

Title	Vanishing theorems for type (0,q) cohomology of locally symmetric spaces. II		
Author(s)	Williams, Floyd L.		
Citation	Osaka Journal of Mathematics. 1983, 20(1), p. 95-108		
Version Type	VoR		
URL	https://doi.org/10.18910/11230		
rights			
Note			

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

VANISHING THEORMS FOR TYPE (0,q)COHOMOLOGY OF LOCALLY SYMMETRIC SPACES II

FLOYD L. WILLIAMS

(Received February 25, 1981)

1. Introduction

Let G/K be a Hermitian symmetric space where G is a connected non-compact semisimple Lie group and $K \subset G$ is a maximal compact subgroup. We fix a discrete subgroup Γ of G which acts freely on G/K and for which the quotient $X=\Gamma\backslash G/K$ is compact. Let $E_{\tau}\to G/K$ be a homogeneous C^{∞} vector bundle over G/K induced by a finite-dimensional irreducible representation τ of K. Then E_{τ} has a holomorphic structure and one can define a presheaf by assigning to an open set U in X the abelian group of Γ -invariant holomorphic sections of E_{τ} on the inverse image (under the map $G/K\to X$) of U in G/K. Let $\theta_{\tau}\to X$ be the sheaf generated by this presheaf and let $H^q(X,\theta_{\tau})$ denote the qth cohomology space of X with coefficients in θ_{τ} . In this paper we continue the program initiated in [23] of obtaining some general vanishing theorems for the spaces $H^q(X,\theta_{\tau})$ by the application of recent representation-theoretic results. This allows for a unified view-point and one by which, in particular, the classical vanishing theorems of [3], [4], [5], [6], [7], [12], and [13] may be deduced.

Following Hotta and Murakami [4] we represent $H^{q}(X, \theta_{\tau})$ as a space of automorphic forms. Then its dimension can be expressed by a formula of Matsushima and Murakami [14] in terms of certain irreducible unitary representations π of G, the multiplicity of π in $L^2(\Gamma \backslash G)$, and the K intertwining number of π with $Ad_+^q \otimes \tau$ where Ad_+^q is the qth exterior power of the adjoint representation of K on the space of holomorphic tangent vectors at the origin of G/K. Based on results of Kumaresan [9], Parthasarathy [17], and Vogan [21], we have been able to obtain in [23] and [24] a clearer understanding of the structure of the unitary representations π of G in the Matsushima-Murakami formula; also see Theorem 3.3 of the present paper. We apply this new knowledge in conjunction with the Matsushima-Murakami formula to deduce the main result of this paper, which is Theorem 4.3. We can deduce, in particular, results of [23] from Theorem 4.3 without assuming the linearity of G. Thus we drop the linearity assumption in the present paper, which was enforced in [23].

2. Unitary representations intertwining $\chi^{\pm} \otimes \tau_{\Lambda + \delta_{n}}$

In this section G will denote a non-compact connected semisimple Lie group with finite center and $K \subset G$ will denote a maximal compact subgroup of G. However, proceeding more generally, we shall not assume that G/K is Hermitian symmetric (until later). Let $\mathfrak{g}_0 = \mathfrak{k}_0 + \mathfrak{p}_0$ be a Cartan decomposition of the Lie algebra \mathfrak{g}_0 of G, where \mathfrak{k}_0 is the Lie algebra of K and \mathfrak{p}_0 is the orthogonal complement of \mathfrak{k}_0 relative to the Killing form $(\ ,\)$ of \mathfrak{g}_0 . Let $\mathfrak{g},\ \mathfrak{k},\ \mathfrak{p}$ denote, respectively, the complexifications of $\mathfrak{g}_0,\ \mathfrak{k}_0,\ \mathfrak{p}_0$. We shall assume throughout that \mathfrak{k} contains a Cartan subalgebra \mathfrak{h} of \mathfrak{g} ; i.e. we assume G and K have the same rank. This will be the case in particular when G/K is Hermitian. Let Δ be the set of non-zero roots of $(\mathfrak{g},\ \mathfrak{h})$, let $\Delta_k,\ \Delta_n$ denote the compact, non-compact roots respectively in Δ , let $\Delta^+ \subset \Delta$ be an arbitrary choice of a system of positive roots, let $\Delta_k^+ = \Delta^+ \cap \Delta_k,\ \Delta_n^+ = \Delta^+ \cap \Delta_n$, and let $2\delta = \langle \Delta^+ \rangle,\ 2\delta_k = \langle \Delta_k^+ \rangle,\ 2\delta_n = \langle \Delta_n^+ \rangle$, where we write $\langle \Phi \rangle = \sum_{\alpha \in \Phi} \alpha$ for $\Phi \subset \Delta$. Let $\mathcal F$ denote the integral linear forms Λ on $\mathfrak h$; i.e. $\Lambda \in \mathfrak h^*$ (the dual space of $\mathfrak h$) satisfies: $\frac{2(\Lambda,\alpha)}{(\alpha,\alpha)}$ is an integer for each α in Δ . We define

(2.1)
$$\mathcal{F}'_0 = \{ \Lambda \in \mathcal{F} | (\Lambda + \delta, \alpha) \neq 0 \text{ for } \alpha \text{ in } \Delta \text{ and } (\Lambda + \delta, \alpha) > 0 \text{ for } \alpha \text{ in } \Delta_k^+ \}$$
.

Let \mathfrak{g}_{α} be the (one dimensional) root space of $\alpha \in \Delta$. Given $\Lambda \in \mathcal{F}'_0 \Lambda + \delta_n$ is the highest weight with respect to Δ_k^+ of an irreducible representation $\tau_{\Lambda+\delta_n}$ of \mathfrak{k} . The Killing form of \mathfrak{g}_0 induces a real inner product on \mathfrak{p}_0 and since \mathfrak{p}_0 is even-dimensional (because G and K are of equal rank) the spin representation σ of $\mathfrak{So}(\mathfrak{p}_0)$ has a decomposition $\sigma = \sigma^+ \oplus \sigma^-$ into two irreducible representations σ^{\pm} . Let

$$\chi^{\pm} = \sigma^{\pm} \circ (\operatorname{ad}_{\mathfrak{k}_0})|_{\mathfrak{p}_0}$$

where $(\operatorname{adt}_0)|_{\mathfrak{p}_0}$ is the adjoint representation of \mathfrak{k}_0 on \mathfrak{p}_0 . Then $\chi^{\pm}\otimes\tau_{\Lambda+\delta_n}$ always integrates to a representation of K (which we shall denote by the same symbol) for $\Lambda \in \mathcal{F}'_0$ even though $\tau_{\Lambda+\delta_n}$ may not. Let Ω denote the Casimir operator of G and let \hat{G} denote the equivalence classes of irreducible unitary representations (π, H_{π}) of G on a Hilbert space H_{π} . Given $\Lambda \in \mathcal{F}'_0$ we shall want to pin down the structure of a $(\pi, H_{\pi}) \in \hat{G}$ such that $\pi(\Omega) = (\Lambda, \Lambda+2\delta)1$ and such that $\operatorname{Hom}_K(\pi, \chi^{\pm}\otimes\tau_{\Lambda+\delta_n}) \neq 0$. Here H_{π} also denotes the space of K finite vectors in H_{π} which is regarded as a $U\mathfrak{g}$ module where $U\mathfrak{g}$ is the universal enveloping algebra of \mathfrak{g} ; thus $\pi(\Omega)$ is well-defined. We shall need the following additional notation. If $\theta \subset \mathfrak{g}$ is a parabolic subalgebra we shall write $\theta = \mathfrak{m} + \mathfrak{u}$ for its Levi decomposition where \mathfrak{m} and \mathfrak{u} denote the reductive and nilpotent parts respectively of θ , $\Delta(\mathfrak{m})$ for the roots of \mathfrak{m} , $\theta_{u,n}$ for the set of non-compact roots in the nilpotent radical \mathfrak{u} , M for the closed Lie subgroup of G whose complexified Lie algebra is \mathfrak{m} , and we shall write $2\delta_{u,n} = \langle \theta_{u,n} \rangle$. Let $c \colon \mathfrak{g}_0 \to \mathfrak{g}_0$ denote the Cartan

involution for the Cartan decomposition $\mathfrak{g}_0=\mathfrak{k}_0+\mathfrak{p}_0$ above. Let F be a finite-dimensional irreducible \mathfrak{g} module and let $\theta=\mathfrak{m}+\mathfrak{u}\supset\mathfrak{h}$ be a c stable parabolic subalgebra of \mathfrak{g} such that the space F^u of \mathfrak{u} invariants is a one dimensional unitary M module. If $\lambda\in\mathfrak{m}^*$ is the differential of F^u then $\lambda(\Delta(\mathfrak{m}))=0$ and we shall write $A_{\theta}(\lambda)$ for the unique (up to equivalence) irreducible \mathfrak{g} module with minimal \mathfrak{k} type $\lambda|_{\mathfrak{h}}+2\delta_{u,n}$. This means that $A_{\theta}(\lambda)$ is the only irreducible \mathfrak{g} module such that (i) $A_{\theta}(\lambda)|_{\mathfrak{k}}$ contains the irreducible \mathfrak{k} module with Δ_k^+ -highest weight $\lambda|_{\mathfrak{h}}+2\delta_{u,n}$ and (ii) the Δ_k^+ -highest weight of any irreducible \mathfrak{k} submodule of $A_{\theta}(\lambda)|_{\mathfrak{k}}$ is of the form $\lambda|_{\mathfrak{h}}+2\delta_{u,n}+\sum_{\beta\in\theta_{u,n}}n_{\beta}\beta$ where $n_{\beta}\geq 0$. For the existence and construction of the \mathfrak{g} modules $A_{\theta}(\lambda)$ the reader may consult [16], [25]. One knows that the special \mathfrak{k} type $\lambda|_{\mathfrak{h}}+2\delta_{u,n}$ occurs exactly once in $A_{\theta}(\lambda)|_{\mathfrak{k}}$. Now let W be the Weyl group of $(\mathfrak{g},\mathfrak{h})$ and let W_K be the subgroup of W generated by reflections corresponding to compact roots. For $\Lambda\in\mathcal{F}'_0$ let

$$(2.3) P^{(\Lambda)} = \{\alpha \in \Delta \mid (\Lambda + \delta, \alpha) > 0\}$$

be the system of positive roots corresponding to the regular element $\Lambda + \delta$, let

