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Introduction

This work is a continuation of a previous work [2] on super differential
calculus. We develop herein a foundation of super manifolds according to the
same principle used in [2], That is, we describe the concepts on a super manifold
in terms of the non-super differential calculus on the underlying manifold of a
super manifolds. Thus, we treat a super manifold as a non-super infinite-
dimensional manifold with an additional geometric structure. A model of our
argument is a study of complex manifolds in which a complex manifold is treated
as a real manifold with a complex structure. In section 1 we give some pre-
liminary arguments of a non-super differential calculus on some kind of infinite-
dimensional Euclidean space and some algebraic preparations on super vector
spaces. Also we review the super differential calculus studied in [2] and give a
new version of the Cauchy-Riemann equations, which is more practical than the
previous one in [2]. Section 2 deals with the definitions of a super manifold
and its underlying non-super manifold. In seciton 3 we discuss tangent vectors
and show how a super manifold can be regarded as a non-super infintie-dimen-
sional manifold with a geometric structure, called an almost suepr structure.
In section 4 we study super vector fields and define a local one-parameter group
of local transformations for an even super vector field. In section 5 we prove
one of the main theorem in this note, the super version of Frobenius' theorem,
which will serve as a basic theorem for the study of super manifolds and super
Lie groups.

The author would like to thank his friend Professor T. Ochiai who en-
couraged him constantly during this work.

1. Preliminary

1.1. Affine bundles

Let Rn denote the space of all w-column real vectors y—(y*) (yv^R,
\<v<ri). When Rn is regarded as an affine space in a natural way, it is some-
times denoted by A". An affine mapping φ of Rn into Rm is given by φ( y) =
Ay+b(y<=R") where A=(a*} is a real (m, ra)-matrix and b=(bμ)^Rm(l<v<n,
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). The Lie group of all affine transformations of R* is denoted by
A(ri), which is given by

A vector field v on Rn is said to be affine if v is written as follows: v= Σ ( Σ
' V=l |*=1

diH^H-i*) —7- A smooth fibre bundle ^4 over a base space 5 is called an affine

bundle if the standard fibre is a real affine space An and the transition functions

are ^4(n)-valued. That is, there exists a family i(UΛ, fΛ,gΛβ)} of local trivializa-
tions satisfying the following 1)~3).

1) {UΛ} is an open covering of B.
2) fΛ is a smooth mapping of UΛ=π~\UΛ) onto An such that the mapping

π xf* of UΛ onto ί/w X ̂ ln is a diίFeomorphism and the following diagram is com-
mutative.

the 1st projection

where π denotes the projection of A onto B.
3) The transition function gΛβ is a smooth mapping of UΛ (Ί t/β into A(n)

such thatfΛX=gΛβ(x)°fβX on the fibre Ax=π~\x) for #e UΛΓ\ Uβ where fΛX is the
restriction of fΛ to the fibre Ax=π~l(x).

Then each fibre Ax=π~\x) can be regarded as an affine space. Let (-ψ ,̂ UΛ)

be a local coordinate system of the manifold B. Then <^e6=(^ΛyfIΛ) is a local
coordinate on π~l(UΛ)dA, which is called an affine local coordinate on π~\UΛ)c:A.
Let A and A be affine bundles over B and .β, respectively. A smooth bundle

mapping φ of A into ^4 is said to be affine if the restriction φ \ Aχ of φ to each

fibr eAx (x^B) is an affine mapping of Ax into (̂«) where φ is the correspond-
ing mapping of B into B.

1.2. Non-super differential calculus
Let {EN}N^0 be a family of finite dimensional real vector spaces and px*1 a

linear mapping of EN+1 onto EN. Such a family will be called a protective family

of finite dimensional real vector spaces. Then the projective limit E=lim EN is

naturally defined as follows: E= {(^)e Π #*: ίiv+1(^+ι)^^(ΛΓ>0)} . The
JV^O

natural projection of E onto E1^ will be denoted by pN. For z^E, pN(z)^EN

will be denoted by ZN. Considering the natural topology on a finite dimensional

vector space, the projective limit E has a Frόchet space topology so that the
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projection^ of E onto EN is continuous and open for each N>0. For N=09

E0 andpQ and Z0=p0(z) (z^E) will be denoted by EB andpB and zBy respectively.
A subset U of E will be called a domain in E if UB=pB(U) is an open subset of

EB and U=pϊl(UB).
Let 5=lim EN be the projective limit of another projective family of finite

dimensional real vector spaces and pN the natural projection of E onto EN. Let
U be a domain of E. A real-valued function / defined on U is said to be admis-
sible on U if there exist some integer N and a real-valued C°° function £ on £/#
such that f=gopN on [/. A mapping φ of U into 5 is said to be admissible if

PN°φ is admissible on U for each N>0. A mapping φ of U into -S is said to
be projectable if for each j?V>0 there exists a C°°-mapping £># on £/# into EN such

that <PN°PN=PN°<P on ^ In this case φN is called the JV-£λ projection of 9?.
Thus a projectable mapping is admissible. A mapping φ of U into E is said
to be regular if φ is projectable and for each N>0 the following diagram is an

affine bundle mapping:

where UN+l and EN+1 are regarded as trivial affine bundles over base spaces UN

and EN9 respectively. That is, for each zNG UN, φN+ί is an affine mapping of an

affine subspace (pN+1)~1(%N)(c: UN+1c:EN+1) into an affine subspace (PN+I)~\<PN
(zN))(c:EN+l). If a one-to-one mapping φ of a domain UdE onto a domain
OdE is projectable (regular) and the inverse mapping of φ is also projectable
(regular), the φ is called a projectable (regular] dίffeomorphίsm of U onto U.

Let φ be a projectable mapping of a domain t/dE1 into E. For each #e Ϊ7,

the Jacobi matrix £φ(z) of φ at # is defined as follows: £φ(z)h= - φ(z+tfi)t=Q
dt

(h^E). Then the Jacobi matrix £φ(z) is a projectable linear mapping of E into
E. Moreover the N-th projection of £φ(z) is the ordinary Jacobi matrix JφN of
the N-th projection φN of φ: That is, as a linear mapping of EN into 1?#,

and

1.3. Super differential calculus

We review the super differential calculus developed in [2] and add some
new results. Let {ξN: N>1} be a set of countably infinite distinct letters. AN

denotes the Grassmann algebra of the vector space generated by {f1, ζ2, •••, ζN}
over the real number field R where for ΛtO, A0=R. The family {ΛN: N>0}
and the natural projection of Λ#+1 onto ΛN form a projective family, which defines
the projective limit Λ, called the super number algebra. Λ can be identified with
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the algebra of all formal series of the following form:

where Γ={K=(kl9 -,kk): 1<^< <^}, xκ^R and f*=f*ι. f**(e*=le=Λ).
The natural projection /)# of Λ onto AN maps the above #GΞΛ to the following

where TN={K=(klί •••,&/,): 1<^< <AA<^V}. For each .£=(&!, — ,
the />0nty I ϋ: I of K is defined by | K \ =h mod 2eZ2= {[0], [1]} . For p<=Z2>
Tp and Λj are defined as follows:

Γp={KtΞΓ:\K\=p}

* = Σ % ?*, arjr^lZ} .

