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Let (G, σ) be a pair of a group G and an automorphism σ of order 2 (an
involution) of G. Define the symmetric core S(G) of (G, σ) by

S(G)= {ασ(O|αeG> .

S(G) is closed under the mapping (called the symmetry around s): χ\->soχ=
sx"1 s (sy x^S(G)), and is a discrete symmetric space in the sense of [1], Let

Φ
(HyZ) be a central extension of G with the exact sequence 1->Z->H->G->1
where Z is contained in the center of H. Let r be an involution of H such that
it leaves every element of Z invariant and φoτ=?σ oφ. In this case, we say that
(H, Z; T) (or, (H, T)) is a central extension of the null type of (G, σ) . In this
paper, a central extension implies that of the null type.

It is easy to see that the symmetric core S(H) of (H, T) is homomorphic
onto S(G), and we call S(H) a central extension, or, a covering (of the null type)
of S(G). The main result obtained in this note is that there exists a generic
covering S(U) of S(G) and S(U) is finite if G is finite. Here, a covering is cal-
led 'generic'' if every covering of S(G) is its homomorphic image. We also
obtain some connections between the generic covering and the (restricted) Schur
multiplier of G when G is finite.

1. The symmetric core of a central extension

Groups with involutions are said to be symmetrically equivalent if they have
the isomorphic symmetric cores. Let {t(a)} (a^G) be a representative system
of G in a central extension (H> T), and let Ho be a subgroup of H generated by
t{ά) and r(t(a)) («GG). Then, (HOy τ0) is a central extension of (G, σ) where τ0

is the restriction of r to Ho. (H, T) and (i/0, τ0) are symmetrically equivalent
because they have the same symmetric core {t{d)τ{t{a)"ι)\a^G}. We call
(HOy τ0) a reduced central extension of (G, σ). Therefore, we may restrict to a
reduced central extension as far as the symmetric equivalence is concerned.

The symmetric core S(G) is identified with the homogeneous space Gjl
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(—the set of left cosets of /) , where I—I(G) is the subgroup of <r-invariant
elements of G. The identification is done through the mapping acr(a~ι)h^al.
(See [1].) For a central extension (H, r), S(H)=H/I(H) by the above identifi-
cation where I(H) is the subgroup of τ-invariant elements of H. Since I(H)
contains Z=the kernel of φ, HjI(H) is mapped bijectively by φ to φ(H)/φ(I(H))
= G\1\ where Γ=φ(I{H)). Clearly, ΓcL

Proposition 1. /' is a normal subgroup of I, and IjΓ is an elementary abe-
lian 2-group.

Proof. In the following, we let {t(a)} be a representative system of G in H
with ί(l) = l. Then, τ(t(a))=z(a)t(σ(a)) with z(a)^Z. If especially a^I,
then τ(t(a))~z(a) t(a) and the mapping ζ: a^>z(a) gives a homomorphism of
/ to Z. Moreover, τ2=\ implies that z(a)2=l if αG/. Thus, to prove Propo-
sition 1, it is enough to show that ker ζ—If. First let α^ker ζ. Then, z(a)=l,
orτ(ί(fl))=ί(β). t(a)eI(H). φ(t(a))*Ξφ(I(H))=Γ. So, a=φ(t(a))tΞΓ, and
hence ker ζdΓ. Conversely, let bGl'=φ(I(H)). Then, b=φ(h) with h^I(H).
ΐ(b) = zh with some ^ G Z . τ(t(b)) = τ(zh) = zτ(h) = zh=t(b). So, z(b)=-\.

and hence /'cker f.

Corollary. If G is finite, the index of S(G) in S(H) is a power of 2 and
divides \Z\ if Z is finite.

Proposition 2. Let (H} Z; T) be a central extension of (G, σ). If Y is a
subgroup of Z such that Y contains no element of order 2, then (H\Y, T), where
T is the naturally defined involution of HjY, is a central extension of (G, σ) and
is symmetrically equivalent with (H, T).

Proof. It is clear that (HIYy r) is a central extension of (G, σ). Let φ be
the natural homomorphism of Hj Y to G. To show that {Hj Y, Ψ) is symmetri-
cally equivalent with (H,τ), it is enough to show that φ(I(HIY))=φ(I(H)).

Let a£Ξφ(I(HIY)). If we denote t(a) = t(a) mod Y(=H/Yy then ψ(t{ά))=Ί(a)
as in the proof of Proposition 1. This implies that τ(t(a))—y t(a) with ye Y.
Since τ 2 = l , we h a v e ^ 2 = l . By the assumption on Y, y=l. Hence, t(a)EΞ
I(H). Therefore, a=φ(t(a))<=φ(I(H)). We have shown that φ{I(HjY))<z
Φ{I{H)). φ(I(H))dφ(I(HIY)) is clear. We have proved Proposition 2.

Theorem 1. Suppose that G is finite. Then, a central extension of (G, σ)
is symmetrically equivalent with a finite central extension.

