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1. Introduction

Totally geodesic submanifolds of Riemannian symmetric spaces have been well
investigated and it has been shown that they have beautiful and fruitful
properties. In particular, due to the (M ,,M _)-theory by B.Y. Chen and T. Nagano
[1] this subject has made great progress. Naturally reductive homogeneous spaces
are known as a natural generalization of Riemannian symmetric spaces. K. Tojo
[6] investigated totally geodesic submanifolds of naturally reductive homogeneous
spaces and obtained a necessary and sufficient condition of their existence. We
will recall his result in section 3. Moreover he implicitly made the following
conjecture.

Conjecture. If a simply connected irreducible naturally reductive homogeneous
space M admits a totally geodesic hypersurface, then M has constant sectional
curvature.

The conjecture is regarded as a generalization of the result which was shown
in the case of Riemannian symmetric spaces by B.Y. Chen and T. Nagano [1]. K.
Tojo gave an affirmative answer to the conjecture in the case that dimM =3, 4
and 5 [6] and in the case that M is a normal homogeneous space [7]. We shall
prove that the conjecture above is true.

Main Theorem. If a simply connected irreducible (as a Riemannian manifold)
naturally reductive homogeneous space M admits a totally geodesic hypersurface,
then M has constant sectional curvature.

We shall discuss the irreducibility of naturally reductive homogeneous spaces
in Section 2 and prove the main theorem in Section 3.

2. Irreducibility of naturally reductive homogeneous spaces

We first recall basic definitions and properties of naturally reductive
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homogeneous spaces, following J.E. D’Atri and W. Ziller [2] and S. Kobayashi and
K. Nomizu [3]. See also O. Kowalski and L. Vanhecke [4], [S]. Let (M,g) be a
homogeneous Riemannian manifold. Let K be a connected Lie group of isometries
which acts transitively and almost effectively on M and let H be the isotropy
subgroup at a point oe M. Let T be the Lie algebra of K and [ the subalgebra
corresponding to H. Let m be an Ad(H )-invariant subspace which is complementary
to b in . We denote by x; and x,, the h-component and the m-component of
x el, respectively. As usual we identify m with the tangent space T,M at o and
denote by {,) the inner product on m induced from the metric g, on T,M.

DerINITION 2.1. A homogeneous Riemannian manifold (M,g) is said to be a
naturally reductive homogeneous space if there exist K and m as above such that

2.1) [x,y]mwz> +<0[xz]> =0 for any x,y,zem.

From now on we assume that (M,g) is a naturally reductive homogeneous
space. Then by a theorem of Kostant we may assume that f=m+[m,m]. Let
A, : m — so(m) be a linear mapping which corresponds to the Riemannian connection
V (see [3] Chapter X), where so(m) denotes the Lie algebra consisting of skew
symmetric endomorphisms of (m,{,»). Then A,, is given by

22) A.,.(x)(y)=%[x,y]m for x,yem

(cf. Theorem 3.3 p.201 in [3]),

DEFINITION 2.2. A subspace V of m is said to be A,-invariant if it satisfies
A (xV) < V for any xem. Moreover a A, -invariant subspace V is A,,-irreducible
if V" has only trivial A -invariant subspaces.

We set mo={vem|A,(x)(v)=0 for any xem}. Then we evidently have the
following orthogonal decomposition into A,,-invariant subspaces:

2.3) m=m,®m;®---®m,,

where for each i (1<i<r) m; is A -irreducible and A, (x)l,,,#0 for some xem.

Theorem 2.3. Let M=K/ H be a naturally reductive homogeneous space with
Ad(H)-invariant decomposition T=h®m. We assume that T=m+[mm]. Let

m=my@d@m,@---dm,
be the decomposition of m which satisfies (2.3). If we set

fi=n1i"-[rnian‘i] (i=0’1a'"’r)
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bi=finb (i‘—‘O,l,"‘,V),

then we have t=1,@t, @ --- B, andh=h,DY, @ --- ©N, as direct sums of Lie algebras.
Proof. We first show the following identity.

Lemma 2.4. Let M=K/H be a homogeneous space with Ad(H)-invariant
decomposition T=h@m. Then the following holds:

[[X,J’]m,z][, + [D”Z]m9x]b + [[Z,X:lm,y]b = 0

for x,y,zem.

