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in“ in silico medicine”at Osaka University.

This thesis proposes a hardware-implemented technique to simulate electrical states of

cardiac tissues for investigating dynamics of the heart. This approach is taken in order

to obtain real-time simulations of the cardiac action potential propagation in numerical

cardiac cell model. Its main case of study is the development of the analog-digital hybrid

circuit model, which is able to represent real-time performance for large scale simulations

of cardiac tissue dynamics. The study shows that the hybrid model is expected to be a

useful option to modeling and computational techniques toward further understanding of

the reentrant mechanisms.
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Summary

Action potential of a cardiac cell membrane and its conduction in the cardiac tis-

sue provide a basis of the electrophysiological function of the heart through the cardiac

excitation-contraction coupling mechanism. Towards a better and a quantitative under-

standing of electrophysiological mechanisms of the reentrant cardiac arrhythmias at cellu-

lar, tissue, and organ levels, mathematical models of cardiac cells, tissues, and the heart

have been developed and analyzed by simulating conduction of action potentials in a va-

riety of conditions. However it is inevitable for those models to become large scale in the

number of dynamical variables, requiring immense amount of computational time for their

dynamic simulations. In this study, an analog-digital hybrid circuit model of electrical ex-

citation of a cardiac cell based on Luo-Rudy phase I (LR-I) model, a typical mathematical

model of a cardiac cell was developed. Through its hardware implementation, real-time

simulations of the cellular excitations as well as their propagation in a cardiac tissue model

have been performed with the hybrid circuit model.

This thesis is organized as follows. It is started with a general introduction in Chap-

ter 1. The research background is discussed in Chapter 2, where physiology of the heart

and the mechanism of electrical system which controls the cardiac contraction are elabo-

rated. These are then followed by explaining the basis of knowledge on electrical potentials

that exist across cell membranes and describing how they are modeled. Computational

techniques of mathematical modeling and hardware-implemented circuits that have been

developed over past few decades in understanding the dynamics of cells and excitation-

conduction are also reviewed especially in cardiac cell modeling.

Chapter 3 is focusing on the work presented in a single cell model, where a design

method of the analog-digital hybrid circuit cell is overviewed, followed by details of the

analog-digital hybrid active circuit. The design method of current-voltage (I-V ) relation-

ships between ion currents and the membrane potential reproduced by analog and digital

circuits is also explained. Furthermore, action potential of the hybrid circuit model is ini-

tiated by an external stimulus and the result is compared to the result of the LR-I model.

Action potential generation of the hybrid circuit model in response to periodic current

impulse trains with different interval (period) T are carried out and comparisons to the

result from the LR-I model are presented. Classification of excitation response patterns

on the parameter plane spanned by the period T and the intensity A of the impulse trains
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in the hybrid model and LR-I model are analyzed, and the results between the two models

are also compared. According to the simulations results, the action potential character-

istics of the hybrid cell model and the LR-I cell model are comparable as the hybrid cell

model generally well reproduces the I-V relationships of ion currents described in the LR-I

model, as well as the action potential waveform, and the excitation dynamics in response

to periodic current impulse trains with various intervals and intensity levels.

In Chapter 4, the work on investigating the spatio-temporal dynamics and control of

reentrant action potential conduction in active cable models is being reviewed. Manner

and underlying mechanisms in the initiation of the reentrant action potential conduction

in a one dimensional ring-topology-network of the hybrid active circuit cable model are

constructed as a model of anatomical reentrant tachycardia. Dynamics of the hybrid

active circuit cable model are then compared with those in the numerical simulation of

the LR-I cable model. Resetting and annihilation of the reentrant wave under the influence

of single and sequence of stimulations are investigated by using the hybrid cable model

and comparisons to the result from the LR-I cable model are carried out. Resetting and

annihilation of the reentrant wave are of crucial importance in clinical situations where the

reentrant cardiac arrhythmias are often controlled and terminated by delivering electrical

stimulations to the heart through catheters. Phase resetting curves (PRCs) of both models

are presented to show the relationship between the phase reset of the reentry and the

phase of single stimulation. According to the PRCs, sequential phase resetting by periodic

stimulation that leads to annihilations of the reentry are predicted and illustrated with one-

dimensional discrete Poincare mappings. As the results in the simulations of the reentrant

action potential conduction, quantitative correspondence between the hybrid cable model

and the LR-I cable model was demonstrated using a one dimensional active cable as

a model of the anatomical reentry in a cardiac tissue with various conditions. Those

include (1) unidirectional block to initiate reentry, (2) phase resetting by single impulsive

stimulations, (3) annihilations of the reentry by appropriately timed single stimulations,

(4) phase resetting curves (PRCs) that can characterize the reentry dynamics in response

to single stimulations at various timings, and (5) sequential phase resetting that leads to

annihilation of the reentry as predicted by the one dimensional discrete Poincare mappings.

Finally, general discussion and conclusions are being reviewed in Chapter 5. The overall

results of the hybrid circuit model are satisfied with those of the LR-I model, corresponding

to the subjects examined in the study. Therefore, by taking into account the satisfactory

results and the real-time simulation capability of the hybrid model, these can be concluded

that the hybrid model might be a useful tool for large scale simulations of cardiac tissue

dynamics, as an alternative to numerical simulations, toward further understanding of the

reentrant mechanisms. As a matter of fact, minimizing power consumption and physical

size of the circuits need to put into consideration regarding to large-scale development of

the hybrid model.
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Chapter 1

Introduction

Electrical excitations of cardiac cell membranes and their propagation in the heart

tissue control the mechanical contractions of the cells through the cardiac excitation-

contraction coupling mechanism, leading to coordinated contractions of the heart to pump

blood. The excitation event is finely controlled by influx and efflux of transmembrane

currents through various types of ion channels permeable to specific kinds of ions[1].

The cardiac excitation can be characterized by an action potential, where the action

potential is generally has 5 phases. Figure 1.1 shown here represents the ventricular cardiac

action potential waveform with the phase classification. The cardiac action potential is

often generated in response to a supra-threshold current stimulation applied to a cell,

in which fast inward Na+ current causes a rapid increase in the membrane potential

(phase 0), followed first by transient outward K+ current causing the small downward

deflection of the action potential (phase 1), and then by slow inward Ca2+ current that

almost counterbalances slow delayed rectifierK+ current for producing the action potential

plateau (phase 2). A rapid repolarization then takes place, where the slow inward current

is terminated, while the slow delayed rectifier K+ outward current as well as other types

of outward and inward K+ currents are maintained (phase 3). Finally, the membrane

potential resettles at the resting potential (phase 4).

The resting membrane potential of normal cardiac cell is approximately-80 to 85 mV

and it rises from its normally negative value to a positive value up to 60 mV to 80mV during

the excitation. The action potential lasts for about 200 ms. The excitability of the cell

is determined by how much the Na+ and Ca2+ channels regain their capability to inflow

the currents after prior excitations, causing the refractoriness of the cell. Refractoriness

here means the condition during which time the cells cannot fully respond to the stimulus.

Thus if another stimulation is applied before the cell regains its excitability enough, it

3



cannot induce the action potential fully or even partially, leading to complex phase-locked,

sometimes chaotic, responses when the membrane is stimulated by a periodic sequence of

current injections[2, 3].

Figure 1.1: Phases of the cardiac action potential

The excitability and refractoriness of cardiac cells are features commonly shared by

a class of nonlinear dynamical systems called excitable systems[4]. The heart consists of

a huge number of such excitable cells connected locally via electrical synapses, referred

to as the gap junctions, that allow spatial conductions of the action potentials through

the heart tissue, leading to the coordinated contraction of the heart for every single beat.

In a normal heart, the action potential wave dies when it reaches a complete activation

of myocardium because of a refractoriness effect of the cardiac tissue that has excited

before. Under uncommon conditions, the propagating wave does not die out completely

but re-excite the myocardium that has recovered from the refractoriness. In this case,

excitation would rotate around an area of conduction block. Most evident is reentry of

cardiac excitation, which occurs when previously activated tissue is repeatedly activated

by the propagating excitation wave as it reenters the same region and reactivates it at a

high frequency.

Apropos of the heart is a typical dynamical system of excitable media, among other

systems in physics, chemistry, and biology, in which all of them share phenomenologically

common behaviors associated with the excitability and refractoriness of the media, such

as reentry excitations including spiral and scroll waves of excitations[5, 6, 7, 8]. The most

common type of reentry is circus movement reentry. As for the heart dynamics, some

cardiac arrhythmias are perpetuated by reentrant mechanisms, in which a local excitation
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conducts through a part of the heart to recirculate back to the original site, causing a

rapid heart beat referred to as the reentrant tachycardia[9].

Methodologies that have been employed so far to theoretically understand the non-

linear dynamics of excitable media include mathematical modelings and their computer

simulations as well as electronic experiments that utilize hardware-implemented nonlinear

circuits, by which experimentally observed dynamics of real-world chemical, physical, and

physiological excitable media could be reproduced and analyzed qualitatively and/or quan-

titatively. The use of mathematical models with their computer simulations is favorable

because of their large capability of describing physical and/or physiological mechanisms in

detail, allowing practically one-to-one correspondence between parameters in the models

and physical quantities.

The mathematical modelling in excitable media is pioneered by Hodgkin and Huxley,

who formulated a mathematical description of action potential generation in the giant

squid axon in 1952[10]. Indeed, mathematical models of the cardiac action potential in

single cells continue their remarkable development and improvement after the Hodgkin-

Huxley model. As for, much of the mathematics of cardiac cell modeling is drawn from

the Hodgkin-Huxley formulation. Progress in mathematical modeling and computational

techniques has facilitated using simulations as a tool for investigating cardiac dynamics. In

which, models of cardiac cells are defined by mathematical descriptions of electrical events

at the cellular level that give rise to cardiac action potentials. Starting from the simplified

cardiac model, the FitzHugh-Nagumo model[11] that described a generic excitable media

of the cardiac cells, the Noble Purkinje model[12], the Beeler and Reuter[13], the Luo-

Rudy ventricular model[3, 14, 15] have been developed to represent different regions of

the heart. Until today, the models become more advance but complicated from year

to year as variables parameters in the mathematical descriptions are increased in order

to represent the cellular processes in more detail. Thus, tissue models consisting of a

large number of single cell models cause a new problem in the amount of computations

required to obtain meaningful results from their simulations[16]. Due to this drawback,

most research articles dealing with cardiac tissue models give their excuses for not to use

the latest detailed single cell models as their compartmental nodes, but use rather simple

models instead.

Meantime, hardware-implemented excitable media have their own long history of in-
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vestigation, comparable to that for the mathematical models, as traced back to circuits of

excitable systems proposed in 1960’s[17, 18, 19]. To this day, the hardware models provide

valuable tools for real-time simulations whose computational speeds are independent of

the number of cells connected if one tries to perform action potential conduction on a

multiple coupled analog circuits as a model of a cardiac tissue. However, they are less

suited in modeling biophysically-detailed and complicated mechanisms of the ion currents.

Only a few studies have succeeded to design analog circuits that are biophysically detailed

and have quantitative correspondence to a real cell[20].

One of main issues for studying excitation conductions in the field of cardiac phys-

iology and pathology is to understand how the action potential conduction and reen-

try dynamics at the tissue level are influenced by a cellular level dysfunction of spe-

cific ion channels[21, 22] that cause abnormal cellular excitation such as in the long QT

syndrome[23]. In order to provide comprehensive answers to this sort of question using

a mathematical or hardware circuit model of cardiac tissue, it is required for every cellu-

lar model (compartmental node) used in the tissue model to include physiologically and

quantitatively plausible models of ion channel currents rather than simple and qualitative

models.

Thus, throughout the study, an analog-digital hybrid circuit model of an excitable cell

that can quantitatively reproduce the action potential generation and phase-locked and

chaotic responses to periodic current pulse stimulations observed in Luo-Rudy phase I

(LR-I) model[3] for a mammalian cardiac ventricular cell is proposed. Firstly here, the

circuit model is reported briefly. Then a model of spatially distributed extension of a

one-dimensional cardiac tissue with its hardware implementation is proposed. The circuit

model allows us to perform real-time simulations of spatially conducting cardiac action

potentials. In particular, simulation results show that the circuit tissue model can exhibit

real-time dynamics for initiation of the reentry induced by unidirectional block and for

phase resetting that leads to annihilation of the reentry in response to impulsive current

stimulations at appropriate locations and timings. The dynamics of the hybrid model are

compared to those obtained numerically in LR-I model in order to demonstrate that the

circuit model can be utilized for simulating large scale cellular network in real-time as an

alternative to numerical simulations.
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Chapter 2

Background

2.1 Electrical System of the Heart

The heart is composed of two atria and two ventricles with four chambers to operates

as a pump in supplying blood through the circulatory system. It is composed of three

major types of cardiac muscle: atrial muscle, ventricular muscle, and specialized excitatory

and conductive muscle fiber. As shown in Figure 2.1, the specialized excitatory and

conductive fibers are mainly consist of sinoatrial (SA) node in which the normal rhythmic

self-excitatory impulse is generated, atrioventricular (AV) node in which the impulse from

the atria is delayed before passing into the ventricles, AV bundle, which conducts the

impulse from the atria into the ventricles, and left and right bundles of Purkinje fibers,

which conduct the cardiac impulse to all parts of the ventricles. They provide an excitatory

system for the heart and a transmission system for rapid conduction of electrical signal,

called action potential, through the heart. This mechanism will be explained later in this

section.

Figure 2.2 illustrates a typical anatomy section of cardiac muscle showing arrangement

of the cardiac muscle fibers in a latticework. Cardiac muscle has myofibrils that contain

actin and myosin filaments interdigitate and slide along each other during the process of

contraction. The angulated dark areas crossing the cardiac mucsle fibers in Figure 2.2

are called intercalated discs, referred to as gap junctions. They are cell membranes that

separate individual cardiac cells from each other. Electrical resistance through the in-
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Figure 2.1: The heart
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tercalated disc is only 1/400 the resistance through the outside membrane of the cardiac

muscle fibers[24]. Therefore, ions flow with relative ease along the axes of the cardiac

muscle fibers so that the action potential travel from one cardiac muscle cell to another,

past the intercalated discs, without significant obstruction. In other words, the cardiac

muscle cells are so tightly bound that when one of these cells becomes excited, the ac-

tion potential spreads to the entire of heart from cell to cell throughout the latticework

interconnection.

Figure 2.2: The cardiac muscle

The period from the end of one heart contraction to the end of the next is called the

cardiac cycle. The cardiac cycle consists of a period of relaxation called diastole followed

by a period of contraction called systole. The electrical activity events during the cardiac

cycle can be recorded by an electrocardiogram, known as an ECG. Figure 2.3 illustrates

the ECG wave during the cardiac cycle. The relationship of the ECG wave to the cardiac

cycle may be explained as follows. Each cycle is initiated by spotaneous generation of the

action potential in the SA node. The SA node is located in the right atrium. When the

right atrium is full with blood, the electrical signal spreads across the cells of the right
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and left atria through atrial muscle fibers, such as Bachmann’s bundle. This signal causes

the atria to contract. This pumps blood through the open valves (tricuspid valve and

mitral valve at the right and left side of the heart, respectively) from the atria into both

ventricles. The P wave on the ECG in Figure 2.3(a), marks the contraction of the atria

as shown in 1 of (b) in the Figure 2.3. Here, in the Figure 2.3(b), the dark green dots

correspond to the conduction of the action potential signal, and the disc-shaped symbols

in red and blue are respectively subjected to oxygen-rich blood and oxygen-poor blood.

Figure 2.3: The electrocardiogram wave and the cardiac cycle

Then, the signal arrives at the AV node near the ventricles and it is slowed for an

instant to allow the right and left ventricles to fill with blood. On the ECG wave, this

interval is presented by the start of the line segment between the P and Q wave. The

signal is released and moves next to AV bundle located in the ventricles. From the AV

bundle, the signal fibers divide into left and right bundle branches through the Purkinje

fibers that connect directly to the cells in the walls of the ventricles, which run through

the septum as shown in 2 of (b) in Figure 2.3. On the ECG, this represented by the Q

wave. The signal spreads quickly across the ventricles (3 of (b) in Figure 2.3). As the

signal spreads across the cells of the ventricle walls, both ventricles contract, but not at

exactly the same moment. The left contracts an instant before the right ventricle. As for,
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the contraction of the left ventricle pushes blood through the aortic valve to the rest of

the body and the contraction of the right ventricle pushes blood through the pulmonary

valve to the lungs. On the ECG, the R wave marks the contraction of the left ventricle

and the S wave marks the contraction of the right ventricle. As the signal passes, the

walls of the ventricles relax and await the next signal, where according to the ECG, the

T wave marks the point at which the ventricles are relaxing, that is, the T wave occurs

slightly prior to the end of ventricular contraction (4 of (b) in Figure 2.3).

This contraction process continues over and over in a normal rhythmic rate of approx-

imately 70 beats per minute. The rhythmical contraction of the heart works continuously,

much like a pump, in order to provide a major source of power for moving blood through

the vascular system. It is said that the SA node is the normal pacemaker of the heart

as it controls the heart’s rhythmicity. This is because of its rate of rhythmic discharge is

greater than either the AV node or the Purkinje fibers, and that of any other part of the

heart.

However, under abnormal conditions, where some other part of the heart develops a

rhythmic discharge rate that is more rapid than that of the SA node, the pacemaker of the

heart shifts from the SA node to the other part of the heart. A pacemaker elsewhere than

the SA node is called ectopic pacemaker and this will cause abnormal impulse generation

of the heart which that might induce abnormal sequence of contraction. Moreover, it is

known that the relationship of a refractory period to the rapidity of transmission of the

cardiac impulse throughout the ventricles plays an important role in causing synchronous

contraction of the heart. Here, the refractory period, also known as the duration of the

muscle contraction is generally about 150 ms in atrial muscle and 200 ms in ventricular

muscle. That is any serious delay in transmission of the impulse through the ventricle

can make it possible for the impulse from the last excited ventricular muscle to reenter

the first muscle. This, in turn, sets up a reentrant circuit which causes abnormal impulse

conduction in the heart. These phenomena of abnormal impulse generation and conduction
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are thought to be able to create conditions that cause serious cardiac arrhythmias, the

abnormal rhythmicity of the heart. Therefore, to prevent or to treat this problem, better

understanding of underlying mechanisms to these phenomena will be necessary.

2.2 The Membrane Potential

Electrical potentials exist across the membranes of all cells of the body and some cells,

such as nerve, skeletal muscle and cardiac cells, are excitable, that is capable of producing

and transmitting action potentials along their membrane in response to electrochemical

impulses. Generally, an excess of negative ions (anions) accumulates immediately inside

the cell membrane along its inner surface, and an equal number of positive ions (cations)

accumulates immediately outside the membrane. The effect of this is the development of

a membrane potential during a polarized state at a resting membrane potential with the

cell more negatively charged inside than outside the membrane. As illustrated in Figure

2.4, basically, the cell membrane is endowed with a sodium and potassium pump, where

sodium being pumped to the exterior and potassium to the interior, however, because

about three sodium ions are pumped out of the cell for about two potassium ion that is

pumped in, more positive ions are pumped out of the cell than into it. Moreover, the

resting membrane is normally more permeable to potassium as to sodium and since most

of the anions inside the cell are nondiffusible, the negative charges remain inside of the cell

so that the cell becomes electronegative, while the outside becomes electropositive. This

causes the membrane potential inside the cell falls to approximately -85 mV, that is the

resting membrane potential of the membrane.

A sequence of changes in the membrane permeability mainly for sodium ions and

potassium ions could cause changes in the membrane potential. Where the first stage,

which is called a depolarization, is a sudden increase in the permeability of the membrane

to sodium ions causes the cell positively charged on the inside and the rapid raise of the

membrane potential and the second stage, which is called a repolarization, is an increase
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in potassium ions permeability causes the membrane potential to reestablish and back

to normal. This short-lasting event in which the electrical membrane potential of a cell

rapidly rises and falls is called an action potential.

Figure 2.4: Establishment of a membrane potential in the resting membrane

History in the research of the membrane potential began with the idea that cardiac cells

could produce action potentials in response to an electrical stimulus, which proposed by

Henry Bowditch in 1871, based on his studies on contraction of heart muscle by stating that

tissues respond to stimuli in an all-or-none manner[25]. He established the two properties

that define excitable tissues which are related to the concept of threshold for stimulation

and the response of excitable tissues to stimuli above threshold that is not depend on the

intensity of the stimuli. The threshold is the starting point of the excitability in the cell

according to a refractory state, the condition of the cell which it cannot supporting the

passing of the action potential wave at a certain amount of time. However, the first action

potentials were not measured in cardiac cells but in a nerve cell of the the giant axon of the

squid, because of its large size. Hodgkin and Huxley[26, 27] and Curtis and Cole[28, 29]

were the first to measure an action potential in the squid axon using the intracellular

micropipette for measuring voltage and current across the membrane of a cell by inserting

the micropipette inside the cell. Then, with advances in microelectrode to measure in

much smaller cells, Ling and Gerard[30], and Nastuk and Hodgkin[31] were able to record

the resting and the action potential in skeletal muscle cells. Caroboeuf and Weidman[32]

and Draper and Weidmann[33] were the first to measure the resting membrane potential
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and the action potential in mammalian cardiac muscle. Woodbury et al.[34] were the first

to measure it in frog heart. The characteristics of the cardiac action potential, such as

resting membrane potential and rapid upstroke, are similar to that in nerve and skeletal

muscle cells. Nevertheless, the cardiac action potential has a duration of 100-500 ms,

different to nerve and skeletal cell potentials that have duration of less than 5 ms.

The membrane potential can be developed by specialized membrane-spanning protein

that control the movement of ions either by passive electrodiffusion through transmem-

brane pores (channels) or translocation across the membrane by carrier proteins (pumps,

exchangers and transporters). When a concentration difference of ions across a membrane

causes diffusion of ions through the membrane, thus creating a membrane potential, the

magnitude of the potential is determined by the ratio of tendency for the ions to diffuse

in one direction. If a permeable membrane separates two solutions, A and B, and if ion

X is present on either side of the membrane, the relative probability of finding a particle

in either solution A or solution B is given by the Boltzmann equation:

PB

PA
= exp

(
−uB − uA

kT

)
(2.1)

where,

uA : the energy of the particle in solution A

uB : the energy of the particle in solution B

PA : the probability of a particle being in state A

PB : the probability of a particle being in state B

k : Boltzmann′s constant

T : absolute temperature

Equation (2.1) can be constructed in terms of molar energies and concentrations, to
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take account of the properties of the bulk solutions rather than individual components:

[X]B
[X]A

= exp

(
−UB − UA

RT

)
(2.2)

where,

[X]A : concentration of ion X in state A

[X]B : concentration of ion X in state B

UA : molar energy of state A

UB : molar energyvof state B

R : gas constant

Rearranging Eq. (2.2) and taking logs gives the following equation:

UB − UA = −RT ln

(
[X]B
[X]A

)
(2.3)

This shows the molar energy difference in state A and B due to the concentration gradient.

