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The Space of Pseudo-Metrics on a Complete Uniform S pace

By Taira SHIROTA

1. In a paper, B. H. Arnold® considered the class of all upper semi-
continuous decompositions of a 7, space and showed that it is possible
to construct a space homeomorphic to the given space from the partially
ordered set of decompositions. In another paper®, M. E. Shanks obtained
results on the semi-linear space of all metrics compatible with the
topology on a compactum.

In this paper we will show that the complete metric space as well
as the lattice ordered semi-additive-group of all bounded pseudo-metrics
compatible with the uniformity on a complete uniform space determine
the given uniform space.

2. Let X® be a uniform space. Then the set @M(X) of all bounded
pseudo-metrics® compatible with its uniformity for X is a complete
metric space with the distance (p, a)=xsz}£| p(@, y)—o(x,y)| and it is a

lattice ordered semi-group® with the ordinary addition and order consi-
dered as a subsystem of the system of all continuous functions from the
product space X xX into the reals.

Moreover for p € @IM(X) let X,, be a metrizable uniform space whose
points are equivalence classes [«], with respect to the equivalence relation
p(z,y) =0 and whose metric is defined by the distance d,([«],, [¥],) =
p(z,y). Then we write X, > X, when the mapping F,,,,: [2], —
[2], is uniformly continuous from X, onto X, and X, > X, if X,
> X, but not X, = X,,, and we denote by I(X) the partially ordered
set of all such metrizable uniform space X, with the above order.

1) Cf. B.H. Arnold: Decompositions of a 7"; space, Bull. Amer. Math. Soc., 46 (1943).

2) Cf. M. E. Shanks: The space of metrics on a compact metrizable space, Amer. Jour.
Math., 66 (1944).

3) In the present note we may assume that the potency of X is greater than 4, since
otherweise our results are trivial.

4) We say that p is a pseudo-metric compatible with the uniformity for X if it satisfies
the following conditions, i) p(x,x)=0, ii) p(x, y)=p(¥,x), iii) p(x, y)+p(¥,z) =p(x,z) and
iv) for any £>0 there exists a neighbourhood V such that p(x, y)<(e for x€ V().

5) We say that S is a lattice ordered semi-group if it satisfies the following conditions
i) S is a lattice and semi-group and ii) @\/b+c=(a+c)\/(b+c) for any a,band ce S. Cf.
G. Birkhoff, Lattice theory, (1949), p. 201.
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3. The partially ordered set ® (X). In this section we will show
that ®(X) determines the space X whenever X .is a complete uniform
space. For this purpose we shall prove the following lemmas.

Lemma 1. For two X, and X, of a uniform space X the follow-
ing conditions are equivalent :

(i) Xepry Z Xepny

(i) for two disjoint subsets A and B of X, p,(4, B)® =0 implies
p(4, B)® = 0.

Proof. Since obviously (i) implies (ii), we only prove that (ii)
implies (i1). Suppose that X, and X, satisfy the condition (ii). Then
evidently F'o i, is @ continuous mapping from Xy, onto X¢p,, . Now
we assume that there exist subsets {«,} and {y,} such that py(%,, v,)<_

71i and py(%n, ¥a) =€ >0. If {[#,]n} contains a Cauchy subsequence
{[2,']p.} whose limit point in the completion X,,; is %, then p,(4, B)=0
and py(4, B) = 5, where A ={z|[x]5s€ {[2/1n}\S"Z &/4)} and B

= {y|[wl € {[¥." 12} & [#," 152 € Spi(Z, €/4)}. Hence we see that both
{[2, 102} and {[y,ls} contain no Cauchy subsequences, so that there
exists subsets {[x, lp.} and {[#,' 1o} of {[2,]p.} and {[v.],.} respectively
such that for some & ([, 1pas [#n'1pe) > 8 and dp([yn'Jpz s [ym'Jea) > 8
if m==n. Then we can construct two infinite subsets A and B such
that A C{[#.']e.} and B C [y 1o} and dpA, B)>>0. Let A= {z|[2]p
€A} and let B= {y|[y],€B}. Then p,(4, B)=0 and p,(4, B) >0.
Hence we see that Fp, ¢, is uniformly continuous.

Lemma 2. For two Xy, and X, such that Xy > Xy, the follow-
ing conditions are equivalent :

(1) Xepyy covers Xep,

(ii) a) there exists a unique pair of different points & and 7 of the
completion X p,, such that dp, (%, ) =0, where d,, is an extension of the
pseudo metric dp,: dp([2]p1, [¥]n) = po(2, ¥), and b) if, for three subsets
A, A, and B of X, py(A, A,) >0 and p,(A\JA, B) >0, then either
po Ay, B) >0 or p(A,, B)>0.