If a super number # is in Λ^, then the parity |#| of # is, by definition,

If |#| =[0] ([!]), then # is said to be even (odd). The swper Euclidean space ΛOT|n

of dimension (m\n) is the product space (Λ[0])ιnX(Λ[1])Λ where there are m copies

of Λ[0] and n copies of Λ^]. The projection/)^ of Λ onto Λ# induces the projec-

tion of Rm}n onto K$n which is, by definition, the product space ((Λ[0])^ )m X

((^ίύ)N)n where (Ap)N=pN(Ap) (/> eZ2). The space R$n is called the N-th
skeleton of the super Euclidean space Rmln. The super Euclidean space Rm*n is
identified with the projective limit of the projective family {R™\n: Λ^>0} of finite
dimensional real vector spaces. Thus Rmln is a Frόchet space and the projection
pN of Rm}n onto RW is continuous and open for N>0. The 0-th skeleton, Rm,
is called the body of Rmln. The projection of /2m|n onto the z-th component Λ^
(/)=[0] ([!]) if \<i<m (m+l<z<m+w), respectively) will be denoted by #'* for

l<i<m-}-n. For \<ί<m (m-{-\<ί<m-{-ri), sometimes z* will be denoted by
xμ (θp), respectively where l<μ<m and l<p<n. Thus as usual, each
can be written as follows:

The parity \i\ of the coordinate index i is defined as follows: U'|=[0] ([!]) if

\<ί<m (m+l<i<m+n). On the JV-th skeleton R™1" of Rmln we consider the
following natural coordinate system {z*K : 1 < i<m+n, K e TNί \K\ = \i\}. For

each %=(%') &Rm]n, the component z* can be written as follows:

ir ?* where />= | i | .

Thus arjV=(arir)eΛ3J111 has the coordinate {zί\ \<i<m-\-n, K(ΞΓN, \K\ = \i\}.



SUPER MANIFOLDS 913

Formally {z*K: l<i<m+n, K^Γ, \K\ = \i\} can be regarded as a natural co-
ordinate system of 7Zw|n. Since the super Euclidean space ΛW | Λ is a projective
limit of {R%ln: Λ^>0}, we have the differential calculus as developed in the
previous section. This differential calculus on Rmln will be called the non-super
differential calculus on Rm{n.

Here we give a revised version of Cauchy-Riemann equations of a super
smooth function. We shall follow the definitions in [2]. Let K and L be ele-
ments in Γ such that KΓ\L=φ. Then K\/L denotes the element in Γ such
that the set of entries of K VL is the union of K and L. Then for K,L&T, we
define €(K, L) as follows: If KΠLΦφ, then €(K, L)=0. If KΠL=φ, then
6(K,L)=±1 is defined by ζ*ζL=€(K,L)ζ*yL. For l^i^m+n and Kt=Γ

with Iί I = I j f i Γ | , —7- is defined as in [2]. For K,L^T, we define —:— as fol-
ι U%JΓ U/SjfΛ. Tlows: *

if
r \ O r
Λ . jf

Then we have the following revised Cauchy-Riemann equations.

Theorem 1.1. Let f be a K-valued projectable function defined on a domain
U in Rm{n. Then the following conditions 1)~5) are equivalent.

1) /(*): Glon U.
2) /(#) satisfies the following equations on U:

9

801' v 7 '
3) f(z) satisfies the following equations on U :

: \i\ = \K\, \H(=[0\).

4) f ( z ) : super smooth on U.
5) /(#) can be written as follows :

f(*,θ) = ΣφpW ^p (P= (A, -,Λ):

P(Λ?) w the Z-expansion of a ^.-valued smooth function φP(i) on ίe UBdRm

Proof. The conditions 1), 2), 4) and 5) are equivalent as shown in [2].
First we show that 1) implies 3). As shown in [2], if f(z) is G1 on [7, then it
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satisfies the following on U:

If KΓl tf Φ φ, then ζκ ξff=Q. Thus 3) holds if KΓ( #Φ φ. Suppose KΠH=φ.

r\

ζH = — -f(%)'ζH Now we show that 3) implies 2). Clearly 3) implies the first
dzk

equations of 2). By a straight calculation, we can show that 3) implies the

following equations.

for l<jy \<p<ny L, H(=Γ: \L\ = \H\=[ΐ\. This holds for each j>\.

Therefore the second equations of 2) hold.

We shall call the equations of 3) in the above theorem the Cauchy-Riemann

equations of a super smooth function.

Theorem 1.2. If /(#) is a super smooth function on a domain U in Rm\n,

then f(%) is a regular mapping of U into Λ in the sense of the non-super differential

calculus.

Proof. By a straight calculation, we obtain the following:

m + n / Q \

/*+ι(**+ι) =/W**+(**+ι—#*)) =/N+I(XN)+ Σ (f-Q^J^NΪ ^i-*")

This shows that f ( z ) is regular in the sense of the non-super differential calculus.

1.4. Super vector spaces
The notion of super vector space is given in [1], which also develops the

linear algebra over super vector spaces. Here we restrict ourselves to the real

case. For details, see [1]. A two-sided Λ-module S is called a 2Γ2-graded Λ-

module if S has two subspaces Siβ and Siβ such that S=*S'[0]+5[1] (direct sum)

and λp SqC.Sp+q and Sp Aqc:Sp+q for p9 q^Z2. If an element x of S is in 5[0]

or 5Q], then x is said to be homogeneous. And if #EΞ*S[0] (S ]̂), then x is said to

be even (odd) and the parity \x\ of Λ: is, by definition, [0] ([!]). A ^-graded

Λ-module S is called a super vector space if ax=(— \)ax xa for any homogeneous

elements #eΛ and x^S where a and x in (— l)β* denote their parities \a\ and

\x\. A finite set {u19 •••,«*} of vectors in S is called a base of S if each element

in S is written uniquely as a linear combination of {uly •••,%}. Then k is called
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the total dimension of the super vector space S. If each vector in a base of S is
homogeneous then the base is called a homogeneous base. If {uly •• ,um,v1, •••, vm}

and {#!, •• ,Uύ,v1, •••, #«} are homogeneous bases of S such that ui9 2Z? are even
and Vjy V] are odd, then we have that m=m and w=w. The pair (m\n) is called
the dimension of the super vector space S. If a super vector space S has a base,
then S has a homogeneous base. Let 5 be a finite dimensional super vector
space and {%, •••, uk} a base of S. We define an equivalence relation, 7ry on S

as follows: Let x= Σ «/# and y= Σ ^»'.y where '#, (yeΛ. Then ΛJ^ 3; if and
only if ('#)#—(tv^^A^ f°r ea°h *• This definition is independent of a choice
of a base of S. Then the N-th skeleton SN of S is, by definition, the quotient
space SN=S/R of S by the relation ;# Then SN is a ^2-graded Λ^-module and
{Ŝ } forms in a natural way a projective family of finite dimensional real vector
spaces whose projective limit is S.

