|+1) and

K+H,K+LeTyy,. If Hand L are in T'y,,—T'y, then both H and L contain
N+1 and hence all K in the above sums are in I'y. Therefore the coefficients
of (X¥)y4, and (®f)y4, are functions of zy&Uy. Thus 9 is a regular differ-
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ential system on M.

Theorem 5.5. Let D be a super differential system on a super manifold M
and M a regular submanifold of the underlying non-super regular manifold of M.
Then if M is an integral submanifold of the associated regular differential system
D, M is a super submanifold of M.

Proof. Let o€ MCM and {X,, ---, X, ©,, -+, ©;} a local base of D on a
domain U containing o0 and (U, {»=(x", 6?)) a local coordinate such that (X,),=
(5%)0 and (6")":(5%;)0 for 1I<v<m,1<q<#%. We denote by  the projection
of R™* onto R™"defined by z: #*=x", #=0°(1<v<im, 1<q<#). We take U
so small that 7wy rs(X,,) (1<v<m) and 74 \r«(8,,) (1<g<#) are linearly inde-
pendent for each s U. Let =no+ro¢ a regular mapping of UNM into R™"
where ¢ denotes the inclusion of UNM into U. Then for each z& UN M, ¥y
is a R-linear isomorphism of Z,(M) onto Ty, (R™™). Thus it follows from
Theorem 3.4 that if we take U sufficiently small, then v is a regular diffeomor-
phism of UNM onto a domain ¥(UN M) of R™". Moreover we can show that
FxoJE=JH oy for HET [ and hence ¥~! is a super imbedding of J+(UN M)
into M whose image is UN M and hence M is a super submanifold of M.

-

A super submanifold M of M is called an integral super submanifold of a
super differential system D on M if, for each x&M, T,(M) equals D,. Then
the following theorem is a straight consequence of Theorem 5.4, Theorem 5.3
and Theorem 5.5.

Theorem 5.6. Let D be an involutive super differential system on a super
manifold M and oM. Then there exists an integral super submanifold of D
through o.
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