If the ion is charged, there will be not only a chemical force, but also an electromotive

force. The electrical potential acting on anion of valence z in a potential field of Ψ is zFΨ.

In the steady state, there will be no net flux of ions across the membrane. The potential

across the membrane at which there is no net movement of ions is termed the equilibrium

potential of that ion, and is calculated as follows:

0 = −RT ln

(
[X]B
[X]A

)
+ zFEeqm (2.4)

Eeqm =

(
RT

zF

)
ln

(
[X]B
[X]A

)
(2.5)

where,

Eeqm : the equilibrium potential

F : the Faraday constant

This is the Nernst equation. The equilibrium potential, Eeqm, also called the Nernst

potential can be interpreted as the potential at which an ion is in equilibrium with its

diffusional force. The uncoupled movement of a charged species through an open channel
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can be described by the equation:

IX = gX(Vm −Eeqm,X) (2.6)

where,

IX : net current due to movement of ion X through the channel

gX : conductance of the channel to ion

Vm : transmembrane voltage

Eeqm,X : equilibrium or Nernst potential for ion

This equation describes an ohmic conductor, as there is a linear relationship between

current and voltage. Even though the Nernst equation can be used to calculate the correct

reversal potential for an ion and the net driving force for an ion, the net flux is not always

linearly related to the voltage difference, as implied by this equation.

As described before, in resting membrane potential, sodium ions are concentrated out-

side the cell and potassium ions are concentrated inside the cell, and cells are permeable

to potassium ions because inward rectifier potassium channels are open at the resting

membrane potential. This results in the diffusion of potassium ions from inside the cell

to outside due to the gradient in potassium concentration and causes the accumulation of

positive charge outside the cell, and negative charge inside the cell. Meanwhile, an electric

field, which increases in magnitude as more potassium ions leave the cell, forces oppose dif-

fusion forces and tend to move potassium ions from outside to inside the cell. The growing

electric field will eventually prevent the efflux of more pottasium ions until a situation of

equilibrium will be reached. Therefore, if the cell membrane at rest were permeable only

to potassium ions, the ion current flowing through the membrane at rest would be zero,

and the resting membrane potential would be exactly the potassium equilibrium potential

or Nernst potential. According to the Eq. (2.5), the potassium equilibrium potential can
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be written as follows:

Eeqm,K+ =

(
RT

F

)
ln

(
[K]o
[K]i

)
(2.7)

where,

[K]o : the potassium concentration outside the cell

[K]i : the potassium concentration inside the cell

However, measured resting membrane potentials are not always identical to the potas-

sium equilibrium potential. This indicates that the membrane is also permeable to ions

other than potassium at negative membrane potentials. Thus, a more accurate estimation

of the resting membrane potential can be obtained with the following formula, called the

Goldman’s equation, that takes into account other ions such as sodium, chloride.

Eeqm =

(
RT

F

)
ln

(
PK [K]o + PNa[Na]o + PCl[Cl]o
PK [K]i + PNa[Na]i + PCl[Cl]i

)
(2.8)

where,

PK : the permeability of the cell membrane to potassium

PNa : the permeability of the cell membrane to sodium

PCl : the permeability of the cell membrane to chloride

[K]o : thevpotassium concentration outside the cell

[Na]o : the sodium concentration outside the cell

[Cl]o : the chloride concentration outside the cell

[K]i : the potassium concentration inside the cell

[Na]i : the sodium concentration inside the cell

[Cl]i : the chloride concentration inside the cell

If a membrane at rest is permeable to several ions, the resting membrane potential repre-

sents a dynamic equilibrium in which the total ion current is zero but the individual ion

currents through the different ion channels are not zero. But still, the Nernst potential
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for potassium is a good approximation of the resting membrane potential of cardiac cells

since the permeability of the membrane to potassium channels at rest is many orders of

magnitude larger than the permeability to other ions.

According to experimental measurements of the transmembrane potentials, Hermann

suggested that the cell membrane could be represented under subthreshold conditions by a

resistance in parallel with a capacitance[35]. Curtis and Cole[36] measured cell membrane

resistance and capacitance in nerve cells and showed that the electrical properties of the

membrane are well represented by an RC circuit (Figure 2.5). Their experiments showed

that cells have a high-conductance cytoplasm that is surrounded by a high-resistance

membrane with an electrical capacitance of about 1 µF/cm2. The capacitor, C represents

the capacitance of the lipid bilayer that forms the cell membrane, and the resistor, R

represents the conductance of the ion channels that are open at the resting membrane

potential.

Figure 2.5: The Cole-Curtis model of passive membrane

As long as the membrane of the excitable cell in nerve, skeletal muscle or cardiac

muscle remains completely undisturbed, the membrane potential remains at the resting
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membrane potential, generally at -85 mV. However, any factor that suddenly increases

the permeability of the membrane to sodium is likely to elicit a sequence of rapid changes

in membrane potential lasting for several miliseconds, followed immediately thereafter by

return of the membrane potential to its resting value. This sequence of potential changes

is called the action potential. The action potential occurs mainly in two stage called

depolarization and repolarization, and the action potential wave shows its various phases as

it passes on a cell membrane. As describe in the introduction, the cardiac action potential

consists of five different phases, which is more complex than that of skeletal or nerve cells.

Depolarization is the earliest events in excitation, developing a positive state inside of the

cell. This positive state inside the cell is called the reversal potential. Almost immediately

after the depolarization phase of an action potential that has just previously changed the

membrane potential to a positive value, the normal resting membrane potential returns.

This is called repolarization.

Some of the factors that can evoke an action potential are electrical stimulation of the

membrane, application of chemicals to the membrane to cause increased permeability to

sodium, mechanical damage to the membrane, heat, cold or almost any other factor that

momentarily disturbs the normal resting state of the membrane. Action potential gener-

ation is the result of ion current flowing through many ion channels that are embedded in

the cell membrane. Those channels are permeable to different ions (sodium, potassium,

calcium) and open and close at different voltage levels with different time constants. The

ion current flowing through a channel is determined not only by the biophysical charac-

teristics of the channel but also by the intracellular and extracellular environment that

surrounds the cell membrane. For ion channels to perform their physiological function,

there has to be a gradient in ion concentrations on both sides of the membrane. Sodium

and calcium concentrations are higher outside that inside the cell; potassium concentration

is higher on the inside. In maintaining those gradients, ion pumps transform metabolic

energy into potential electrochemical energy that is used by the ion channels. Briefly,
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ion channels can be thought of as mediating the dynamic portions of the action potential

and in contrast, pumps and exchangers contribute to the overall behavior of the action

potential, but they have slower effects than the rapidly opening and closing channels.

In having a quantitative understanding of action potential generation and propagation,

the characterization of the individual currents which flow across the cell membrane, either

by ion channels or pumps and exchangers, that contribute to the action potential has been

required. Still, after all currents have been characterized, a quantitative understanding of

the cell action potential is possible only when all ion currents are intergrated to reproduce

the action potential. To intergrate the different ion currents to reconstruct the action

potential, a parallel conductance model describe by an equivalent electrical circuit was

proposed as shown in Figure 2.6, which was pioneered by Hodgkin and Huxley[10]. Since

then, the research in area action potential generation and propagation has been active.

The capacitor, Cm represents the membrane capacitance. The branches of the circuit

represent the different ways in which ions move between the intracellular and extracellular

spaces through the membrane and originate an ion current. Ions can move as a result

of concentration gradients through channels whose conductance is time and voltage de-

pendent, or through channels with constant conductance (background or leak). Ions can

also be transported across cell membranes by pumps and exchangers that are necessary to

restore concentration gradients, which also results in ion currents that contribute to the

action potential. The battery on a particular branch represents the equilibrium (or Nernst)

potential (Ei) for that ion, and the variable resistance represents that the resistance (Ri)

(or conductance (Gi)) of the channel changes as a function of membrane voltage and time.

Furthermore, the total transmembrane current in the parallel conductance model can

be expressed by the sum of membrane capacitive and ion currents as Eq. (2.9). Note

that, the above equation is for computations of an action potential in a single cell where

there are no spatial changes in transmembrane potential. The number of branches and

the formulation of the currents depend on the type of tissue to model and they have
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Figure 2.6: The parallel conductance model of active membrane

changed over time as the discovery of new currents or the reformulation of old currents.

These action potential models and the mathematical description of the action potential,

specifically in cardiac cell, will be described further in the next section.

Im = Cm
dVm

dt
+ Iion = Cm

dVm

dt
+

∑
Ii (2.9)

where,

Im : the total membrane current

Cm : the specific membrane capacitance to ion

Vm : the transmembrane voltage

Iion : the total ion current

Ii : the ion current
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2.3 Mathematical Models of Excitable Membrane

Since early twentieth century, experimental researches on the membrane potential

and the action potential have made it possible to reveal the underlying mechanisms in the

electrical state of the heart. Although the experimental studies are generally preferable,

investigating the cardiac electrical behavior experimentally poses a number of challenges,

such as a limitation on quantity of variables for monitoring or deprivation of high-resolution

data in investigating larger preparations. On the other hand, modelling techniques for a

computer simulation of cardiac electrical behavior are not associated with such complica-

tions. At the same time, it became clear that, a mathematical description use to simulate

the cardiac action potential would be useful to interpret experimental data and also to gen-

erate hypothese that could later be tested experimentally. Action potential models have

been very useful in investigating different features of cardiac electrophysiology, from ac-

tion potential generation in a single cell to action potential conduction in multidimesional

structure of cardiac tissues.

It is known that the action potential is the result of the interaction of cellular compo-

nents, including the dynamics of the different ion channels embedded in the cell membrane,

changes in concentrations of ions inside and outside the cell, and how cells are connected.

Hodgkin and Huxley[10] who are the first group that intend to formulate mathematically

the cellular prosesses to lead the generation of the action potential. They proposed an ion

model that is specified by 3 types ion channel currents that are involved in the generation

of the action potential to represent the flow of sodium, potassium and chloride (leakage or

background) through the membrane of squid axon. It is known that the formulation in ion

models have always changed over time because of the revelation of new or more accurate

currents. And, it is also depends on a specific tissue or a cell that is needed to be modeled.

Basically, in formulating an ion model of the action potential, the kinds of currents that

should be part of the model have to be determined to model the individual ion channels.

As for, the ion channels dominate depolarization and repolarization, and the process of
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the repolarization is largely understood as the dynamic interaction of the membrane ion

channels. Consequently, in many situations the action potential can be approximated well

using a model containing only channels. Nonetheless, for the ion channels to perform

their function, modelling the right changes in ion concentrations should be also put into

consideration.

Once all ion currents and changes in ion concentrations have been formulated, the need

to be intergrated in the equivalent electrical circuit of the parallel conductance model to

produce an action potential. To compute the action potential, the intergration of the

governing differential equation is as follows:

Im = Cm
dVm

dt
+ Iion (2.10)

Cm
dVm

dt
= Im − Iion (2.11)

where,

Im : the total membrane current [µA/cm2]

Cm : the specific capacitance [µF/cm2]

Vm : the transmembrane voltage [mV]

Iion : the summation of all ion current [µA/cm2]

The simplest way to intergrate the equation is to use the forward Euler method:

V t+∆t
m − V t

m

∆t
=

−Ition
Cm

+
Itm
Cm

(2.12)

V t+∆t
m = V t

m −∆t

(
−Ition + Itm

Cm

)
(2.13)

From equation (2.13), the transmembrane potential at a later time (V t+∆t
m ) can be calcu-

lated from the transmembrane potential (V t
m), the total ion current (Ition) and the total

membrane current (Itm) at a given time (t). In simulating the action potential, the total

membrane current (Itm) stated here is the axial current, corresponding to such as external

current stimulations. ∆t is the time discretization step and the value of the time dis-

cretization step has to be small enough to calculate Vm accurately during rapid changes
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in the transmembrane potential. Typically, a value of ∆t=1 µs is used.

Most of the modern electrophysiological concepts and methods were developed by

the computational technique of the action potential models in nerve cells. Nevertheless,

mathematical modeling in single cell that contributes to the action potential in cardiac cells

also has been used extensively to increase the understanding of cardiac electrophysiology

and has proven its usefulness. The typical parameters of the cardiac cell for reference in the

cardiac cell modeling are shown in Table 2.1 [37]. Initiated in the first modeling attempt by

Table 2.1: The typical parameters of the cardiac cell

Symbol Value Definition

dc 15 µm Cell radius
Ic 15 µm Cell length
σi 4 mS/cm Intracellular conductivity
σe 20 mS/cm Extracellular conductivity
Cm 1 µF/cm2 Specific membrane capacitance
Rm 6 kΩcm2 Specific membrane resistance
Vrest -84 mV Resting potential

FitzHugh[11] and Noble[12], continued by Beeler and Reuter[13], Luo and Rudy[3, 14, 15],

and many others, until today[38] where a large number of detailed physical state variables

has been introduced in the models, taking new experimental observations at cellular and

sub-cellular levels into account[39, 40, 41]. Recent studies have started to use those detailed

biophysical models to investigate excitation conductions in heart tissues[42, 43, 22, 44].

It is known that, the atria function principally as entry ways to the ventricles and

the major function is in the ventricles, where the ventricles supply the main force that

propels blood through the circulatory system of the body. Furthermore, the development

of stray impulses in the heart or reentrants can cause ventricular fibrillation and the ra-

pidity of transmission of the cardiac impulse throughout the ventricles plays an important

role in preventing serious cardiac arrhythmias. As regards, in this study, we applied an

ion channels-based model of the ventricular action potential, which is called the Luo-

Rudy phase I (LR-I) model in developing the analog-digital circuit model. The detailed
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description and formulation of the LR-I model will be described in the next subsection.

2.3.1 The Luo-Rudy Phase I Model

The Luo-Rudy phase I (LR-I) is the ion channel-based model for the action potential

generation in a mammalian cardiac ventricular cell. The LR-I model is based on the

Hodgkin-Huxley formulation, described by a set of nonlinear ordinary differential equations

that includes eight dynamic state variables ( see equation (2.16) to (2.23)) for describing

six types of ion channel currents that are responsible for generating the five phases, from

phase 0 to 4, during cardiac action potential. As shown in Figure 2.7, LR-I model can be

represented by its equivalent electrical circuit containing a capacitive component Cm [1

µF/cm2] representing the capacitance of the cell membrane per unit area and six resistive

components representing the six types of ion channels allowing influx and efflux of ion

currents across the cell membrane. Vm [mV] is the membrane potential. The voltage source

in each channel represents the electro-chemical potential referred to as the Nernst potential

of the corresponding ion. The six ion channel currents are summed to give the total channel

current Iion [µA/cm2] as in equation (2.14) Placing Iion in parallel to the current through

the capacitive component of the membrane circuit Cm yields the expression of equation

(2.15) for the total current flow Im [µA/cm2] through the membrane. Therefore, the rate

of change of membrane potential Vm is given as equation (2.16).

Iion = INa + Isi + IK + IK1 + IKp + Ib (2.14)

Im = Cm
dVm(t)

dt
+ Iion (2.15)

dVm(t)

dt
=

1

Cm
(Im − Iion) (2.16)

The ion channel currents are the time-dependent fast inward sodium current INa, the

time-dependent slow inward current Isi carried mainly by calcium ions, the time-dependent

potassium current IK , the time-independent potassium current IK1, the time-independent
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Figure 2.7: An equivalent circuit representing membrane based on Luo-Rudy Phase I
(LR-I) model

plateau potassium current IKp, and the time-independent background current Ib carried

by sodium, potassium and calcium ions. They are described as;

INa = gNa(Vm − ENa), Isi = gsi(Vm − Esi),
IK = gK(Vm − EK), IK1 = gK1(Vm − EK1),
IKp = gKp(Vm − EKp), Ib = gb(Vm − Eb),

gx [mS/cm2], with x = Na, si, K, K1, Kp, or b, represents the channel conduc-

tance, which is equal to the inverse of the channel resistance, 1/Rx. Note that the term

time-independent current here does not actually mean that the corresponding channel con-

ductance is constant over time, but it means that the current-voltage (I-V ) relationship

of the channel does not change over time. Although the conductance gx of the voltage-

dependent channel changes depending on Vm, the I-V relationship does not change over

time if gx is simply a static function of Vm, defining the time-independent current. The

I-V relationship of the time-dependent current changes over time, but is asymptotic to the

steady-state I-V relationship. The I-V relationship of the time-dependent current during

its transient is often referred to as the transient or instantaneous I-V relationship. In LR-I

model, the conductances gK1 and gKp are expressed by steady-state (static) functions of

Vm, and gb is constant. Thus, these three channel currents do not exhibit transient I-V

relationships, but only their steady-state I-V relationships.
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The channel conductances are presented as:

gNa = GNam
3hj, gsi = Gsidf,

gK = GKXXi, gK1 = GK1K1∞,
gKp = GKpKp, gb = 0.03921,

here,
GNa = 23, Gsi = 0.09,

GK = 0.282
√

[K]o/5.4, GK1 = 0.6047
√

[K]o/5.4,
GKp = 0.0183,

According to the Hodgkin-Huxley formulation, the concept of gating properties is used

to determine the rate of change of open state in ion current channels. Gating is treated as a

stochastic process, where channels can be only in either the closed or open state. Therefore,

if the fraction of channels in open state in n, the fraction of closed channels must be (1-n)

and the dynamic responses of the currents are controlled by the rate constants α and β,

which are time- and voltage-dependent :

α

1− n(closed) ⇌ n(open)

β

In the LR-I model, channels of ion currents in the LR-I model could have several

independent gating properties, each of which would have to be in the correct state to allow

current flow, as for a single gating property would give a current with a simple exponential

activation and deactivation rates. The INa channel is best fitted with activation being

represented by three gating properties (m3), and inactivation by two gating properties (h

and j), where all are time-dependent. The IK channel is controlled by a time-dependent

activation gate (X) and a time-independent inactivation gate (Xi). The Isi channel is best

fitted with a time-dependent activation gate (d) and a time-dependent inactivation gate

(f), the IK1 channel with one time-independent inactivation gate (K1∞), and IKp channel

with one time-independent inactivation gate (Kp). The time dependent gating properties
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m, h, j, X, d and f are described by the ordinary differential equation, as follows:

dm(t)

dt
= αm(Vm)(1−m(t))− βm(Vm)m(t) (2.17)

dh(t)

dt
= αh(Vm)(1− h(t))− βh(Vm)h(t) (2.18)

dj(t)

dt
= αj(Vm)(1− j(t))− βj(Vm)j(t) (2.19)

dX(t)

dt
= αX(Vm)(1−X(t))− βX(Vm)X(t) (2.20)

dd(t)

dt
= αd(Vm)(1− d(t))− βd(Vm)d(t) (2.21)

df(t)

dt
= αf (Vm)(1− f(t))− βf (Vm)f(t) (2.22)

Equations for the time independent gating properties for Xi, K1∞ and Kp are shown

as follows:

for Vm > −100 [mV]

Xi = 2.837
exp(0.04(Vm + 77))− 1

exp(0.04(Vm + 35))(Vm + 77)

for Vm ≤ −100 [mV]

Xi = 1

K1∞ =
αK1

αK1 + βK1

Kp =
1

1 + exp
(
7.488−Vm

5.98

)

Here, the rate constants α and β for the gating properties described priorly are defined

in the following equations.

αm =
0.32(Vm + 47.13)

1− exp(−0.1(Vm + 47.13))

βm = 0.08 exp

(
−Vm

11

)
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for Vm ≥ −40 [mV]

αh = αj = 0

βh =
1

0.13
(
1 + exp

(
Vm+10.66

−11.1

))
βj =

0.3 exp(−2.535 · 10−7Vm)

1 + exp(−0.1(Vm + 32))

for Vm < −40 [mV]

αh = 0.135 exp
(80 + Vm

−6.8

)
βh = 3.56 exp(0.079Vm) + 3.1 · 105 exp(0.35Vm)

αj =
(−1.2714 · 105 exp(0.2444Vm)− 3.474 · 10−5 exp(−0.04391Vm))(Vm + 37.78)

1 + exp(0.311(Vm + 79.23))

βj =
0.1212 exp(−0.01052Vm)

1 + exp(−0.1378(Vm + 40.14))

αd =
0.095 exp(−0.01(Vm − 5))

1 + exp(−0.072(Vm − 5))

βd =
0.07 exp(−0.017(Vm + 44))

1 + exp(0.05(Vm + 44))

αf =
0.012 exp(−0.008(Vm + 28))

1 + exp(0.15(Vm + 28))

βf =
0.0065 exp(−0.02(Vm + 30))

1 + exp(−0.2(Vm + 30))

αX = 0.0005 exp(0.083(Vm + 50))(1 + exp(0.057(Vm + 50)))

βX = 0.0013 exp(−0.06(Vm + 20))(1 + exp(−0.04(Vm + 20)))

αK1 =
1

1 + exp(0.2385(Vm − EK1 + 59.215))

βK1 =
(0.49124 exp(0.08032(Vm −EK1 + 5.476)) + exp(0.06175(Vm − EK1 − 594.31)))

1 + exp(−0.5143(Vm − EK1 + 4.753))

Furthermore, Ex [mV] , with x = Na, si, K, K1, Kp, or b, represents the Nernst

potential of the corresponding ion current channel, described as follows:

ENa = (RT/F ) ln([Na]o/[Na]i), Esi = 7.7− 13.0287 ln([Ca]i),

EK = (RT/F ) ln
(
[K]o+PRNaK [Na]o
[K]i+PRNaK [Na]i

)
, EK1 = (RT/F ) ln([K]o/[K]i),

EKp = EK1, Eb = 59.87,
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where,

[Ca]i : the calcium concentration inside the cell [mM]

R : gas constant 8.314 [J/kmol]

T : absolute temperature [K]

F : the Faraday constant 96485 [C/mol]

PRNaK : the Na/K permeability ratio 0.01833

[K]o : the potassium concentration outside the cell, 5.4 [mM]

[K]i : the potassium concentration inside the cell, 145 [mM]

[Na]o : the sodium concentration outside the cell, 140[mM]

[Na]i : the sodium concentration inside the cell, 18 [mM]

Here, the changes in calcium concentration inside the cell are described by the ordinary

differential equation, as follows:

(d[Ca]i)

dt
= −10−4Isi + 0.07(10−4 − [Ca]i) (2.23)
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2.4 Hardware-Implemented Excitable Membrane Models

Another approach that has been used to simulate the action potential is by using hard-

ware implementation of specialised electronic circuit models for membrane excitation. Cir-

cuit models can provide solutions to problems in which conventional programmed systems

find very hard to deal with. Implementing a hardware-realisable technique in dedicated the

excitable membrane modelling has a number of important advantages, providing valuable

tools for real-time simulations whose computational speeds are independent of the size of

the systems, i.e., the number of excitable nodal compartments used in the systems. Also,

with the growing technologies of LSI, it provides self-contained, physically robust solutions

for application areas where it might not be feasible to install a PC/workstation running

neural or cardiac excitatory network software, that gives a contribution for autonomous

robots in industrial and exploration uses or for medical engineering applications.