(2.4)
$$Q_{\Lambda} = \{\alpha \in \Delta_{\pi}^{+} \mid (\Lambda + \delta, \alpha) > 0\}$$

$$P_{\pi}^{(\Lambda)} = P^{(\Lambda)} \cap \Delta_{\pi}, \quad 2\delta^{(\Lambda)} = \langle P^{(\Lambda)} \rangle, \quad 2\delta_{\pi}^{(\Lambda)} = \langle P_{\pi}^{(\Lambda)} \rangle$$

and for $w_1 \in W$, $\tau_1 \in W_K$ let

(2.5)
$$\Phi_{w_1}^{(\Lambda)} = w_1(-P^{(\Lambda)}) \cap P^{(\Lambda)}, \quad \Phi_{w_1} = w_1(-\Delta^+) \cap \Delta^+$$

$$\Phi_{\tau_1}^+ = \tau_1(-\Delta_k^+) \cap \Delta_k^+.$$

Proposition 2.6. Let $\tau \in W_K$ and let $w \in W$ be such that $\Delta_k^+ \subset wP^{(\Delta)}$. Then $\Phi_{\tau^{-1}w}^{(\Delta)} = \Phi_{\tau^{-1}}^k \cup (\Phi_{\tau^{-1}w}^{(\Delta)_1} - \Phi_{\tau^{-1}}^k)$, $\Phi_{\tau^{-1}w}^{(\Delta)_1} - \Phi_{\tau^{-1}}^k = \{\alpha \in P_n^{(\Delta)} | w^{-1}\tau\alpha \in -P^{(\Delta)} \}$. Also $\Phi_w^{(\Delta)} \subset P_n^{(\Delta)}$.

Proof. If $\alpha \in \Phi_{\tau-1}^k$ then $\alpha \in \Delta_k^+ \subset P^{(\Delta)}$ and $\tau \alpha \in -\Delta_k^+ \subset w(-P^{(\Delta)}) \Rightarrow w^{-1}\tau \alpha \in -P^{(\Delta)} \Rightarrow \Phi_{\tau-1}^k \subset \Phi_{\tau}^{(\Delta)_{1_w}}$ and hence $\Phi_{\tau}^{(\Delta)_{1_w}} = \Phi_{\tau-1}^k \cup (\Phi_{\tau}^{(\Delta)_{1_w}} - \Phi_{\tau-1}^k)$. If $\alpha \in \Phi_{\tau}^{(\Delta)_{1_w}} - \Phi_{\tau-1}^k$ then $\alpha \in P^{(\Delta)}$, $w^{-1}\tau \alpha \in -P^{(\Delta)}$ and we claim $\alpha \notin \Delta_k^+$. For otherwise $\tau \alpha \in \Delta_k^+$ since $\alpha \notin \Phi_{\tau-1}^k$. Then $\tau \alpha \in wP^{(\Delta)} \Rightarrow w^{-1}\tau \alpha \in P^{(\Delta)}$ is a contradiction. Thus we must have $\alpha \in P^{(\Delta)} - \Delta_k^+ = P_n^{(\Delta)}$; i.e. $\Phi_{\tau}^{(\Delta)_{1_w}} - \Phi_{\tau-1}^k \subset \{\alpha \in P_n^{(\Delta)} | w^{-1}\tau \alpha \in -P^{(\Delta)} \}$. Conversely $\{\alpha \in P_n^{(\Delta)} | w^{-1}\tau \alpha \in -P^{(\Delta)} \} \subset \Phi_{\tau}^{(\Delta)_{1_w}} - \Phi_{\tau-1}^k \subset \Phi_{\tau-1}^k \subset \Delta_k^+$ and since $\Delta_k \cap \Delta_n = \phi$. Clearly $\Phi_w^{(\Delta)} \subset P_n^{(\Delta)}$ since $\Delta_k^+ \subset wP^{(\Delta)} \cap P_n^{(\Delta)}$.

Using Proposition 2.6 we can now state the following theorem whose proof is given in [24] (see Theorem 2.15 there).

Theorem 2.7. Let $\Lambda \in \mathcal{F}'_0$ in (2.1), let $P^{(\Lambda)}$ be the corresponding positive system in (2.3), and let $\sigma \in W$ be the unique Weyl group element such that $\sigma \Delta^+ = P^{(\Lambda)}$.

Let $(\pi, H_{\pi}) \in \hat{G}$ be such that $\pi(\Omega) = (\Lambda, \Lambda + 2\delta)1$ and such that $\operatorname{Hom}_{K}(\pi, \chi^{\pm} \otimes \tau_{\Lambda + \delta_{n}}) = 0$. Then there is a pair $(\tau, w) \in W_{K} \times W$ and a c stable parabolic subalgebra $\theta = \mathfrak{m} + \mathfrak{u}$ of \mathfrak{g} containing a Borel subalgebra $\mathfrak{h} + \sum_{\alpha \in \Delta_{1}^{+}} \mathfrak{g}_{\alpha}$ where $\Delta_{1}^{+} \supset \Delta_{k}^{+}$ such that

- (i) $H_{\pi} = A_{\theta}(\lambda)$ and the minimal \mathfrak{t} type $\lambda|_{\mathfrak{h}} + 2\delta_{u,n}$ (which characterizes H_{π}) has the form $\lambda|_{\mathfrak{h}} + 2\delta_{u,n} = \Lambda + \delta_n + \tau^{-1}(w\delta^{(\Lambda)} \delta_k)$
- (ii) (τ, w) satisfy $\Delta_k^+ \subset wP^{(\Delta)}$, $\tau(\Lambda + \delta \delta^{(\Delta)}) = w(\Lambda + \delta \delta^{(\Delta)}) = \Lambda + \delta \delta^{(\Delta)}$, $\Phi_w^{(\Delta)}$, $\Phi_\tau^{(\Delta)_{1_w}} \Phi_{\tau^{-1}}^k$, and $\{\alpha \in P_n^{(\Delta)} \mid \tau\alpha \in -P_n^{(\Delta)}\}$ are contained in $\{\alpha \in P_n^{(\Delta)} \mid (\Lambda + \delta \delta^{(\Delta)}, \alpha) = 0\}$, and $(-1)^{|\Phi_\sigma|} = \pm (-1)^{|\Phi_w^{(\Delta)}|} = \pm (-1)^{n+|\theta_{u,n}|}$ where |S| denotes the cardinality of a set S and $n = \frac{1}{2} \dim_R G/K^{(1)}$ (see (2.5)); also $\Phi_{\tau^{-1}}^k \subset \{\alpha \in \Delta_k^+ \mid (\Lambda + \delta \delta^{(\Delta)}, \alpha) = 0\}$
- (iii) the relative Lie algebra cohomology $H^{j}(\mathfrak{m}, \mathfrak{m} \cap \mathfrak{k}, \mathbf{C})$ (for the trivial module \mathbf{C} =the complex numbers) is non-zero for $j=n-|\theta_{u,n}|-|\{\alpha\in P_n^{(\Delta)}|w^{-1}\tau\alpha\in -P^{(\Delta)}\}|$. Hence the latter number is even.

REMARKS. (i) If F is the finite-dimensional irreducible \mathfrak{g} module with $P^{(\Lambda)}$ -highest weight $\Lambda + \delta - \delta^{(\Lambda)}$ then H_{π} in Theorem 2.7 satisfies

$$\operatorname{Hom}_{K}(H_{\pi}, \wedge^{i} p \otimes F) = H^{i}(\mathfrak{g}, \mathfrak{k}, H_{\pi} \otimes F^{*}) = H^{i-|\theta_{u,n}|}(\mathfrak{m}, \mathfrak{m} \cap \mathfrak{k}, C)$$
 for $i \geqslant 0$

- (ii) $\Lambda + \delta_n + \tau^{-1}(w\delta^{(\Lambda)} \delta_k)$ is the only \mathfrak{t} type which occurs both in $\pi \mid K$ and in $\mathfrak{X}^{\pm} \otimes \tau_{\Lambda + \delta_n}$
- (iii) If $\sigma_1 \in W$ is the unique Weyl group element such that $\sigma_1 \Delta_1^+ = P^{(\Lambda)}$ then $\sigma_1 \lambda \mid \mathfrak{h} = \Lambda + \delta \delta^{(\Lambda)}$ (see [24]).
- (iv) The proof of Theorem 2.7 leans heavily on the recent unpublished results of D. Vogan [21]. Vogan's results depend in part on the important theorem of S. Kumaresan [9] which specifies the structure of an irreducible \mathfrak{k} component of $\Lambda\mathfrak{p}$ that can occur in an irreducible unitary \mathfrak{g} module H_{π} when $\pi(\Omega)=0$.
 - (v) $\Phi_{\sigma} = \Delta_n^+ Q_{\Lambda}$.