Lemma 1.3. Let S be a finite dimensional super vector space and {ult •••, up}
a set of super vectors of S. If {(u^}Bί ••-, (u^B} is linearly independent over R,
then there exist vectors {vly •••, vq} in S such that {uly " 9up>vly •••, vq} forms a
base of S where dim S=p-{-q.

Proof. Let A be a (p+q,p)-matrix whose components are in Λ. Then
if rank AB—py there exists an invertible (/>+^-matrix P such that A=P

ί J where E denotes the identity p-matrix. In fact three exists a real invertible
/ F\

(£+g)-matrix Q such that AB=Q l * ). Let P=Q+(A—AB, 0) where 0 de-

notes the (p+q, #)-zero matrix. Then P has the desired property. The above
lemma follows from this assertion.

A subset S of a super vector space S is called a super subspace of S if S is a Z2-
graded Λ-submodule of S. Let S be a finite dimentional super vector space.
A super subspace S is said to be normal if there exists a base {uly •• yuk} of
S such that {u^ •••, u%} (k<k) is a base of S. Then a normal super subspace S
is a finite dimensional super vector space itself and if dim S=(m\n) and dim
S—(m\n) and {uly •••, u^, vl9 •••, vt} a homogeneous base of S, then there exist
vectors w^-n, •••, um, Vή+ι, •••, vn^S such that {wx, •••, ww, vl9 •••, z;n} forms a
homogeneous base of S. This follows from Lemma 1.3.

Lemma 1.4. Let S be a finite dimensional super vector space and S a normal
super subspace of S. If a vector x in S satisfies that xS is in S for each 5SΛQ],
then x is in S.

Proof. Let {ul9 •••, u%} be a base of S such that {u^ •••, u%} (%<k) is a base

of S. Let #^Σ #,-*£ where {c is in Λ. Then xβ=Σ w, (fV6)eS for each βeΛcj.
Thus V6=0 for 6eΛCl] and k<ί<k. Therefore ^=0 for %<i<k and hence Λ?



916 K. YAGI

is in S.

Let S and S be super vector spaces and Φ a mapping of S into S whose image
of x^S is denoted by Φ(#)eS. Then Φ is called a super linear mapping of S
into S if Φ(x+y)=Φ(x)+Φ(y) and Φ(xa)=Φ(x)a for x, y^S and αeΛ. Let
Φ be a super linear mapping of S into S. The parity \Φ\ of a super linear
mapping Φ is defined in a natural way, which is characterized by |Φ(s)| =
|Φ| \z\ (zeaS). Let S and S be finite dimensional super vector spaces and Φ
an even super linear mapping of S into S. Then if the rank of ΦB is equal to
dim 5, the image Φ(S) of S by Φ is a normal super subspace of S. This follows
from Lemma 1.3.

EXAMPLE 1.1. Let w | i lA be a set of all m+n column vectors #—('#) whose
components are super numbers. For an odd super number SeA^], the scalar
multiplications 82 and zβ are defined as follows:

€('*) = ((-!)'€'*)

C*)e = ('*?)
where i in (—1)' denotes the parity \ί\ of the coordinate index. The addition
and the scalar multiplication by an even super number are defined as usual.
Let BI be the column vector whose i-th component is 1 and others are 0. Then
each #=( l*2f)em|llΛ can be written as #=Σ e{ '#. Thus {e{} is a homogeneous
base of w |nΛ and the dimension of W|IIA is (m\ri).

2. Manifolds

2.1. Non-super manifolds
Let E=lim EN be a projective limit of a projective family of a finite di-

mensional real vector spaces. A topological space M is called a projectable
(regular) manifold modeled after the projective limit E= lim EN if there is a local

coordinate system {(f/Λ, ψ»Λ)} such that 1) {t/J is an open covering of M, 2) tyΛ

is a homeomorphism of ί7ΛcM onto a domain <\]rΛ(UΛ)c:E and 3) ^oψβ1 is a
projectable (regular) diffeomorphism of a domain ψβ(UΛΓ\ Uβ) onto a domain tyΛ

(UΛ (Ί f/β) in £. On a projectable manifold Λf, we define an equivalence relation,
7Γ, as follows: If x and jy in M are in a coordinate neighbourhood U with a local

coordinate ψ such that -ψ*(x)N

=Ψ>(y)N m ^V> then tf^y. Then this relation is
an equivalence relation on M. The quotient space M/N is denoted by MN9 called

the N-th skeleton of M. The projection of M onto M# will be denoted by pN.
For N=0, MQ and />0 will be denoted by MB and />β, respectively. The local
coordinate system {(UΛ, ψΛ)} of M induces a local coordinate system {(UΛN, ψΛN)}
of MNy which makes MN an ordinary smooth manifold of dimension dim EN

where ί7a>jV=^)jV(Z7rt)cMjV and ψΛN is the induced one-to-one mapping of UΛN
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onto ψ'etN(UΛN)=('ψt

aύ(U06))Nc:EN. Then M can be regarded as the projective
limit lim MN of the family {MN} of finite dimensional smooth manifolds. A

subset U of M will be called a domain if UB=pB(U) is a connected open subset

of MB and U—pB\UB). A domain of M can be regarded as a projectable

manifold modeled after E=lim EN itself. If M is a projectable manifold then M

is a fibre bundle over a base space MB and M# is a smooth fibre bundle over MB.
Moreover if M is a regular manifold then in a natural way MN+1 is an affine

bundle over a base space MN for N>0.

Let Λf be a projectable (regular) manifold modeled after E=\im EN and

ϊ^ίim EN a subspace of £ where EN is a vector subspace of EN for N>0.

Then a subset M of M is called a projectable (regular) submanίfold of M model-
ed after 5=lim EN if for each point o^M there exists a local projectable (regular)

coordinate (C7, ψ) of M such that o<Ξ [7, ψ (o)=0 and M Π Z7={#e J7: -ψ (#)e£}.
Let / be a real valued function on M. Then / is said to be admissible if

/o-ijr"1 is an admissible function on a domain ψ(U) in E for each local coordinate
(U y i/r) of M. We denote the algebra of all germs of admissible functions at z in

M by Jl(z). Let M and M be projectable manifolds and φ a mapping of M into

M. Then 9? is said to be projectable if for each ΛΓ>0 there exists a smooth

mapping φN of Λ/JV into MN such that <pN0pN—pN°φ on M# where J5# denotes
the projection of M onto M .̂ The mapping φN is called the N-th projection of
9?. Let M and M be regular manifolds and φ a projectable mapping of M into

M. Then <p is said to be regular if the ΛΓ+l-th projection #>#+! of M#+1 into
MN+1 is an affine bundle homomorphism over a base mapping φN of M# into MN

for each ΛΓ>0.