Since the 1960s, various developments and studies have been conducted for model-

ing and implementing membrane excitation on analog circuits[17, 18, 19]. In particular,

Nagumo et al[18] demonstrated that their active transmission line involving nine active

nodal compartments could simulate propagating action potentials along a nerve axon, in

which each active node was implemented by a tunnel diode with an N-shaped current-

voltage (I-V ) relationship mimicking the one in Bonhoeffer-van der Pol model[45].

Although less attempt[46] has been made for hardware implementations of spatially

distributed excitable media after Nagumo et al, developments of circuit models mimicking

neuronal and cardiac cellular dynamics have continued. Hoshimiya et al[47] proposed

an electronic circuit model of excitable membrane realized by a single time-dependent

(transient) I-V relationship determining a total membrane current through different types

of ion channels. Yagi[48], Maeda et al[49, 50] and Sekine et al[51, 52] constructed analog

circuit models with two or three ion channel currents with their I-V relationships activated

at different time scales for their transient change in order to simulate bursting or pacemaker

type neuronal excitations.
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These circuit models are beneficial for studying nonlinear dynamics of excitable media

qualitatively. Commonly, the goal in hardware-oriented membrane excitation models is

not to simulate the cellular process that lead to the generation of action potential, but

just the dynamics of the action potential. In those models, the action potential is the

result of predefined rules or mathematical functions that do not correlate precisely with

membrane or intracellular processes, due to qualitative designs of their I-V relationships

of ion channel currents. The reason is that unlike the mathematical models, it is usually

difficult to establish explicit correspondence between currents in a hardware circuit model

and ion channel currents of an excitable cell. Only a few studies have succeeded to design

analog circuits that are biophysically detailed and have quantitative correspondence to a

real cell[20].

As for this reason, in this study, an attempt has been made to develop a specialized elec-

tronic circuit for real-time simulation in membrane excitation model and at the same time

intend to complement the disadvantage in implementing analog circuits of membrane ex-

citations, by developing hardware-oriented of an analog-digital hybrid model reproducing

quantitatively action potential generation in a cardiac cell membrane. This was achieved

by reproducing the I-V relationships of ion currents using both analog and digital circuits

based on the standard ion model of membrane excitation in ventricular cardiac cell, LR-I

model. The design element will be elaborated further in the following chapter.

32



Chapter 3

Cardiac Action Potential in
Analog-Digital Hybrid Circuit
Model

3.1 Introduction

Generally, changes in membrane potential of cardiac cells are a result of the flow of ions

through ion channel with conductivity that is voltage and/or time dependent and changes

in ion concentrations. Figure 3.1 is a diagram of a cardiac cell representing the main ion

channels embedded in the cell membrane. Cardiac cell respond characteristically to applied

electrical impulsive currents. If an electrical stimulus has an intensity that is above certain

threshold, ion channels are activated and the cell generates an active response called an

action potential, and the cell is excited. Computational modeling approach has been used

extensively to compute the cardiac action potential for a better understanding of cardiac

electrophysiology. In general, ion channel-based models of cardiac cell are formulated

with nonlinear mathematical equations that describe the cellular processes by relying on

experimental and clinical measurement, leading to the generation of the action potential.

This study are focusing on using a standard ion channel-based model, the Luo-Rudy phase

I model of the ventricle action potential.

It is known that, the ion channel-based models have been useful to analyze many

of phenomena in the dynamical cardiac electrophysiology as they contribute to several

approaches that differ in amount of biophysical detail according to differenr regions and
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Figure 3.1: A cardiac cell model. The arrow indicate the flow direction of the ion currents,
in inward or outward

function of the heart. However, in many situations the ion channel-based model of the

action potential will be used to study propagation of cardiac action potential waves and

interaction among them. These single cell models need to be coupled together to perform

a large scale of simulation of the excitation propagation that would require an immense

amount of computational time to run. Therefore, an analog-digital hybrid circuit model

that is capable of generating the action potential of ventricle cell quantitatively is devel-

oped to perform real-time simulations of the electrical excitation propagation waves. This

was achieved by reproducing current-voltage (I-V ) characteristics of ion currents based

on Luo Rudy phase I (LR-I) model using both analog and digital circuits.

In this chapter, a general construction of the analog-digital hybrid circuit cell is

overviewed and the design method of reproducing the current-voltage (I-V ) relationships

of ion currents based on the LR-I model by analog and digital circuits are also explained.

To review the validity of the hybrid circuit model in a context of action potential genera-

tion and its response corresponding to the periodic current impulse trains, the simulations

by the LR-I model are also performed for the comparison.
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3.2 Design Method

The analog-digital hybrid active circuit for a single cardiac cell model, referred to

here as the hybrid cell model, includes analog circuits and a digital circuit of dsPIC

microcontroller. Figure 3.2 illustrates the analog-digital hybrid circuit model proposed in

this study. The model is presented as the parallel combination of a capacitance Cm and

the branches of analog and digital part representing the ion channels in Figure 2.7. Four

out of the six branches, corresponding to the ion channels IK1, IKp, Ib and INa, were

designed by using analog circuits, and the remaining two branches, corresponding to the

ion channels IK and Isi, were lumped together by using the single dsPIC. Action potentials

of the hybrid cell model were produced by injecting external current stimulations, Iext,

which should be equal to Im in equation (2.15). Figure 3.3 shows the picture of the hybrid

cell model.

Figure 3.2: An equivalent circuit of the analog-digital hybrid cell model. Ion channel
currents are implemented by analog and digital circuits that are placed in parallel with
Cm representing the membrane capacitance.

In the LR-I model, the amount of each ion current depends on Vm. Some are time-

independent (i.e., they are constant if Vm is constant), and some are time-dependent (i.e.,

dynamic). For both cases, it may be possible to characterize each ion current by a rela-
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Figure 3.3: Photograph of the analog-digital hybrid circuit for a single cardiac cell model.

tionship between voltage Vm and resulting channel current, known as the current-voltage

(I-V ) relationship. The time-independent current has a steady-state I-V relationship

and the time-dependent current is often referred to as a transient I-V relationship but is

asymptotic to the steady-state I-V relationship. A validation criterion for each of the six

branches in the hybrid cell model to be quantitatively close to the corresponding ion chan-

nel in LR-I model was set if the transient and/or steady-state nonlinear I-V relationships

of the ion channel in LR-I could be reproduced quantitatively by the circuit branch in the

hybrid cell model. The established electronic circuits should reproduce the relationships.

In this study, analog circuits were used to implement the time-independent ion currents of

IK1, IKp, and Ib, and the time-dependent fast sodium current INa which has a relatively

short time constant. Each of these analog circuits was designed by exploiting the intrinsic

(I-V ) relationships of bipolar transistors (Tr), resistors (R), capacitors (C) and voltage

sources (V ) to reproduce the steady-state I-V relationships for IK1, IKp, and Ib, and the

transient as well as the steady-state I-V relationships for INa. The variables in the LR1

model such as gating variables, conductances, ion currents, and membrane voltage were

identified to electrical variables in the circuits (conductances, currents, and voltages). An

electronic circuit simulation tool (Altium Designer version 6, Australia) was utilized to
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design these analog circuits.

The time-dependent ion currents with long time constants, IK and Isi were reproduced

by the digital part of the hybrid cell model using a 16-bit high-performance dsPIC30f4011

microcontroller (Microchip Technology, USA) with a processing frequency of 120 MHz.

This processing speed was thought to be considerable as initiatives have been taken to

speed up the calculation process held by the dsPIC. To increase the speed of calculation,

Certain datas were accessed from constructed tables stored in the memory (ROM) rather

than calculating the functions in equations which represent the ion channel currents.

The time scale of the hybrid model was set to the same as the LR-I model. The current

and voltage scales of the hybrid model (milli-ampere and volt) are not the same as those

of the LR-I model (micro-ampere and milli-volt). The scale conversions of the voltage and

the current were made because values of the ion currents and the membrane potential in

the LR-I model are too small and difficult to handle in the scale of the analog circuits. In

particular, the scales were converted as follows: 8 µA of LR-I to 3 mA of the hybrid cell

model, -100 mV of LR-I to 0 V of the hybrid and 120 mV of LR-I to 5 V of the hybrid

cell model. In formulae, the scale conversions of the voltage and the current are expressed

as follows:

VLR−I [mV] + 100

220
× 5 → Vhybrid [V]

ILR−I [µA]×
(
3

8

)
→ Ihybrid [mA]

(3.1)

3.3 Circuit Diagrams of The Hybrid Cell Model

Figure 3.4 illustrates the overall circuit of the hybrid cell model with its marginal

circuits, where the core part is just depicted as two boxes denoted by the digital and

analog parts. Detailed circuit diagrams of the analog and digital parts of the core circuit

are shown separately in Figure 3.5 and Figure 3.6, respectively. The circuit branches of

(a), (b), (c), and (d) in Figure 3.5 represent IK1, IKp, Ib, and INa, respectively. The overall

hybrid cell model is powered by the direct current (DC) power supplies of 9 (V+) and
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-9 V (V-) as shown in Figure 3.4. Circuit diagrams necessary for providing the voltage

sources (V1 to V9) in the analog part of Figure 3.5 and a power circuit for generating

VCC (5 V) in the digital part of Figure 3.6 are shown in the appendix A. Details of

all electronic components used to construct the analog-digital cell model and the source

program executed by the dsPIC are provided in the appendix B and C, respectively.

Figure 3.4: The overall circuit diagram of the analog-digital hybrid cell model.

The hybrid cell model behaves in a way that is described as follows: By referring to

Figure 3.4, the operation of the hybrid cell model starts with an input voltage signal at

the terminal 1 of Figure 3.4 and Figure 3.5, corresponding to the cardiac cell membrane
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Figure 3.5: The circuit diagram of the analog part in the analog-digital hybrid cell model.

Figure 3.6: The circuit diagram of the digital part in the analog-digital hybrid cell model.
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potential Vm. This Vm is fed into a port of a 10-bit analog to digital converter of the

dsPIC at the terminal 3 of Figure 3.4, sampled with a frequency of 2.5 kHz. IK and

Isi are then computed in the dsPIC at each instant of time for a given Vm to generate

the output voltage from the digital part at the terminal 4 of Figure 3.4 through a 10-bit

digital to analog converter. This output voltage is proportional to the sum of IK and Isi,

determining the value of Vdigital that is fed-back into the analog circuit. The amount of

externally injected pulsatile stimulus current Iext is given by a command voltage pulse Vext.

The voltages Vdigital, Vext, and the membrane potential Vm are summed up to generate

the potential difference between Vdigital+Vext+Vm and Vm as Vdigital+Vext which induces

the current −IK − Isi + Iext by using the resistor R7. Kirchhoff’s laws applied at the

T-shaped branch at the upper part of the capacitance C1 of Figure 3.4 ensures that the

sum of −IK − Isi + Iext, −INa − IK1 − IKp − Ib, and −C1dVm/dt is equal to zero. That

is, equally to

−C1
dVm

dt
− Iion + Iext = 0, (3.2)

holds as in equation (2.15).

3.4 The Current-Voltage (I-V ) Relationships

Basically, the I-V relationship of Ib was realized by using a simple analog circuit which

consists of a resistor and a voltage source. For the IK1, IKp and INa, three elementary

patterns of circuits were used to reproduce these I-V relationships and they were connected

in parallel. Meantime, the I-V relationships of IK and Isi were reproduced with the dsPIC

by calculating amount of the currents that flow for each time instant according to the

changes of the membrane potential Vm.

An example of the first type of these three elementary analog circuit patterns is shown

in Figure 3.7(a). Basically, the flow of current I was controlled by Tr1 which acted as a

switch. When the input value of V1 was smaller than V2, the current I flowed inversely

and was almost terminated as V1 became larger. The amount of I could be controlled by
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changing the value or modifying the location of the resistors. The shape of generated I-V

relationship is shown as in Figure 3.7(b).

Figure 3.7: An example of the elementary circuit used to reproduce ion current (1st type).
(a) and (b) are the circuit pattern and its I-V relationship, respectively: V1= 0-5 V, V2=1
V, R1=10 kΩ, R2=1 kΩ, Tr1: npn-2SC1815.

An example of the second type of the elementary circuit patterns is shown in Figure

3.8(a). By referring the I-V relationship produced by this type of circuit as in Figure

3.8(b), there was no flow as the input value of V1 was smaller than V2, which caused

Tr1 and Tr2 to terminate. However, when the input value of V1 became larger, Tr1 and

Tr2 turned on, and allowed the current I to flow backward gradually as the value of V3

was larger than V1. The amount of I could also be controlled by changing the value or

modifying the location of the resistors.

Figure 3.8: An example of the elementary circuit used to reproduce ion current (2nd type).
(a) and (b) illustrate the circuit pattern and its I-V relationship, respectively: V1= 0-5 V,
V2=1 V, V3=6 V, R1=1 kΩ, R2=100 kΩ, Tr1: npn-2SC1815, Tr2: pnp-2SA1015.

Figure 3.9(a) and Figure 3.9(b) show the third type of the elementary circuit patterns

and its I-V realtionship, respectively. The operational mechanism of this circuit was quite
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similar to the second type, but when the input value of V1 was larger than V2, the current

I flowed forward due to the absence of V3 included in the 2nd type circuit (Figure 3.8(a)).

Figure 3.9: An example of the elementary circuit used to reproduce ion current (3rd type).
(a) and (b) are the circuit pattern and its I-V relationship, respectively: V1= 0-5 V, V2=3
V, R1=10 kΩ, R2=100 kΩ, R3=100 Ω, Tr1: npn-2SC1815, Tr2: pnp-2SA1015.

3.4.1 I-V Relationship of IK1

The LR-I time-independent potassium current, IK1, plays a role to maintain the

resting potential as it flows at negative potential. The analog circuit used to implement

the I-V relationship of IK1 is shown in the Figure 3.5(a). Referring to the Figure 3.10

for results of the I-V relationships of IK1, the hybrid model (dashed line) was roughly

comparable to the LR-I model (solid line). The appropriate relationship could be obtained

by adjusting the parameters of the circuit.

3.4.2 I-V Relationship of IKp

The LR-I time-independent plateau potassium current IKp is activated during the

plateau phase of the action potential along with the other potassium currents to restore

the cell to its resting state. This current does not flow at low but at high membrane

potential. The analog circuit shown in Figure 3.5(b) was constructed to reproduce the

I-V relationship of IKp. A comparative graph of the I-V relationships in the IKp for the

LR-I model (solid line) and the hybrid model (dashed line) is shown in the Figure 3.11.

Both models were found comparable.
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Figure 3.10: The I-V relationship of IK1 from the Luo-Rudy phase I model and the hybrid
model.

Figure 3.11: The I-V relationship of IKp from the Luo-Rudy phase I model and the hybrid
model.
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3.4.3 I-V Relationship of Ib

The background current Ib in LR-I, is a composite current representing the hodgepodge

of other currents left in the cell. The I-V relationship of this current is a linear function of

membrane potential, and it can be realized by using a simple analog circuit which consists

of a resistor and a voltage source as shown in Figure 3.5(c). Plots of I-V relationships

of Ib is shown in Figure 3.12. From the Figure 3.12, the I-V relationship of Ib from the

hybrid model (dashed line) was generally comparable to the feature of LR-I model (solid

line).

Figure 3.12: The I-V relationship of Ib from the Luo-Rudy phase I model and the hybrid
model.

3.4.4 I-V Relationship of INa

The fast inward sodium current INa in the LR-I causes the rapid upstroke of the

action potential. A short time-constant behavior of INa was reproduced by adopting the

analog circuit as shown in the Figure 3.5(d). RC-differentiation circuits were also applied

to produce surge-type transient signal. Dynamics of INa were analyzed by plotting the ion

current over time in response to the voltage step inputs (the voltage clamp experiment)

with various clamp voltage from -60 mV to 80 mV as shown in Figure 3.13. In Figure

3.13, the panel (a) is for INa of the hybrid model, and (b) is for that of the LR-I model.
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By comparing the features from both models, it has been found that, INa in the hybrid

model was not quantitatively comparable with those in the LR-I model. However, the

time-dependent changes in the current for different voltage step in both models were

considerably similar. In Figure 3.14, the panels (a) and (b) show the I-V relationships

obtained from the maximum values of INa along the time-dependent responses against

the intensity of the voltage in the hybrid model and that in the LR-I model, respectively.

They also showed qualitatively similar dependency on Vm, but they were not quantitatively

comparable.

Despite the quantitative difference in INa between the LR-I and the hybrid models, the

reproduced INa of the hybrid model was considered to be acceptable. It was considered

that, although INa values produced by the voltage steps in the LR-I model were generally

larger than those in the hybrid model, total amount of INa that flowed in a time period of

action potential onset in both models were almost the same, as the time constant of INa

was longer in the hybrid model than in the LR-I model.

3.4.5 I-V Relationship of IK

The LR-I time-dependent potassium current IK , is activated by the increase of the

membrane potential and it is not activated until the cell returns to its resting state. A long

time-constant behavior of IK was reproduced with the use of dsPIC implementation. The

dynamic response of the current to the voltage step shown in Figure 3.15(a) and 3.15(b),

respectively, are for the hybrid model and for the LR-I model. Both responses were noted

to be generally comparable. The graphs shown in Figure 3.16(a) and 3.16(b), depicts the

maximum values of IK against voltage step (I-V relationship) in the hybrid model and in

the LR-I model, respectively, and they were also comparable.

3.4.6 I-V Relationship of Isi

The slow inward current Isi flows due to the entry of Na+ during the plateau phase.

Isi changes slowly over time and therefore it was also emulated by the dsPIC. The slow
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Figure 3.13: Comparison in the INa as the function of time between the hybrid model
and the Luo-Rudy phase I model in response to various intensity of the voltage step (from
-60mV to 80mV) for an initial holding voltage of -100 mV.

Figure 3.14: Comparison of the maximum values of the INa against the intensity of the
voltage step between the hybrid model and the Luo-Rudy phase I model.
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Figure 3.15: Comparison in the IK as the function of time between the hybrid model and
the Luo-Rudy phase I model in response to various intensity of the voltage step (from
-60mV to 80mV) for an initial holding voltage of -100 mV.

Figure 3.16: Comparison of the maximum values of the IK against the intensity of the
voltage step between the hybrid model and the Luo-Rudy phase I model.
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dynamics of Isi are shown in Figure 3.17(a) and 3.17(b), where the panel (a) indicates

the result in the hybrid model and the panel (b) is for the LR-I model. From this figure,

it can be considered that the I-V relationship of Isi in the hybrid model was generally

comparable to the feature of the LR-I model. The maximum values of Isi against voltage

step in the hybrid model (Figure 3.18(a)) were also compared with those in the LR-I

model (Figure 3.18(b)), and the hybrid model showed performance comparable with the

LR-I model.

Figure 3.17: Comparison in the Isi as the function of time between the hybrid model and
the Luo-Rudy phase I model in response to various intensity of the voltage step (from
-60mV to 80mV) for an initial holding voltage of -100 mV.
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Figure 3.18: Comparison of the maximum values of the Isi against the intensity of the
voltage step between the hybrid model and the Luo-Rudy phase I model.

3.5 Action Potential Waveform

The action potential (AP) generation is initiated by an external stimulus applied to

the membrane cell, which can bring the cell to the threshold point where INa is activated

and causes the rapid depolarization of the AP. Then, the upstroke is followed by an early

repolarization phase, caused by an outward potassium current and the following plateau

phase depends on a balance between inward and outward currents. The AP waveform for

a single membrane cell produced by the hybrid cell model is shown in the Figure 3.19(a).

The AP produced by the LR-I model is shown in Figure 3.19(c). The AP produced by

the hybrid model in the panel (a) was converted to the scales of LR-I as shown in Figure

3.19(b). In this study, an impulsive stimulation with a duration of 1 ms and an intensity

of 80 µA was applied to the hybrid cell model and to the LR-I model, showing that the

action potential waveform produced by the hybrid cell model was quantitatively the same

as that by LR-I model. In particular, both models showed almost the same action potential

duration around 350 ms.

3.6 Response Characteristics to Trains of Stimulations

Simulated action potential patterns in response to periodic current impulse trains

with different interval (period) T are shown in Figure 3.20, where the panels (a) and (b)

represent, respectively, the AP patterns for the hybrid model and for the LR-I model.

By comparing the response patterns in both models, it could be noted that the hybrid
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Figure 3.19: Action potential waveforms of LR-I and the hybrid cell model. Panels (a) and
(c) represent the action potential waveforms generated by the analog-digital hybrid cell
model and the LR-I model, respectively, in response to a single current pulse. Panel (b)
shows the action potential waveform in the hybrid cell model after the scale conversion.
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model could simulate almost similar AP wave patterns to those of the LR-I model. More-

over, irregular response patterns here showed the non-uniformity of the AP responses to

particular repetitive impulse stimulations with relatively small time intervals. This may

imply to refractoriness of a cell, the condition which the cell cannot fully induce the action

potential wave before it had regained excitability.

Figure 3.20: Simulated action potential waveform patterns for different interval (period)
T of periodic current impulse trains. Panels (a) and (b) represent, respectively, the action
potential waveform generated by the hybrid model and the Luo-Rudy phase I model. Ratio
on the right-hand side of each waveform represents the number of the impulse stimulations
to the number of succeeded excitations in response to the stimulations.

The response characteristics of the hybrid model and the LR-I model to the periodic

current impulse trains by systematically varying two parameters of the stimulation, that

are, the intensity A and the interval (period) T of the impulse train were also analyzed.

The results were also compared between two models. Figure 3.21 shows the response
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characteristics of the models to periodic stimulation with the hybrid model, shown in (a)

and with the LR-I model, shown in (b), in which the response patterns of the model were

classified on the parameter plane of the intensity A and interval T of the impulse trains.

For the panel (a), the dynamics of the hybrid model were examined for 26 equally spaced

T values on the interval [70, 500] and 22 equally spaced (-A) values on the interval [0.5,

80]. For the panel (b), the dynamics of the LR-I model were simulated for 26 equally

spaced T values on the interval [70, 500] and 20 equally spaced (-A) values on the interval

[21, 80]. Symbols in the both figures indicate various types of response patterns obtained

from each of the stimulations. The combination of the intensity and the interval of the

impulse determined if the AP was generated or not as well as the pattern of the responses.

From both of the panels, it could be noted clearly that low intensity of the stimulation

could generate no AP waves. Furthermore, for the low intensity stimulation, long interval

T of the impulse did not guarantee the generation of the AP. Figure 3.21 also showed that

the results in the hybrid model were generally comparable to those in the LR-I model.