3. Unitary representations intertwining $Ad_{+}^{q} \otimes \tau_{A}$

We now assume that for G, K in section 2, the quotient G/K admits a G invariant complex structure; i.e. G/K is a Hermitian symmetric domain. We choose the positive system Δ^+ above to be compatible with the complex structures on G/K. This means that

$$\mathfrak{p}^{\pm} = \sum_{\pm \alpha \in \Delta_n^{\pm}} \mathfrak{g}_{\alpha}$$

where $\mathfrak{p} = \mathfrak{p}^+ \oplus \mathfrak{p}^-$ is the splitting of \mathfrak{p} into the spaces of holomorphic and anti-

¹⁾ Hence $|\theta_{u,n}| = \dim \mathfrak{u} \cap \mathfrak{p}$.

holomorphic tangent vectors \mathfrak{p}^+ , \mathfrak{p}^- respectively at the origin in G/K. The spaces \mathfrak{p}^\pm are K and \mathfrak{k}^+ stable abelian subalgebras of \mathfrak{g} . The condition of the compatibility of Δ^+ with a G invariant complex structure is equivalent to the following: every $\alpha \in \Delta_n^+$ is totally positive; i.e. for each α in Δ_n^+ we have $\alpha + \beta \in \Delta_n^+$ for any $\beta \in \Delta_k$ such that $\alpha + \beta \in \Delta$. If $\mu \in \mathfrak{h}^*$ is integral and Δ_k^+ dominant we write (τ_μ, V_μ) for the corresponding irreducible of representation of \mathfrak{k} (or of K if $(\tau_\mu, V_\mu) \in \hat{K}$). Let L^\pm denote the representation space of \mathfrak{X}^\pm . Then we have

$$\sum_{(-1)^{j=\pm 1}} \bigoplus \Lambda^{n-j} \mathfrak{p}^+ = L^{\pm} \otimes V_{\delta_n}$$

as K modules. Here note that dim $V_{\delta_n}=1$ by Weyl's formula since $(\delta_n, \alpha)=0$ for $\alpha \in \Delta_k^+$ in the Hermitian symmetric case. Again $n=\frac{1}{2}\dim_R G/K=\dim_R G/K=\dim_R G/K=|\Delta_n^+|$. We now prove the following Hermitian analogue of Theorem 2.7.

Theorem 3.3. Let Λ , $P^{(\Lambda)}$ σ be as in Theorem 2.7 where Λ is the Δ_k^+ -highest weight of $(\tau_{\Lambda}, V_{\Lambda}) \in \hat{K}$. Let $(\pi, H_{\pi}) \in \hat{G}$ be such that $\pi(\Omega) = (\Lambda, \Lambda + 2\delta)1$ and such that $\operatorname{Hom}_K(H_{\pi}, \wedge^q \mathfrak{p}^+ \otimes V_{\Lambda}) \neq 0$ where $q \geqslant 0$ is fixed. Then there is a pair $(\tau, w) \in W_K \times W$ and a c stable parabolic subalgebra $\theta = \mathfrak{m} + \mathfrak{u}$ of \mathfrak{g} containing a Borel subalgebra $\mathfrak{h} + \sum_{\alpha \in \Delta_1^+} \mathfrak{g}_{\alpha}$ where $\Delta_1^+ \supset \Delta_k^+$ such that H_{π} , (τ, w) , θ satisfy con-

ditions (i), (ii), (iii) of Theorem 2.7 where in (ii) \pm is chosen according as $(-1)^{n-q} = \pm 1$. If $A_{\Lambda,\tau,w} = \{\alpha \in P_n^{(\Lambda)} | w^{-1}\tau\alpha \in -P^{(\Lambda)}\}$ (see Proposition 2.6), then q satisfies $q = |A_{\Lambda,\tau,w}| - 2|Q_{\Lambda} \cap A_{\Lambda,\tau,w}| + |Q_{\Lambda}|$ where Q_{Λ} is given by (2.4).

Proof. Suppose that $\operatorname{Hom}_{K}(H_{\pi}, \Lambda^{q}\mathfrak{p}^{+}\otimes V_{\Lambda}) \neq 0$. Writing q = n - (n - q) and using (3.2) we have for $(-1)^{n-q} = \pm 1$ the K module inclusion $\Lambda^{q}\mathfrak{p}^{+}\otimes V_{\Lambda} \subset L^{\pm}\otimes V_{\delta_{n}}\otimes V_{\Lambda} = L^{\pm}\otimes V_{\Lambda+\delta_{n}}$ so that $\operatorname{Hom}_{K}(H_{\pi}, L^{\pm}\otimes V_{\Lambda+\delta_{n}}) \neq 0$ since $H_{\pi}|_{K}$ and $\Lambda^{q}\mathfrak{p}^{+}\otimes V_{\Lambda}$ contain a common K type V_{μ} . Thus Theorem 2.2 applies. The Δ_{k}^{+} -highest weight μ satisfies $\mu = \Lambda + \langle Q_{1} \rangle$ where $Q_{1} \subset \Delta_{n}^{+}$ such that $|Q_{1}| = q$. Let $Q_{2} = \Delta_{n}^{+} - Q_{1}$ so that $\mu = \Lambda + 2\delta_{n} - \langle Q_{2} \rangle$. Define $Q_{3} = (Q_{\Lambda} - Q_{2}) \cup -(Q_{2} \cap Q_{\Lambda}')$ $\subset P_{n}^{(\Lambda)} = Q_{\Lambda} \cup -Q_{\Lambda}'$ where $Q_{\Lambda}' = \Delta_{n}^{+} - Q_{\Lambda}$. Then one easily checks that

(3.4)
$$|Q_3| = |Q_2| - 2|Q_2 \cap Q_\Lambda| + |Q_\Lambda| \quad \text{and}$$

$$\langle Q_3 \rangle = \langle Q_\Lambda \rangle - \langle Q_2 \rangle.$$

Let $Q_4 = P_n^{(\Delta)} - Q_3$. One has $\delta_n + \delta_n^{(\Delta)} = \langle Q_\Delta \rangle$ so that using (3.4) $\mu = \Lambda + \delta_n + \delta_n - \langle Q_2 \rangle = \Lambda + \delta_n + \delta_n - \langle Q_\Delta \rangle + \langle Q_3 \rangle = \Lambda + \delta_n + \delta_n^{(\Delta)} - \langle Q_4 \rangle$. On the other hand by remark (ii) above $\Lambda + \delta_n + \tau^{-1}(w\delta^{(\Delta)} - \delta_k)$ is the only \mathfrak{k} type occurring both in $\pi \mid_K$ and $\chi^{\pm} \otimes \tau_{\Lambda + \delta_n}$ which means that $\mu = \Lambda + \delta_n + \tau^{-1}(w\delta^{(\Delta)} - \delta_k) = \Lambda + \delta_n + \delta_n^{(\Delta)} - \langle Q_4 \rangle$ and hence $\tau^{-1}(w\delta^{(\Delta)} - \delta_k) = \delta_n^{(\Delta)} - \langle Q_4 \rangle$. Therefore $\langle Q_4 \cup \Phi_{\tau^{-1}}^k \rangle$ (see (2.5)) = $\langle Q_4 \rangle + \langle \Phi_{\tau}^k \rangle = \langle Q_4 \rangle + \delta_k - \tau^{-1} \delta_k = \delta_k + \delta_n^{(\Delta)} - \tau^{-1} w \delta^{(\Delta)} = \delta_n^{(\Delta)} - \tau^{-1} \delta_k w^{(\Delta)} = \langle \Phi_{\tau^{-1}}^{(\Delta)} \rangle$. Thus by (5.10.2) of Kostant [8] $Q_4 \cup \Phi_{\tau^{-1}}^k = \Phi_{\tau^{-1}}^{(\Delta)}$. Then $Q_4 = \Phi_{\tau^{-1}}^{(\Delta)} = \Phi_{\tau^{-1}}^k = \delta_{\tau^{-1}}^k \otimes \Phi_{\tau^{-1}}^k \otimes \Phi_{\tau^$

 $\begin{array}{l} A_{\Lambda,\tau,w} \mbox{ (by Proposition 2.6) and since } Q_4 = P_n^{(\Lambda)} - Q_3, \ Q_2 = \Delta_n^+ - Q_1 \mbox{ we get } |A_{\Lambda,\tau,w}| = n - |Q_3| = n - |Q_2| + 2|Q_2 \cap Q_{\Lambda}| - |Q_{\Lambda}| \mbox{ (by (3.4))} = |Q_1| + 2|Q_2 \cap Q_{\Lambda}| - |Q_{\Lambda}| \\ = q + 2|Q_2 \cap Q_{\Lambda}| - |Q_{\Lambda}|. \mbox{ But by definition of } Q_3 \mbox{ we have } Q_2 \cap Q_{\Lambda} = Q_{\Lambda} - Q_3 = Q_{\Lambda} \cap Q_4 = Q_{\Lambda} \cap A_{\Lambda,\tau,w} \mbox{ and hence } |A_{\Lambda,\tau,w}| = q + 2|Q_{\Lambda} \cap A_{\Lambda,\tau,w}| - |Q_{\Lambda}|. \mbox{ This proves Theorem 3.3.} \end{array}$

In the statement of Theorem 3.3 no conditions are imposed on $\Lambda \in \mathcal{F}_0$. However suppose for example that we impose the following condition: we assume every $\alpha \in P_n^{(\Lambda)}$ is totally positive. Then we have the following refinement of Theorem 3.3.