Proof. We may consider only a reduced central extension (H, r). When
G is finite, H is finitely generated. Since Z has a finite index in H, Z is also
finitely generated. (See [4].) Then, Z~ExJ where E is a finite gorup and J
is an infinite group by the fundamental theorem on finitely generated abelian
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groups. Now, let Y—J in the above Corollary, and we obtain a finite central
extension (#//, E; T) which is symmetrically equivalent with (//, r).

The following Proposition 3 will be used later. For it, let Z=ZXX
(direct). We let T~Z\Z{ and H—H/Ti. Then, (#,., Z, τ, ) is a central
extension with the naturally defined involution τ, . Let φf be the natural
homomorphism of i/, to G

Proposition 3. Π &(/(#,))=£(/(#)).

Proof. It is clear that φ(I(H))d Π£*(/(#*)). Conversely, let α<Ξ
Π<&(/(#,-)). Then, τ(f(α))=s f(Λ) with *eΓ,.(z=l, •••, HI) as in the proof of

Proposition 2. This means #—1, and hence

2. A generic central extension

Elements [/]EΞi/2(G, Z) correspond bijectively to isomorphism classes of
central extensions (H, Z) of G. When we restrict our consideration to the cen-
tral extensions (H, Z\ τ) of (G, σ), we obtain a subgroup of H\G, Z), which we
call the restricted cohomology group and denote by H2(G, Z; σ). First, we
characterize the elements of H2(Gy Z\ σ). Let [/] eH\G y Z\ T), and (H, r) the
central extension of (G, σ) associated with it. Then, t{a) t(b)=f(a, b) t(ab) and
τ(t(a))=z(a) ΐ(σ(a)). Applying T on the above, we obtain

(1) z{a) *(b)f(tr(a)9 σ(b)) = z(ab)f(a, b) and

z(a)z(σ(a))=l.

We call (/, z) a solution of (1) in Z, where z implies the mapping: a\-*z(ά) of
G to Z. Conversely, if a 2-cocyle f of G satisfies (1) with a mapping zy then we
can show that [/]€Ξ//2(G, Z\σ). For, we can define an involution of H> which
is a central extension of G associated with /, by setting τ(t(ά))=z(a) t(σ(ά)).
So, a characterization of an element [/] of H2(G, Z\ σ) is that there exists a
solution (/, z) of (1) in Z.

Let/be a 2-cocyle, i.e., f£iZ2(G, Z). fmay not have a solution (/, z) of (1)
in Z. We shall modify Z to get a modified group Zf such that a 2-cocyle / ' in
Zf obtained from / in a natural way will have a solution (/' z') of (1) in Zf. For
it, let Ω be a free abelian group on G with the generators ω(a) (a€ΞG). We
factor it out by the relations ω(a) ω[σ(a))=ί. Let Γ be the abelian group ob-
tained from Ω, by the factoring, and let y(a) denote the corresponding gener-
ators. We have rγ(a)ry(σ(a))=l. Then, consider a direct product ZxT. In
Z x Γ , we consider a subgroup Wf which is generated by elements (/(α, b)f(<r(a),
<r(b))-\ 7(a)'1 7(*)"1 y(ab)). Now, we define Zf=(ZxT)jWf. Note that if /
has a solution (/, z) of (1), then there is a homomorphism of Zf onto Z. For,
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there is a homomorphism of Γ to Z which maps γ(#) to z(a), and hence there is
a homomorphism of ZxT onto Z defined by (u, γ(a))\-*wz(a) for u^z. The
kernel of this homomorphism contains Wfy and hence, we have a homomorphism
of Zf onto Z as required. Now we define a 2-cocycle/' of G in Zf by/'(β, b)=
f(ayb) mod Wf. Here, Z is considered as a subgroup of ZxT in a natural
sense. At the same time, we define a mapping z' of G to Zf by #'(α)=γ(α) mod
WΓ/. It is easy to see that (/', z') is a solution of (1) in Zf. Let (Hfy τf) be the
central extension of (G, cr) associated with (/', z'). It follows that Hf=(HxY)j
Wfy and if (Hy τ) is a central extension associated with (/, z) in case it exists then
there is a homomorphism of (Hfy τ') onto (Hy τ).

Theorem 2. There exists a central extension (U, π) of (Gy σ) such that
every reduced central extension of(G, σ) is a homomorphic image of (U,π). Thus,
S(U) is a generic covering of S(G).

Proof. Let F be a free central extension of G with the exact sequence 1—>
K-+F-+G-+1. (See [4].). Let [h](=H2(Gy K) be the cohomology class corre-
sponding to the central extension F of G. Let (Hy Z; τ) be the reduced central
extension of (G, σ) associated with a solution (/, z) of (1) as before. Then,
there exists a homomorphism of F onto Hy which maps K to Z and h(ay b) to
f(ay b). Now, we let U=Fhy which is constructed as Hf is constructed. So, we
have a central extension (U, π) of (G, σ). It can be seen that the homomorphism
of F onto H induces the homomorphism of U onto Hf, more precisely, of (U, π)
onto (Hf, T ' ) . Since wre have a homomorphism of (Hf, r') onto (H, τ) as re-
marked before, we obtain a homomorphism of (U, π) onto (H, T).