2.2. Super manifolds
A topological space M is called a itt^ir manifold of dimension (w | n) if there

exists a local coordinate system {(Z7Λ, ψβ)} such that 1) {t/J is an open covering
of M, 2) -ψ>β is a homeomorphism of UΛdM onto a domain -v/rα>(J7α})c/2m|n and

3) •ψ rfO'ψ'β1 is a super diίfeomorphism of a domain ^β(UΛΓ\ t/p) onto a domain

'ΨrtC^Π ί/β) in .I?*1*. It follows from Theorem 1.2 that a super manifold of
dimension (m\ri) can be regarded as a regular manifold modeled after Rm\n=lim

jβ$|n. This regular manifold is called the underlying non-super manifold of the
super manifold M. Then a domain of a super manifold is a super manifold

itself. A Λ-valued function / on a super manfiold M is said to be super smooth
if/oψ"1 is a super smooth function on a domain Λ/r([7)cΛm|Λ for each local co-
ordinate (U, τ|r) of M. We denote by O(z) the set of all germs of super smooth

functions at z in M. In a natural way O(z) is a super vector space. That is,

f^O(z) is even (odd) if the value of / is in Λ[0] (A^), respectively. <Λ(z\ A)
denotes the set of all germs of Λ-valued admissible functions at z in M, which

is a super vector space containing O(z) as a super subspace.



918 K. YAGI

Let M(M) be a super manifold of dimension (m\n) ((w|w)), respectively and
φ a mapping of M into M. Then φ is said to be super smooth if ^o^oψ-1 is a
super smooth mapping of a domain Λjrot(UΛ)c:Rmln into Λw | n where (C/Λ, -ψ )̂ is a
local coordinate of M and (f/λ, ^λ) is a local coordinate of M such that φ(UΛ)c:
Uλ. A super smooth mapping 93 is regular on the underlying non-super manifold
and particularly φ induces a smooth mapping φN of the N-th skeleton MN into
MN, the Λf-th projection of φ. Let (C7, ι|r) be a local coordinate of a super
manifold M. We denote z'oψ* simply by #'. Then ψ»— {##: 1 < / < m-\-ny K^Γ,
I i 1 — I K \ } is a local coordinate of the underlying non-super manifold of M where
%'= 2 sjf f*. Let M be a super manifold of dimension (m\n). A subset M of

.KeΓ

ΛΓ is called a tf/βir submanifold of M of dimension (m|ή) if for each o£ΞM there
exists a local coordinate (J7, i/r) around 0 in M such that -v/r=(s:i)=(^il, 0*) and

ψ>(o)=0and ^ΠM-:{^ei7:^+1- ..-^-(95i+1-- --r-0}. Then M itself
is a super manifold in a natural way.

For £>0, /εcΛ110 is defined by /,= {re/?1'0: \τB\<6}. A super smooth
mapping of 7e into a super manifold M is called an even super curve on M. By
Z-expansion, a non-super curve c(t) on a super manifold M( \ t \ <£) defines
uniquely an even super curve £(τ) on M(τEΞ/ε) such that £(£)—£(£) for |ί|<6.
Conversely each even super curve on M can be obtained from a non-super curve
in such a way.

3. Tangent spaces

3.1. Non-super tangent spaces
Let M be a projectable manifold modeled after £=lim EN. For each ZEΞM,

TZN(MN) denotes the tangent space of the manifold MN at ZN. Then the pro-
jection px*1 of MN+l onto MN induces the differential (pN+1)* of TzN+ι(MN+l)
onto TzN(MN) and {TZN(MN)} is a projective family of finite dimensional real
vector spaces. The projective limit of this projective family will be denoted by
2j(M), called the tangent space at z^M of the projectable manifold M. Then
3Z(M) is the vector space of all derivations of the algebra <Jl(z).

Let M and M be projectable manifolds and φ a projectable mapping of M
into M. Then a projectable linear mapping φ% of 3Z(M) into 2^)(M), called
the differential of φ at z€ΞM, is defined in a natural way so that (<PN)*°(PN)* —
(&*W* on 22(M) for N>0.

Let c(i) be a curve on a projectable manifold M. Then as usual we can
define a tangent vector c(ί)e2c(/)(M), called the tangent vector of a curve c(t) at
£, so that (c(t))N=cN(t) in TCjyQ)(MN) where cN(t)=(c(t))N is the Λ^-ίA projection
of the curve c(t).

We shall prove the following theorem of the inverse mapping.

Theorem 3.1. Let M and M be regular manifolds and φ a regular mapping
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of M into M such that the differential φ* of φ at each z^M is an isomorphism of
3Z(M) onto 3φω(M). Then for each z^M there exists a domain UdM con-
taining z such that φ is a regular diffeomorphism of U onto φ(U).

Proof. In order to prove the theorem, we condider the case only locally.
Let U be a domain in E containing 0 and φ a regular mapping of U into E whose
Jacobi matrix efφ(z) is a projectable linear isomorphism of E onto E for each
zGΞU. Then we have to prove that there exists a domain V of E containing 0
such that φ is a regular diffeomorphism of V onto a domain φ(V) in E. Now
the Jacobi matrix of each ΛΓ-th projection φN is invertible at each point in U since
the Jacobi matrix of φ is invertible. Therefore by the ordinary inverse mapping
theorem there exists an open set VB containing 0 in EB such that φB is a dif-
eomorphism of VB onto an poen set φB(VB) in EB. We define a domain V in E
by V=p~\VB) and an open set VN in EN by VN=pN(V) (N>ty. By induction
we shall prove that φN is a diffiomorphism of VN onto φN(VN). Now suppose
that this holds at N. Since the mapping φN+ί is an affine bundle homomorphism
over the base space mapping φN of VN into EN, φN+1 is an affine mapping on
each fibre (pN*1)"1^^ which is, by assumption, invertible for each zN^VN.
Therefore φN+l is a diffeomorphism of VN+l onto <px+1(VN+1). And hence φ is
a regular diffeomorphism of V onto φ(V).

Let M and M be regular manifolds and φ a regular mapping of M into M
such that the differential φ% of φ at each z EΞ M is an isomorphism of 3Z(M) into
3φω(M). Then for each z^M there exists a domain UdM containing z such
that φ is a regular diffeomorphism of U onto a regular submanifold φ(U) of M.

3.2. Super tangent spaces
Let M be a super manifold of dimension (m \ n) and z a point in M. A map-

ping v of O(z) into Λ is called a super tangent vector at z if v satisfies the following
conditions where f v denotes the image of f^0(z) by v. For each/,
and

2) (af) v = a(f.v)

3) (/*)•* =/(*) (*•«)+(- !)"*(*

where/, £ in (—I/* of 3) denote the parities of/, £. We denote by TZ(M) the
set of super tangent vectors at #cM, called the super tangent space of M at
z^M. The parity \v\ of a super tangent vector ϋ is defined by | /• v \ = | / 1 | v \
foτf^O(z) and v^Tz(M). Then the super tangent space TZ(M) of M at z^M
is a super vector space in a natural way. Let (Z7, ^=(#0) ^e a ^oca^ coordinate

around z^M. Then as in an ordinary way a tangent vector ( — Γ ) e TZ(M) is
\ 9#* / *
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defined :/ (-^) =(foψ~1) ί_r_jψω for f^O(z) where the right hand side is
\ dzl /« V dz* ' +_

defined in a super differential calculus [2]. Then the parity of ί-r-y) is the
parity \i\ of the coordinate index i.