Corollary 3.5. Let $(\tau_{\Lambda}, V_{\Lambda})$, $P^{(\Lambda)}$, σ , (π, H_{π}) be as in Theorem 3.3 with q fixed. Suppose in addition that $P^{(\Lambda)}$ is compatible with a G invariant complex structure on G/K; i.e. assume every non-compact root in $P^{(\Lambda)}$ is totally positive. Then there is a Weyl group element w and a c stable parabolic subalgebra $\theta=m+u$ satisfying the conditions of Theorem 2.7 where in (i), (ii), (iii) $\tau \in W_K$ may be assumed equal to the identity element (thus for example H_{π} is characterized by the minimal t type $\Lambda + \delta_n + w \delta^{(\Lambda)} - \delta_k$ and $j=n-|\theta_{u,n}|-|\Phi_{w}^{(\Lambda)}|$ and in (ii) \pm is chosen according as $(-1)^{n-q}=\pm 1$. q satisfies $q=|\Phi_{w}^{(\Lambda)}|-2|Q_{\Lambda}\cap\Phi_{w}^{(\Lambda)}|+|Q_{\Lambda}|$.

Proof. Choose (τ, w) , $\theta = \mathfrak{m} + \mathfrak{u}$ as in Theorem 2.7 or Theorem 3.3. Since every non-compact root in $P^{(\Lambda)}$ is totally positive and since $\tau \in W_K$ we have $\tau P_n^{(\Lambda)} = P_n^{(\Lambda)}$. This implies that

$$A_{\Lambda,\tau,w} = \tau^{-1} \Phi_w^{(\Lambda)}$$

Also one has $\tau Q_{\Lambda} = Q_{\Lambda}$ and hence by (3.6)

(3.7)
$$\tau(Q_{\Lambda} \cap A_{\Lambda,\tau,w}) = Q_{\Lambda} \cap \Phi_{w}^{(\Lambda)}.$$

Thus in Theorem 3.3 we have $q = |A_{\Lambda,\tau,w}| - 2|Q_{\Lambda} \cap A_{\Lambda,\tau,w}| + |Q_{\Lambda}| = |\Phi_{w}^{(\Lambda)}| - 2|Q_{\Lambda} \cap \Phi_{w}^{(\Lambda)}| + |Q_{\Lambda}|$. Also by (3.6) we see that in statement (iii) of Theorem 2.7 we have $j = n - |\theta_{u,n}| - |A_{\Lambda,\tau,w}| = n - |\theta_{u,n}| - |\Phi_{w}^{(\Lambda)}|$. To complete the proof of Corollary 3.4 we must show that in statement (i) of Theorem 2.7 $\tau^{-1}(w\delta^{(\Lambda)} - \delta_k) = w\delta^{(\Lambda)} - \delta_k$. Now since the positive system $P^{(\Lambda)}$ is compatible with a G invariant complex structure on G/K we have $(\delta_n^{(\Lambda)}, \alpha) = 0$ for α in Δ_k^+ so that $\pm \delta_n^{(\Lambda)}$ is Δ_k^+ -dominant. Also since $\Delta_k^+ \subset wP^{(\Lambda)}$ we have $(w\delta^{(\Lambda)}, \alpha) = (\delta^{(\Lambda)}, w^{-1}\alpha) > 0$ for α in Δ_k^+ so that $w\delta^{(\Lambda)} - \delta_k$ is Δ_k^+ -dominant. Similarly $\Lambda + \delta - \delta^{(\Lambda)}$ is $P^{(\Lambda)}$ dominant (since $(\Lambda + \delta, \alpha) > 0$ for α in $P^{(\Lambda)}$) and in particular $\Lambda + \delta - \delta^{(\Lambda)} + w\delta^{(\Lambda)} - \delta_k = \Lambda + \delta_n - \delta_n^{(\Lambda)} + w\delta^{(\Lambda)} - \delta_k$ is Δ_k^+ -dominant. Moreover $\tau^{-1}(\Lambda + \delta - \delta^{(\Lambda)}) + w\delta^{(\Lambda)} - \delta_k = \Lambda + \delta_n - \delta_n^{(\Lambda)} + \tau^{-1}(w\delta^{(\Lambda)} - \delta_k)$ (since $\tau^{-1}(\Lambda + \delta - \delta^{(\Lambda)}) = \Lambda + \delta - \delta^{(\Lambda)}$ by statement (ii) of Theorem 2.7) = $\Lambda + \delta_n - \delta_n^{(\Lambda)} + \tau^{-1}(w\delta^{(\Lambda)} - \delta_k) = \lambda + \delta - \delta_n^{(\Lambda)} + w\delta^{(\Lambda)} - \delta_k$ under the Weyl group W_K can be Δ_k^+ -dominant we conclude that $\Lambda + \delta - \delta^{(\Lambda)} + w\delta^{(\Lambda)} - \delta_k = \tau^{-1}(\Lambda + \delta - \delta^{(\Lambda)} + w\delta^{(\Lambda)} - \delta_k) = \Lambda + \delta - \delta^{(\Lambda)}$

 $+\tau^{-1}(w\delta^{(\Lambda)}-\delta_k)$ and hence $w\delta^{(\Lambda)}-\delta_k=\tau^{-1}(w\delta^{(\Lambda)}-\delta_k)$ as desired.

Proposition 3.8. Suppose in Theorem 3.3 the parabolic subalgebra $\theta = m + u$ is g itself. Then $\Lambda = \delta^{(\Lambda)} - \delta$ and $q = n - |Q_{\Lambda}|$.

Proof. $\theta = \mathfrak{g}$ means that $\mathfrak{u} = 0$, $\mathfrak{m} = \mathfrak{g}$. Then $\theta_{u,n} = \phi$ and $\Delta(\mathfrak{m}) = \Delta$. Recalling that $\lambda(\Delta(\mathfrak{m})) = 0$ (see section 2) we have $\lambda(\Delta) = 0$ and hence $\lambda \mid_{\mathfrak{h}} = 0$. By remark (iii) following Theorem 2.7 $\sigma_1 \lambda \mid_{\mathfrak{h}} = \Lambda + \delta - \delta^{(\Lambda)}$; hence $\Lambda + \delta - \delta^{(\Lambda)} = 0$ $\Rightarrow \Lambda = \delta^{(\Lambda)} - \delta$. Also since $\theta_{u,n} = \phi$ the equality of \mathfrak{k} types $\lambda \mid_{\mathfrak{h}} + 2\delta_{u,n} = \Lambda + \delta_n + \tau^{-1}(w\delta^{(\Lambda)} - \delta_k)$ in (i) of Theorem 2.7 reduces to $0 = \delta^{(\Lambda)}_n + \tau^{-1}(w\delta^{(\Lambda)} - \delta_k)$, since $\Lambda = \delta^{(\Lambda)}_n - \delta = \delta^{(\Lambda)}_n - \delta_n$ and so $\Lambda + \delta_n = \delta^{(\Lambda)}_n$. But this says that $\langle \Phi^{(\Lambda)}_{\tau^{-1} w} \rangle = \delta^{(\Lambda)}_{\tau^{-1} w} - \delta^{(\Lambda)}_{\tau^{-1} w} \rangle = \delta^{(\Lambda)}_n - \tau^{-1} w \delta^{(\Lambda)} + \delta^{(\Lambda)}_n - \tau^{-1} \delta_k = 2\delta^{(\Lambda)}_n + \delta_k - \tau^{-1} \delta_k = \langle P^{(\Lambda)}_n \rangle + \langle \Phi^k_{\tau^{-1}} \rangle = \langle P^{(\Lambda)}_n \cup \Phi^k_{\tau^{-1}} \rangle$ (see (2.5)) and hence $\Phi^{(\Lambda)}_{\tau^{-1} w} = P^{(\Lambda)}_n \cup \Phi^k_{\tau^{-1}}$ by (5.10.2) of [8]; i.e. $\Phi^{(\Lambda)}_{\tau^{-1} w} - \Phi^k_{\tau^{-1}} = P^{(\Lambda)}_n \cup \Phi^k_{\tau^{-1} w} = P^{(\Lambda)}_n \cup \Phi^k_{\tau^{-1}$

Proposition 3.9. Let $\Lambda \in \mathcal{F}'_0$ be such that every non-compact root in $P^{(\Lambda)}$ is totally positive. Let

$$\mathfrak{p}^{(\Lambda)+} = \sum_{\alpha \in P_n^{(\Lambda)}} \mathfrak{g}_{\alpha}$$

be the \mathfrak{k} module of holomorphic tangent vectors for the corresponding G invariant complex structure on G/K compatible with $P^{(\Lambda)}$; cf. (3.1). Suppose $w \in W$ is a Weyl group element such that $\Delta_k^+ \subset w P^{(\Lambda)}$. Then we have a \mathfrak{k} module inclusion $V_{\delta_k^{(\Lambda)} + w \delta^{(\Lambda)} - \delta_k} \subset \bigwedge^{n - |\Phi_w^{(\Lambda)}|} \mathfrak{p}^{(\Lambda)+}$.