Proof. we show that (i) implies (ii). Let X ,,, cover Xcp,,.
Now suppose that there exist three subsets A4,, 4, and B such that they
do not satisfy b). Then there exists a continuous function f of X such
that f(4,VYB)=0 and f(A4,)=1 and such that for any ¢ >0 py(&, y)<$

6) p(A, B)=inf p(x,y)
TE A, YEB

7)) So(x,&)={y|p(x, y)<}
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implies |f(x)—f(y)|< & for some & Let p, be a pseudo-metric of X
such that p(z, y)=|f(x)—f(¥)] and let + = o,+p,. Then obviously for
& >0 there exists § such that p,(w, y) <8 implies (%, y)< & and hence
Xpyy = Xry and in fact Xp,, > Xry since 7(A4,;, B) =0 and p,(4,, B)>0.
On the other hand X, = X, , and moreover X, > X ,,,, since p,(4,,
B)=0 and 7(A4,, B)>0. Hence X,,, and X,,,, satisfy b). Furthermore
If dp(Z, 7) =0 implies Z =7 for any # and 7 in X, since d,, is not
a metric of X, and since X, is a complete metrizable, by the same
method used in the proof of Lemma 1, there exists three subsets A,
A,’ and B’ of X, such that d,(4,, 4,") >0, dp(A,'VA,, B') >0, dp,
(A, BY=0 and d,(A,, B)=0. Let 4, = {x|[*], € UA/ )~ Xcp} and
B = {x|[x]p € UB")A Xy}, where U(A,”) and U(B’) are suitable neigh-
bourhoods of A, and B’ respectively. Then A4, and B do not satisfy b).
Hence there exists a pair of different points Z and % of X, such that
dp®, 7) =0. Furthermore we easily see that such pair of points is
uniquely determined.

The proof of the converse will be omitted, as it can be done by
the method used above.

DerIniTION. We say that a proper ideal I of (X)) is p-ideal if it
satisfies the following property : for any X, there exists an X, such
that Xy, €I and X = Xy, or Xp, covers X¢y,, and if X3 = Xipyy s
Xty = Xepsse ‘

Lemma 3. Let X be a complete uniform space and let I be a p-ideal.
Then there exists o unique pair of different points x and y of X such that
I = {Xep|p(x, y) = 0}.

Proof. Firstof all we remark that if X, ¢ I then Xy, €I is uniquely
determined. For if two different elements X,,,/, and X,y € I are covered
by X, since I is an ideal, X5V Xepyy €1, but Xepy = X503V X0,
which is a contradiction. Now let X,, £ be fixed and let Z,, and %y,
be two points of X, such that d,y(Zs, 7p,) = 0. Moreover let Z; and
%, be two points of X, such that dy(%,%,)=0, where X, > Xcpp.
Then Fipcpo( {21, #5}) = {Zpos Upo} Where Fipy,cpp; is @ mapping from X,
into Xppy such that it is an extension of Fipy,cpyy - For if dpZ;, Z,) =0,
by Lemma 1 and 2 we see that Xy, < Xy, and X, € I, which is a
contradiction. Hence d,o(Z, Z,)==0, accordingly dp(Feps, cpos(Z1)s Fepmcpos
(_-"?2)) =0, but dy(%,%,)=0 and X/, = Xy, hence dp(Fyp, trox(Z1) »
Fpy, cp0s(#,)) = 0. By the uniquenss of such pair of points we see that
F ooy, cpos (§Z15 Z,3) = {Zpos Upo}. Let %, be the point such that z, € {z,, %,}
and Fy, poy](Z,) =%, and let 7, be the other point of {Z,,Z,}. More-
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_ _ |
over let 4,,, = {xmp([x]p, z,) < 2171% and B,,, = (&[dl[z], 30) < 5.}-

Then {4, ,} and {B,,,} are both Cauchy closed family of X. Since X
is complete, there exists a pair of points z, and y, of X such that x,
=/[[A,,, and y,=]J[B,,,. Then obviously [z,], = %, and [y,], = ¥, for
Xy > X,,. Furthermore if p(z,, y,) =0, then X, €1, for let X7, = X,
V Xpe,» then Xr, >>X,,, and d(%-, §-)=0, hence X/,=X,p,, which implies
X.p, € I. Since evidently p(#,, 7,)>0 implies X, € I, I={Xp, | p(,, 1,)=013.

Theorem 1. If X is a complete uniform space, the partially ordered
set D (X) determines the uniform space X.