Proof of Lemma 2.4. By the Jacobi’s identity, we have

0=[[xy],z]+ [,z x]+[[zx].y]
=[[x%y1pz] + [ 2]y x]+ [[2,x]5 0]
+ [0y 2] + [0 2w X] + [[2,X] 1m0 1]

for x,y,zem.
Comparing the h-components of both sides, we obtain the identity in Lemma 2.4.

O
By (2.2) and (2.3), we have [m,m;],, = m,. In particular,
(2.4) [m;,m;],=0 for i#j,
(2.5) [m,m],.,=m; for ix>1.
Lemma 2.5. The following relations hold.
1) [mi’mj]'_"o Sor i#j.
2 [[mym]m]=0 for i#j.

(3) [[mi’nti]bami] cm,
@ [[mymdm] < m+[m,m;],

Proof of Lemma 2.5. (1) It is sufficient to prove that [m;,m;]J;=0for i#j. We
may assume that i>1. By Lemma 2.4, we have for x,yem; and zem;,

[[x’y]m’z]b =- [[y’z]m’x]h - [[Zax]m’y]b =0.

Since [m;m;],,=m; for i>1, we have [m;,m;},=0.
(2) From the Jacobi’s identity and (1), it follows that for x,yem; zem;

[[x,y).z]=— [[y’z]ax] —[[z,x],y]=0.
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(3) By (1) and (2), we obtain [[x,y]y,z]=0 for x,yem; zem; (i#j). Therefore
for x,y,vem; zem; (i#))

<[[x>y][)> v],zy=—<v, [[x’y][)’z] >=0,

that is, [[x,y]p,m;] < m;
4) By (3) and (2.5), we obtain (4). Od

Proof of Theorem 2.3. We first prove that each f; is an ideal of f. In fact
applying the relations in Lemma 2.5, we obtain the following:

[m’mi] < [mb mil

[m’ [mbmi]] c [mii[mi’mi]] < ml'+ [mi’mi]’
(Cmmdm] < L3 [mymg]m,

< [[m,m],m] = m;+[m,m],
[[m’m]a[miami]] < [[[m’m]amilmi]

< [m;+[m,m],m;] < m;+[m;,m;].

Since [m;,m;],, < m; (((=0,1,---,r), we have h;=[m;,m;], and hence f,;=m;®b;
(direct sum). Finally we shall show that h=h,®h,® .- Db, as a direct sum of
vector spaces. Let x be a vector of (ho+ - +h)nb,.,. Since xebh;,,; by (1)
and (2), it follows [x,v]=0 for any vemy+ .- + m;+m;,,+ -« +m, On the other
hand since xeb,+---+b;, again by (1) and (2), it follows [x,0]=0 for any
vem;,,. These imply [x,v]=0 for any vem. Since K acts almost effectively on
M, we have x=0. Hence (ho+ - +b)nb;;;=0. Since [m,m]y=bh, we have
h=ho®h,®--- @Y, Noticing that f, are ideals of f, we have I={,DF, D - Df,
and h=h,®h,;®---®h, as direct sums of Lie algebras. O

Corollary 2.6. Let M=K/ H be a simply connected irreducible (as a Riemannian
manifold) naturally reductive homogeneous space. If A, #0, m is A -irreducible.

Proof. Let m=m,®m,® ---@m, be the decomposition of m which satisfies
(2.3). By Theorem 2.3, we see that each m; is an invariant subspace by the holonomy
algebra of the Riemannian connection (cf. see [3] Chapter X §4). Therefore the
above decomposition has the only one factor. Since A, #0, m#m, and thus m
is A,-irreducible. O

3. Proof of the Main Theorem
We first recall a theorem of K. Tojo ([6]). Let M=K/H be a naturally
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reductive homogeneous space with Ad(H)-invariant decomposition f=hH@dm.
According to [6], we put ¢,.=A,(x) for simplicity. Since ¢, is a skew symmetric
endomorphism on (m, {, ), e*~ is defined as a linear isometry on (m,{,)»). Then
K. Tojo showed the following (Theorem 3.2 in [6]).