Proof. In the proof of Corollary 3.5 we observed that indeed $\delta_n^{(\Lambda)} + w\delta^{(\Lambda)} - \delta_k$ is Δ_k^+ -dominant. Of course

$$(3.11) \delta_n^{(\Lambda)} + w\delta^{(\Lambda)} - \delta_k = 2\delta_n^{(\Lambda)} - (\delta^{(\Lambda)} - w\delta^{(\Lambda)}) = \langle P_n^{(\Lambda)} - \Phi_w^{(\Lambda)} \rangle.$$

Write $P_n^{(\Lambda)} - \Phi_w^{(\Lambda)} = \{\alpha_1, \dots, \alpha_t\}, t = n - |\Phi_w^{(\Lambda)}|, \text{ and let}$

(3.12)
$$\chi = \chi_{\alpha_1} \wedge \cdots \wedge \chi_{\alpha_t} \text{ where } \chi_{\alpha_j} \in \mathfrak{g}_{\alpha_j} - \{0\} .$$

We claim that $\chi \in \wedge^t \mathfrak{p}^{(\Lambda)+}$ is a Δ_k^+ -highest weight vector. By (3.11) χ is clearly a weight vector of the weight $\delta_n^{(\Lambda)} + w \delta_k^{(\Lambda)} - \delta_k$. Let $\beta \in \Delta_k^+$ be arbitrary and choose $\chi_\beta \in \mathfrak{g}_\beta - \{0\}$. We must show that

(3.13)
$$\operatorname{ad}_{x_{\beta}} \chi = \sum_{j=1}^{t} \chi_{\alpha_{1}} \wedge \cdots \wedge [\chi_{\beta}, \chi_{\alpha_{j}}] \wedge \cdots \wedge \chi_{\alpha_{t}} = 0.$$

If $\beta + \alpha_j$ is not a root $[\chi_{\beta}, \chi_{\alpha_j}] = 0$. Assume $\beta + \alpha_j$ is a root. Then $\beta + \alpha_j \in P_n^{(\Lambda)}$ since $\alpha_j \in P_n^{(\Lambda)}$ is totally positive. On the other hand $\alpha_j \notin \Phi_w^{(\Lambda)}$ implies $w^{-1}\alpha_j \in P^{(\Lambda)}$. Also by hypothesis $\Delta_k^+ \subset wP^{(\Lambda)}$ so $w^{-1}\beta \in P^{(\Lambda)}$. Hence $w^{-1}(\beta + \alpha_j) = 0$

102 F.L. WILLIAMS

 $w^{-1}\beta+w^{-1}\alpha_j\in P^{(\Lambda)}$; i.e. $\beta+\alpha_j\in P_n^{(\Lambda)}-\Phi_w^{(\Lambda)}$ which implies that $\beta+\beta_j=$ some $\alpha_i,\ i\neq j$. Then $[\chi_\beta,\chi_{\alpha_j}]=$ a multiple of χ_{α_i} . We conclude that (3.13) is valid and $U(\mathfrak{k})\chi$ is a \mathfrak{k} submodule of $\wedge^t\mathfrak{p}^{(\Lambda)}+\mathfrak{k}$ -equivalent to $V_{\delta_\lambda^t}\lambda_{+w\delta^{(\Lambda)}-\delta_k}$.

Corollary 3.14. Let Λ , $P^{(\Lambda)}$, and w be as in Proposition 3.9. Then we have the k module inclusion $V_{\Lambda+\delta_n+w\delta^{(\Lambda)}-\delta_k} \subset V_{\Lambda+\delta-\delta^{(\Lambda)}} \otimes V_{\delta_n^{(\Lambda)}+w\delta^{(\Lambda)}-\delta_k} \subset V_{\Lambda+\delta-\delta^{(\Lambda)}} \otimes \wedge^t \mathfrak{p}^{(\Lambda)+}$ where $t=n-|\Phi_w^{(\Lambda)}|$.

Proof.
$$\Lambda + \delta_n + w \delta^{(\Lambda)} - \delta_k = \Lambda + \delta_n - \delta_n^{(\Lambda)} + \delta_n^{(\Lambda)} + w \delta^{(\Lambda)} - \delta_k$$

= $\Lambda + \delta - \delta^{(\Lambda)} + \delta_n^{(\Lambda)} + w \delta^{(\Lambda)} - \delta_k$.

Corollary 3.15. Let $(\tau_{\Lambda}, V_{\Lambda}) \in \hat{K}$ where $\Lambda \in \mathcal{F}'_0$ and every non-compact root in $P^{(\Lambda)}$ is totally positive. Let $(\pi, H_{\pi}) \in \hat{G}$ be such that $\pi(\Omega) = (\Lambda, \Lambda + 2\delta)1$ and $\operatorname{Hom}_K(H_{\pi}, \Lambda^q \mathfrak{p}^+ \otimes V_{\Lambda}) \pm 0$. Let $\mu = \Lambda + \delta_n + w\delta^{(\Lambda)} - \delta_k$ be the minimal \mathfrak{k} type of H_{π} given by Corollary 3.5. Then relative to the positive system $\bar{P}^{(\Lambda)} = P_k^{(\Lambda)} \cup P_n^{(\Lambda)} = \Delta_k^+ \cup P_n^{(\Lambda)}, H_{\pi}$ is a highest weight \mathfrak{g} module with highest weight μ .

Proof. We have \mathfrak{k} module inclusions $V_{\mu} \subset H_{\pi}$ and (by Corollary 3.14) $V_{\mu} \subset V_{\Lambda+\delta-\delta}(\Lambda) \otimes \Lambda^{t} \mathfrak{p}^{(\Lambda)+}$ where $t = n - |\Phi_{w}^{(\Lambda)}|$ and where $\Lambda + \delta - \delta^{(\Lambda)}$ is $P^{(\Lambda)-1}$ dominant. Since $|(\Lambda + \delta - \delta^{(\Lambda)}) + \delta^{(\Lambda)}|^{2} - |(\delta^{(\Lambda)}, \delta^{(\Lambda)})|^{2} = |\Lambda + \delta|^{2} - |(\delta, \delta)|^{2} = \pi(\Omega)$ Corollary 3.15 follows from Lemma 3.7 of [6] or from the proof of Lemma 2 of [4].

The fact that any $(\pi, H_{\pi}) \in \hat{G}$ as in Corollary 3.15 has to be a $\bar{P}^{(\Lambda)}$ -highest weight \mathfrak{g} module is also proved in [23] (see the proof of Lemma 2.4 there) by different means.

4. Vanishing theorems

In this section we again assume, as in section 3, that G/K is a Hermitian symmetric domain and that the positive system Δ^+ is compatible with the G invariant complex structure on G/K. We fix a discrete subgroup Γ of G which acts freely on G/K and for which the quotient $X=\Gamma\backslash G/K$ is compact. Let $\tau=\tau_{\Lambda}\in K$ be a fixed finite-dimensional irreducible representation of K acting on a complex vector space V_{Λ} where $\Lambda\in \mathcal{F}'_0$ is the Δ_k^+ -highest weight of τ . The induced C^{∞} vector bundle $E_{\tau}\to G/K$ has a holomorphic structure. To prove this one usually assumes that G is a real form of a complex Lie group G^C (i.e. G is linear). Since we are not imposing the latter assumption on G we appeal to the more general criteria of [19], [20] for the existence of holomorphic structures on homogeneous bundles. The induced sheaf $\theta_{\tau}\to X$ of abelian groups over X given in the introduction will also be denoted by θ_{Λ} . Let Ad_{τ}^q denote the adjoint representation of K on $\Lambda^q \mathfrak{p}^+$. Then as in [4] the sheaf cohomology $H^q(X, \theta_{\Lambda})$ can be identified with the space $A(\mathrm{Ad}_{\tau}^q \otimes \tau_{\Lambda}, (\Lambda, \Lambda+2\delta), \Gamma)$ of automorphic forms of type $(\mathrm{Ad}_{\tau}^q \otimes \tau_{\Lambda}, (\Lambda, \Lambda+2\delta), \Gamma)$; i.e.