Theorem 3.2. The super tangent space Tt(M) is a super vector space of di-

mension (m\ri). Moreover {( — A} forms a homogeneous base of TZ(M) and for
<_ \ dz1 J

each v<= Tβ(M), v= Σ (~\ {v where iv=zi v (l<i<m+n).
\ oz* '*

Proof. Applying the following lemma the theorem will be obtained as usual.

Lemma 3.3. Let f be a super smooth function on a domain U of Rm}n con-
taining 0. Then there exist super smooth functions F^- on U such that for each z&U

Proof. By Theorem 1.1, f ( z ) can be written as follows:

/(*) = Σ ΦP(X) θp where z = (x9 θ) .
P

By the ordinary differential calculus, each φP(t) (t^ UB) can be written as follows:

φp(t) = '

for some smooth functions φpμ.v(t)
Therefore we have

= Σ

For P=φ, «2>Ψ(0)=/(0) and ̂ ψ A- (0) = /A- (0) .

*-

AndforP=(j>),^(0)=/A(0). Thus

Σ/

Σ φr
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where in the last term the sum, Σ', is taken over {-?=(/>!,•••,/>*):
This completes the proof of the lemma.

For />eZ2, the subspace TZ(M)P of TZ(M) is defined by Tz(M)p={v&Tz(M):
I v I — p} Since the super tangent space TZ(M) is a super vector space with a
finite dimension, the JV-th skeleton TZ(M)N is well-defined.

Let Λf and M be super manifolds and φ a super smooth mapping of M. into
Λf. Then the super differential φ* of φ is defined as usual: For each #eM,
99* is a mapping of ΓZ(M) into T9^(S) defined by f (φ*v)=(foφ) v for/e(9

(φ(z)) and ϋeTΛ(M). Then φ* is an even super linear mapping of TZ(M) into

Tφ(z)(M): That is, 9?ίj:(w+z>)—9?ίjc
w+9>#ί; an<l φ*(va)—(φ*v)a and l^*^!1^ 1^1

for w, ^^^(M) and αeΛ. In terms of local coordinates, the super differential

can be expressed as follows:

9 \ = Σ Λ A \ L^-i-^

Λvhere (#') is a local coordinate around s and (z;) is a local coordinate around φ(z)
and φ'—z'oφ. Since 9?* is a super linear mapping, we have the ΛΓ-th projection,

(<P*)N> °f 9?* which is a mapping of TZ(M)N into Tφ(^(M)N. In particular, the
0-th projection is called the body of 9 ,̂ denoted by (<p*)B> which is a Λ-linear
mapping of TZ(M)B into TVc^Λf)^ where

Let 7(τ) be an even super curve on M(τe/β). Then the super tangent vector
«-

γ(τ) e ΓYCT)(M) of <y(τ) is defined as usual : For/e 0(γ(τ)),/ γ(τ)=(
- αT

In other words, 7(^=7 *[ - ) . Thus γ(τ) is an even super tangent vector.
\ dr I*

In terms of local coordinates, TZ(M) can be indentified with the super vector
space W | ΛΛ. Then the super differential φ* is a super linear mapping defined by
the super Jacobi matrix Jφ(z) and the body (φ*)B of φ* is a linear mapping

defined by the body (Jφ(%))B of the matrix Jφ(z).
Now we obtain the following theorem by the inverse mapping theorem in a

super differential calculus [2],

Theorem 3.4. Let φ be a super smooth mapping of a super manifold M into
a super manifold M such that the super differential φ* of φ at a point zGΞM is a
linear isomorphism of TZ(M) onto Tφ<iz)(M). Then there exists a domain U of M
containing the point z such that φ is a super diffeomorphism of U onto a domain
φ(U)ofM.



922 K. YAGI

3.3. Almost super structures

Let M be a super manifold of dimension (m\ n) and (U9 ψ =(%*)) a local co-

ordinate of M. Then {( — Γ ) } is a base of the super vector space TZ(M) and
\ 9#* / *

the even subspace Γ,(M)[0] of TZ(M) is given by

The local coordinate ̂ =(zi) of M gives a local coordinate ψ=(##) of the under-

lying non-super manifold of M. That is, ψN= (#Jv)— (%κ) is a local coordinate
of MN where J£eΓV and | K | = | i \ . Therefore the tangent space 3Z(M) of the
underlying non-super manifold of M is given by

= \i\} .

Then the following correspondence of TΛ(M)\& to 3(M) gives an jR-isomor-
phism.

where '«;= Σ '% £* (1^1 — UΊ) By a straight computation we see that the

above correspondence is independent of the choice of local coordinate. Moreover

we have that f v=ϋ f for v e TΛ(M)\& and /e O(z) C <Jί(,s Λ). In fact this fol-
lows from the Cauchy-Riemann equations of a super smooth function. Let M
and M be super manifolds and φ a super smooth mapping of M into M. Then

the following diagram is commutative.

For each ΛΓeΓco], we define a linear endomorphism JH of 3Z(M) by JH ϋ=(ζff v)
for each v^Tt(M)^ \. We call the family {Jff: H^T^j} of endomorphisms of
3g(M) the almost super structure on the underlying non-super manifold of a super

manifold M. In particular, we have JH (—r) = ( : ) for Jΰ"eΓ[0] and
^eΓwith \K\ = \i\. X9^Λ ^*K*/

We can prove the following theorem from the Cauchy-Riemann equations

of a super smooth function.

Theorem 3.5. Let M and M be super manifolds and φ a projectahle mapp-
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ing of M into M vϋ.r.t. the underlying non-super manifold structures. Then φ is
super smooth if and only if φ*°JH=Jff°φ* on the tangent space 3Z(M) for each

4. Vector fields

4.1. Vector fields on an affine bundle

Let A be an affine bundle over a base space B with projection π and the
standard fibre A". A vector field J? on A is said to be projectable if there exists
a vector field X on B such that π^(^y)=X^y ) for each y^A. A projectable

vector field X is said to be affine if (f*)*(%\Ax) *s an afBne vector field on A" for
each xEϊUΛ where %\AX denotes the vector field defined on the fibre Ax and
(UΛ,fΛίgΛβ) is a local trivialization of the affine bundle A over B. Let ΨΛ=

(Ψ(*— (χi)yf*— (y)) De a l°cal affine coordinate on π"\UΛ)dA where ψ Λ=(Λ:ί) is
a local coordinate on UΛdB and (y) is a natural coordinate of l̂*. Then a
vector field J? is affine if and only if J? is written as follows:

where A^(x)y b*(x) and c*(x) are smooth functions on U and dim B=m. An
affine vector field % in the above from is said to be parallel if <? and A]L vanish
identically for \<i<m and 1<>, μ<n.