However, the major difference between the two models was that the threshold of the

stimulation intensity for the hybrid model necessary for generating AP was lower (at

around 2.5 µA) than the one for the LR-I model (at around 28 µA). The possible explana-

tion to this difference might be due to small differences in the I-V relationships between

the LR1 model and the hybrid model, although the I-V relationships of ion channels in

both models were noted to be generally comparable. In particular, the I-V relationship

of INa, which plays a role for the onset of the depolarization, could lead to the variant of

threshold of the stimulation intensity.
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Figure 3.21: Classification of excitation response patterns on the parameter plane spanned
by the period T and the intensity (-A) of the impulse trains. Panels (a) and (b) repre-
senting the results with the hybrid model and the Luo-Rudy phase I model, respectively.
The ratios indicate represents the number of the impulse stimulations to the number of
succeeded excitations in response to the stimulations.
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3.7 Summary and Discussion

In this chapter, the subject on how the analog-digital hybrid circuit model of the

action potential was developed based on the mathematically described Luo-Rudy phase

I model of a cardiac ventricular cell has been elaborated. The LR-I model became the

subject as for among various biophysically-detailed models of ventricular cells, the LR-I

is a categorized as one of simpler mathematical models. Nevertheless it is well-described

fundamental ionic mechanisms. The simulation the action potential by the hybrid model

has been carried out and the characteristic responses of the action potential to periodic

current impulse trains with various intervals were analyzed, they were conducted in real-

time performance. The validity of the hybrid model also has been examined by comparing

to the results of the LR-I model .

From the simulation results, they show that the action potential waveform produced by

the hybrid cell model was quantitatively the same as that by LR-I model. Moreover, it was

confirmed that the dynamics of the hybrid cell model were well reproduced the correspond-

ing dynamics of LR-I model, in response to periodic current impulse trains with a variety

of the period. Primarily, the objectives of this study were to perform a real-time simulation

of cardiac excitation and reproduce the LR-I model quantitatively by replicating the I-V

relationships of the six-type ion channel currents. Thus, as far as possible, it is desirable

that only the analog circuit implementation should be used to fulfill the objective of this

research as it can provide valuable tools for real-time operating system. However, without

application of specialized design analog ICs with the features and the performance desired

for the specific tasks, they are less suited in modeling biophysically-detailed, complicated

mechanisms and fluctuating characteristics of the ion currents. Therefore, in this study,

the time-dependent ion currents with large time constants, IK and Isi, were reproduced

by the digital implementations of dsPIC microcontroller. Apparently, for a use of analog

circuits, capacitors with relatively large size are required to produce the slow dynamics of

the ion currents.
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Numerous challenges have been faced in developing the hybrid model. The transient

dynamics of fast inward sodium current INa implemented as the analog circuit here, only

qualitatively reproduced the I-V relationship of the INa in the LR-I model. One of

the solutions to this problem is to use the specific hardware implementation of such a

model using a MOSFET device by the CMOS technology to reproduce quantitatively

the transiently-induced INa. Moreover, calculating mathematical functions (i.e., log(x)

(logarithm to the base e) and exp(x) (e to the power x)) in equations which represent

the ion currents of the IK and Isi by using the embedded applications based dsPIC may

present problems to rapid calculation in performing the real-time operation of the hybrid

model. Thus, to increase the speed of calculation, the initiative of accessing certain data

from constructed tables stored in the memory of the dsPIC has been taken rather than

computing the functions in the equations.

In behalf of the challenges as eleborated above, small differences in the I-V relation-

ships between the LR-I model and the hybrid model have occured, although the I-V

relationships of ion channels in both models were noted to be generally comparable, in

point of fact of getting the satisfied results as has been described before. Then, by con-

sidering the advantage of the hybrid model of allowing real-time simulation of the action

potential dynamics that were quantitatively comparable to a single biophysical cellular

membrane, the hybrid model is therefore thought to be useful for analyzing the dynamics

in cardiac physiology. Thus, this becomes a platform for developing large scale modeling of

action potential propagation in cardiac tissue structure for basic understanding underlying

mechanisms of excitable systems in the heart, as will be discussed in the next chapter.
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Chapter 4

Spatio-Temporal Dynamics and
Control of Reentrant Action
Potential Conduction in Active
Cable Models

4.1 Introduction

An excitable cell rarely exists in isolation, instead, the cell operates as part of a

network of similar cells and to function there must be communications between the cells.

The communication of electrical information is achieved through the propagation of action

potential along the cell membranes of tissue. Cardiac cells, also known as myocytes are

strongly interconnected via low-resistance gap junctions. The presence of these intercellu-

lar couplings thus causes the cardiac tissue to behave electrophysiologically as a functional

syncytium. Consequently, the underlying mechanisms of the heart cannot be described or

analyzed as the excitation dynamics of isolated cells.

Action potential propagation modeling of cardiac tissue is applied to simulate the nor-

mal and abnormal conditions in coupled nonlinear systems of the heart dynamics. Using

this approach, it may be possible to identify the underlying mechanisms that are primarily

responsible for the abnormal activity in excitable systems such as cardiac arrhythmias.

As for the heart dynamics, some cardiac arrhythmias are perpetuated by reentrant mech-

anisms. To model the action potential propagation, the cardiac tissue is often represented

by a one-dimensional cable model, as a simple analog circuit for a single fiber under
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the assumption that the effect of the extracellular potential is negligible and considered

grounded(Figure 4.1). This is called the mono-domain model.

Figure 4.1: An equivalent circuit for a single fiber of cardiac tissues model. Parameters
are as follows: Rd is the intracellular resistance which also known as the gap junction
resistance, Rion is the membrane resistance refering to specific ionic channels and Cm

is the membrane capacitance. This continuous structure described as the limit of an
infinite number of resistor and capacitor elements found by subdividing the continuum
into segments of length ∆x, and every ∆x also can be referred as a spatial of one cardiac
cell model. As ∆x → 0, the discrete representation approaches a continuous presentation.

In this chapter, the reentrant conduction of the action potential in a one dimensional

ring-topology-network of the hybrid active circuit cable model are discussed. Resetting and

annihilation of the reentrant wave under the influence of a single stimulus are investigated

and the relationship between the phase reset of the reentry and the stimulation phase are

presented by using a phase resetting curve (PRC). Then, sequential phase resettings by

periodic stimulation that leads to annihilations of the reentry are predicted by the PRC,

where one-dimensional discrete Poincare mappings illustrate the predictions. Comparisons

between the results from the hybrid active cable model and from the LR-I cable model

are also carried out.

4.2 Cable Model

The conductive strength of the intercellular connections enables the cardiac tissue

to be well approximated macroscopically as a functionally continuous excitable medium.
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Propagation of action potentials in an excitable tissue is often modeled by using signif-

icantly simplified quantitative method that can be represented by the one-dimensional

cable model, described by a mono domain reaction-diffusion equation. In particular, the

cable model is considered as a spatially one dimensional and homogeneous medium. Thus

it can be described as

∂Vm(x, t)

∂t
= D∇2Vm(x, t)− Iion(x, t)

Cm
+

Iext(x, t)

Cm
(4.1)

where Vm(x, t) is the cardiac cellular membrane potential at position x and time t, ∇2 is

the second derivative with respect to the position x, Cm = 1.0 µF cm−2 is the membrane

capacitance, D = (CmSvρ)
−1 is the diffusion coefficient, where Sv and ρ are the surface-to-

volume ratio of the cardiac cells and the longitudinal tissue resistivity of cardiac muscle,

respectively. This single differential equation can be extended to two and three dimension.

According to the literatures that use models of one and two dimensional cardiac tissues[42,

53], By considering the case with Sv = 5000 cm−1 and ρ = 0.2 kΩcm, leading to D = 1

cm2s−1. Iion(x, t) is the ion channel current at position x and time t. Here the Iion was

specified by LR-I model. Iext may also be position dependent if the externally applied

current are spatially distributed. More specifically, a one-dimensional ring of LR-I active

cable has been considered to represent as a model for exhibiting a circus movement reentry,

which is thought to be a typical mechanism of anatomical reentrant cardiac arrhythmia.

Here the ring of length L = 4.7 cm was considered.

The forward Euler spatial discretization with ∆x for Eq. 5 gives the ordinary differ-

ential equation of the compartment model at position x of LR-I cable as follows:

dVm(x, t)

dt
=

D

(∆x)2
(Vm(x+∆x, t)− Vm(x, t))

+
D

(∆x)2
(Vm(x−∆x, t)− Vm(x, t))

− Iion(x, t)

Cm
+

Iext(x, t)

Cm
.

(4.2)

For numerical simulation of LR-I cable, the ring were segmented into N = 80 compart-

ments, i.e., ∆x ≃ 0.058 cm. This is equivalent with considering the gap junction resistivity

between every adjacent compartments as Rd = 3.45 kΩcm2. For the one-dimensional ring
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tissue, the compartment model with a set of ordinary differential equations can then be

represented as

Cm
dV i

m

dt
=

1

Rd
(V i+1

m − V i
m) +

1

Rd
(V i−1

m − V i
m)− Iiion + Iiext. (4.3)

where i = 1, · · · , N = 80. V i
m and Iiion are the membrane potential and the ion channel

current of i-th compartment, respectively. Note that (i − 1) refers to N for i = 1, and

(i + 1) refers to 1 for i = N , because of the ring geometry of the model as illustrated in

Figure 4.2. That is, the 1st and the N -th compartments are connected by the resistive

gap junction of resistivity Rd. This set of ordinary differential equations together with

channel gating dynamics of every compartment were integrated numerically using explicit

Euler method with time step ∆t = 0.001 ms.

Figure 4.2: The ring-shaped active cable model. The ring model consists of N(=80) cell
models connected by the gap junction resistance Rd.

Although it is desirable to have quantitative reproduction of this LR-I cable model as

much as possible using a ring-topology-network of 80 hybrid cell models as in Figure 4.2,

there was a need to modify the value of the gap junction resistance to Rd = 2.35 kΩcm2,

by which conduction velocity of the action potential along the hybrid cable model became
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almost the same with that of LR-I cable model as shown below. The one-dimensional ring

of the hybrid cable model was built as shown in Figure 4.3.

Figure 4.3: Photograph of the analog-digital hybrid cable model circuits.

4.3 Circus Movement Reentry in Active Cable Models

For the circus movement reentry to occur in the ring-shaped LR-I and the hybrid cable

models, unidirectional conduction block of conducting action potentials and the presence of

excitable gap, which is defined as a spatial interval of the medium with enough excitability,

are essential. Unidirectional block occurs when an action potential wave-front fails to

propagate in one particular direction, but can continue to propagate in other directions.

Yet, the presence of the excitable gap is closely related to the conduction velocity of the

action potential wave and the length of the path around the block. Here an unidirectional

block was induced by using the so called S1-S2 protocol[9, 54], where single or several

(usually equally-time spaced) impulsive stimulations referred to as S1 were applied at a

given location of the ring, and then another impulsive stimulation referred to as S2 was

applied at a different location from the S1 site in a particular time.

Panels (a) and (b) in Figure 4.4 show space-time diagrams showing changes in the

membrane potential as a function of time and position around the ring during initiation

of reentry in the hybrid and LR-I cable models, respectively, by which quantitative repro-
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duction of LR-I cable dynamics by the hybrid cable model can be confirmed. Impulsive

stimulations for S1 and S2 with a duration of 1 ms and an intensity of 150 µA were

used. In each figure, two S1 stimulations were applied to the ring at the compartment of

number i = 1, at time t = 0 ms and t = 400 ms (red arrows marked the area and the time

where the stimulations were applied), pacing the excitation of the medium. Each stimu-

lus evokes excitation at the stimulated site, generating two conducting action potentials.

One propagates clockwise and the other counter-clockwise along the ring. As common in

excitable media, each conducting action potential possesses its wave-front and tail. The

wave-front progressively excites the compartments ahead of the wave-front, and the wave-

tail is accompanied with refractoriness that decreases as being distant from the action

potential. These two conducting action potentials were eventually collide with each other

at the opposite side of the stimulated site, leading to annihilation of the action potentials

due to the refractoriness located at each of the wave-tails. The S2, corresponding to an

ectopic focus excitation in the real heart, was then applied at a position (the compartment

number i = 18) slightly away from the S1 site at an appropriate time interval after the

second application of S1.

According to Figure 4.4, the panel (a), S2 was applied at t = 534 ms, where the time

interval of S1 and S2 was 134 ms. Meantime, in the panel (b), S2 was applied at t =

511 ms, with the time interval of 111 ms after the S1 stimulation. In order to initiate the

reentrant wave, the S2 must be applied when the action potential generated by the S1

has passed through the S2 site and refractoriness of the wave-tail is still large in the one

side of the S2 site (near side of the leaving action potential, referred to here as refractory

side) but the excitability has regained on the other side referred to here as excitable gap.

The S2 with this specific timing generates an action potential that can propagate only to

the excitable side (unidirectional block). Since the action potentials generated by the S1

were annihilated eventually, the single action potential generated by the S2 alone was left,

initiating the circus movement reentrant wave.

61



Figure 4.4: Space-time diagrams showing the membrane potential as a function of time
and position around the ring tissue. (a) The analog-digital hybrid cable model. (b) LR-I
cable model. For the hybrid cable model, the membrane potentials were recorded only for
the compartments 1, 4, 8, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64,
68, 72, 76, and 80, using a 24 ch recording device with analog-to-digital converters.
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The cycle length of the reentry in its steady state was T̄LR = 165 ms for LR-I cable, and

that for the hybrid cable model was T̄hyb = 148 ms. Note that action potential duration

after the initiation of reentry was about 80 ms which was shorter than those generated in

response to S1 stimulations in both LR-I and hybrid cable models. This is because the

wave-front of the reentrant wave is always chasing the wave-tail, and thus excitability of

the ring cable cannot be fully recovered.

For delivering S1 and S2 stimulations to the hybrid cable model, an impulsive stim-

ulator was constructed by using an H8/3694F microcontroller to control the timings of

the stimulations systematically as shown in Figure 4.5. The programmable stimulator

is also able to regulate the impulsive duration and intensity, other than controlling the

stimulation timings. The circuit is powered by the same source that is used for the digital

part. Details of the electronic components and the source program written into the H8

microcontroller are described in the Appendix B and C, respectively.

Figure 4.5: The circuit diagram of the impulsive stimulator used to control timing of
current injections to the hybrid cable model.
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4.4 Resetting and Annihilation of Reentry in Active Cable
Models

Reentrant arrhythmia often raise risks of insufficient blood pumping from the heart,

and it thus can be potentially fatal. Therefore termination of the reentry excitation is

highly desirable. Clinically, this is usually accomplished by delivering electrical stim-

ulations through a catheter penetrated into the heart, possibly somewhere closed to a

reentry pathway, leading to annihilation of the reentry. Glass and his colleagues have

been establishing a theory to handle this issue based on the phase resetting of nonlinear

oscillators[55, 56, 57, 58]. Here their theory was utilized for LR-I and the hybrid cable

models to show that the latter behaves satisfactory the same as the former.

In numerical and hardware experiments below, single and/or finite sequences of im-

pulsive current stimulations were delivered to the cable models that support the reentry

excitation as shown in the previous section. Those stimulations with the same stimulus

intensity as in the unidirectional block experiment were applied again at the compartment

of the number i = 18.

Panels (1a-1c) and (2a-2c) in Figure 4.6 show space-time diagrams exemplifying the

responses of the reentrant excitation to single stimulations as a function of time and

position in the hybrid cable and LR-I cable models, respectively. One could observe a

fairly good coincidence between the dynamics of the hybrid cable and the LR-I cable

models. Red arrows marked in the figure correspond to the applied stimulations. In each

of Figure 4.6(1a) and Figure 4.6(2a), the stimulation was applied at t = 419 ms and t

= 463 ms, respectively while still in the fully refractory side of the wave-tail. Thus, the

stimulus failed to generate any propagating action potentials, affecting less the original

reentry.

In each of Figure 4.6(1b) and Figure 4.6(2b), the stimulus was applied at a slightly

later time instant than (1a) and (2a), generating a single action potential propagating

only in a clockwise direction to collide with the originally counterclockwise propagating
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action potential, leading to the annihilation of the reentry. Where, the stimulation was

applied at time t = 421 ms coresponding to the hybrid cable model and time t = 468 ms

corresponding to the LR-I model. This result suggests that a single stimulation delivered

at an appropriate time interval referred to here as the annihilation interval, at which the

wave-tail of the original reentry is located slightly away from the stimulation site, could

annihilate the reentry.

In each of Figure 4.6(1c) and Figure 4.6(2c), the stimulus was applied at the excitable

gap located far behind the wave-tail of the original reentry, at t = 460 ms and t =

492 ms, respectively. This causes the induction of two propagating action potentials in

both clockwise and counterclockwise directions. The wave propagating in the clockwise

direction collided with the original reentrant wave, and they were annihilated with each

other. The wave traveling in the counterclockwise direction persisted, leading to the

resetting of the reentrant circulation rhythm, where the successive occurrence times of

excitation at every compartment were advanced about 50 ms in comparison with the

expected times for the original reentry excitation. These three cases are typical responses

of the reentry.
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Figure 4.6: Responses of the reentry dynamics to single impulsive stimulations. (1a)-(1c):
Responses of the hybrid cable model. (2a)-(2c): Responses of LR-I cable model.
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4.4.1 Phase Resetting Curve

The resetting (delay and advance of the circulation rhythm of the reentrant wave)

and the annihilation of the reentry can be analyzed using the phase resetting curve (PRC)

as performed in the previous studies[55, 56] in both hybrid and LR-I cable models. To

this end, the phase of the reentrant wave is defined based on the time instant when the

reentrant action potential is detected at a given recording site. Here the recording site

was located same as the stimulation site, i.e., the compartment number i = 18. First, the

stimulation phase ϕ that takes a value between 0 and 1 is defined as

ϕ =
tstim
T̄

(4.4)

where T̄ is the period of the steady state reentry with no stimulations, and tstim is the

time elapsed from the time instant when the last propagating reentrant action potential

is detected at the recording site before the stimulation is applied. A small stimulation

phase roughly between 0 < ϕ < 0.45, corresponding to roughly 0 < tstim < 75 ms, implies

that the stimulation is applied when the stimulation site is in the middle of the reentrant

action potential. A stimulation phase close to 1, corresponding to tstim ∼ T̄ , implies that

the stimulation is applied close to an oncoming wave-front of the reentry excitation.

The amount of phase reset ∆ϕ in response to a stimulation with its phase ϕ is defined

as

∆ϕ =
∆T

T̄
(4.5)

where ∆T is the difference between the expected time instant of detecting the original

reentrant action potential (when no stimulation is applied) and the time instant of detect-

ing the reentrant action potential that is affected or newly generated by the stimulation.

Positive and negative ∆T corresponds to phase delay and advance, respectively.

Result of detailed examinations on the responses of the reentry to stimulations deliv-

ered at various phases can be summarized using PRC. Figure 4.7 shows the PRC of the

hybrid cable model (a) and that of LR-I cable model. In both cases, the phase resetting
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was largely negative (advance) when the stimulation phase was in the latter half of the

reentry cycle. Only small amount of the phase resetting could be found for the stimu-

lation phase between 0.1 and 0.45. When a stimulation was applied around the middle

of the cycle length, roughly 0.47 < ϕ < 0.56 for the hybrid cable model and roughly

0.42 < ϕ < 0.51 for LR-I cable model as depicted by vertical gray bands in Figure 4.7(a)

and Figure 4.7(b), the reentry was annihilated by the stimulation as shown in Figure

4.6(1b) and Figure 4.6(2b). The phase interval corresponding to this gray band was re-

ferred to as the annihilation phase interval. Similarity between Figure 4.7(a) and Figure

4.7(b) was satisfactory, though the PRC of the hybrid cable model was not as smooth as

that of LR-I cable model, possibly due to internal noise contaminated in the hardware

circuits and small differences in parameter values of every analog devices.
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Figure 4.7: The phase resetting curves (PRCs) showing the amount of phase reset ∆ϕ
against the stimulation phase ϕ. (a) PRC of the hybrid cable model. (b) PRC of LR-I
cable model. Negative ∆ϕ implies phase advance. The vertical gray band represents the
annihilation phase interval. That is, the reentry is annihilated, if a stimulation falls within
this interval.
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4.4.2 Sequential Phase Resettings and Innihilation of Reentry

Once the PRC representing the response of the reentrant wave to single stimulations

at various stimulation phases is obtained, the dynamics of the reentry in response to

a periodic sequence of the stimulations should be able to be predicted as examined in

the previous study[56]. By considering the response of the reentry to a sequence of the

stimulations with period Tstim. According to the theory of PRC, for a given phase of the

first stimulation ϕ1, the second stimulation is applied at the phase ϕ2 = ϕ1−∆ϕ1+Tstim/T̄

(mod 1). In general, for a given n-th stimulation phase, (n+ 1)-th stimulation phase can

be described as follows:

ϕn+1 = ϕn −∆ϕn +
Tstim

T̄
, (mod 1). (4.6)

Using this iterative mapping formulation, a sequence of stimulation phases {ϕn} for a

given initial stimulation phase ϕ1 can be obtained. If ϕn falls within the annihilation

phase interval for the first time along the sequence, It can be predicted that the reentry is

annihilated by the n-th stimulation of the periodic train of the stimulations with period

Tstim.

To confirm whether this theory could predict the reentry dynamics or not, evaluations

were held by applying the theory in the hybrid cable model and LR-I cable model. For

each of these two cable models, the PRC obtained in Figure 4.7 was used to establish the

iterative mapping as in equation (4.6). As an example, Tstim = 185 ms and ϕ1 = 0.6875

were set for the hybrid cable model. Equation (4.6) with the PRC shown in Figure

4.7(a) predicts that the first stimulation induces a relatively large advanced ∆ϕ1 ∼ −0.38,

followed by ϕ2 = ϕ1 − ∆ϕ1 + 1.25 (mod 1)= 0.3193, and ϕ3 = ϕ2 − ∆ϕ2 + 1.25 (mod

1)= 0.5693 which was within the annihilation interval. For comparison, another example

was performed by the LR-I cable. This time, the stimulations with Tstim = 200 ms and

ϕ1 = 0.8182 were set. By referring to the PRC shown in Figure 4.7(b), ∆ϕ1 ∼ −0.23

was obtained. Thus, equation (4.6) predicts ϕ2 = ϕ1 −∆ϕ1 + 1.12 (mod 1)= 0.2636, and
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ϕ3 = ϕ2 −∆ϕ2 + 1.12 (mod 1)= 0.4732 falls within the annihilation phase interval.