(4.1)
$$H^{q}(X, \theta_{\Lambda}) = \{f : G \to \bigwedge^{q} \mathfrak{p}^{+} \otimes V_{\Lambda} | f \text{ is } C^{\infty}, f(\gamma a) = f(a), f(ak^{-1}) = (\mathrm{Ad}_{q}^{+} \otimes \tau_{\Lambda})(k) f(a) \text{ for } (\gamma, a, k) \text{ in } \Gamma \times G \times K \text{ and } \Omega f = (\Lambda, \Lambda + 2\delta)f\}.$$

By the formula of Matsushima-Murakami [14] we therefore have

(4.2)
$$\dim H^{q}(X, \theta_{\Lambda}) = \sum_{\substack{(\pi, H_{\pi}) \in \hat{G} \\ \pi(\Omega) = (\Lambda, \Lambda + 2\delta) 1}} m_{\pi}(\Gamma) \dim \operatorname{Hom}_{K}(H_{\pi}, \wedge^{q} \mathfrak{p}^{+} \otimes V_{\Lambda})$$

where $m_{\pi}(\Gamma)$ is the multiplicity of π in the right regular representation of G on $L^2(\Gamma \setminus G)$. Using (4.2) we immediately deduce from Theorem 3.3 the following main theorem.

Theorem 4.3. Let $\Lambda \in \mathcal{F}'_0$ in (2.1) be the Δ_k^+ -highest weight of $(\tau_\Lambda, V_\Lambda) \in \hat{K}$. Let $\sigma \in W$ be the unique Weyl group element such that $\sigma \Delta^+ = P^{(\Lambda)}$ where $P^{(\Lambda)}$ is the system of positive roots in (2.3). Suppose that $H^q(\Gamma \setminus G/K, \theta_\Lambda) \neq 0$. Then there is a pair (τ, w) in $W_K \times W$ and a c stable parabolic subalgebra $\theta = \mathfrak{m} + \mathfrak{n}$ of \mathfrak{g} containing the Borel subalgebra $\mathfrak{h} + \sum_{\alpha \in \Delta_+^1} \mathfrak{g}_{\alpha}$ for some positive system $\Delta_+^1 \supset \Delta_k^+$ (cf. earlier notation) such that

- (i) $q = |A_{\Lambda,\tau,w}| 2|Q_{\Lambda} \cap A_{\Lambda,\tau,w}| + |Q_{\Lambda}|$ where $A_{\Lambda,\tau,w} = \{\alpha \in P_n^{(\Lambda)} | w^{-1}\tau\alpha \in -P^{(\Lambda)}\}$ and where Q_{Λ} is given by (2.4)
- (ii) $\Delta_k^+ \subset wP^{(\Lambda)}$ (so that by Proposition 2.6 $A_{\Lambda,\tau,w} = \Phi_{\tau}^{(\Lambda)} = \Phi_{\tau}^{k-1}$, $\tau(\Lambda + \delta \delta^{(\Lambda)}) = w(\Lambda + \delta \delta^{(\Lambda)}) = \Lambda + \delta \delta^{(\Lambda)}$, and $A_{\Lambda,\tau,w}$, $\Phi_w^{(\Lambda)}$, and $\{\alpha \in P_n^{(\Lambda)} | \tau \alpha \in -P_n^{(\Lambda)}\}$ are all contained in $\{\alpha \in P_n^{(\Lambda)} | (\Lambda + \delta \delta^{(\Lambda)}, \alpha) = 0\}$; $\Phi_{\tau}^{k-1} \subset \{\alpha \in \Delta_k^+ | (\Lambda + \delta \delta^{(\Lambda)}, \alpha) = 0\}$; see notation of (2.5)
- (iii) the relative Lie algebra cohomology $H^{j}(\mathfrak{m}, \mathfrak{m} \cap \mathfrak{k}, \mathbb{C}) \neq 0$ for $j = n |\theta_{u,n}| |A_{\Lambda,\tau,w}|$ (hence the latter is an even number) where, as above, $\theta_{u,n}$ is the set of non-compact roots in the nilradical \mathfrak{n} of θ and $n = \frac{1}{2} \dim_{\mathbb{R}} G/K$

(iv) For
$$(-1)^{n-q} = \pm 1$$
 we have $(-1)^{|\Phi_{\sigma}|} = \pm (-1)^{|\Phi_{w}^{(\Lambda)}|} = \pm (-1)^{n+|\theta_{u,n}|}$.

As has been noted $\Phi_{\sigma} = \Delta_{\pi}^{+} - Q_{\Lambda}$, and if $\sigma_{1} \in W$ is the unique Weyl group element such that $\sigma_{1}\Delta_{1}^{+} = P^{(\Lambda)}$ then $(\Lambda + \delta - \delta^{(\Lambda)}, \sigma_{1}(\Delta(\mathfrak{m})) = 0$ where $\Delta(\mathfrak{m})$ is the set of roots for the reductive part \mathfrak{m} of θ . From Corollary 3.4 we obtain

Corollary 4.4. Let $\Lambda \in \mathcal{F}_0'$ in Theorem 4.3 satisfy the condition that every non-compact root in $P^{(\Lambda)}$ is totally positive. Then if $H^q(\Gamma \backslash G/K, \theta_{\Lambda}) \neq 0$ we can choose $w \in W$ satisfying $\Delta_k^+ \subset w P^{(\Lambda)}$ and a c stable parabolic subalgebra $\theta = \mathfrak{m} + \mathfrak{u} \supset \mathfrak{h} + \sum_{\alpha \in \Delta_k^+ \supset \Delta_k^+} \mathfrak{g}_{\alpha}$ such that

- (i) $q = |\Phi_w^{(\Lambda)}| 2|Q_{\Lambda} \cap \Phi_w^{(\Lambda)}| + |Q_{\Lambda}|$
- (ii) $H^{n-|\theta_{u,n}|-|\Phi_w^{(\Lambda)}|}(\mathfrak{m}, \mathfrak{m} \cap \mathfrak{k}, \mathbf{C}) \neq 0$
- (iii) $\Phi_w^{(\Lambda)} \subset \{\alpha \subset P_n^{(\Lambda)} | (\Lambda + \delta \delta^{(\Lambda)}, \alpha) = 0\}.$

104 F.L. WILLIAMS

Statement (iv) of Theorem 4.3 holds.

Consider for example the special case when Λ is actually Δ^+ -dominant. Then $P^{(\Lambda)} = \Delta^+$ so that Λ indeed satisfies Corollary 4.4. Also in this case $Q_{\Lambda} = \Delta_n^+$ so that $Q_{\Lambda} \cap \Phi_w^{(\Lambda)} = \Phi_w^{(\Lambda)}$. Thus by (i) of Corollary 4.4 $H^q = 0 \Rightarrow q = |\Phi_w^{(\Lambda)}| - 2|\Phi_w^{(\Lambda)}| + n = n - |\Phi_w^{(\Lambda)}|$ and hence by (ii) $H^{q-|\theta_u,n|}(\mathfrak{m},\mathfrak{m} \cap \mathfrak{k}, \mathbf{C}) = 0$. Thus we have proved the following conjecture of R. Parthasarathy.

Corollary 4.5. Suppose the Δ_k^+ -highest weight Λ of τ is actually Δ^+ -dominant. Then if $H^q(\Gamma \backslash G/K, \theta_{\Lambda}) = 0$ so is $H^{q-|\theta_u,n|}(\mathfrak{m}, \mathfrak{m} \cap \mathfrak{k}, \mathbf{C})$ for some c stable parabolic subalgebra $\theta = \mathfrak{m} + \mathfrak{n}$ of \mathfrak{g} .

Our argument shows moreover that in Corollary 4.5 $q=n-|w(-\Delta^+)\cap\Delta^+|$ for some $w\in W$ with $\Delta_k^+\subset w\Delta^+$, $w(-\Delta^+)\cap\Delta^+\subset\{\alpha\in\Delta_n^+|(\Lambda,\alpha)=0\}$; $w\Lambda=\Lambda$. Let $l(w)=|w(-\Delta^+)\cap\Delta^+|$ (=length of w) and let

$$(4.6) n_{\Lambda} = |\{\alpha \in \Delta_n^+ | (\Lambda, \alpha) > 0\}|.$$

Then $|\{\alpha \in \Delta_n^+ | (\Lambda, \alpha) = 0\}| = n - n_{\Lambda}$ so that by (b.) $l(w) \leq n - n_{\Lambda}$ and by (a.) $q = n - l(w) \geq n_{\Lambda}$. That is

Corollary 4.7 (Hotta-Murakami [4]). Suppose Λ is Δ^+ -dominant. Then $H^q(\Gamma \backslash G/K, \theta_{\Lambda}) = 0$ for $q < n_{\Lambda}$ in (4.6). More generally for $H^q(\Gamma \backslash G/K, \theta_{\Lambda}) = 0$ q = n - l(w) for some $w \in W$ satisfying $w(-\Delta^+) \cap \Delta^+ \subset \{\alpha \in \Delta_n^+ \mid (\Lambda, \alpha) = 0\}$, $w\Lambda = \Lambda$.

We define

(4.8)
$$R = R(Q) = \min\{|\theta_{u,n}| | \theta = c \text{ stable parabolic subalgebra of } \mathfrak{g}, \theta \neq \mathfrak{g}\}$$
.

Again note that for $\theta = \mathfrak{g}$ $\mathfrak{u} = 0$ and hence $|\theta_{\mathfrak{u},n}| = \dim \mathfrak{u} \cap \mathfrak{p} = 0$. The values R(G) have been computed by Vogan for general symmetric spaces. Specializing his results to the Hermitian case we have the following table for the irreducible Hermitian symmetric spaces.