From now on, we suppose that G is finite. Since (C/, π) may not be finite,
we want to construct a finite central extension of (G, σ) which is symmetrically
equivalent with (U,τ). It is an analogue of a representation group of G, and
we closely follow the process given in [2] to construct it. Let C be the group
of non-zero complex numbers. We know that Z2(Gy C)—B2(G, C)-\-M (direct)
with a subgroup M, which is naturally isomorphic with the Schur multiplier
H2(G, C). When we restrict our consideration to the restricted Schur multiplier
H2(G, C; σ), we obtain a subgroup N of M. Define ity=Hom (ΛΓ, C). Now
we define a central extension R of G by R=*Σ Nr(a)y where ivis contained in
the center of R and {r(a)\ is a representative system of G in R. Here, r(a) r(b)
= a(a, b) r(ab) with a (a, b)^JSί such that a(ay b) (g)=g(ay b) for g^N. Thus,
[a]^H2(Gy iΦ) and R is the central extension of G associated with [a]. We
want to show that [a]^H2(Gy N; σ). We have to show the existence of a solu-
tion (ay β) of (1) in N. For an element g of Ny there exists a solution (gy u) of
(1) in C. However, u is not unique. But, a different solution (gy ur) simply
gives a central extension which is isomorphic with that of (g, u). We determine
u for g in a unique way as follows. Let {gly •••,£„} be a basis of N. For each
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gh we select u{ such that (gi9 u{) is a solution of (1) in C For a general element
g of N9 let g=ΐl gV and define u=JJ uψ. (g, u) is a solution of (1) in C. Note
that, for a given element a of G, a mapping £!-*#(«) is then a homomorphism of
iV to C, and hence it is an element of N. Now, we define the mapping of G to
iV"by ah-*β(a)y where β(a) (g)=u(a). It follows that (a, β) is a solution of (1)
in JV. We have shown that there is a central extension (i?, p) of (G, σ ).

Proposition 4. Let (H, Z;τ) be a reduced central extension of {G,σ), where
Z is a cyclic group. Then, (R, p) is homomorphίc onto (H, T).

Proof. We use the previous notation. The mapping v\-*v(f) for v^N
gives a homomorphism of N to C. We imbed Z into C and consider Z as a
subgroup of C Since the order of/ divides the order of Z, we can consider the
above mapping as a homomorphism of Sf to Z. We can see that this homomor-
phism oί Nto Z maps the solution (ay β) of (1) in N to the solution (/, u') of
(1) in Z with some element u'. Thus, (i?, p) is homomorphic onto a central
extension associated with (f,u')y the latter being isomorphic with (H, T) as re-
marked before. This proves Proposition 4.

Theorem 3. S(R) is a generic covering of S(G).

Proof. Let ψ be the natural homomorphism of R to G. If we show that
Λ]r(I(R))dφ(I(H)) for any central extension (H,τ) of (G, <τ), then ψ(I(R))=
φ(I(U)) for the generic central extension U and hence S(R)=S(U), which
will prove Theorem 3. So, we prove ψ(I(R))dφ(I(H)). We may assume
that H is finite. Then, Proposition 3 implies that it is enough to show the
above in case that Z is cyclic. But, this case is clear from Proposition 4.

Corollary. The index of S(G) in S(R) divides the order of the restricted
Schur multiplier H2(G, C σ).

REMARK. When G is infinite, a generic covering of S(G) may not be unique
(up to isomorphism), because the existence of surjective homomorphisms of
two symmetric cores from one to the other in both ways does not mean the iso-
morphism. However, if G is finite, a generic covering is uniquely determined
up to isomorphism.

EXAMPLE. Let a be an element of order 2 of G, and σ the inner automor-
phism of G induced by a. Then, the symmetric core of (G, σ) is S(G)=
{x~* a'1 xa\χξΞG} = C[ά\ a, where C\a] is the conjugacy class of a in G. Sup-
pose that G is finite, and let R be a representation group of G. If there exists
a representative t(a) of a in R such that t(a) has the order 2, let r be the inner
automorphism of R induced by t(a). Then, the symmetric core of (R, T) is
S(R)=C[t(a)]t(a). It is easy to see that S(R) is the generic covering of
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S(G). The conjugacy class C[t(a)] is homomorphic to the conjugacy class
C[d\. Generally, any covering of S(G) is a homomorphic image of S(R) and
hence it is of form C [b] by where C [b] is an extension of the conjugacy class
C[a\. We can conclude that every (central) extension of C[a] is an image of
the conjugacy class C[t(a)] of R. This result was obtained in [3].
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