Theorem 4.1. Let %. be an affine vector field on A and X=π*(%) the
vector field on JB. Let φt be a local one-parameter group of local transformations
generating X which is defined on \t\ <£ and an open set FcjB. Then there exists
a local one-parameter group $t of local transformations generating % which is
defined on \t\ <£ and V=π~\V) and each $t is an affine bundle mapping with the
base mapping φt for each \t\ <£.

Proof. Suppose that J? is written in the above from in terms of a local

affine coordinate ((#')> (y)) on π~\UΛ). Then the differential equation for
<j>t(x, y) is given as follows:

d : i/ \ (\<ί<m)
dt

Thus φt(x) is the solution of the first p equations with φQ(x)~x. Then we
consider the last q equations. That is,

--
at
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where y=(y*)9 Λ=(Al) and b=(V) (l<vy μ<n). Let F(ί, x) be a smooth

mapping into GL(n\ K) defined on 1 1 \ <£ and x^UΛ such that - Y(ty x)=A
at

(φt(x)) Y(t, x) and Y(0, x)=E. Since A(φt(x)) is smooth on 1 1 \ <£ and #<Ξ C7Λ,

the above Y(t, x) exists uniquely. Now let

Then $/(^,jy) is given by $,(#, j)=(φf(Λ?), •ψvC*,̂ ))- This completes the proof.

4.2. Non-super vector fields

Let M be a projectable (regular) manifold modeled after E"=lim EN. Then

the tangent bundle 3(Λf)= U 3JM) of M can be regarded as a projectable
*<ΞJf

(regular) manifold modeled after ExE=lim ENxEN in a natural way. That is,

when (C7, ψ) is a local coordinate of M, the differential ijr* induces a one-to-one

mapping of 3(17) onto UxE which gives a local coordinate of 3(Λf). In other

words, the tangent bundle 3(M) is the projective limit of the family {T(MN)} of

the tangent bundles of {MN} . A section v of the tangent bundle 3(M) over M

is called a projectable (regular) vector field on M if the section is a projectable

(regular) mapping of M into 3(M). That is, in terms of local coordinate (U, ι|r),

the mapping ar->ψ*(«;1)e3ψCf)(jB)=£ is a projectable (regular) mapping of U into

E. Then the JV-th projection VN of a projectable vector field v gives a vector

field on MN. As usual we denote by VB the 0-th projection of v, a vector field

on MB. Let u and u be projectable (regular) vector fields on M. Then the

vector field [u, v] is defined in a natural way, so that [uy v]N=[uNί VN] on MN.

Let v be a projectable vector field on a projectable manifold M. Then φt

is called a foαz/ one-parameter group of local transformation of M generating

the projectable vector field v if φt is defined on 1 1 \ <£ and a domain U of M

and satisfies the following conditions:

1) the mapping (— £, £)χ U^(t, z)-+φt(z)GM is projectable,

2) if [ / I , |ί|, |*+*|<£and*, φf(*)eC7, then

'**+.(*) = Φ*(Φ.W) .

3) for each z^U, vz is the tangent vector of the curve φt(z) at ί^O.

For a regular vector field we have the following theorem.

Theorem 4.2. Let M be a regular manifold modeled after £"=lim EN and

v a regular vector field on M. Let φf be a local one-parameter group of local

transformations generating the vector field VB on MB such that φf is defined on
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1 1 1 <£ and an open set UB of M. Then there exists a local one-parameter group
φt of local transformations generating the vector field v on M such that φt is
defined on \t\ <6 and the domain U=pB\UB) of M and the mapping (t> z)-*φt(z)

is a regular mapping.

Proof. This theorem follows immediately from Theorem 4.1.

As usual the bracket of vecor fields is given as follows.

Theorem 4.3. Let u be a regular vector field on a regular manifold M
and φt a local one-parameter group of local transformations generating the vector
field u. Then for each projective vector field v on M, we have

[u, v] = lim — (»— φ,*(*))
t+Q I

4.3. Super vector fields

Let M be a super manifold of dimension (m\n). Then the super tangent
bundle T(M)= U TZ(M) of M can be regarded as a super manifold of dimension

«eJf

(2m\2n) in a natural way. That is, when ([/, -ψ*) is a local coordinate of M, the
differential ψ^ induces a one-to-one mapping of T(U) onto UxRmlnc:R2ml2n

which gives a local coordinate of T(M). A section of the super tangent bundle
T(M) over M is called a super vector field on M if the section is a super smooth
mapping of M into T(M). Let X be a super vector field on M. Then for

#eM, we have Xz^ TZ(M) and for a super smooth function / on M, /• X is a
super smooth function on M where (f X) (z)=f Xz for z^M. A super vector
field -XΌn M is said to be even (odd) if Xx is an even (odd) tangent \ector at each

In terms of local coordinate ([/, ψι=(^<))> a super vector field X can be
o

written as follows: X~ Σ — 7*X where *X=zί X. A super Lie bracket of
»' OS*

vector fields X and Y on M is defined as follows: For a super smooth function
/ on M,/ μf, y]=(/ ;r) Y-(-\)xγ(f Y) X where X and Y in (-l)xγ de-
note the parities of X and Y. Then [X, Y] is a super vector field on M.

Let Jί be an even super vector field on M. Then by the correspondence of
TZ(M)[Q\ onto 3Z(M) at each #eM, -X" defines a non-super regular vector field
J? on the underlying non-super manifold of M. In terms of local coordinate, J?

is giver by J? = Σ Ή, -̂ - where 'JΓ= Σ *XK ζκ ( \i\ = I K \ ). Then for even
*'»•£ σ s^ -E ^ ----

super vector fields X and Y on M we have [J?, Ϋ]= — [X, Y].

Theorem 4.4. Let u be a non-super regular vector field on a super manifold
M and φt a local one-parameter group of local transformation generating the re-
gular vector field u which is defined on \t\<B and a domain C/cM. Then the
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following conditions are equivalent.

1) There exists an even super vector field X on M such that u=% on M.

2) [u, Jffv]=Jff[u, v] for each 7ϊeΓ[0] and each non-super projectάble vector

field v on M.

3) φt is a super smooth mapping of U into M for \ t \ <£.
o

Proof. Suppose that u is written locally as follows: u= Σ UK — r. Then
• *

let u{ ;= Σ UK ζκ. Then u=% for some even super vector field X if and only if

each u1 is super smooth. By a straight calculation, for | j\ = \K\ and \H \ =[0],

we have

under the identification of 3t(M) with T2(M)[0]. Thus the equivalence of 1)

and 2) follows from the Cauchy-Riemann equations of a super smooth function.

It follows from Theorem 4.3 and Theorem 3.5 that 3) implies 2). Conversely,

applying the usual procedure we can show that 2) implies 3).