Theorem 3.1. Let V be a subspace of m (which is canonically identified with
ToM). Then there exists a totally geodesic submanifold of M through o whose
tangent space at o is V if and only if the following holds:

R(e?(V),e?™(V)e?*(V) < e?<(V)  for any x€V,

where R denotes the Riemannian curvature tensor of M.

The above theorem is considered as a generalization of the Lie triple system
in Riemannian symmetric spaces due to E. Cartan.

Now we shall prove Main Theorem. Let M be as in Main Theorem. IfA,,=0,
then M is a simply connected irreducible Riemannian symmetric space. In this
case, our theorem has been proved by B.Y. Chen and T. Nagano [1]: Therefore
we assume that A, #0. By Corollary 2.6, it follows that m is A ,-irreducible. Let
S be a totally geodesic hypersurface of M. Since M is a homogeneous Riemannian
manifold, we may assume that S is through o. Let V be a hyperplane (ie., a
subspace with codimension 1) of m which is a tangent space of S at 0. We denote
by ¢ the unit vector of m which is orthogonal to V. We set

Vi={px|xem}={¢px|xeV}
Then V, is a subspace of V. In fact for any xem, {px,&) = —{x,9,£>=0. Since
m is A, -irreducible, V; #0. We set O, =RE@V,.

Lemma 3.2. The following equations hold.:
(1) <R(x,y)z,£>=0.
(2) <@ex,y><R(z,)E,w) —Lpex,2 ) R(1,E)E,w) = (R, 2)W, pex )

for x,y,ze V,wem.

Proof of Lemma 3.2. Applying Theorem 3.1, we obtain
3.1) {R(e'P*y,e'=2)e' " w,e'?*E Y =0

for x,y,z,weV,teR.
Putting t=01in (3.1), we obtain (1). Differentiating (3.1) with respect to ¢t at t =0,

(6.2 (R(@,2)w, &> +(Rp, @, 2)w, &)
+<{Rp,2)Q.m,8> + <R, 2w, 0,8 =0.
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We put ¢,y =<@,,E)E+v, whereve V. Then by the equation (1) in this lemma

(R(9.,2I%,8) =<9, EXCR(E, 2w, E) + (R(v,2)w, &
={@ex,y){R(z,E)E,w).
Similarly we have
(R, 9:2)w,8) = —pex, )R, €)E,w)
CRp,2)pw,8> = @ex, wH<R(»,2)¢, & =0.

Substituting them in (3.2), we obtain (2) for we V. If w=¢, the both sides of (2)
are equal to 0. Therefore the equation (2) holds for all wem. O

By Lemma 3.2 (2), it follows that
(3.3) 0,y2<R(z,8)E,w) — {0,2) R, )&, w) = — (R, 2Jv,w)

for veV,, y,zeV, wem.
For xem, we define a symmetric endomorphism R,:m —m by R_y=R(y,x)x.

Lemma 3.3. There exists a constant ¢ such that Rxx=cx for any xeV,.

Proof of Lemma 3.3. Let x be an arbitrary non-zero vector of ¥, and y be a
vector of ¥V which is orthogonal to x. Putting v=z=w=x in (3.3), we have
{R(x,8)E,y>=0. On the other hand, clearly {R(x,&)&,E)=0. This implies that
V', is a subspace of some eigenspace with respect to R,. We may take its eigenvalue
as the constant c. O

Lemma 3.4. For any ve Oy, the following relations hold:

(1) Ry,2v=0 for any y,zev',

(2) Rx=c{{v,vdx—<{x,v>v} for xeO,,

(3) Rx={v,0)Rx for xeOf,
where v and Of denote the orthogonal complements in m of v and O,, respectively
and the constant c in (2) is given in Lemma 3.3.

Proof of Lemma 3.4. We consider the following three cases for ve O,:

Case 1. v=¢
Case 2. v is a unit vector of V,. In this case we denote e by such a v,
Case 3. v is an arbitrary unit vector of O;.

Case 1. By Lemma 3.2 (1), R(y,z)¢(=0 for any y,ze V. By Lemma 3.3
Rix=c{x—{x,&)¢} for xe0,.