These predictions can be shown with the one dimensional discrete Poincaré mappings

hold as in equation (4.6)(Figure 4.8). According to the previous study of analyzing the

dynamics of the reentry in response to a periodic sequence of the stimulations by using

the Poincaré mappings[56], the Poincaré mappings imply the predictions by the following

rules : (1) If there is a stable periodic point in the Poincaré mapping, there will be

stable entrainment of the periodically stimulated reentrant wave. (2) If the iterates of the

Poincaré mapping land in the annihilation phase after n − 1 iterates, then the reentrant

wave will be annihilated after n stimuli. The Poincaré mapping in Figure 4.8(a) and (b)

illustrates the example performed by the hybrid cable model and the LR-I cable model,

respectively, in which Tstim = 185 ms and ϕ1 = 0.6875 for the hybrid cable model and

Tstim = 200 ms and ϕ1 = 0.8182 for the LR-I cable model lead to termination after two

iterations. Thus, Figure 4.8(a) and (b) imply the second rule describe as above.

Furthermore, Figure 4.9(1a,1b) and (2a,2b), respectively show the dynamics of the

hybrid and the LR-I cable models in response to this set of stimulations. The results

confirm the prediction of the theory. As for two stimulations separated by Tstim = 185

ms in the hybrid cable model and Tstim = 200 ms in the LR-I cable model could not

annihilate the reentry as in Figure 4.9(1a) and (2a), but three did as in Figure 4.9(1b)

and (2b). From this remark, quantitative similarity between Figure 4.9(1a,1b) and Figure

4.9(2a,2b) was found to be satisfactory, confirming a capability of reproducing LR-I cable

dynamics by the hybrid cable model.
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Figure 4.8: The one dimensional discrete Poincare mappings. (a) Poincare mapping of
the hybrid cable model. (b)Poincare mapping of LR-I cable model. The horizontal axis
and verticle axis corresponds the n-th stimulation phase and the next n+1-th stimulation
phase, respectively. The vertical gray band represents the annihilation phase interval.
That is, the reentry is annihilated, if the mapping falls within this interval.
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Figure 4.9: Sequential phase resettings that leads to annihilation of the reentry by a
train of stimulations. In the hybrid cable model the reentry was annihilated by three
stimulations equally separated by Tstim = 185 ms in (1b), but not by two stimulations
in (1a). In LR-I cable model the reentry was annihilated by three stimulations equally
separated by Tstim = 200 ms in (2b), but not by two stimulations in (2a).
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4.5 Summary and Discussion

The one dimensional ring of the analog-digital hybrid active circuit cable model in

performing the reentrant action potential conductions has been proposed. For comparison,

the reentrant simulations by the LR-I cable model were also presented for comparison of

the reentrant dynamics responses. In the study, the anatomical circus movement reentry

was able to be performed as a result in the development of unidirectional conduction block

by S1-S2 impulsive current induced. The simulation of phase resetting and reentrant wave

annihilation in response to single impulsive stimulations were also carried out. The phase

resetting curve (PRCs) of both models were presented to show the relationship between

the phase reset of the reentry and the stimulation phase. From the theory introduced in

previous studies by Glass and his colleagues, phase resettings by periodic stimulation that

leads to annihilations of the reentry were predicted by using the PRCs and the results were

illustrated with one-dimensional discrete Poincare mappings. From the result presented

in the paper, there were quantitative correspondence in dynamic responses of the reentry

between the hybrid cable model and LR-I cable model.

The hybrid cable model was able to perform real-time simulations of excitation propa-

gation in cardiac tissues. In this study, a PC with Intel(R) Core(TM) 2 Quad CPU Q9550

2.83 GHz and 3.25 GB RAM was being used in purpose of the numerical simulations. For

the numerical simulation of LR-I cable with 80 compartments, it took about 20 seconds

for 200 ms simulation time span that was roughly equal to one cycle length of the reentry.

This means that the hybrid cable model was able to realize simulations over 100 times

faster than those required for the numerical simulations of the LR-I cable model. It is

important to emphasize that increase in the number of the hybrid cell models consisting of

a tissue model does not reduce the speed, as each of the nodal cell models always operates

in real-time.

According to the relevant results and the advantage as above, these approve that

the analog-digital hybrid circuit model could be one of alternative tools used in better
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understanding the mechanisms of reentry.

In constructing a large quantity of hybrid cell models to develop the hybrid cable

model, there were challenges in designing the circuits especially the analog part. In the

study, the gap junction resistance value of Rd = 2.35 kΩcm2 was used to keep the reentrant

conduction velocity near to the velocity presented by the LR-I cable model with the value

of Rd = 3.45 kΩcm2. The different of the Rd value between both models might be due to

small differences in the I-V characteristics between the LR-I model and the analog-digital

hybrid circuit model, as discussed in the previous chapter.

Besides, analog design is characterized by the need to pay attention to multiple aspects

such as noise, input and output voltage range, gain and etc. If these have not been taken

seriously into consideration, a mismatch of components occurs, which cause variations

of characteristics in every analog-digital hybrid active circuit and might give problems

with reproducibility of the hybrid circuit model. Figure 4.10 shows an example of unique

feature in the reentrant response by the hybrid cable model. According to the figure,

in the three times of reentrant annihilation attempts by the stimulation given at exactly

at the same time, it happened that the reentrant wave in the first trial (Figure 4.10(a))

is terminated but not in the second and the third trials (Figure 4.10(b) and (c)). This

kind of feature showed up sometimes at a particular time in the beginning or in the end

of the reentrant annihilation phase. However, a slight difference among the hybrid cell

models can be thought to be “natural,” since real cardiac cells are not identical and might

not possess exactly the same physiological properties. Therefore, it is thought that, the

slight differences in the characteristics among the hybrid cell models might also bring the

simulations closer to the behavior of real cardiac tissues.
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Figure 4.10: The three attempts of reentrant annihilation by the single impulsive stimu-
lation, with a duration of 1 ms and an intensity of 150 µA given at t = 409 ms, at 18-th
compartment of the hybrid cable model.
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Chapter 5

Discussion and Conclusion

In this research, firstly, the single analog-digital hybrid circuit model, also described

as the hybrid cell model, based on the standard mathematical model of Luo Rudy phase

I model for generating the cardiac ventricular action potential has been developed. The

Hybrid cell model was capable to operate in real-time. Then, a one-dimensional ring-

topology-network of 80 compartments of the hybrid cell model, referred to here as the

hybrid cable model, was constructed through interconnection of gap junction resistances

for exhibiting the reentrant action potential conduction. The hybrid cable model was also

able to perform real-time simulations of action potential conduction in cardiac tissues. It

is interesting to note that, increase in the number of the cell models has absolutely no

affect on the real-time performance of the cable model. The validity and reliability of the

hybrid cell model and the hybrid cable model were examined with the comparison to the

numerically simulated LR-I cell model and its cable model.

In the single cell simulations, the action potential characteristics of the hybrid cell

model and the LR-I cell model were comparable as the hybrid cell model was generally

reproduced the current-voltage (I-V ) relationships of ion currents described in the LR-

I cell model. Those involve (1) the action potential waveform, and (2) the excitation

dynamics of the hybrid cell model in response to periodic current impulse trains with

various intervals and intensity levels.
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In the simulations of the reentrant action potential conduction, quantitative corre-

spondences between the hybrid cable model and the LR-I cable model were demonstrated

using a one dimensional active cable as a model of the anatomical reentry in a cardiac

tissue with various conditions. Those include (1) unidirectional block to initiate reentry,

(2) phase resetting by single impulsive stimulations, (3) annihilations of the reentry by

appropriately timed single stimulations, (4) phase resetting curves (PRCs) that can char-

acterize the reentry dynamics in response to single stimulations at various timings, and

(5) sequential phase resetting that leads to annihilation of the reentry as predicted by the

one dimensional discrete Poincare mappings.

To the best of my knowledge, this is the first attempt to design and implement a hard-

ware circuit model of spatially distributed cardiac tissue with biophysically detailed ion

channel currents responsible for the cellular excitations. From the satisfactory correspon-

dences that were examined here between the hybrid and the LR-I cable models, and taking

into account the real-time simulation capability of the hybrid model, these can be con-

cluded that the hybrid model might be a useful tool for large scale simulations of cardiac

tissue dynamics, as an alternative to numerical simulations, toward further understanding

of the reentrant mechanisms.

In this study, each analog-digital hybrid cell model used in this study was powered

with ±9 V, and the peak total current measured at the DC power sources V+ and V−

of Figure 3.4 for the analog part of the model was 0.08 A and -0.06 A, respectively. For

the digital part with 5 V DC power source (VCC) of Figure 3.6, it was 0.14 A. Simple

calculations give us a rough estimation of the energy consumption in a single hybrid cell

model, and it is about 2 W at most. For the hybrid cable model with N cell models,

this becomes 2N W. The energy consumption of the hybrid cable model with N = 80 is

thus about 160 W, which is roughly comparable order with an energy consumption single
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desktop PC. This estimation implies that a large quantity of energy might be consumed

for large scale real-time dynamics simulations.

As the mission of the current study was to perform real-time simulations of excitation

propagation, the issue of minimizing the power consumption in the circuits was not taken

into concern. However, nowadays, the focus on developing minimum power consumption

in devices and products has been uplifted most. Therefore, one way to achieve reduction

in the energy consumption, as well as reduction in the physical size of the circuit, is to

implement this analog-digital hybrid circuit using LSI technology. Indeed, development of

technology begins to allow for such realizations as attempted in some recent studies[59, 60].

Therefore, if the proposed hybrid cell model can be implemented as a LSI circuit in the

future, dynamics of a large scale aggregation of the hybrid cell models as a cardiac tissue

model can be simulated in real-time with a smaller energy consumption, where it would

be possible to model more complex dynamics of the heart tissue as a large scale excitable

medium than the one exhibited by one dimensional tissue and control of them, such as

spiral wave propagations, break-up of spiral waves, and defibrillation of them[21, 61].
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Appendix A

Glossary of Circuit Diagrams

Figure A.1 shows nine circuit diagrams of the voltage sources (V 1-V 9) for generating

the Nernst potentials and others of ion channel currents in the analog part shown in Figure

3.5. Basically, general-purpose 6 V regulators (7806) are used to fix the voltage signal of

V+ to 6 V and capacitors are applied for smoothing the electrical signal. In some of the

circuits, the voltage signal of 6 V is divided by voltage-dividing circuits which consist of

resistors as shown in the figure. Then, voltage followers which are constructed by using a

general-purpose operational amplifier, LF356N are applied to reinforce the current signal

with the value of V 1, V 2, V 3, V 4, V 5, V 6, V 7, V 8, and V 9 as 1.3 V, 1.2 V, 6 V, 1.52 V,

2.3 V, 6 V, 1 V, 3 V, and 3.6 V, respectively.

Figure A.1: Circuit diagrams of voltage sources in the analog part
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Figure A.2 shows a regulated +5 V (VCC) DC power supply with 1 A current limiter

for the dsPIC in Figure 3.6 and the H8/3694F microcontroller in Figure 4.5. The base

of this design is using a general-purpose 5 V regulator (7805, REG.10) to maintain a

constant voltage level at 5V and the capacitors for over-voltage protection and smoothing

the electrical signal. The LED4 will light up every time the power source is switched on.

In this study, we used 9 V (V+) and -9 V (V−) that were supplied by a stabilized power

source device.

Figure A.2: A diagram of a power source circuit used in the digital part and the impulsive
stimulator
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Appendix B

Parameter of Components and
PCB Layouts

Table B.1 presents the electronic components that are used in constructing the analog-

digital hybrid active circuit and the impulsive stimulator circuit shown in Figure 3.4, Figure

3.5, Figure 3.6, Figure 4.5, Figure A.1 and Figure A.2.

PCB layout figures of the analog-digital hybrid circuit are also provided here. Those

PCB layouts are prepared in actual size for available reproduction print of a double-sided

circuit board, where Figure B.1, Figure B.2, and Figure B.3 correspond respectively to a

top layer of signals traces, a bottom layer of signals traces and a symbol description of

components for the analog part of the hybrid model.

The top layer of signals traces, the bottom layer of signals traces, and the symbol

description of components in the digital part of the hybrid model are shown in Figure

B.4, Figure B.5, and Figure B.6, respectively. Furthermore, black dotted symbols shown

in Figure B.3 and Figure B.6, respectively, represent through holes which are used for

connecting tracks between the top and the bottom layers of the analog part and the

digital part.
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Table B.1: The electronic components used in the analog-digital hybrid active circuit and
the impulsive stimulator circuit

Part Model Maker Symbol

1 4-channel Op. Am-
plifier

TL084CN Texas Instru-
ments

U1

2 Dual-channel Op.
Amplifier

TL082CN ST Microelec-
tronics

U2

3 dsPIC microcon-
troller

dsPIC30F4011-30I/P Microchip U3

4 D/A converter AD5331BRUZ Analog Devices U4

5 SOP to DIP socket
converter adapter

20P-SOD-065-300 Sunhayato U4

6 2.5V precision volt-
age reference

MCP1525-I/TO Microchip Tech-
nology

U5

7 Renesas Technology
H8 microcontroller
(HD64F3694FX)
mounted board

MB-H8A Sunhayato U6

8 LCD character dis-
play module

SC1602BS-B Sunlike Display
Tech. Corp.

U7

9 Single-channel Op.
Amplifier

LF356N/NOPB National Semi-
conductor

U8-U16

10 Crystal oscillator HC-49/U-S 7.3728MHz Kyocera X1

11 Diode 1S2076A-E Renesas Electron-
ics

D1

12 Red LED L-7104SRD-G Kingbright LED1

13 Green LED TLGU53C(F) Toshiba LED2

14 Red LED TLSU163(F) Toshiba LED3

15 Yellow LED TLPYE53T(F) Toshiba LED4

16 Tactile switch SKRGAAD010 Alps Electric SW1, SW2, SW3

17 NPN-type Bipolar
transistor

2SC1815-O(F) Toshiba Tr1, Tr3, Tr4,
Tr6, Tr8

18 PNP-type Bipolar
transistor

2SA1015-O(F) Toshiba Tr2, Tr5, Tr7, Tr9

19 NPN-type Bipolar
transistor

2SC1815-Y(F) Toshiba Tr10, Tr12, Tr14,
Tr15

20 PNP-type Bipolar
transistor

2SA1015-Y(F) Toshiba Tr11, Tr13

21 Ceramic condenser:
1 µF

RPER11H105K3M1C01A MuRata C1

22 Ceramic condenser:
0.22 µF

RPER11H224K2M1C01A MuRata C9

23 Ceramic condenser:
0.1 µF

RPER11H104K2M1A01A MuRata C2-C8, C13,
C15, C17-C20,
C33-C37

24 Ceramic condenser:
0.01 µF

RPER11H103K2M1C01A MuRata C16, C21
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25 Ceramic condenser:
0.001 µF

RPER11H102K2K1A01B MuRata C12, C14

26 Ceramic condenser:
15 pF

RPE2C1H120J2M1Z01A MuRata C10

27 Ceramic condenser:
12 pF

RPE2C1H150J2M1Z01A MuRata C11

28 Capacitor: 16V/33
µF

ECEA1CKS330 Panasonic C22-C32, C38

29 Linear regulator: 6V MC7806CTG ON Semiconduc-
tor

REG.1-REG.9

30 Linear regulator: 5V MC7805ABTG ON Semiconduc-
tor

REG.10

31 Potentiometer: 5kΩ 3296W-1-502LF Bourns R32, R61, R62,
R64, R65, Rd

32 Resistor: 33MΩ RCR25C336J KOA R43, R44

33 Resistor: 3MΩ RMG25FX3M Takman R38

34 Resistor: 120kΩ MF1/4CC1203F KOA R19, R30

35 Resistor: 30kΩ CF1/4C303J KOA R22, R36, R66,
R73, R76, R79,
R85

36 Resistor: 20kΩ CF1/4C203J KOA R10, R21, R33,
R34, R35, R40,
R41, R70, R71,
R78, R80, R84

37 Resistor: 10kΩ CF1/4C103J KOA R20, R27, R31,
R49, R52, R53,
R56, R59, R69,
R72, R74, R81-
R83

38 Resistor: 4.7kΩ CF1/4C472J KOA R14

39 Resistor: 3.3kΩ CF1/4C332J KOA R47, R51

40 Resistor: 3kΩ CF1/4C302J KOA R8, R37, R67,
R68

41 Resistor: 2kΩ CF1/4C202J KOA R9, R42, R60,
R63, R77

42 Resistor: 1.5kΩ CF1/4C152J KOA R12, R23

43 Resistor: 1kΩ CF1/4C102J KOA R1-R6, R28, R48,
R54, R55

44 Resistor: 560Ω CF1/4C561J KOA R50, R86

45 Resistor: 510Ω CF1/4C511J KOA R24, R29

46 Resistor: 360Ω CF1/4C361J KOA R15, R18, R25

47 Resistor: 330Ω CF1/4C331J KOA R57, R58

48 Resistor: 200Ω CF1/4C201J KOA R75

49 Resistor: 150Ω CF1/4C151J KOA R39

50 Resistor: 100Ω CF1/4C101J KOA R11, R13

51 Resistor: 68Ω CF1/4C680J KOA R7

52 Resistor: 51Ω CF1/4C510J KOA R45

53 Resistor: 33Ω CF1/4C330J KOA R46

54 Resistor: 30Ω CF1/4C300J KOA R16

55 Resistor: 15Ω CF1/4C150J KOA R17, R26
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56 3 pin connector DF1EC-3P-2.5DSA(05) Hirose Electric
Co.

P1 POWER,
P2 TO DIGI-
TAL, P3 Vm,
P4 Vm, P5 Vm,
P1 ANALOG

57 2 pin connector DF1EC-2P-2.5DSA(05) Hirose Electric
Co.

P2 POWER,
P3 LED1

58 2.54mm pinch PCB
pin header, jumper
link

M20-9993645, M7571-05 RS J1-J4

59 PCB signal check
terminal

SLD-2-G Sunhayato TP1, TP2, TP3
Vm, TP4, TP5,
TP6 V+, TP7 V-
, TP8 V IK+Isi,
V Iext IN
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タイプライターテキスト
Figure B.1 Top layer of the analog part
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タイプライターテキスト
Figure B.2 Bottom layer of the analog part
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タイプライターテキスト
Figure B.3 Description of components in the analog part
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タイプライターテキスト
Figure B.4 Top layer of the digital part
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タイプライターテキスト
Figure B.5 Bottom layer of the digital part
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Figure B.6 Description of components in the digital part
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Appendix C

Source Code Programs

List C.1 shows the C language source code program written for the dsPIC to implement
the digital part of the hybrid model in reproducing the ion currents IK and Isi of the
Luo-Rudy phase I model. In this work, MPLAB IDE (ver.7.50) was used as the dsPIC
development environment software and a C compiler of MPLAB C30 was also used. Both
can be downloaded for free from the Microchip (USA) official website. Moreover, Microchip
MPLAB ICD2 was used as a tool to program the dsPIC microcontroller.

List C.1: The source code program for the dsPIC.

// INCLUDE DEVICE FILE

#include "p30f4011.h"

#include "timer.h"

#include "math.h"

#include "adc10.h"

// SETUP CONFIGURATION PARAMETER

_FOSC(CSW_FSCM_OFF & XT_PLL16); // 7.3728MHz x 16=117.9648MHz

_FWDT(WDT_OFF);

_FBORPOR(PBOR_ON & BORV_20 & PWRT_64 & MCLR_EN);

_FGS(CODE_PROT_OFF);

// DECLARATION OF TABLES

const double __attribute__ ((space(psv), address (0x1000)))

Ad_table[810] = {

0.00014133,0.00014578,0.00015037,0.0001551,0.00015998,0.00016501,0.0001702,0.00017556,0.00018108,0.00018678,

0.00019265,0.00019871,0.00020496,0.00021141,0.00021806,0.00022492,0.00023199,0.00023929,0.00024681,0.00025458,

0.00026258,0.00027084,0.00027935,0.00028814,0.0002972,0.00030654,0.00031618,0.00032612,0.00033637,0.00034694,

0.00035784,0.00036909,0.00038069,0.00039265,0.00040499,0.00041771,0.00043084,0.00044437,0.00045833,0.00047272,

0.00048757,0.00050288,0.00051867,0.00053496,0.00055175,0.00056907,0.00058693,0.00060535,0.00062435,0.00064393,

0.00066414,0.00068497,0.00070645,0.0007286,0.00075145,0.000775,0.00079929,0.00082434,0.00085017,0.00087681,

0.00090427,0.00093259,0.00096178,0.00099189,0.0010229,0.0010549,0.0010879,0.001122,0.001157,0.0011932,

0.0012305,0.0012689,0.0013086,0.0013494,0.0013916,0.001435,0.0014798,0.0015259,0.0015735,0.0016225,

0.001673,0.0017251,0.0017788,0.0018342,0.0018912,0.00195,0.0020106,0.002073,0.0021374,0.0022037,

0.002272,0.0023424,0.002415,0.0024897,0.0025667,0.0026461,0.0027278,0.002812,0.0028988,0.0029882,

0.0030802,0.003175,0.0032726,0.0033732,0.0034768,0.0035834,0.0036932,0.0038063,0.0039227,0.0040425,

0.0041658,0.0042928,0.0044235,0.004558,0.0046965,0.0048389,0.0049855,0.0051363,0.0052914,0.005451,

0.0056151,0.0057839,0.0059575,0.006136,0.0063195,0.0065081,0.0067021,0.0069014,0.0071061,0.0073166,

0.0075328,0.0077548,0.0079829,0.0082171,0.0084576,0.0087044,0.0089578,0.0092179,0.0094847,0.0097584,

0.010039,0.010327,0.010622,0.010925,0.011235,0.011553,0.011878,0.012211,0.012553,0.012902,

0.01326,0.013626,0.014,0.014382,0.014774,0.015173,0.015582,0.015999,0.016425,0.01686,

0.017303,0.017756,0.018217,0.018687,0.019167,0.019655,0.020151,0.020657,0.021171,0.021694,

0.022226,0.022766,0.023314,0.02387,0.024435,0.025007,0.025587,0.026175,0.02677,0.027372,

0.027981,0.028596,0.029217,0.029845,0.030478,0.031116,0.031759,0.032407,0.033059,0.033714,

0.034373,0.035035,0.035699,0.036366,0.037033,0.037702,0.038371,0.03904,0.039709,0.040377,

0.041043,0.041707,0.042368,0.043026,0.043681,0.044331,0.044976,0.045617,0.046251,0.046879,

0.0475,0.048114,0.04872,0.049317,0.049906,0.050485,0.051055,0.051615,0.052164,0.052703,

0.05323,0.053745,0.054249,0.05474,0.055219,0.055685,0.056138,0.056578,0.057005,0.057418,

0.057817,0.058202,0.058574,0.058931,0.059275,0.059604,0.059919,0.06022,0.060507,0.06078,