Proof (1). Let I{x, y} be the p-ideal which corresponds to a pair
of points x and y of X as in Lemma 3. Moreover for two p-ideals I,
I, we denote by I,~I, the relation: I,=1I, or I, \I, I, for some I,.
Then by the triangle axiom of pseudo-metrics, If{z, ¥} and I{u, v} are
equivalent if and only if {z, y} A {u, v}==¢. Furthermore we say that
a subset P of the set of all p-ideals is a maximal collection if it satisfies
the following conditions : i) P contains at least four p-ideals, ii) any two
p-ideals € P are equivalent and iii) it is maximal with respect to i) and
ii). Then for a maximal collection P there exists a unique point 2 of
X such that P ={I{z, y} |y € X & y == x}, which is denoted by P(x). Con-
versely any P(x) is a maximal collection. Let X be the set of all
maximal collections. Then we see that the correspondence: x — P(x) is
a one-to-one mapping from X to X. Furthermore let 4 = {P(x)|x € A}.

(II) We say that a subset A with potency = 2 is basic-closed if there
exists a X, € D(X) such that for any P€ A4, A ={Q|Q~P>I5X.}V
{P}. Then a subset A of X is basic-closed if and only if A is a closed
Gj-set which is a zero-set of a uniformly continuous function of X and
the potency |A|= 2. Let the set of all basic-closed sets of X be a closed
basis for X. Then we see that X is a topological space which is home-
omorphic to X by the mapping P. '

(ITT) Now we define the uniformity for X by pseudo-metrics. For
this purpose we define the uniformity for X by pseudo-metrics. For this
purpose we say that two disjoint basic-closed subsets A4,: (i =1, 2) are
p-separated if there exists X, < X, such that 4, = {Q|Q~P;>1>
Xy} Y iP,} for any P, € 4, and that two subsets 4, are p-separated if
they are contained respectively in two p-separated disjoint basic-closed
subsets. Furthermore we define that a pseudo-metric p~ of X is compatible
with the uniformity for X if there exists X, € AX) such that if p(4, B)
>0, 4 and B are p-separated.
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Now let p be compatible with the uniformity for X and let p1 be a
pseudo-metric of X such that p,(x, ) = p(P(x), P(y)). Then if p,(4,, 4,)
>0, then p(4,, 4,)>>0, hence A,(i =1, 2) are p-separated, accordingly
there exists subsets 4,'(i =1, 2) and X,,, <_ X, such that 4,/ ={Q|Q A P
5I5Xw} V{P,} and A, > A,. This means that A, C {x|s(x, y) =0 for
a fixed y,} and [y:],=+[%.]., so that p(4,, 4,) >0. Thus we see by
Lemma 1 that p, € 8M(X)and X, < X5,. Conversely for any p € SM(X)
let p be a pseudo-metric of X such that p(P(x) P(y)) = p(x, y). Then
p(4, B)>0 if and only if p(4, B)>>0, ie, A4 and B are p-separated.
Thus we see that the mapping P is a uniform homeomorphism.

REMARK. Let ®/(X) be the partially ordered set whose elements are
equivalence relations on X : p(, y) =0, p € SWM(X). Then if X is a com-
plete uniform space, ®'(X) determined the given topological space X, but
does not determine the uniform space X.

For example we consider the space X = @ X, where X, are mutually

disjoint the m-dimentional cubes and whose nr—elzlative topology on X, is
a usual one. Let X, be the coarsest uniform space® over X for which
all continuous functions are uniformly continuous and let X, be the
uniform space® over X with the uniformity made up of all countable
normal coverings. Then two space are complete and D'(X,)= D'(X,).
For there exists p’ € SM(X,) for any p € SM(X,) such that p(x, y) =0 and
p'(x, y) =0 are the same equivalence relation on X and is totally bounded,
and so D'(X;) and D'(X,) are determined by the totally bounded-pseudo
metrics which are identical on both X, and X,. But X; and X, are not
uniformly homeomorphic. For let %, be the finite open covering of X,
such that any refinement of B, has order > #n+1 and let U= {U|U €Y,
for some =}, then U is contained in the uniformity for X,. Suppose
that there exists a uniform homeomorphism F from X, onto X,. Then
F~(1) is contained in the uniformity for X,, hence there must exist a
finite number of continuous functions {f,, f,,..., .} and a real number
& >0 such that

W, = {{yl| |fd@)—f(y)|< & for any i}|xeX}

is a refinement of F-(11). But since the mapping f from X into the
n-dimensional Euclidean space E: f(x) = {f(2)|i =1, 2, ... n} is continu-
ous, by the extended Lebesgue’s covering theorem'® 11, has a refinement

8) Cf. E. Hewitt: Rings of real valued continuous functions, Trans. Amer. Math. Soc
64 (1948).

9) Cf. T. Shirota: A class of topological spaces, Osaka Math. J. 4 (1952).

10) C.H. Dowker: Lebesgue dimension of a normal space, Bull. of Amer. Math. Soc.
52 (1946). K. Morita: On the dimension theory of normal space I, Japanese Journ. Math.
20 (1950).
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U, with order ==#+2. Hence F(11,) <1 and the order of F(1,) is
=n+2. Accordingly the order of F(1,)|X,; is ==%+2 and F(11,)| X,
<%,,,. But by the property of 8,,,, the order of F(11,)|X,,, is = n+2,
which is a contradiction.