G	R(G)	real rank of <i>G</i> / <i>K</i>	$\frac{1}{2}\dim_{\mathcal{R}} G/K$
$Su(n,m), n \geqslant m$	m	m	nm
Sp(n,R)	n	n	$\frac{n(n+1)}{2}$
$SO_0(n,2), n>2$	2	2	n
SO*(2n), n>3	n-1	$\left[\frac{n}{2}\right]$	$\frac{n(n-1)}{2}$
real form of E_6	8	2	16
real form of E_7	11	3	17

Table 4.9

In Theorem 4.3 $H^j(\mathfrak{m}, \mathfrak{m} \cap \mathfrak{k}, \mathbb{C}) = 0$ for $j = n - |\theta_{u,n}| - |A_{\Lambda,\tau,w}|$ by (iii); hence $j \ge 0$. That is $|A_{\Lambda,\tau,w}| \le n - |\theta_{u,n}|$ and if $\theta + \mathfrak{g} |A_{\Lambda,\tau,w}| \le n - R(G)$. Thus applying Proposition 3.8 we get

Proposition 4.10. Suppose in Theorem 4.3 that either $\Lambda = \delta^{(\Lambda)} - \delta$ or $q \neq n - |Q_{\Lambda}|$. Then $A_{\Lambda,\tau,w}$ there satisfies $|A_{\Lambda,\tau,w}| \leq n - R(G)$. Similarly w in Corollary 4.4 satisfies $|\Phi_w^{(\Lambda)}| \leq n - R(G)$.

Note that, in general, by Theorem 4.3 we always have $|A_{\Lambda,\tau,w}|$, $|\Phi_w^{(\Lambda)}| \leq |\{\alpha \in P_n^{(\Lambda)}| (\Delta + \delta - \delta^{(\Lambda)}, \alpha) = 0\}|$. In Corollary 4.7 q = n - l(w) for $H^q \neq 0$. By Proposition 4.10. $l(w) \leq n - R(G)$ if either $\Lambda \neq 0$ or $q \neq 0$; i.e. $q = n - l(w) \geq R(G)$ which establishes

Corollary 4.11. Suppose Λ is Δ^+ -dominant. If $\Lambda \neq 0$ then $H^q(\Gamma \backslash G/K, \theta_{\Lambda}) = 0$ for $0 \leq q < R(G)$. If $\Lambda = 0$ then $H^q(\Gamma \backslash G/K, \theta_{\Lambda}) = 0$ for $1 \leq q < R(G)$.

In particular we see that since for G in Table 4.9 rank of $G/K \le R(G)$ the following weaker version of Corollary 4.11 holds.

Corollary 4.12. If G/K is irreducible then $H^q(\Gamma \backslash G/K, \theta_{\Lambda}) = 0$ for $0 \le q < rank$ fo G/K, Λ Δ^+ -dominant, $\Lambda \neq 0$. The (0, q) Betti number of $\Gamma \backslash G/K$ vanishes for $1 \le q < rank$ of G/K.

Corollary 4.12 is of course well-known; see Theorem 4.2 of [6] and Theorem 4 of [4]. In the case where G/K is irreducible a slight improvement of Corollary 4.11 is given by Theorem 3.5 of [23]. Another extreme case is the case $Q_{\Lambda} = \phi$; i.e. $(\Lambda + \delta, \alpha) < 0$ for $\alpha \in \Delta_n^+$, $P^{(\Lambda)} = \Delta_+' = \Delta_k^+ \cup -\Delta_n^+$. If $H^q \neq 0$ then from Corollary 4.4 $q = |\Phi_w^{(\Lambda)}|$ for some $w \in W$ such that $\Delta_k^+ \subset w \Delta_+'$, $\Phi_w^{(\Lambda)} \subset \{\alpha \in -\Delta_n^+ \mid (\Lambda + 2\delta_n, \alpha) = 0\}$ and (by (ii) of Corollary 4.4) $H^{n-q-|\theta_u,n|}(m,m \cap \mathfrak{k}, \mathbf{C}) \neq 0$ for some c stable parabolic $\theta = m + u$. By Proposition 3.8 $\theta \neq \mathfrak{g}$ unless $\Lambda = -2\delta_n$ or q = n. Barring the latter two cases we have $|\Phi_w^{(\Lambda)}| \leq n - R(G)$ by Proposition 4.10 so that $q \leq n - R(G)$. This gives

Corollary 4.13. Suppose $(\Lambda + \delta, \alpha) < 0$ for α in Δ_n^+ . If $\Lambda = -2\delta_n$ then $H^q(\Gamma \backslash G/K, \theta_{\Lambda}) = 0$ for q > n - R/(G). If $\Lambda = -2\delta_n$ then $H^q(\Gamma \backslash G/K, \theta_{\Lambda}) = 0$ for n - R(G) < q < n. In any case we always have $H^q(\Gamma \backslash G/K, \theta_{\Lambda}) = 0$ for $q > |\{\alpha \in -\Delta_n^+ | (\Lambda + 2\delta_n, \alpha) = 0\}|$.

The last statement of Corollary 4.13 is statement (i) of Theorem 3.12 of [23]. However in [23] G is assumed to be linear. We now indicate how the main result of [23] (Theorem 2.3) can be deduced with the aid of Corollary 3.5; see Theorem 4.16.

Proposition 4.14 Let $\Lambda \in \mathcal{F}'_0$ and let $w \in W$ be a Weyl group element which

satisfies $\Delta_k^+ \subset wP^{(\Lambda)}$, $w(\Lambda + \delta - \delta^{(\Lambda)}) = \Lambda + \delta - \delta^{(\Lambda)}$, and $\Phi_w^{(\Lambda)} \subset \{\alpha \in P_n^{(\Lambda)} | (\Lambda + \delta - \delta^{(\Lambda)}, \alpha) = 0\}$ (cf. (ii) of Theorem 4.3) Then $\Lambda + \delta - \delta^{(\Lambda)} + w\delta^{(\Lambda)}$ is a regular element (i.e. $(\Lambda + \delta - \delta^{(\Lambda)} + w\delta^{(\Lambda)}, \alpha) \neq 0$ for every α in Δ) and the corresponding positive system

(4.15)
$$P' = \{\alpha \in \Delta \mid (\Lambda + \delta - \delta^{(\Lambda)} + w\delta^{(\Lambda)}, \alpha) > 0\}$$
 coincides with $wP^{(\Lambda)}$.
Also $P_x^{(\Lambda)} - \Phi_w^{(\Lambda)} = P' \cap P_x^{(\Lambda)}$.

Proof. For $\alpha \in \Delta_k^+$ $(\Lambda + \delta - \delta^{(\Lambda)} + w\delta^{(\Lambda)}, \alpha) = (\Lambda + \delta - \delta^{(\Lambda)}, \alpha) + (\delta^{(\Lambda)}, w^{-1}\alpha)$ >0 since $w^{-1}\Delta_k^+ \subset P^{(\Lambda)}$. Suppose $\alpha \in P_n^{(\Lambda)}$. If $(\Lambda + \delta - \delta^{(\Lambda)}, \alpha) = 0$ then $(\Lambda + \delta - \delta^{(\Lambda)} + w\delta^{(\Lambda)}, \alpha) = (\delta^{(\Lambda)}, w^{-1}\alpha) \pm 0$. Assume $(\Lambda + \delta - \delta^{(\Lambda)}, \alpha) > 0$. Then $\alpha \in \Phi_w^{(\Lambda)}$ since by hypothesis $\Phi_w^{(\Lambda)} \subset \{\alpha \in P_n^{(\Lambda)} | (\Lambda + \delta - \delta^{(\Lambda)}, \alpha) = 0\}$. Thus we must have $w^{-1}\alpha \in P^{(\Lambda)}$. Since $\Lambda + \delta - \delta^{(\Lambda)}$ is $P^{(\Lambda)}$ -dominant $(\Lambda + \delta - \delta^{(\Lambda)}, \alpha) + (\delta^{(\Lambda)}, w^{-1}\alpha) > 0$. Thus we have shown $(\Lambda + \delta - \delta^{(\Lambda)} + w\delta^{(\Lambda)}, \alpha) \pm 0$ for $\alpha \in P^{(\Lambda)}$ which proves $\Lambda + \delta - \delta^{(\Lambda)} + w\delta^{(\Lambda)}$ is regular. Let $\alpha \in P^{(\Lambda)}$ be arbitrary. Then $(\Lambda + \delta - \delta^{(\Lambda)} + w\delta^{(\Lambda)}, w\alpha) = (w^{-1}(\Lambda + \delta - \delta^{(\Lambda)} + w\delta^{(\Lambda)}), \alpha) = (\Lambda + \delta, \alpha)$ (since $w^{-1}(\Lambda + \delta - \delta^{(\Lambda)}) = \Lambda + \delta - \delta^{(\Lambda)}$) which is positive. That is $w\alpha \in P' \Rightarrow wP^{(\Lambda)} \subset P' \Rightarrow wP^{(\Lambda)} = P'$. Now $\Phi_w^{(\Lambda)} = w(-P^{(\Lambda)}) \cap P^{(\Lambda)} = -P' \cap P^{(\Lambda)}$ and since $\Phi_w^{(\Lambda)} \subset P_n^{(\Lambda)}$ the last equation implies that $P_n^{(\Lambda)} - \Phi_w^{(\Lambda)} = P' \cap P_n^{(\Lambda)}$ since $\Delta = P' \cup -P'$.