0.061039,0.061284,0.061515,0.061732,0.061936,0.062126,0.062303,0.062467,0.062618,0.062756,

0.062881,0.062994,0.063095,0.063184,0.063261,0.063327,0.063381,0.063425,0.063457,0.063479,

0.063491,0.063493,0.063485,0.063467,0.063441,0.063405,0.063361,0.063308,0.063247,0.063177,

0.063101,0.063016,0.062925,0.062826,0.062721,0.062609,0.062491,0.062367,0.062237,0.062101,

0.06196,0.061814,0.061663,0.061507,0.061346,0.061181,0.061012,0.060838,0.060661,0.06048,

0.060296,0.060108,0.059917,0.059723,0.059526,0.059326,0.059124,0.058919,0.058712,0.058503,

0.058292,0.058078,0.057863,0.057646,0.057428,0.057208,0.056986,0.056763,0.056539,0.056314,

0.056088,0.055861,0.055633,0.055404,0.055174,0.054944,0.054713,0.054482,0.05425,0.054017,

0.053785,0.053552,0.053319,0.053086,0.052853,0.052619,0.052386,0.052152,0.051919,0.051686,

0.051453,0.05122,0.050987,0.050755,0.050523,0.050291,0.05006,0.049829,0.049598,0.049368,

0.049138,0.048909,0.048681,0.048452,0.048225,0.047998,0.047771,0.047546,0.047321,0.047096,

0.046872,0.046649,0.046427,0.046205,0.045984,0.045763,0.045544,0.045325,0.045107,0.04489,

0.044673,0.044457,0.044242,0.044028,0.043815,0.043602,0.043391,0.04318,0.04297,0.042761,

0.042552,0.042345,0.042138,0.041932,0.041727,0.041523,0.04132,0.041117,0.040916,0.040715,

0.040515,0.040316,0.040118,0.039921,0.039725,0.039529,0.039335,0.039141,0.038948,0.038756,

0.038565,0.038375,0.038185,0.037997,0.037809,0.037622,0.037436,0.037251,0.037067,0.036884,

0.036701,0.036519,0.036339,0.036159,0.03598,0.035801,0.035624,0.035447,0.035271,0.035097,

0.034922,0.034749,0.034577,0.034405,0.034234,0.034064,0.033895,0.033727,0.033559,0.033393,

0.033227,0.033062,0.032897,0.032734,0.032571,0.032409,0.032248,0.032088,0.031928,0.031769,
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0.031611,0.031454,0.031298,0.031142,0.030987,0.030833,0.030679,0.030526,0.030375,0.030223,

0.030073};

const double __attribute__ ((space(psv), address (0x2000)))

Bd_table[810] = {

0.17097,0.16927,0.16759,0.16592,0.16426,0.16261,0.16097,0.15934,0.15772,0.15612,

0.15452,0.15293,0.15135,0.14978,0.14822,0.14667,0.14513,0.1436,0.14208,0.14057,

0.13907,0.13757,0.13609,0.13461,0.13314,0.13168,0.13023,0.12879,0.12735,0.12593,

0.12451,0.1231,0.1217,0.12031,0.11892,0.11755,0.11618,0.11481,0.11346,0.11212,

0.11078,0.10945,0.10812,0.10681,0.1055,0.1042,0.10291,0.10162,0.10034,0.099072,

0.097809,0.096553,0.095305,0.094064,0.09283,0.091604,0.090385,0.089173,0.087969,0.086772,

0.085583,0.084401,0.083227,0.082059,0.0809,0.079748,0.078603,0.077466,0.076337,0.075216,

0.074102,0.072995,0.071897,0.070806,0.069724,0.068649,0.067582,0.066523,0.065472,0.06443,

0.063396,0.06237,0.061352,0.060342,0.059342,0.058349,0.057365,0.05639,0.055424,0.054466,

0.053517,0.052577,0.051646,0.050724,0.049812,0.048908,0.048013,0.047128,0.046252,0.045386,

0.044529,0.043681,0.042844,0.042015,0.041197,0.040388,0.039588,0.038799,0.038019,0.03725,

0.03649,0.03574,0.035,0.03427,0.03355,0.03284,0.03214,0.03145,0.03077,0.0301,

0.02944,0.02879,0.02815,0.02752,0.0269,0.02629,0.02569,0.0251,0.02452,0.023949,

0.023389,0.022838,0.022296,0.021765,0.021242,0.02073,0.020227,0.019733,0.019249,0.018773,

0.018307,0.017851,0.017403,0.016964,0.016534,0.016112,0.0157,0.015295,0.0149,0.014512,

0.014133,0.013763,0.0134,0.013045,0.012698,0.012359,0.012027,0.011703,0.011386,0.011077,

0.010775,0.01048,0.010192,0.0099104,0.0096358,0.0093679,0.0091065,0.0088515,0.0086027,0.0083601,

0.0081236,0.007893,0.0076682,0.0074491,0.0072356,0.0070276,0.006825,0.0066277,0.0064354,0.0062483,

0.0060661,0.0058887,0.005716,0.005548,0.0053845,0.0052254,0.0050706,0.0049201,0.0047736,0.0046312,

0.0044928,0.0043582,0.0042273,0.0041001,0.0039765,0.0038563,0.0037396,0.0036262,0.003516,0.0034089,

0.0033049,0.0032039,0.0031059,0.0030106,0.0029181,0.0028284,0.0027412,0.0026566,0.0025745,0.0024948,

0.0024175,0.0023424,0.0022696,0.002199,0.0021304,0.0020639,0.0019994,0.0019368,0.0018762,0.0018173,

0.0017602,0.0017049,0.0016512,0.0015992,0.0015488,0.0014999,0.0014525,0.0014065,0.001362,0.0013188,

0.001277,0.0012364,0.0011971,0.001159,0.0011221,0.0010864,0.0010517,0.0010182,0.00098564,0.00095414,

0.00092362,0.00089405,0.00086541,0.00083768,0.00081081,0.00078479,0.00075958,0.00073517,0.00071153,0.00068864,

0.00066647,0.00064501,0.00062422,0.00060409,0.0005846,0.00056573,0.00054746,0.00052977,0.00051265,0.00049607,

0.00048002,0.00046448,0.00044944,0.00043488,0.00042079,0.00040714,0.00039394,0.00038116,0.00036878,0.00035681,

0.00034522,0.000334,0.00032314,0.00031264,0.00030247,0.00029263,0.0002831,0.00027389,0.00026497,0.00025634,

0.00024798,0.0002399,0.00023208,0.00022451,0.00021719,0.0002101,0.00020325,0.00019661,0.00019019,0.00018398,

0.00017797,0.00017216,0.00016653,0.00016109,0.00015583,0.00015073,0.0001458,0.00014103,0.00013642,0.00013196,

0.00012764,0.00012346,0.00011942,0.00011551,0.00011173,0.00010807,0.00010453,0.0001011,9.7791e-005,9.4586e-005,

9.1487e-005,8.8488e-005,8.5587e-005,8.2781e-005,8.0067e-005,7.7441e-005,7.4901e-005,7.2445e-005,7.0068e-005,6.7769e-005,

6.5546e-005,6.3395e-005,6.1315e-005,5.9302e-005,5.7356e-005,5.5473e-005,5.3652e-005,5.189e-005,5.0186e-005,4.8538e-005,

4.6944e-005,4.5403e-005,4.3911e-005,4.2469e-005,4.1074e-005,3.9724e-005,3.8419e-005,3.7157e-005,3.5936e-005,3.4755e-005,

3.3613e-005,3.2508e-005,3.144e-005,3.0406e-005,2.9407e-005,2.844e-005,2.7505e-005,2.6601e-005,2.5726e-005,2.488e-005,

2.4062e-005,2.3271e-005,2.2506e-005,2.1766e-005,2.105e-005,2.0358e-005,1.9688e-005,1.904e-005,1.8414e-005,1.7808e-005,

1.7223e-005,1.6656e-005,1.6108e-005,1.5578e-005,1.5066e-005,1.457e-005,1.4091e-005,1.3627e-005,1.3179e-005,1.2745e-005,

1.2326e-005,1.192e-005,1.1528e-005,1.1148e-005,1.0781e-005,1.0427e-005,1.0083e-005,9.7515e-006,9.4306e-006,9.1202e-006,

8.82e-006,8.5297e-006,8.2489e-006,7.9774e-006,7.7148e-006,7.4608e-006,7.2152e-006,6.9777e-006,6.748e-006,6.5258e-006,

6.311e-006,6.1032e-006,5.9023e-006,5.708e-006,5.52e-006,5.3383e-006,5.1625e-006,4.9925e-006,4.8282e-006,4.6692e-006,

4.5154e-006,4.3668e-006,4.223e-006,4.0839e-006,3.9494e-006,3.8194e-006,3.6936e-006,3.572e-006,3.4544e-006,3.3406e-006,

3.2306e-006,3.1242e-006,3.0213e-006,2.9218e-006,2.8256e-006,2.7326e-006,2.6426e-006,2.5555e-006,2.4714e-006,2.39e-006,

2.3113e-006,2.2352e-006,2.1615e-006,2.0903e-006,2.0215e-006,1.9549e-006,1.8905e-006,1.8283e-006,1.7681e-006,1.7098e-006,

1.6535e-006,1.599e-006,1.5464e-006,1.4954e-006,1.4462e-006,1.3986e-006,1.3525e-006,1.3079e-006,1.2649e-006,1.2232e-006,

1.1829e-006};

const double __attribute__ ((space(psv), address (0x3000)))

Af_table[810] = {

0.021346,0.021261,0.021176,0.021092,0.021007,0.020924,0.02084,0.020757,0.020674,0.020591,

0.020509,0.020427,0.020345,0.020264,0.020183,0.020102,0.020022,0.019942,0.019862,0.019783,

0.019704,0.019625,0.019547,0.019468,0.01939,0.019313,0.019236,0.019159,0.019082,0.019005,

0.018929,0.018853,0.018778,0.018703,0.018628,0.018553,0.018478,0.018404,0.01833,0.018257,

0.018183,0.01811,0.018037,0.017964,0.017892,0.01782,0.017748,0.017676,0.017605,0.017533,

0.017462,0.017391,0.017321,0.01725,0.01718,0.01711,0.01704,0.01697,0.0169,0.016831,

0.016761,0.016692,0.016623,0.016554,0.016485,0.016416,0.016347,0.016278,0.016209,0.01614,

0.016071,0.016002,0.015933,0.015864,0.015795,0.015725,0.015656,0.015586,0.015516,0.015445,

0.015375,0.015303,0.015232,0.01516,0.015087,0.015014,0.014941,0.014866,0.014791,0.014715,

0.014638,0.01456,0.014481,0.014401,0.01432,0.014237,0.014153,0.014068,0.01398,0.013891,

0.0138,0.013707,0.013612,0.013514,0.013414,0.013312,0.013206,0.013098,0.012986,0.012871,

0.012752,0.01263,0.012504,0.012374,0.01224,0.012101,0.011958,0.01181,0.011657,0.011499,

0.011335,0.011167,0.010993,0.010813,0.010628,0.010437,0.010241,0.010039,0.0098318,0.0096192,

0.0094013,0.0091785,0.0089509,0.0087189,0.0084828,0.0082429,0.0079998,0.0077539,0.0075057,0.0072557,

0.0070045,0.0067527,0.006501,0.0062498,0.006,0.0057521,0.0055066,0.0052643,0.0050256,0.0047912,

0.0045615,0.0043371,0.0041182,0.0039054,0.0036989,0.003499,0.003306,0.0031201,0.0029413,0.0027697,

0.0026055,0.0024485,0.0022988,0.0021563,0.0020208,0.0018922,0.0017704,0.0016552,0.0015464,0.0014437,

0.001347,0.001256,0.0011704,0.0010901,0.0010148,0.00094423,0.00087816,0.00081636,0.0007586,0.00070467,

0.00065433,0.00060739,0.00056365,0.0005229,0.00048496,0.00044967,0.00041684,0.00038632,0.00035797,0.00033163,

0.00030717,0.00028447,0.00026341,0.00024387,0.00022575,0.00020895,0.00019337,0.00017894,0.00016557,0.00015318,

0.00014171,0.00013108,0.00012125,0.00011214,0.00010371,9.591e-005,8.869e-005,8.2009e-005,7.5828e-005,7.0109e-005,

6.4819e-005,5.9926e-005,5.54e-005,5.1214e-005,4.7343e-005,4.3764e-005,4.0454e-005,3.7393e-005,3.4563e-005,3.1946e-005,

2.9527e-005,2.7291e-005,2.5224e-005,2.3313e-005,2.1546e-005,1.9913e-005,1.8403e-005,1.7008e-005,1.5718e-005,1.4526e-005,

1.3425e-005,1.2406e-005,1.1465e-005,1.0595e-005,9.7913e-006,9.0483e-006,8.3616e-006,7.7271e-006,7.1406e-006,6.5986e-006,

6.0977e-006,5.6348e-006,5.2071e-006,4.8118e-006,4.4465e-006,4.1089e-006,3.7969e-006,3.5086e-006,3.2422e-006,2.996e-006,

2.7685e-006,2.5583e-006,2.364e-006,2.1845e-006,2.0186e-006,1.8653e-006,1.7236e-006,1.5927e-006,1.4718e-006,1.36e-006,

1.2567e-006,1.1613e-006,1.0731e-006,9.9156e-007,9.1625e-007,8.4666e-007,7.8236e-007,7.2293e-007,6.6803e-007,6.1729e-007,

5.704e-007,5.2708e-007,4.8704e-007,4.5005e-007,4.1586e-007,3.8428e-007,3.5509e-007,3.2812e-007,3.0319e-007,2.8016e-007,

2.5888e-007,2.3922e-007,2.2105e-007,2.0426e-007,1.8874e-007,1.7441e-007,1.6116e-007,1.4892e-007,1.3761e-007,1.2715e-007,

1.175e-007,1.0857e-007,1.0032e-007,9.2703e-008,8.5662e-008,7.9155e-008,7.3142e-008,6.7586e-008,6.2453e-008,5.7709e-008,

5.3325e-008,4.9275e-008,4.5532e-008,4.2073e-008,3.8877e-008,3.5924e-008,3.3195e-008,3.0674e-008,2.8344e-008,2.6191e-008,

2.4201e-008,2.2363e-008,2.0664e-008,1.9095e-008,1.7644e-008,1.6304e-008,1.5066e-008,1.3921e-008,1.2864e-008,1.1887e-008,

1.0984e-008,1.0149e-008,9.3785e-009,8.6661e-009,8.0078e-009,7.3995e-009,6.8375e-009,6.3181e-009,5.8382e-009,5.3947e-009,

4.9849e-009,4.6063e-009,4.2564e-009,3.9331e-009,3.6343e-009,3.3582e-009,3.1031e-009,2.8674e-009,2.6496e-009,2.4484e-009,

2.2624e-009,2.0905e-009,1.9317e-009,1.785e-009,1.6494e-009,1.5241e-009,1.4083e-009,1.3014e-009,1.2025e-009,1.1112e-009,

1.0268e-009,9.4878e-010,8.7671e-010,8.1011e-010,7.4858e-010,6.9171e-010,6.3917e-010,5.9062e-010,5.4576e-010,5.043e-010,

4.6599e-010,4.306e-010,3.9789e-010,3.6767e-010,3.3974e-010,3.1393e-010,2.9008e-010,2.6805e-010,2.4769e-010,2.2887e-010,

2.1149e-010,1.9542e-010,1.8058e-010,1.6686e-010,1.5419e-010,1.4248e-010,1.3165e-010,1.2165e-010,1.1241e-010,1.0387e-010,

9.5983e-011,8.8692e-011,8.1955e-011,7.573e-011,6.9977e-011,6.4662e-011,5.975e-011,5.5212e-011,5.1018e-011,4.7142e-011,

4.3561e-011,4.0253e-011,3.7195e-011,3.437e-011,3.1759e-011,2.9346e-011,2.7117e-011,2.5057e-011,2.3154e-011,2.1395e-011,

1.977e-011,1.8268e-011,1.6881e-011,1.5598e-011,1.4414e-011,1.3319e-011,1.2307e-011,1.1372e-011,1.0508e-011,9.7102e-012,

8.9726e-012,8.291e-012,7.6612e-012,7.0793e-012,6.5415e-012,6.0446e-012,5.5855e-012,5.1612e-012,4.7692e-012,4.4069e-012,

4.0722e-012,3.7628e-012,3.477e-012,3.2129e-012,2.9688e-012,2.7433e-012,2.5349e-012,2.3424e-012,2.1645e-012,2.0001e-012,

1.8481e-012,1.7077e-012,1.578e-012,1.4582e-012,1.3474e-012,1.245e-012,1.1505e-012,1.0631e-012,9.8233e-013,9.0771e-013,

8.3876e-013};
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const double __attribute__ ((space(psv), address (0x4000)))

Bf_table[810] = {

2.1918e-008,2.3982e-008,2.6241e-008,2.8712e-008,3.1416e-008,3.4374e-008,3.7612e-008,4.1154e-008,4.5029e-008,4.927e-008,

5.391e-008,5.8987e-008,6.4542e-008,7.062e-008,7.727e-008,8.4547e-008,9.2509e-008,1.0122e-007,1.1075e-007,1.2118e-007,

1.326e-007,1.4508e-007,1.5875e-007,1.737e-007,1.9005e-007,2.0795e-007,2.2753e-007,2.4896e-007,2.7241e-007,2.9806e-007,

3.2613e-007,3.5684e-007,3.9045e-007,4.2722e-007,4.6745e-007,5.1147e-007,5.5963e-007,6.1233e-007,6.7e-007,7.3309e-007,

8.0213e-007,8.7766e-007,9.6031e-007,1.0507e-006,1.1497e-006,1.2579e-006,1.3764e-006,1.506e-006,1.6478e-006,1.803e-006,

1.9728e-006,2.1585e-006,2.3618e-006,2.5841e-006,2.8274e-006,3.0937e-006,3.3849e-006,3.7036e-006,4.0523e-006,4.4338e-006,

4.8512e-006,5.3078e-006,5.8075e-006,6.3541e-006,6.9522e-006,7.6065e-006,8.3224e-006,9.1055e-006,9.9623e-006,1.09e-005,

1.1925e-005,1.3047e-005,1.4274e-005,1.5616e-005,1.7085e-005,1.8691e-005,2.0448e-005,2.237e-005,2.4472e-005,2.6771e-005,

2.9285e-005,3.2035e-005,3.5042e-005,3.8329e-005,4.1924e-005,4.5855e-005,5.0152e-005,5.4849e-005,5.9983e-005,6.5594e-005,

7.1725e-005,7.8425e-005,8.5744e-005,9.3738e-005,0.00010247,0.000112,0.00012241,0.00013376,0.00014616,0.00015967,

0.00017441,0.00019047,0.00020798,0.00022704,0.00024779,0.00027037,0.00029493,0.00032161,0.00035059,0.00038203,

0.00041612,0.00045305,0.00049301,0.0005362,0.00058284,0.00063312,0.00068727,0.00074547,0.00080793,0.00087484,

0.00094637,0.0010227,0.0011039,0.0011901,0.0012813,0.0013777,0.001479,0.0015853,0.0016964,0.0018121,

0.001932,0.0020558,0.002183,0.0023132,0.0024457,0.0025798,0.002715,0.0028504,0.0029852,0.0031187,

0.00325,0.0033784,0.0035032,0.0036235,0.0037389,0.0038487,0.0039524,0.0040496,0.00414,0.0042234,

0.0042997,0.0043687,0.0044305,0.0044852,0.004533,0.004574,0.0046085,0.0046368,0.0046591,0.0046759,

0.0046874,0.004694,0.004696,0.0046939,0.0046878,0.0046782,0.0046653,0.0046495,0.004631,0.0046101,

0.0045869,0.0045619,0.0045351,0.0045068,0.0044771,0.0044462,0.0044143,0.0043814,0.0043478,0.0043136,

0.0042787,0.0042434,0.0042077,0.0041717,0.0041355,0.004099,0.0040625,0.0040259,0.0039893,0.0039526,

0.0039161,0.0038796,0.0038432,0.0038069,0.0037708,0.0037349,0.0036992,0.0036637,0.0036284,0.0035933,

0.0035585,0.0035239,0.0034896,0.0034555,0.0034217,0.0033882,0.003355,0.003322,0.0032893,0.003257,

0.0032249,0.0031931,0.0031615,0.0031303,0.0030993,0.0030687,0.0030383,0.0030082,0.0029784,0.0029489,

0.0029197,0.0028907,0.002862,0.0028336,0.0028055,0.0027776,0.00275,0.0027227,0.0026957,0.0026689,

0.0026424,0.0026161,0.0025901,0.0025644,0.0025389,0.0025136,0.0024886,0.0024639,0.0024394,0.0024151,

0.0023911,0.0023673,0.0023438,0.0023205,0.0022974,0.0022745,0.0022519,0.0022295,0.0022073,0.0021854,

0.0021636,0.0021421,0.0021208,0.0020997,0.0020788,0.0020581,0.0020376,0.0020174,0.0019973,0.0019774,

0.0019578,0.0019383,0.001919,0.0018999,0.001881,0.0018623,0.0018437,0.0018254,0.0018072,0.0017893,

0.0017715,0.0017538,0.0017364,0.0017191,0.001702,0.0016851,0.0016683,0.0016517,0.0016353,0.001619,

0.0016029,0.0015869,0.0015711,0.0015555,0.00154,0.0015247,0.0015095,0.0014945,0.0014796,0.0014649,

0.0014503,0.0014359,0.0014216,0.0014075,0.0013935,0.0013796,0.0013659,0.0013523,0.0013388,0.0013255,

0.0013123,0.0012993,0.0012863,0.0012735,0.0012609,0.0012483,0.0012359,0.0012236,0.0012114,0.0011994,

0.0011874,0.0011756,0.0011639,0.0011523,0.0011409,0.0011295,0.0011183,0.0011072,0.0010961,0.0010852,

0.0010744,0.0010638,0.0010532,0.0010427,0.0010323,0.001022,0.0010119,0.0010018,0.00099184,0.00098197,

0.0009722,0.00096252,0.00095295,0.00094346,0.00093408,0.00092478,0.00091558,0.00090647,0.00089745,0.00088852,

0.00087968,0.00087093,0.00086226,0.00085368,0.00084519,0.00083678,0.00082845,0.00082021,0.00081205,0.00080397,

0.00079597,0.00078805,0.00078021,0.00077244,0.00076476,0.00075715,0.00074961,0.00074215,0.00073477,0.00072746,

0.00072022,0.00071305,0.00070596,0.00069893,0.00069198,0.00068509,0.00067828,0.00067153,0.00066485,0.00065823,

0.00065168,0.0006452,0.00063878,0.00063242,0.00062613,0.0006199,0.00061373,0.00060762,0.00060158,0.00059559,