Therefore (1), (2), and (3) in Lemma 3.4 hold for this case.
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Case 2. Let y, z be vectors of etnV. Putting v=e in (3.3), we have
R(y,z)e=0. Moreover it holds that R(y,£)e=0. In fact, for we V,

(R(y,&)e,w)={R(e,w)y,&)=0
and
(R, )e, &> = —<(R(e,6)E,y> = —(Ree,y) = —c{e,y>=0.

From these, we see that (1) holds. Applying (3.3) for v=z=e and yee'nV, we
obtain R,y=R;y. Hence (2) and (3) hold.
Case 3. It is easily seen that the following relations hold:

R(y,e){=—c(y,&)e
R(,Va é)e == c<yse>é

for a unit vector ee V, and any yem.
We put v=cosfe+sinfd¢ for some unit vector ee ¥, and some OeR. For
y,zeet NV, we have

R(y,z)v=cos OR(y,z)e + sin OR(y,z)é =0,
R(y, —sin Oe + cos &
= —sin Ocos OR(y,e)e —sin? OR(y,e)¢
+cos? OR(y,¢)e + sin 0 cos OR(y, £)E
=sin 0 cos O{R,y — Ry} =0.

Hence in this case (1) holds.
For xem, we have

(3.4 R,x=cos? OR x +sin® OR,x +sin 0 cos O{ R(x,e)¢ + R(x,¢)e}
=cos? OR x +sin? ORx — csin 0 cos 0{<x, Ede + {x,e) &}
For xe 0,, (3.4) implies
R,x=ccos? 0{x—<{x,ede} +csin? O{x — {x,ENE}
—csinf cos 0{<x,&de+{x,ed¢}
=c{x—<{x,v)v}.
For xeOf, (3.4) implies R,x=R;x. O

Lemma 3.5. The following identity holds:
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S {9 (R(,2W)— R(9,y,2)Ww— Ry, 9.2)w — R(y,2)p,w} =0

X,¥,2

Sor x,y,z,wem.
Here the symbol & denotes the cyclic sum with respect to the indicated variables.

Proof of Lemma 3.5. It is known that the covariant derivative VR of R is
given as follows

(V.R)y,2)w= (0" Ry, z)w
= (px(R(y’ Z)W) - R((ny, Z)W - R(V, (sz)W - R(y’ Z)(pr.
By this and Bianchi’s 2nd identity of VR, we have the identity in this lemma.
O

We consider the symmetric endomorphism R,:m - m. Evidently we have
R{(V)< V. Then V is decomposed into the eigenspaces of R;:

V=p1@"'®pl’

where each p; (i=1,---,/) is the eigenspace of R, with eigenvalue A, Here we
set A, =c, where the constant ¢ has been given in Lemma 3.3. By Lemma 3.3,
it follows that ¥V, < p,.

Lemma 3.6. (1) For x,yep,, o, yeREDYP,.
(2) For xep;, yep; (j#1), ¢,y is contained in the eigenspace of R, with eigenvalue
Aty
2 .

Proof of Lemma 3.6. By Lemma 3.5, we have for xep;, yep;
0= /R(x,y)¢) — R(@x,y)¢ — R(x,0)¢ — R(x,y)p &

+ (py(R(ésx)é) - R((pyé’x)f - R(éy (pyx)ﬁ - R(ﬁyx)(pyé
=200 —2R{0y) — R1, )& — 4oy x + R(x, )9, ¢
=(4i+1)90 —2R{¢9.) +2c{p, L,y <.

Hence
(3.5) 2RA0)=(4i+A)o.y +2c 0L, p)¢.

If i=j=1, then (3.5) implies R.¢.y)=c{p.y—<{0»,¢>¢}. Therefore (1) in this
lemma holds. If j#1, (3.5) implies R(¢,y)=%%%¢,y. Therefore (2) in this lemma
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holds. O
Lemma 3.7. If xep, yep; (i#)), then we have ¢,y=0.