Let X be an even super vector field on M and Jξ" the non-super regular

vector field corresponding to X and φt a local one-parameter group of local

transformations generating the non-super regular vector field J?on M such that

φt is defined on 1 1 \ <£ and a domain t/cM. Then for each 1 1 \ <£, the mapping

z-*φt(z) is super smooth by Theorem 4.4. On the other hand, for each #e [/,
the mapping t->φt(z) is a curve on M and, by Z-expansion, the curve defines an

even super curve, denoted by Φτ(#), defined on τe/8 so that φf(#)=Φf(s) for

1 1 1 <£ and z^U. Then Φτ satisfies the following conditions:

1) the mapping 78 X C/3 (T, #)->Φτ(#) eM is super smooth,

2) if T, σ and τ+σ^/e and #, Φσ(#)e C7, then

3) for each 2^U9 Xg is the super tangent vector of the even super curve

Φr(z) at τ=0.

Φτ is called the local even super one-parameter group of local super transformations

generating the even super vector field X. Therefore we have the following

theorem.

Theorem 4.5. Let X be an even super vector field on M. Let φf be a

local one-parameter group of local transformations generating the vector field J£B

on MB such that φf is defined on \t\ <£ and an open set UB of MB. Then there
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exists a local even super one-parameter group of local super transformations gen-
erating the even vector field X on M such that Φτ is defined on r €Ξ I9 and the
domain U—p^\UB) of M.

5. Frobenius' Theorem

5.1. Frobenius' Theorem on an affine bundle

A differential system D of dimension r on a smooth manifold M is a sub-
bundle of the tangent bundle T(M) of M with a local base around each point of
M. That is, for each x e M there exist vector fields Xly , Xr on a neighborhood
U of x which form a base of Dy for each y&U. D is said to be involutive if,
for any vector fields X and Y belonging to D, [X, Y] also belongs to Zλ

Let A be an affine bundle over B with standard fibre A* and projection
π. An involutive differential system D on A is said to be affine if D has a
local base {Xh Yk} where each X{ is an affine vector field and each Yk is a paral-
lel vector field such that {π^(Xi}} is linearly independent. Then an affine
differential system D on A induces an involutive differential system D on the
base space B so that π*(D)—D and {π*(Xi}} forms a local base for D.

Theorem 5.1. Let D be an affine differential system on an affine bundle A
over a base space B and D the induced involutive differential system on B. Let V
be an integral submanifold of D and δ a point in π~l(V)c:A. Then there exists
an integral submanifold V of D such that δ^Ϋ and Ϋ is an affine subbundle of
A I v over V zϋhere A \ v is the restriction of the affine bundle A to VdB.

Proof. This follows from the following.

Lemma 5.2. Let (x1, •••, xm) and (x1, •••, #m,y, •••,/*) be the natural
coordinates on Rm and Rm+n, respectively, and π the natural projection of Rm+* onto
Rm and U={x^Rm: \xi\<8} and U=π~\U). Let D (U) be an involutive
differential system on Rm(Rm+n}) respectively, such that π*(β<iXty))=Dx for each
(x,y)^Rm+n and dim D=a and dim D=a+b. Suppose that {#e U: χa+1=ca+1,
.-.,xm=cm} is an integral submanifold of D for each c—(c')^Rm~a with \cj\<£
(a+\<j <m) and that there exists a local base {X» •••, XΛ, Y19 •••, Yb} of ΰ on U

such that

lx,y Qy

where αj(*. y)= ΣMW*) /+*?(*) (1 <^«, 1 <v^n) and A} fa), b}(x) and βl(x)

are smooth functions on U.
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Then there exist smooth mappings φ(x) of U into GL(n\ R) and ξ(x) of U into
R* such that Φ: X=x9 y=φ(x) y+ξ(x) is a diffeomorphism of U and

is an integral submanifold of ΰ for each (c, d) e Rm~a X Rn~b with \ c{ \ <6 (a+ 1 <

Proof. When a function is written as the above a*(x, y), the function is
called an affine function along each fibre. The above expression of Xt and Yk

will be written as follows.

* 0
o 0

a(x,y) β(x)i .

Since the rank of the («, i)-matrix β(x) is ό, there exists a smooth mapping C(x)

of U into GL(n\ R) such that C(x) β(χ)=(Eb\ Define a diίfeomorphism Φ of

U by Φ: X—x, y—C(x)y. Then we have

o' J
(*,y)E>

g(x,y) 0

where each component off(x, y) a.nάg(x,y) is an affine function along each fibre.

Let (X, Ϋ)=(X, Y) ( E ' ° ). Then {X{, Ϋk} forms a local base of ΰ on

'£7. Let x=(x\ -, if), ίZ=(Λ«+1 ..-, xα), y=(y\ -, j») and β=(
Then we have

i ' Qu ' Qy' 80 / I 0 0
0 Eb

ig 0

where each component of g=goφ"1(xy u, y, V) is an affine function along each
fibre. That is,

_ n— 6 / Λ \ Λ
Since [Φ^̂  ), φ#(yΛ)]=:— 2] (— r-^Π - is a linear combination of
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Φ9lί(yjfe)}, it must vanish and hence g is a function of (X, u, 0). Therefore g is
written as follows:

gί(x, n, ϋ) = Σ? <?/.(*, «) vs+h'i(x, u)

where G\s and A,' are smooth functions of (X, u). Since [Φ*( JΓ*), Φ*(Xj)] is a

linear combination of I - } and also is a linear combination of {Φ#(-SΓ/)> Φ#( ̂ *)} >
1 80* J

it must vanish. Let G, be the square (n— i)-matrix whose (ty ί)-comρonent is

G\s and ω= Σ — G,(Λ,0) dx* a βϊ(w— ft;Λ)-valued 1-form on ί/ϊ=

where ίze/2w"β is regarded as a parameter. Then [
0 implies that dω+ωΛω=0 on ί/ί and hence there exists a smooth mapping G
of #e Z7? into GL(n—b\ K) with parameter U^Rm"β such that G~1dG=ω on C/j.

That is, A-G=-GG,. (l</<m-β) on U=i(x,u)t=Rm: \χ?\, |B^|<e>. We
oΛ*

define a diffeomorphism Ψ of U by Ψ: 5=Λ. δ=κ y=y, v=G(X, U)Φ. Then

where #= -

= (_d_ 9 _^ _9_\
V 95 ' 95 ' Q ' dv )

β 0 0 0
0 J .̂β 0 0
0 0
k * 0 G

where each component of Jt=k(x, u) is a smooth function of (#, u) e U. There-
fore there exists a smooth mapping φ(x, u) of U into GL(n\ JR) such that

) d Q

where Φ: X=x, n=u, y=y, V—φ(x, u)v and k=Ti(x, a). Then the components
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— —
of k satisfy the following: — rfy = — jk\ on U for 1 <*,/<#, \<t<n— a.

(JX OX

Therefore there exists a smooth function K*(x, ti) on C7 for l^t^q— a such that

36{=-A-ϋ:' on U for l<x'<tf. De
dx*

u=n, y=y> v=v—K(x, u). Then

6 { = - - ϋ : ' on U for l<x'<tf. Define a diίϊeomorphism Ψ of ί7 by Ψ: 5— *,
dx*

« 0

This completes the proof.