0.00058967,0.0005838,0.00057799,0.00057224,0.00056655,0.00056091,0.00055533,0.0005498,0.00054433,0.00053891,

0.00053355,0.00052824,0.00052299,0.00051778,0.00051263,0.00050753,0.00050248,0.00049748,0.00049253,0.00048763,

0.00048278,0.00047797,0.00047322,0.00046851,0.00046385,0.00045923,0.00045466,0.00045014,0.00044566,0.00044123,

0.00043684,0.00043249,0.00042819,0.00042393,0.00041971,0.00041553,0.0004114,0.0004073,0.00040325,0.00039924,

0.00039527,0.00039133,0.00038744,0.00038358,0.00037977,0.00037599,0.00037225,0.00036854,0.00036488,0.00036125,

0.00035765,0.00035409,0.00035057,0.00034708,0.00034363,0.00034021,0.00033682,0.00033347,0.00033015,0.00032687,

0.00032362};

const double __attribute__ ((space(psv), address (0x5000)))

Ax_table[810] = {

7.4512e-006,7.7547e-006,8.0702e-006,8.3981e-006,8.739e-006,9.0933e-006,9.4615e-006,9.8441e-006,1.0242e-005,1.0655e-005,

1.1084e-005,1.153e-005,1.1993e-005,1.2474e-005,1.2974e-005,1.3492e-005,1.4031e-005,1.459e-005,1.5171e-005,1.5774e-005,

1.6399e-005,1.7048e-005,1.7722e-005,1.8421e-005,1.9146e-005,1.9898e-005,2.0678e-005,2.1487e-005,2.2326e-005,2.3195e-005,

2.4097e-005,2.5031e-005,2.6e-005,2.7003e-005,2.8043e-005,2.912e-005,3.0235e-005,3.139e-005,3.2586e-005,3.3824e-005,

3.5106e-005,3.6432e-005,3.7804e-005,3.9224e-005,4.0692e-005,4.2211e-005,4.3781e-005,4.5404e-005,4.7082e-005,4.8816e-005,

5.0607e-005,5.2457e-005,5.4368e-005,5.6341e-005,5.8378e-005,6.0481e-005,6.265e-005,6.4889e-005,6.7197e-005,6.9578e-005,

7.2032e-005,7.4562e-005,7.7169e-005,7.9855e-005,8.2622e-005,8.5471e-005,8.8404e-005,9.1423e-005,9.4529e-005,9.7725e-005,

0.00010101,0.00010439,0.00010787,0.00011144,0.0001151,0.00011887,0.00012274,0.00012671,0.00013079,0.00013497,

0.00013927,0.00014367,0.00014818,0.0001528,0.00015754,0.0001624,0.00016737,0.00017246,0.00017767,0.000183,

0.00018845,0.00019403,0.00019973,0.00020556,0.00021152,0.0002176,0.00022382,0.00023017,0.00023664,0.00024325,

0.00025,0.00025688,0.0002639,0.00027105,0.00027834,0.00028577,0.00029333,0.00030104,0.00030889,0.00031688,

0.00032501,0.00033328,0.00034169,0.00035025,0.00035895,0.0003678,0.00037679,0.00038593,0.00039521,0.00040464,

0.00041422,0.00042394,0.00043381,0.00044383,0.00045399,0.00046431,0.00047477,0.00048539,0.00049615,0.00050707,

0.00051814,0.00052935,0.00054072,0.00055225,0.00056392,0.00057575,0.00058773,0.00059987,0.00061216,0.00062461,

0.00063722,0.00064998,0.0006629,0.00067598,0.00068923,0.00070263,0.00071619,0.00072992,0.0007438,0.00075786,

0.00077208,0.00078647,0.00080102,0.00081575,0.00083064,0.00084571,0.00086095,0.00087636,0.00089196,0.00090773,

0.00092367,0.00093981,0.00095612,0.00097262,0.0009893,0.0010062,0.0010232,0.0010405,0.0010579,0.0010756,

0.0010934,0.0011115,0.0011297,0.0011482,0.0011669,0.0011857,0.0012048,0.0012241,0.0012436,0.0012634,

0.0012833,0.0013035,0.001324,0.0013446,0.0013655,0.0013866,0.001408,0.0014296,0.0014515,0.0014736,

0.0014959,0.0015186,0.0015414,0.0015646,0.001588,0.0016117,0.0016356,0.0016599,0.0016844,0.0017092,

0.0017343,0.0017597,0.0017854,0.0018114,0.0018377,0.0018643,0.0018913,0.0019185,0.0019461,0.001974,

0.0020023,0.0020308,0.0020598,0.002089,0.0021186,0.0021486,0.002179,0.0022097,0.0022407,0.0022722,

0.002304,0.0023363,0.0023689,0.0024019,0.0024353,0.0024692,0.0025034,0.0025381,0.0025732,0.0026087,

0.0026447,0.0026811,0.002718,0.0027553,0.0027931,0.0028313,0.0028701,0.0029093,0.002949,0.0029892,

0.0030299,0.0030711,0.0031128,0.0031551,0.0031979,0.0032412,0.003285,0.0033295,0.0033744,0.00342,

0.0034661,0.0035128,0.0035601,0.003608,0.0036565,0.0037057,0.0037554,0.0038058,0.0038568,0.0039085,

0.0039608,0.0040138,0.0040675,0.0041218,0.0041769,0.0042326,0.0042891,0.0043463,0.0044042,0.0044629,

0.0045223,0.0045825,0.0046434,0.0047051,0.0047677,0.004831,0.0048951,0.0049601,0.0050259,0.0050926,

0.0051601,0.0052285,0.0052977,0.0053679,0.005439,0.0055109,0.0055839,0.0056577,0.0057325,0.0058083,

0.005885,0.0059628,0.0060415,0.0061213,0.0062021,0.006284,0.0063669,0.0064509,0.0065359,0.0066221,

0.0067094,0.0067978,0.0068874,0.0069782,0.0070701,0.0071632,0.0072575,0.0073531,0.0074498,0.0075479,

0.0076472,0.0077478,0.0078497,0.007953,0.0080576,0.0081635,0.0082708,0.0083795,0.0084897,0.0086013,

0.0087143,0.0088288,0.0089448,0.0090622,0.0091813,0.0093018,0.009424,0.0095477,0.0096731,0.0098001,

0.0099287,0.010059,0.010191,0.010325,0.01046,0.010598,0.010737,0.010877,0.01102,0.011165,

0.011311,0.011459,0.01161,0.011762,0.011916,0.012072,0.012231,0.012391,0.012554,0.012718,

0.012885,0.013054,0.013225,0.013398,0.013574,0.013752,0.013932,0.014114,0.014299,0.014487,

0.014677,0.014869,0.015064,0.015261,0.015461,0.015663,0.015869,0.016076,0.016287,0.0165,

0.016717,0.016935,0.017157,0.017382,0.01761,0.01784,0.018074,0.018311,0.01855,0.018793,

0.019039,0.019289,0.019541,0.019797,0.020056,0.020319,0.020585,0.020855,0.021128,0.021404,

0.021684,0.021968,0.022256,0.022547,0.022843,0.023142,0.023445,0.023751,0.024062,0.024377,

0.024696,0.02502,0.025347,0.025679,0.026015,0.026356,0.026701,0.02705,0.027404,0.027763,

0.028126,0.028495,0.028867,0.029245,0.029628,0.030016,0.030409,0.030807,0.03121,0.031618,

0.032032,0.032451,0.032876,0.033306,0.033742,0.034184,0.034631,0.035085,0.035544,0.036009,

0.03648,0.036958,0.037441,0.037931,0.038428,0.038931,0.03944,0.039956,0.040479,0.041009,

0.041546};

const double __attribute__ ((space(psv), address (0x6000)))

Bx_table[810] = {

0.0061868,0.0061204,0.0060546,0.0059894,0.0059248,0.0058609,0.0057975,0.0057347,0.0056725,0.0056109,
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0.0055499,0.0054894,0.0054295,0.0053701,0.0053113,0.005253,0.0051953,0.0051381,0.0050814,0.0050252,

0.0049696,0.0049144,0.0048598,0.0048057,0.004752,0.0046989,0.0046462,0.004594,0.0045423,0.0044911,

0.0044403,0.00439,0.0043401,0.0042907,0.0042418,0.0041932,0.0041452,0.0040975,0.0040503,0.0040035,

0.0039572,0.0039112,0.0038657,0.0038206,0.0037758,0.0037315,0.0036876,0.0036441,0.003601,0.0035582,

0.0035158,0.0034739,0.0034323,0.003391,0.0033502,0.0033097,0.0032695,0.0032297,0.0031903,0.0031513,

0.0031125,0.0030742,0.0030361,0.0029984,0.0029611,0.0029241,0.0028874,0.002851,0.002815,0.0027793,

0.0027439,0.0027089,0.0026741,0.0026397,0.0026055,0.0025717,0.0025382,0.002505,0.0024721,0.0024395,

0.0024072,0.0023752,0.0023435,0.002312,0.0022809,0.00225,0.0022195,0.0021892,0.0021592,0.0021295,

0.0021,0.0020708,0.002042,0.0020133,0.001985,0.0019569,0.0019291,0.0019015,0.0018742,0.0018472,

0.0018204,0.0017939,0.0017677,0.0017417,0.001716,0.0016905,0.0016653,0.0016403,0.0016156,0.0015911,

0.0015669,0.0015429,0.0015192,0.0014957,0.0014725,0.0014495,0.0014267,0.0014042,0.0013819,0.0013599,

0.0013381,0.0013166,0.0012952,0.0012741,0.0012533,0.0012327,0.0012123,0.0011921,0.0011722,0.0011525,

0.001133,0.0011138,0.0010947,0.0010759,0.0010574,0.001039,0.0010209,0.001003,0.00098532,0.00096786,

0.00095061,0.00093358,0.00091677,0.00090018,0.0008838,0.00086763,0.00085167,0.00083593,0.0008204,0.00080507,

0.00078996,0.00077505,0.00076035,0.00074585,0.00073156,0.00071746,0.00070357,0.00068988,0.00067639,0.0006631,

0.00065,0.0006371,0.00062439,0.00061187,0.00059955,0.00058741,0.00057546,0.0005637,0.00055213,0.00054073,

0.00052953,0.0005185,0.00050765,0.00049698,0.00048648,0.00047616,0.00046602,0.00045604,0.00044624,0.00043661,

0.00042714,0.00041783,0.00040869,0.00039972,0.0003909,0.00038224,0.00037373,0.00036539,0.00035719,0.00034915,

0.00034126,0.00033351,0.00032591,0.00031846,0.00031114,0.00030397,0.00029694,0.00029004,0.00028328,0.00027666,

0.00027016,0.0002638,0.00025756,0.00025145,0.00024546,0.0002396,0.00023386,0.00022823,0.00022273,0.00021733,

0.00021206,0.00020689,0.00020184,0.00019689,0.00019205,0.00018731,0.00018268,0.00017815,0.00017372,0.00016938,

0.00016515,0.000161,0.00015695,0.000153,0.00014913,0.00014535,0.00014165,0.00013804,0.00013451,0.00013107,

0.0001277,0.00012442,0.00012121,0.00011807,0.00011501,0.00011202,0.00010911,0.00010626,0.00010348,0.00010077,

9.8123e-005,9.5541e-005,9.3021e-005,9.0563e-005,8.8166e-005,8.5827e-005,8.3546e-005,8.1321e-005,7.9152e-005,7.7037e-005,

7.4974e-005,7.2963e-005,7.1003e-005,6.9092e-005,6.7229e-005,6.5414e-005,6.3644e-005,6.192e-005,6.024e-005,5.8603e-005,

5.7008e-005,5.5454e-005,5.394e-005,5.2466e-005,5.1029e-005,4.963e-005,4.8268e-005,4.6941e-005,4.5649e-005,4.439e-005,

4.3165e-005,4.1972e-005,4.0811e-005,3.9681e-005,3.858e-005,3.7509e-005,3.6466e-005,3.5451e-005,3.4463e-005,3.3502e-005,

3.2566e-005,3.1656e-005,3.077e-005,2.9908e-005,2.907e-005,2.8254e-005,2.746e-005,2.6688e-005,2.5937e-005,2.5206e-005,

2.4495e-005,2.3804e-005,2.3131e-005,2.2477e-005,2.1841e-005,2.1223e-005,2.0621e-005,2.0036e-005,1.9468e-005,1.8915e-005,

1.8377e-005,1.7854e-005,1.7346e-005,1.6851e-005,1.6371e-005,1.5904e-005,1.545e-005,1.5008e-005,1.4579e-005,1.4162e-005,

1.3757e-005,1.3363e-005,1.298e-005,1.2608e-005,1.2246e-005,1.1894e-005,1.1553e-005,1.1221e-005,1.0898e-005,1.0584e-005,

1.028e-005,9.9836e-006,9.6959e-006,9.4164e-006,9.1448e-006,8.8809e-006,8.6245e-006,8.3754e-006,8.1334e-006,7.8982e-006,

7.6698e-006,7.4479e-006,7.2323e-006,7.0229e-006,6.8194e-006,6.6218e-006,6.4298e-006,6.2434e-006,6.0622e-006,5.8863e-006,

5.7154e-006,5.5494e-006,5.3882e-006,5.2316e-006,5.0795e-006,4.9318e-006,4.7883e-006,4.649e-006,4.5136e-006,4.3822e-006,

4.2546e-006,4.1306e-006,4.0103e-006,3.8934e-006,3.7798e-006,3.6696e-006,3.5625e-006,3.4586e-006,3.3576e-006,3.2596e-006,

3.1644e-006,3.072e-006,2.9822e-006,2.8951e-006,2.8105e-006,2.7283e-006,2.6485e-006,2.5711e-006,2.4959e-006,2.4228e-006,

2.3519e-006,2.2831e-006,2.2162e-006,2.1514e-006,2.0883e-006,2.0272e-006,1.9678e-006,1.9101e-006,1.8541e-006,1.7998e-006,

1.747e-006,1.6958e-006,1.6461e-006,1.5978e-006,1.5509e-006,1.5054e-006,1.4612e-006,1.4184e-006,1.3767e-006,1.3363e-006,

1.2971e-006,1.259e-006,1.222e-006,1.1861e-006,1.1513e-006,1.1175e-006,1.0846e-006,1.0528e-006,1.0218e-006,9.9179e-007,

9.6264e-007,9.3434e-007,9.0687e-007,8.802e-007,8.5432e-007,8.292e-007,8.0481e-007,7.8113e-007,7.5815e-007,7.3585e-007,

7.142e-007,6.9318e-007,6.7278e-007,6.5298e-007,6.3376e-007,6.1511e-007,5.97e-007,5.7942e-007,5.6236e-007,5.4581e-007,

5.2973e-007,5.1413e-007,4.9899e-007,4.8429e-007,4.7003e-007,4.5618e-007,4.4275e-007,4.297e-007,4.1704e-007,4.0475e-007,

3.9283e-007,3.8125e-007,3.7002e-007,3.5911e-007,3.4853e-007,3.3825e-007,3.2828e-007,3.1861e-007,3.0921e-007,3.001e-007,

2.9125e-007};

const double __attribute__ ((space(psv), address (0x7000)))

xi_table[810] = {

1.00,0.98748,0.97622,0.96512,0.95418,0.9434,0.93276,0.92228,0.91194,0.90175,

0.8917,0.8818,0.87203,0.86239,0.85289,0.84353,0.83429,0.82518,0.8162,0.80734,

0.79861,0.78999,0.78149,0.77311,0.76485,0.7567,0.74866,0.74073,0.73291,0.72519,

0.71758,0.71008,0.70267,0.69537,0.68816,0.68105,0.67404,0.66712,0.6603,0.65357,

0.64692,0.64037,0.6339,0.62752,0.62122,0.61501,0.60888,0.60283,0.59687,0.59098,

0.58516,0.57943,0.57377,0.56818,0.56267,0.55723,0.55186,0.54656,0.54133,0.53616,

0.53107,0.52604,0.52107,0.51617,0.51133,0.50656,0.50184,0.49719,0.49259,0.48805,

0.48358,0.47915,0.47479,0.47048,0.46622,0.46202,0.45787,0.45377,0.44972,0.44573,

0.44178,0.43789,0.43404,0.43024,0.42649,0.42278,0.41912,0.4155,0.41193,0.4084,

0.40492,0.40148,0.39808,0.39472,0.3914,0.38813,0.38489,0.38169,0.37853,0.37541,

0.37232,0.36928,0.36627,0.36329,0.36035,0.35745,0.35458,0.35174,0.34894,0.34617,

0.34343,0.34073,0.33805,0.33541,0.3328,0.33022,0.32767,0.32515,0.32265,0.32019,

0.31776,0.31535,0.31297,0.31062,0.30829,0.30599,0.30372,0.30147,0.29925,0.29705,

0.29488,0.29274,0.29061,0.28851,0.28644,0.28438,0.28235,0.28035,0.27836,0.2764,

0.27445,0.27253,0.27063,0.26875,0.2669,0.26506,0.26324,0.26144,0.25966,0.2579,

0.25616,0.25444,0.25273,0.25105,0.24938,0.24773,0.2461,0.24448,0.24289,0.2413,

0.23974,0.23819,0.23666,0.23514,0.23364,0.23216,0.23069,0.22923,0.22779,0.22637,

0.22496,0.22356,0.22218,0.22081,0.21946,0.21812,0.21679,0.21548,0.21418,0.21289,

0.21162,0.21036,0.20911,0.20787,0.20665,0.20543,0.20423,0.20305,0.20187,0.2007,

0.19955,0.19841,0.19728,0.19615,0.19504,0.19395,0.19286,0.19178,0.19071,0.18965,

0.1886,0.18757,0.18654,0.18552,0.18451,0.18351,0.18252,0.18154,0.18057,0.1796,

0.17865,0.1777,0.17677,0.17584,0.17492,0.17401,0.17311,0.17221,0.17133,0.17045,

0.16958,0.16871,0.16786,0.16701,0.16617,0.16534,0.16451,0.16369,0.16288,0.16208,

0.16128,0.16049,0.15971,0.15894,0.15817,0.1574,0.15665,0.1559,0.15516,0.15442,

0.15369,0.15296,0.15225,0.15153,0.15083,0.15013,0.14943,0.14874,0.14806,0.14738,

0.14671,0.14605,0.14539,0.14473,0.14408,0.14344,0.1428,0.14216,0.14154,0.14091,

0.14029,0.13968,0.13907,0.13847,0.13787,0.13727,0.13668,0.1361,0.13552,0.13494,

0.13437,0.1338,0.13324,0.13268,0.13213,0.13158,0.13104,0.13049,0.12996,0.12942,

0.1289,0.12837,0.12785,0.12733,0.12682,0.12631,0.12581,0.12531,0.12481,0.12431,

0.12382,0.12334,0.12285,0.12237,0.1219,0.12143,0.12096,0.12049,0.12003,0.11957,

0.11911,0.11866,0.11821,0.11777,0.11732,0.11688,0.11645,0.11601,0.11558,0.11516,

0.11473,0.11431,0.11389,0.11348,0.11306,0.11265,0.11225,0.11184,0.11144,0.11104,

0.11065,0.11025,0.10986,0.10948,0.10909,0.10871,0.10833,0.10795,0.10757,0.1072,

0.10683,0.10646,0.1061,0.10574,0.10538,0.10502,0.10466,0.10431,0.10396,0.10361,

0.10326,0.10292,0.10258,0.10224,0.1019,0.10156,0.10123,0.1009,0.10057,0.10024,

0.099916,0.099593,0.099272,0.098953,0.098636,0.098321,0.098008,0.097696,0.097387,0.09708,

0.096774,0.096471,0.096169,0.095869,0.095571,0.095274,0.09498,0.094687,0.094396,0.094107,

0.093819,0.093534,0.093249,0.092967,0.092686,0.092407,0.09213,0.091854,0.091579,0.091307,

0.091036,0.090766,0.090498,0.090232,0.089967,0.089704,0.089442,0.089182,0.088923,0.088665,

0.088409,0.088155,0.087902,0.08765,0.0874,0.087151,0.086904,0.086658,0.086413,0.08617,

0.085928,0.085687,0.085448,0.08521,0.084973,0.084738,0.084504,0.084271,0.08404,0.083809,

0.08358,0.083352,0.083126,0.0829,0.082676,0.082453,0.082231,0.082011,0.081791,0.081573,

0.081356,0.08114,0.080925,0.080711,0.080498,0.080287,0.080076,0.079867,0.079658,0.079451,

0.079245,0.07904,0.078836,0.078633,0.078431,0.07823,0.07803,0.077831,0.077633,0.077436,

0.07724};

// DEFINE D/A CONTROL SIGNAL PIN

#define DA_CS LATFbits.LATF6 // Select

#define DA_WR LATDbits.LATD0 // Write

#define DA_LDAC LATDbits.LATD2 // Load

#define DA_GAIN LATDbits.LATD1 // gain

// DEFINE INITIAL VALUE

#define Gsi 0.09
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#define Gk 0.282

#define Ek -77.567

// DECLARATION VARIABLES USED IN TIMER1

unsigned long Fsample; // declare sampling frequency

unsigned int SetTime; // declare timer1

// DECLARATION VARIABLES USED IN INTERRUPT FUNCTION

double I_si_old;

double Cai_old;

double d_old;

double f_old;

double x_old;

unsigned int adbuf;

unsigned int psv_shadow;

double h;

double Ad,Bd,Af,Bf,Ax,Bx;

double Cai_eq_value,Cai_new,Esi_new ;

double D_eq_value ,F_eq_value,X_eq_value,d_new,f_new,x_new,xi;

double I_si_original,IK_original,I_flow_original,I_flow,V_flow,V_output;

int n;

unsigned int OUTPUTBIT;

// MAIN FUNCTION

int main(void)

{

// SETUP INITIAL CONDITIONS

I_si_old = 0.0;

Cai_old=0.0002;//0.1;//0.1??

d_old=0.001;//0.01;

f_old=0.001;//1.0;

x_old=0.001;//1.0;

// CORCON bit on

CORCONbits.PSV = 1;

// SETUP INPUT/OUTPUT PORT

TRISD = 0x08; // RD3 is input 0000 0000 0000 1000

TRISE = 0x100; // RE8 is input 0000 0001 0000 0000

TRISF = 0; // all output 0000 0000 0000 0000

TRISC = 0x9FFF; // 1001 1111 1111 1111

// INITIALIZE A/D

ADPCFG = 0xFFF0; //1111 1111 1111 0000

ADCON1 = 0x80EC; //1000 0000 1110 1100

ADCON2 = 0x020C; //0000 0010 0000 1100

ADCON3 = 0x0880; //0000 1000 1000 0000

ADCHS = 0x0003; //0000 0000 0000 0011

ADCSSL = 0;