Proof of Lemma 3.7. We assume that j#1 and that ¢,y#0. We set
¢, y=z. Then by Lemma 3.6 (2), z is an eigenvector of R, with eigenvalue
4t4 - Since 0#{p,,z) =—{(»,0,2), y and ¢,z are eigenvectors of R, with same
eigenvalue. Therefore we have A;=4*%2+1) and hence 4,=4,, that is, i=j. It
is contrary to our assumption i#j Therefore we have ¢,y=0. O

Since V, < p,, together with Lemmas 3.6 and 3.7, we see that RE®p,,p,,- -, P
are A, -invariant subspaces. By A -irreducibility, we have m=RE®p,. By this
and Lemma 3.4, it holds that

R(w,x)y=c{{x,y)v—<v,ydx} for veO;=RED®V; and x,yem.
We define a tensor R, of type (1,3) by
Ro(u,v)w={v,wdu—{u,wHv
and define a subspace n of m by
n={xem|i(x)(R—cRy)=0}.

The preceding result means that O; =« n. Now we note that the curvature tensor
R is given as follows (cf [3] p.202).

R(X,y)Z =- [[x’y]baz]
+ }‘[x, [yaz]m]m - i[y’ [X, Z]m]m - %[[x’y]maz:lm

== [[X,y]b,Z] + PxPyz — PyPyZ — (p(¢xy - q)yx)z

for x,y,zem.
Since R and R, are invariant by the action of I, the subspace n is invariant by the
action of h. In particular we see that [[y,z];,v]en for ven and y,zem.

We first assume that ¢#0. For an arbitrary vector xe V, we have

R(x,0)¢ = —[[x,{]5 €] — 04,68

Hence ¢ and ¢, £ are contained in n. By the preceding remark, it follows that
[[x,£]y,¢1en. Hence R(x,§)en. On the other hand, since V=p;, R(x,£)¢=cx.
Since ¢#0, we have xen. Therefore we see that n=m, that is, R has constant
sectional curvature c.

We secondly assume that c=0. We define subspaces V; (i=0,1,2,--) inductively
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as follows. Set V=R We define V;,, by a subspace linearly spanned by ¢,z
for xem, ze ¥V;. We remark that V; coincides with the subspace defined at the
beginning in this section.

Lemma 3.8. For each i, V; c n={xem|i(x)R=0}.

Proof of Lemma 3.8. We shall prove our assertion by the induction with
respect to i It is already shown that Vy<n and ¥V, «n. Suppose that our
assertion holds for 0,1,---,i (i>1). Then we shall prove that V,,; = n, that is,
¢.zen for xem, ze ¥V, We consider the following three cases.

Case 1. xeV, 0<j<i-1;
Case 2. xeV;;
Case 3. xe(Vo+V i+ -+ V)~

Case 1. Since ¢,z=—¢,xeV;,, and j+1<i, ¢,zen.
Case 2. By Lemma 3.5, we have for u,vem

0=0(R(z,u)v) — R(¢,z,u)v — R(z, 9 u)v — R(z,u)p,v
+ @.(R(u, x)v) — R(pu,x)v — R(, ¢ .X)v — R(, x) v
+ @ R(x,2)v) - R(,x,2)v— R(x,9,2)v — R(x,2)p,v
= —2R(¢p,z,u)v.
Therefore we have ¢,zen.
Case 3. It is sufficient to prove our assertion when z=¢, for uem,

veV;_,. Wefirst remark that ¢ .v=0. In fact, for any wem, (@, v,w)=—<{@,0,x)
and since g, ve V;and xe(Vo+ V; + -+ + V)*, we have {p,v,w>=0. It follows that

R(x’ u)U =- [[X, u]l): U] + PPV — PPV — 2(pq)xuv
= [[x’u]bs U] +¢,z— 2(p¢xuv'

On other hand, R(x,u)v= —R(u,v)x — R(v,x)u=0 by the assumption of induction.
Then we have ¢,z=[[x,u]y,v]+2¢, 0. Since the right hand side is contained in
n, so is ¢,z O

We set O0;=Vy+V;+--+V,. Evidently we have O, O, < =0
< 0;,, S---. Therefore there exists an integer i such that 0;=0,,,. Then O;
is an invariant subspace with respect to A,. Since 0;#0, we have O;=m. By
Lemma 3.8, it follows that n=m, that is, the curvature tensor R vanishes. Thus

our theorem has been completely proved.
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