5.2. Non-super Frobenius* Theorem

Let M be a projectable manifold modeled after E= lim EN. A differential

system 3) on M can be defined as usual: That is, for each z^M, 3)z is a vector
subspace of 3Z(M). A differential system 3) on M is said to be projectable if for
each ΛΓ>0 there exists a smooth differential system D^ on MN such that (DN)ZN

=(pN}^(3)z)dTZN(MN) for each #eM. Let .2) be a projectable differential
system on M. A projectable vector field v on M is said to belong to 3) if vz^3)z

for each z€ΞM. 3) is said to be involutive if, for any projectable vector fields u
and v belonging to <D, [u, v] also belongs to 3). A set {X{\ ί>\} of projectable
vector fields on a domain UdM is called a local base of .2) over U if for each
ΛΓ>0 {(X{)N: \<i<dN} forms a local base of the differential system DN over an
open set UNc:MN and (Xi)N=Q (dN+l<ί) where dN denotes the dimension of
the differential system DN. Let M be a regular manifold modeled after jB=lim EN

and S) a projectable differential system on M and {X{: i>\} a local base of 3)
over a domain UdM. The local base {Jί,: />!} is said to be regular if each
Xi is a regular vector field on U and {(^)*+i: dN+l<i<dN+1} are parallel

vector fields on each fibre (pN+1)'\^N) where each fibre (/>^+1)~1(^) is regarded
as an affine space. If for each point z^M there exists a regular local base of 3)
over a domain U containing #, then .2) is said to be regular. Let M be a pro-

jectable submanifold of M. Then M is said to be an integral mbmanίfold of 3)
if 32(Λί) = ̂  for each z^M. The following theorem follows from Theorem

5.1.

Theorem 5.3. Let M be a regular manifold modeled after E= lim EN and

3) cm involutive regular differential system on M. Then for any point oGΞM,
there exists an integral regular submanifold of 3) through o.

5.3. Super Frobenius' Theorem

Let M be a super manifold of dimension (m\n). A super differential system
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D of (m|w)-dimension on M is a subbundle of T(M) satisfying the following
condition: for each z£:Mt there exist a domain U containing z and super vector
fields {Xly ••-, Xmy Θ!, •••, Θn} on U such that Xμ.(\<μ<nί) is even and

θp(l<>p<in) is odd and {Ĵ , •••, Xm, Θυ •••, Θn} forms a base of T*(M) at each
ss&U and {j?i, •••, Xm, Θ!, •••, Θ«} forms a base of Z), at each z^U. Then
{J?Ί, •••, Xmt Θ1? •••, θ»} is called a /oca/ fow0 of D on ί7. Thus each Dz is a
normal super vector subspace of the super vector space TZ(M). A super differ-
ential system D on M is said to be involutive if, for any super vector field X and
Y belonging to D, [X, Y] also belongs to D. A super differential system D on
M defines a differential system 3) on the non-super underlying manifold of M as

follows: For #eM, ̂  is a subspace of 3Z(M) corresponding to Dz[03> tne even

space of Dg, under the identification between Γ,(M)[0] and SZ(M). The differ-
ential system 3) on M is called the associated differential system with Z). Then
we can prove by Lemma 1.4 that D is involutive if and only if 3) is involutive.

Theorem 5.4. Let D be a super differential system on a super manifold M
and 3) the associated differential system. Then the differential system 3) is
regular in the sense of non-super differential calculus.

Proof. Let {X19 •••, X^ &19 ••-, θ«} be a local base of Z) on a domain
U. In terms of local coordinate (U, ψ= (#'))> ^v and θ^ are written as follows:

*v = Σ - '*», θf = Σ ' θ f

For lr<z;<m, \<q<n, #eΞΓ[θ] and LeΓCl], let X?=(Xζ*) and θ ί = ( θ .
Then {J?f , ©^} forms a local base for the associated differential system 3) on U:
That is,

{(*ίW ΦίW 1<^<^, !<?<«, H,L<=ΓN+l, \H\ = [0], |L| = [1]}

is a local base of DN+1=pN+1^(^)) on UN+1=pN+1(U). Among these vector
fields, each of

{(*?W, (βί)*+1: l<^<m, 1 ?̂<«, H, LeίΓ^-Γ^), \H\ = [0], |L| = [1]>

vanishes by the projection p"+l of CT^ onto ί/ .̂ In terms of local coordinate

(U, ψ=(**)), for l^v^w, l^ϊ^w, tf <ΞΓM and

and (Sf )v+i = Σ *®aκ —r-

where %,= Σ'^wf* (I*I = I'Ί) and 'θf= Σ'θfjrr* (1^1 = 1*1+1) and
£ £

K+H, K+L^ΓN+1. If ίί and L are in Γ^+1—ΓV, then both H and L contain
7V+1 and hence all K in the above sums are in ΓV Therefore the coefficients

of (%*)N+ι and (&q)N+ι are functions of ZNG. UN. Thus 3) is a regular differ-
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ential system on M.

Theorem 5.5. Let D be a super differential system on a super manifold M
and M a regular submanifold of the underlying non-super regular manifold of M.

Then if M is an integral submanifold of the associated regular differential system
3), M is a super submanifold of M.

Proof. Let oeMcM and {Xlt •••, X^, &ly •••, Θ }̂ a local base of D on a
domain U containing o and (C7, ψ=(xμ

y θp)) a local coordinate such that
«-

( — )
\OX ' o

<-
and (®q)o=(^Ί for 1 <v<m, \<q<n. We denote by π the projection

OX ' o __ \θθ ' o

of Rm\n onto /^defined by π: tf=x\ θq=θ\l<v<m, \<q<n). We take U
so small that π*ψ*(XVg) (l<Cϊ><w) and π*ψ*(&qz) (l<q<n) are linearly inde-

pendent for each z^U. Let φ=π^^c a regular mapping of Uf}M into JBm|n

where i denotes the inclusion of UftM into U. Then for each z& U{\M, φ^

is a J?-linear isomorphism of 3Z(M) onto £?ψ(2)(/2W|n). Thus it follows from
Theorem 3.4 that if we take U sufficiently small, then \p* is a regular diffeomor-

phism of UΠM onto a domain φ(Uΐ\M) of ΛW|n. Moreover we can show that
-fi*°JH=JH°'fi* for ίfeΓfo] and hence ψ4"1 is a super imbedding of γ(UΓ[M)
into M whose image is UΓ\M and hence M is a super submanifold of M.

A super submanifold M of M is called an integral super submanifold of a
super differential system D on M if, for each z^M, TZ(M) equals Dz. Then

the following theorem is a straight consequence of Theorem 5.4, Theorem 5.3
and Theorem 5.5.

Theorem 5.6. Let D be an involutive super differential system on a super
manifold M and o^M. Then there exists an integral super submanifold of D

through o.
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