// SETUP INITIAL VALUE FOR SIGNAL CONTROL IN D/A

DA_GAIN = 0; //GAIN

DA_CS = 1; // CS

DA_WR = 1; // WR

DA_LDAC = 1; // LDAC

// SETUP SAMPLING FREQUENCY

Fsample = 2500.0;

// SETUP TIMER 1 AND SAMPLING PERIOD

SetTime = (int)(29491200.0 / Fsample - 1.0);

OpenTimer1(T1_ON & T1_GATE_OFF & T1_PS_1_1 & T1_SOURCE_INT,SetTime);

ConfigIntTimer1(T1_INT_PRIOR_5 & T1_INT_ON); // enabling interrupt

// SETUP INITAIL LED CONDITION

LATFbits.LATF4 = 1; // LED OFF

// INFINITE LOOP WHILE WAITING COUNTING CLOCK IN TIMER 1

while(1);

{}

}

// INTERRUPT FUNCTION

void __attribute__((interrupt,auto_psv)) _T1Interrupt(void)

{

IFS0bits.T1IF = 0; // Clear interrupt flag

// READ DATA FROM A/D CONVERTER

adbuf = ReadADC10(2);

// SETUP FOR LED SIGNAL (if value of data is 3.3V and over, LED start to ON and if small that 0.6V、LED OFF)

if( adbuf >= 0x2A3 )

{

LATFbits.LATF4 = 0; // LED ON

}

if( adbuf < 0x7A )

{

LATFbits.LATF4 = 1; // LED OFF

}

// CONVERT DATABIT TO VOLTAGE

v_trans = (double)(((adbuf*220.0)/1023.0)-100.0);

n=(int)(2*(v_trans+100.0));

h=1000.0*1.0/Fsample; // DELTA T

// SETUP FOR READ OUT DATA FROM TABLES

/* save the PSVPAG */

psv_shadow = PSVPAG;

/* set the PSVPAG for accessing table[] */

PSVPAG = __builtin_psvpage (Ad_table);

// IMPORT VALUE FROM Ad_table

Ad=Ad_table[n];

/* restore the PSVPAG for the compiler-managed PSVPAG */

PSVPAG = psv_shadow;

// Bd_table ROUTIN

/* save the PSVPAG */

psv_shadow = PSVPAG;

/* set the PSVPAG for accessing table[] */

PSVPAG = __builtin_psvpage (Bd_table);

// IMPORT VALUE FROM Bd_table

Bd=Bd_table[n];

/* restore the PSVPAG for the compiler-managed PSVPAG */

PSVPAG = psv_shadow;

// Af_table ROUTIN
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/* save the PSVPAG */

psv_shadow = PSVPAG;

/* set the PSVPAG for accessing table[] */

PSVPAG = __builtin_psvpage (Af_table);

// IMPORT VALUE FROM Af_table

Af=Af_table[n];

/* restore the PSVPAG for the compiler-managed PSVPAG */

PSVPAG = psv_shadow;

// Bf_table ROUTIN

/* save the PSVPAG */

psv_shadow = PSVPAG;

/* set the PSVPAG for accessing table[] */

PSVPAG = __builtin_psvpage (Bf_table);

// IMPORT VALUE FROM Bf_table

Bf=Bf_table[n];

/* restore the PSVPAG for the compiler-managed PSVPAG */

PSVPAG = psv_shadow;

// Ax_table ROUTIN

/* save the PSVPAG */

psv_shadow = PSVPAG;

/* set the PSVPAG for accessing table[] */

PSVPAG = __builtin_psvpage (Ax_table);

// IMPORT VALUE FROM Ax_table

Ax=Ax_table[n];

/* restore the PSVPAG for the compiler-managed PSVPAG */

PSVPAG = psv_shadow;

// Bx_table ROUTIN

/* save the PSVPAG */

psv_shadow = PSVPAG;

/* set the PSVPAG for accessing table[] */

PSVPAG = __builtin_psvpage (Bx_table);

// IMPORT VALUE FROM Bx_table

Bx=Bx_table[n];

/* restore the PSVPAG for the compiler-managed PSVPAG */

PSVPAG = psv_shadow;

// xi_table ROUTIN

/* save the PSVPAG */

psv_shadow = PSVPAG;

/* set the PSVPAG for accessing table[] */

PSVPAG = __builtin_psvpage (xi_table);

// IMPORT VALUE FROM xi_table

xi=xi_table[n];

/* restore the PSVPAG for the compiler-managed PSVPAG */

PSVPAG = psv_shadow;

// CALCULATE Isi

Cai_eq_value = -(1.0e-4)*I_si_old+0.07*((1.0e-4)-Cai_old);

D_eq_value = Ad-(Ad+Bd)*d_old;

F_eq_value = Af-(Af+Bf)*f_old;

d_new = d_old + h*D_eq_value;

f_new = f_old + h*F_eq_value;

Cai_new = Cai_old + h*Cai_eq_value;

Esi_new = 7.7-13.0287*log(Cai_new);

I_si_original = Gsi*d_new*f_new*(v_trans - Esi_new);

// CALCULATE IK

X_eq_value=Ax*(1.0-x_old)-Bx*x_old;

x_new=x_old+h*X_eq_value;

IK_original=Gk*x_new*xi*(v_trans-Ek);

// CALCULATE TOTAL IONIC CURRENTS IK+Isi

I_flow_original = I_si_original+IK_original;

I_flow = -0.375*I_flow_original;

// CONVERT CURRENT TO VOLTAGE SIGNAL_Vdigital=(IK+Isi)*R7

V_flow= I_flow*0.068;

// CONVERT OUTPUT VOLTAGE TO THE RANGE OF 0-5V

V_output=1.25*(V_flow+1.8);

OUTPUTBIT = (unsigned int)((V_output*1023.0)/5.0);

// RENEW INITIAL VALUE

d_old=d_new;

f_old=f_new;

Cai_old=Cai_new;

x_old = x_new;

I_si_old = I_si_original;

// OUTPUT TO D/A CONVERTER

LATE = OUTPUTBIT; // outputdata of lower 6 bits

LATF = (OUTPUTBIT>>6) & 0x0F; // outputdata of upper 4 bits

DA_GAIN = 1;

DA_CS = 0;

DA_WR = 0;

DA_WR = 1;

DA_CS = 1;

DA_LDAC = 0;

DA_LDAC = 1;

}
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List C.2 shows the C source code program of H8/3694F microcontroller to produce
two channels of impulsive stimulation at specific timing and duration of the stimulations.
H8/3694F development software, HEW (High-performance Embedded Workshop) (Ver.
4.06) and programming software, FDT (Flash Development Toolkit) ( Ver. 4.05) provided
free by Renesas Electronic Corporation was used in this work. Both can be obtained from
the Renesas official website. The program is written into the H8/3694F microcontroller
through a serial communication interface.

List C.2: The source program for the H8/3694F

#include <string.h>

#include "iodefine.h"

#include <machine.h>

/* Declaration of functions */

void main(void);

void timerW_init( void );

void wait_1ms( unsigned int time );

void wait_50us( unsigned int time );

void wait_10us( void );

char sw_delay( int wait );

void start_sw( void );

void lcd_init( void ); // LCD initialization,4bit transmission mode

void lcd_busy( void ); // Buzy check (RS=Low,R/W=High)

void lcd_cmnd_8( unsigned char uc_data ); // Write 8bit control signal (RS=Low,R/W=Low) without buzy check

void lcd_cmnd_4( unsigned char uc_data ); // Write 4bit control signal (RS=Low,R/W=Low) with buzy check

void lcd_clear( void ); // Clear LCD

void lcd_putc( char c_data ); // Display one character (RS=Hi,R/W=Low) with buzy check

void lcd_puts( char *pc_string ); // Display character string

void lcd_locate_puts( char c_x, char c_y, char c_leng, char *pc_str ); // Display character string at the specified

// position with limited character length

void lcd_locate( char c_x, char c_y ); // Specify cursor position

void lcd_cursor( unsigned char uc_mode, unsigned char uc_su ); // Control cursor

/* Macro definition */

#define SW_DELAY 20

#define LCD // Comment out if no LCD use

// Port definition for Switch use

#define SW_CHECK() IO.PDR2.BIT.B0

// Port definition for Pulse Output use

#define PULSE1_ON() IO.PDR5.BIT.B0 = 1

#define PULSE1_OFF() IO.PDR5.BIT.B0 = 0

#define PULSE2_ON() IO.PDR5.BIT.B1 = 1

#define PULSE2_OFF() IO.PDR5.BIT.B1 = 0

// Port definition for Led use

#define LED_G_ON() IO.PDR8.BIT.B1 = 0

#define LED_G_OFF() IO.PDR8.BIT.B1 = 1

#define LED_R_ON() IO.PDR8.BIT.B0 = 0

#define LED_R_OFF() IO.PDR8.BIT.B0 = 1

// Command definition for LCD control

#define RIGHT 0x14 // Right shifting

#define LEFT 0x10 // Left shifting

#define HOME 0x80 // Origin

#define CLEAR 0x20 // Clear

#define TAB_1 0x02 // Shifting to 1st row

#define TAB_2 0xc0 // Shifting to 2nd row

// Port definition for LCD use

#define LCD_RS_LO() IO.PDR1.BIT.B0 = 0

#define LCD_RS_HI() IO.PDR1.BIT.B0 = 1

#define LCD_RW_LO() IO.PDR1.BIT.B1 = 0

#define LCD_RW_HI() IO.PDR1.BIT.B1 = 1

#define LCD_E_LO() IO.PDR1.BIT.B2 = 0

#define LCD_E_HI() IO.PDR1.BIT.B2 = 1

#define LCD_W_DATA(x) IO.PDR1.BYTE = ( IO.PDR1.BYTE & 0x0f ) | ( (x) & 0xf0 )

#define LCD_R_DATA() ( IO.PDR1.BYTE & 0xf0 )

#define Lcd_blink() lcd_cmnd_4( 0x0d ) // Blinking cursor

#define Lcd_fix() lcd_cmnd_4( 0x0c ) // Fix cursor

/* Global variables */

int Dur_initiate = 134;

int Dur_terminate = 1090;

/* Function for LCD */

/////////////////////////////////////////

// LCD initialization

// 4bit transfer mode

/////////////////////////////////////////

void lcd_init( void )

{

#ifdef LCD
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wait_1ms( 15 ); // Over 15msec wait after power on

lcd_cmnd_8( 0x30 );

wait_1ms( 4 ); // 4msec

lcd_cmnd_8( 0x30 );

wait_50us( 2 ); // 100usec

lcd_cmnd_8( 0x30 );

wait_50us( 1 ); // 50usec

lcd_cmnd_8( 0x20 );

wait_50us( 1 ); // 50usec

lcd_cmnd_4( 0x2e ); // Function set

lcd_cmnd_4( 0x08 ); // LCD off, no cursor display and blinking

lcd_cmnd_4( 0x01 ); // Lcd home clear

lcd_cmnd_4( 0x06 ); // Entry mode setting

lcd_cmnd_4( 0x0c ); // LCD on, no cursor display and blinking

lcd_cursor( HOME, 1 );

#endif

}

////////////////////////////////////////////

// LCD busy check(RS=Low,R/W=High)

////////////////////////////////////////////

void lcd_busy( void )

{

#ifdef LCD

unsigned char uc_busy = 1;

int i_timeup = 0;

char c_buf[21];

IO.PCR1 = 0x07; // Set data port for LCD to input

LCD_RS_LO(); // Start getting busy signal (RW=1, RS=0)

LCD_RW_HI();

while( 1 )

{

LCD_E_HI(); // Input upper 4bit

uc_busy = LCD_R_DATA() & 0x80;

LCD_E_LO();

LCD_E_HI(); // Input lower 4bit

nop(); // Delay 220nsec is needed

nop();

nop();

LCD_E_LO();

if( uc_busy == 0 )

{

break;

}

}

IO.PCR1 = 0xf7; // Set data port for LCD back to output

#endif

}

///////////////////////////////////////////////////

// Writing 8bit control signal (RS=Low,R/W=Low)

// Without buzy check

///////////////////////////////////////////////////

void lcd_cmnd_8( unsigned char uc_data )

{

#ifdef LCD

LCD_RW_LO();

LCD_RS_LO();

LCD_W_DATA( uc_data );

LCD_E_HI(); // Writing

wait_10us();

LCD_E_LO();

#endif

}

////////////////////////////////////////////////////

// Writing 4 bit control signal (RS=Low,R/W=Low)

// With buzy check

////////////////////////////////////////////////////

void lcd_cmnd_4( unsigned char uc_data )

{

#ifdef LCD

LCD_RW_LO();

LCD_RS_LO();

LCD_E_HI(); // Writing

LCD_W_DATA( uc_data );

LCD_E_LO();

LCD_E_HI(); // Writing

LCD_W_DATA( uc_data << 4 );

LCD_E_LO();

lcd_busy();

#endif

}
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//////////////////////////////////////

// Clearing LCD

//////////////////////////////////////

void lcd_clear( void )

{

#ifdef LCD

lcd_cmnd_4( 0x01 ); // LCD home clear

#endif

}

///////////////////////////////////////

// Displaying one character

// With buzy check

///////////////////////////////////////

void lcd_putc( char c_data )

{

#ifdef LCD

LCD_RW_LO();

LCD_RS_HI();

LCD_E_HI(); // Writing

LCD_W_DATA( c_data );

LCD_E_LO();

LCD_E_HI(); // Writing

LCD_W_DATA( c_data << 4);

LCD_E_LO();

lcd_busy();

#endif

}

///////////////////////////////////////

// Displaying character string

///////////////////////////////////////

void lcd_puts( char *pc_string )

{

#ifdef LCD

while( *pc_string )

{

lcd_putc( *(pc_string++) );

}

#endif

}

///////////////////////////////////////////////////////////////////////

// Displaying at the specified position with limited character length

///////////////////////////////////////////////////////////////////////

void lcd_locate_puts( char c_x, char c_y, char c_leng, char *pc_str )

{

#ifdef LCD

char c_i, c_j;

c_j = 0;

lcd_locate( c_x, c_y );

while ( ( *pc_str != ’\0’) && ( c_j < c_leng ) )

{

lcd_putc( *pc_str++ );

c_j++;

}

for ( c_i = 0; c_i < c_leng - c_j; c_i++ )

{

lcd_putc( ’ ’ ); // Insert ’blank space’ if the character string length less than the length limit

}

#endif

}

////////////////////////////////////////////

// LCD cursor positioning

////////////////////////////////////////////

void lcd_locate( char c_x, char c_y )

{

#ifdef LCD

char c_i;

switch ( c_y )

{

case 1 :

lcd_cmnd_4( HOME ); // Go to 1st line

break;

case 2 :

lcd_cmnd_4( TAB_2 ); // Go to 2nd line

break;

}

for( c_i = 0; c_i < c_x - 1; c_i++ )

{

lcd_cmnd_4( RIGHT ); // Specify the row location

}

#endif

}

///////////////////////////////////////

// Controlling cursor position

///////////////////////////////////////

void lcd_cursor( unsigned char uc_mode, unsigned char uc_su )

{

#ifdef LCD

unsigned char uc_i, uc_j;

switch( uc_mode )

{
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case RIGHT:

uc_j = RIGHT;

break;

case LEFT:

uc_j = LEFT;

break;

case HOME:

case TAB_1:

case TAB_2:

lcd_cmnd_4( uc_mode );

uc_j = RIGHT;

uc_su--;

break;

case CLEAR:

for( uc_i = 0; uc_i < uc_su; uc_i++ )

{

lcd_putc(’ ’);

}

uc_j = LEFT;

break;

default:

lcd_puts( "ERR" );

uc_su = 3;

uc_j = LEFT;

break;

}

for( uc_i = 0; uc_i < uc_su; uc_i++ )

{

lcd_cmnd_4( uc_j );

}

#endif

}

/* Function for Delay and Timer */

/////////////////////////////

// initialize Timer W

/////////////////////////////

void timerW_init( void )

{

TW.TMRW.BIT.CTS = 0; // Stop Timer W counter

TW.TIERW.BYTE = 0x70; // Prohibit all interruptions

TW.TCNT = 0; // Clear counter to 0

TW.TCRW.BIT.CCLR = 1; // Counter clear according to GRA

TW.TCRW.BIT.CKS = 0; // CKS0:0,CKS1:0,CKS2:0 ⇒ Counting by internal clock(20MHz)

TW.GRA = 20000; // Number of counts for 1ms delay

}

/////////////////////////////

// 1ms delay

/////////////////////////////

void wait_1ms( unsigned int time )

{

unsigned int cnt;

for( cnt = 0; cnt < time; cnt++ )

{

TW.TMRW.BIT.CTS = 1; // Start timer W counter

while( ! TW.TSRW.BIT.IMFA ); // Wait until Compare Match Flag (IMFA = 1) when ( TCNT == GRA )

TW.TSRW.BIT.IMFA = 0; // Clear Compare Match Flag (IMFA = 0)

TW.TMRW.BIT.CTS = 0; // Stop timer W counter

}

}

//////////////////////////////

// 50us delay

//////////////////////////////

void wait_50us( unsigned int time )

{

unsigned int cnt;

while( time-- != 0 )

{

for( cnt = 0; cnt < 165; cnt++ );

}

}

//////////////////////////////

// 10us delay

//////////////////////////////

void wait_10us( void )

{

unsigned int cnt;

for( cnt = 0; cnt < 30; cnt++ );

}

///////////////////////////////////////////////

// Getting switch state with delay function

///////////////////////////////////////////////

char sw_delay( int wait )

{

char dat;

while(1)

{
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dat = SW_CHECK(); // 1st time of getting switch state

wait_1ms( wait ); // Prevention of chattering phenomenon done by getting switch state twice at different time

if( dat == SW_CHECK() )// 2nd time of getting switch state

{

return( dat );

}

}

}

/* Function for switch */

/////////////////////////////////

// Starting switch

/////////////////////////////////

void start_sw( void )

{

while( ! SW_CHECK() ); // Confirmation of Start switch is in off state

wait_1ms( 50 );

while( sw_delay( 10 ) ); // Wait until Start switch has been pushed

}

/* Main Function */

void main(void)

{

timerW_init(); // Initialize TimerW

while(1)

{

start_sw(); // Start switch

LED_R_OFF(); // LED RED OFF

LED_G_OFF(); // LED GREEN OFF

lcd_locate_puts( 1, 1, 16, "S1 IN" ); // Display "S1 IN"

LED_G_ON(); // LED GREEN ON →　 1st Stimulus

PULSE1_ON(); // Stimulation1 ON

wait_1ms(1); // 1ms of pulse duration

PULSE1_OFF(); // Stimulation1 OFF

LED_G_OFF(); // LED GREEN OFF

wait_1ms( 400 ); // Time interval between stimulation1 and stimulation2

lcd_locate_puts( 1, 1, 16, "S1 IN *400ms" ); // Display "S1 IN *400ms"

LED_G_ON(); // LED GREEN ON →　 2nd Stimulus

PULSE1_ON(); // Stimulation2 ON

wait_1ms(1); // 1ms of pulse duration

PULSE1_OFF(); // Stimulation2 OFF

LED_G_OFF(); // LED GREEN OFF

wait_1ms( 400 ); // Time interval between stimulation2 and stimulation3

lcd_locate_puts( 1, 1, 16, "S1 IN *400ms" ); // Display "S1 IN *400ms"

LED_G_ON(); // LED GREEN ON →　 3th Stimulus

PULSE1_ON(); // Stimulation3 ON

wait_1ms(1); // 1ms of pulse duration

PULSE1_OFF(); // Stimulation3 OFF

LED_G_OFF(); // LED GREEN OFF

wait_1ms( 400 ); // Time interval between stimulation3 and stimulation4

lcd_locate_puts( 1, 1, 16, "S1 IN *400ms" ); // Display "S1 IN *400ms"

LED_G_ON(); // LED GREEN ON →　 4th Stimulus

PULSE1_ON(); // Stimulation4 ON

wait_1ms(1); // 1ms of pulse duration

PULSE1_OFF(); // Stimulation4 OFF

LED_G_OFF(); // LED GREEN OFF

wait_1ms( 400 ); // Time interval between stimulation4 and stimulation5

lcd_locate_puts( 1, 1, 16, "S1 IN *400ms" ); // Display "S1 IN *400ms"

LED_G_ON(); // LED GREEN ON →　 5th Stimulus

PULSE1_ON(); // Stimulation5 ON

wait_1ms(1); // 1ms of pulse duration

PULSE1_OFF(); // Stimulation5 OFF

LED_G_OFF(); // LED GREEN OFF

wait_1ms( 400 ); // Time interval between stimulation5 and stimulation6

lcd_locate_puts( 1, 1, 16, "S1 IN *400ms" ); // Display "S1 IN *400ms"

LED_G_ON(); // LED GREEN ON →　 6th Stimulus

PULSE1_ON(); // Stimulation6 ON

wait_1ms(1); // 1ms of pulse duration

PULSE1_OFF(); // Stimulation6 OFF

LED_G_OFF(); // LED GREEN OFF

wait_1ms( 400 ); // Time interval between stimulation6 and stimulation7

lcd_locate_puts( 1, 1, 16, "S1 IN *400ms" ); // Display "S1 IN *400ms"
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LED_G_ON(); // LED GREEN ON →　 7th Stimulus

PULSE1_ON(); // Stimulation7 ON

wait_1ms(1); // 1ms of pulse duration

PULSE1_OFF(); // Stimulation7 OFF

LED_G_OFF(); // LED GREEN OFF

wait_1ms( 400 ); // Time interval between stimulation7 and stimulation8

lcd_locate_puts( 1, 1, 16, "S1 IN *400ms" ); // Display "S1 IN *400ms"

LED_G_ON(); // LED GREEN ON →　 8th Stimulus

PULSE1_ON(); // Stimulation8 ON

wait_1ms(1); // 1ms of pulse duration

PULSE1_OFF(); // Stimulation8 OFF

LED_G_OFF(); // LED GREEN OFF

wait_1ms( Dur_initiate ); // Time interval between stimulation8 and stimulation9

lcd_locate_puts( 1, 1, 16, "S2 IN *134ms" ); // Display "S2 IN 134ms"

LED_R_ON(); // LED RED ON →　 9th Stimulus

PULSE2_ON(); // Stimulation9 ON

wait_1ms(1); // 1ms of pulse duration

PULSE2_OFF(); // Stimulation9 OFF

LED_R_OFF(); // LED RED OFF

wait_1ms( Dur_terminate ); // Time interval between stimulation9 and stimulation10

LED_R_ON(); // LED RED ON →　 10th Stimulus

lcd_locate_puts( 1, 2, 16, "S3 IN 1090ms" ); // Display "S3 IN 1090ms"

PULSE2_ON(); // Stimulation10 ON

wait_1ms(1); // 1ms of pulse duration

PULSE2_OFF(); // Stimulation10 OFF

LED_G_ON(); // LED GREEN + RED ON →　 End Stimulus

}

}
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