4. The complete metric space SIM(X). We remark first that the
zero 0 of the semi-linear space GM(X) is determined by the property
that it can not be the middle point'® of two different points. Accordingly
we can characterize the norm of an element p of SIM(X) as (0, p) and we
write it by || p|l.

Definition. For any real 4y >0 and p € SI(X) we denote the surface
§p'|(p", p) =} by S{p) and in particular, when p =0, by S;. Then for
two p and p, we write p;»p, if Syp)ASy T Syp,)~Sy whenever r >
Feall vV llpalle

Lemma 4. For a uniform space X following conditions are equivalent :

(1) p1Dpas

(if) Xepy = Xepys -

Proof. We have only to prove that i) implies ii). Suppose that
there exist two subsets A and B such that p,(4, B)=0, but p,(4, B) >0.
Then for #>> || p, | V [l ps Il if p=7/ps(4, B) (ps pps(A, B)), we see that
lp—pill=7r=|lpll, but that || p—p,||< r. For there exists subsets
{r,} and {y,} of A and B respectively such that p,(2,, ¥,) — 0 and p,(z,,
Yn) = v, hence (p—p,Y,, y,) — v and so || p—p, || =r. Furthermore for
& < po(A, B) if py(=, y) <&, then|p(x, y)-—-py(@, y)| <&V ér/py(A, B)< r and
if py(x, y) = &, then | p(2, y)—py(%, Y)| S (r—E)V [l po [ < 7. Thus || p—p, ||
< hence Sy(p1) A Sy L Syp) A Sy, L€, pu b po.

Theorem 2. For a compléte uniform space X, the complete metric
space SM(X) determines the uniform space X.

Proof. Let p,~p, if p;>p, and p, >p,. Then obviously it is an
equivalence relation and we denote by [p,] the equivalence class con-
taining p, and let [p,] = [p,] if p, >p,. Then the partially ordered set
obtained above is isomorphic to ©(X) which determines by Theorem 1
the uniform space X.

REMARKS. It will be easily seen by Lemma 1 and 2 that a metri-
zable uniform space X is determined by the semi-linear topological space
SM,(X) whose elements are pseudo-metrics compatible with the uniformity
and vanishing only on the diagnol of the product space X xX and that

11) We say that a point x of metric space X is a middle point of y and z of X if («, y)
=(x, z)=%(y, z). Cf. Menger: Untersuchung iiber allgemeiner Metrik, Math. Ann. 100.
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a completely metrizable uniform space X is determined by the semi-
linear topological space ¥ X) whose elements are metrics compatible with
the uniformity.

5. The lattice orderd semi-additive-group SIM (X).

Lemma 5. For a uniform space X the following conditions are equi-
valent :

(1) Xeppy = Xepny

(ii) there ewists a sequence {p,'|n=0,1, 2, ...} suckh that for any n
a) np,’ < p’ and b) p, < p,'Vm,p, for some integer m,.

1 1
Proof. Let Xy = Xippy, pa’ = p2 Ao ilnd po’ = 22 (npy A W)' Then
pa(n=0,1,2,...)€ BWYX) and np,’ = np, A = po’- Moreover since Xp,
2
= X¢pyy, there exists 8 > 0 such that py(a, y) = —1 implies p,(x, ) = 6.

Accordmgly if py(@,y)= 3, p N =l p I < I 'O 2| pl(o:, y). Hence for
> ” P2 » P2 <PnlvmnP1 )

Conversely let there exist a sequence f{p,’} such that it satisfies a)
and b). Then from a)| p,’ || <l Il po’ Il . Furthermoe for any & >0 let
7 be an integer such that — ll po’ < & and let & be a positive number
such that m,8< & Then 1f pi(x, ¥) <8, pyle, y)<— Il o Il Vm,d <6,

which implies Xpy = Xpyy -
By the same method used in the proof of Theorem 2 we obtain
the following

Theorfm 3. If X is a complete uniform space, the lattice ordered
semi-additive-group SM(X) determines the uniform space X.

REMARK. By a well known theorem obtained by several authors
and by the method used by the author'® we see easily that for a com-
pletely metrisable uniform space X, the system €, (X) of all (bounded)
uniformly continuous real valued function on X determines the uniform
space X considering €,(X) as ring, lattice or Banach space.

But for complete uniform spaces we can obtain from €, almost
nothing, even for complete uniform space whose base space is separable
metrizable. For example we consider the space X. and X, of the example
in the section 3. The complete uniform space X, and X, are not uniformly
homeomorphic, but €,(X,) and €,(X,) coincide.

(Received September 17, 1953)

12) Cf.T. Shirota: A generalization of a theorem of I. Kaplansky, Osaka Math. J. 4 (1952).