REMARK. In Proposition 4.14 (and hence in Theorem 4.3) the condition $\Phi_w^{(\Lambda)} \subset \{\alpha \subset P_n^{(\Lambda)} | (\Lambda + \delta - \delta^{(\Lambda)}, \alpha) = 0\}$ is automatically satisfied. Indeed for $\alpha \in \Phi_w^{(\Lambda)} \subset P_n^{(\Lambda)} = 0 \le (\Lambda + \delta - \delta^{(\Lambda)}, \alpha) = (w^{-1}(\Lambda + \delta - \delta^{(\Lambda)}), w^{-1}\alpha) = (\Lambda + \delta - \delta^{(\Lambda)}, w^{-1}\alpha) \le 0$ (since $w^{-1}\alpha \in P^{(\Lambda)}$) and so $(\Lambda + \delta - \delta^{(\Lambda)}, \alpha) = 0$.

Theorem 4.16. Assume that G is linear and its complexification G^c is simply connected. (In particular if $\Lambda \in \mathfrak{h}^*$ is Δ_k^+ -dominant integral the irreducible finite-dimensional representation of \mathfrak{k} defined by Λ integrates to a representation of K.) Let $\Lambda \in \mathcal{F}_0'$ be such that every non-compact root in $P^{(\Lambda)}$ is totally positive. If $H^q(\Gamma \setminus G/K, \theta_{\Lambda}) \neq 0$ then there is a parabolic subalgebra $\theta_1 = \mathfrak{m}_1 + \mathfrak{u}_1$ of \mathfrak{g} which contains the specific Borel subalgebra $\mathfrak{h} + \sum_{\alpha \in P^{(\Lambda)}} \mathfrak{g}_{\alpha}$ such that $q = 2|\theta_{1,n} \cap Q_{\Lambda}| + |\Delta_n^+ - Q_{\Lambda}| - |\theta_{\mathfrak{u}_1,n}|$. Also $(\Lambda + \delta - \delta^{(\Lambda)}, \Delta(\mathfrak{m}_1)) = 0$.

Proof. If $H^q(\Gamma \backslash G/K, \theta_\Lambda) \neq 0$ then by (4.2) $\operatorname{Hom}_K(H_\pi, \wedge^q \mathfrak{p}^+ \otimes V_\Lambda) \neq 0$ for some $(\pi, H_\pi) \in \hat{G}$ such that $\pi(\Omega) = (\Lambda, \Lambda + 2\delta)1$. By Corollary 3.5 H_π has minimal \mathfrak{k} type $\mu = \Lambda + \delta_n + w\delta^{(\Lambda)} - \delta_k$ for some Weyl group element w such that $\Delta_k^+ \subset wP^{(\Lambda)}$ and $q = |\Phi_w^{(\Lambda)}| - 2|Q_\Lambda \cap \Phi_w^{(\Lambda)}| + |Q_\Lambda|$; $w(\Lambda + \delta - \delta^{(\Lambda)}) = \Lambda + \delta - \delta^{(\Lambda)}$. By Corollary 3.15 H_π is a highest weight \mathfrak{g} module with highest weight μ relative to the positive system $\bar{P}^{(\Lambda)} = P_k^{(\Lambda)} \cup -P_n^{(\Lambda)} = \Delta_k^+ \cup -P_n^{(\Lambda)}$. Also $\mu + \delta_k - \delta_n^{(\Lambda)} = \Lambda + \delta_n - \delta_n^{(\Lambda)} + w\delta^{(\Lambda)} = \Lambda + \delta - \delta^{(\Lambda)} + w\delta^{(\Lambda)}$ is regular by Proposition 4.14 (see remark following Proposition 4.14). Thus since G is assumed to be linear we can apply Parthasarathy's Theorem A of [17] to conclude the following:

 $\begin{array}{l} \mu = \Lambda_0 + \langle \theta_{u_1,n} \rangle \text{ for some parabolic subalgebra } \theta_1 = \mathfrak{m}_1 + \mathfrak{u}_1 \text{ of } \mathfrak{g} \text{ where } \theta_1 \supset \mathfrak{h} + \\ \sum_{\alpha \in P^{(\Lambda)}} \mathfrak{g}_{\alpha} \text{ and where } \Lambda_0 \in \mathfrak{h}^* \text{ is } P^{(\Lambda)} \text{-dominant integral, and } (\Lambda_0, \Delta(\mathfrak{m}_1)) = 0. \\ \text{Moreover by (3.49) of [17] } \theta_{u_1,n} = P' \cap P_n^{(\Lambda)} \text{ where } P' \text{ is the positive system defined by the regular element } \mu + \delta_k - \delta_n^{(\Lambda)}. \text{ Hence by Proposition 4.14 } \theta_{u_1,n} = \\ P_n^{(\Lambda)} - \Phi_w^{(\Lambda)}. \text{ Then } \Lambda + \delta_n + w \delta^{(\Lambda)} - \delta_k = \mu = \Lambda_0 + \langle \theta_{u_1,n} \rangle = \Lambda_0 + \langle P_n^{(\Lambda)} - \Phi_w^{(\Lambda)} \rangle = \\ \Lambda_0 + \delta_n^{(\Lambda)} + w \delta^{(\Lambda)} - \delta_k \text{ (by (3.11))} \Rightarrow \Lambda_0 = \Lambda + \delta_n - \delta_n^{(\Lambda)} = \Lambda + \delta - \delta^{(\Lambda)} \Rightarrow (\Lambda + \delta - \delta^{(\Lambda)}, \Delta(\mathfrak{m}_1)) = 0. \text{ We also have } |\theta_{u_1,n}| = n - |\Phi_w^{(\Lambda)}| \text{ so that } q = |\Phi_w^{(\Lambda)}| - 2|Q_\Lambda \cap \Phi_w^{(\Lambda)}| + |Q_\Lambda| = n - |\theta_{u_1,n}| - 2|Q_\Lambda \cap \theta_{u_1,n}| + |Q_\Lambda| = n - |\theta_{u_1,n}| - 2(|Q_\Lambda| \cap \theta_{u_1,n}|) + |Q_\Lambda| = 2|Q_\Lambda \cap \theta_{u_1,n}| - |\theta_{u_1,n}| + |\Delta_n^* - Q_\Lambda|. \end{array}$

REMARK. If additional information on the Weyl group element σ_1 above (where $\sigma_1\Delta_1^+=P^{(\Delta)}$) were available the preceding proof might not require the appeal to Theorem A of [17]. For example if it were known that $\langle P_n^{(\Delta)} - \sigma_1 \Delta(\mathfrak{m}) \rangle$ $= \delta_n^{(\Delta)} + w \delta^{(\Delta)} - \delta_k$ for $\theta = \mathfrak{m} + \mathfrak{u}$ in Theorem 4.3 then Theorem 4.16 would follow (even for G non-linear) by taking $\theta_1 = \sigma_1 \theta$. However ⓐ is true only when certain additional restrictions on Δ are imposed.

Another classical vanishing theorem for the spaces $H^q(\Gamma \backslash G/K, \theta_{\Lambda})$ is the following one of Hotta and Parthasarathy; see Proposition 1 of [5].

Theorem 4.17. Let $\Lambda \in \mathcal{F}'_0$ be the Δ_k^+ -highest weight of $(\tau_{\Lambda}, V_{\Lambda}) \in \hat{K}$. Suppose that $(\Lambda + \delta - \delta^{(\Lambda)}, \alpha) > 0$ for every α in $P_n^{(\Lambda)}$. Then $H^q(\Gamma \setminus G/K, \theta_{\Lambda}) = 0$ for $q \neq |Q_{\Lambda}|$.

Here G is not assumed to be linear. Theorem 4.17 follows from a trivial application of Theorem 4.3. Namely if $H^q(\Gamma \backslash G/K, \theta_{\Lambda}) \neq 0$ then $q = |A_{\Lambda,\tau,w}| - 2|Q_{\Lambda} \cap A_{\Lambda,\tau,w}| + |Q_{\Lambda}|$ where $A_{\Lambda,\tau,w} \subset \{\alpha \subset P_n^{(\Lambda)}|(\Lambda + \delta - \delta^{(\Lambda)}, \alpha) = 0\}$. But $(\Lambda + \delta - \delta^{(\Lambda)}, \alpha) > 0$ for $\alpha \in P_n^{(\Lambda)}$ by hypothesis so $A_{\Lambda,\tau,w} = \phi$. Thus $q = |Q_{\Lambda}|$.

References

- [1] A. Borel: On the curvature tensor of the Hermitian symmetric manifold, Ann. of Math. 71 (1960), 508-521.
- [2] A. Borel and N. Wallach: Continuous cohomology, discrete subgroups, and representations of reductive groups, Ann. of Math. Studies, 94, Princeton Univ. Press and Univ. Tokyo Press, 1980.
- [3] E. Calabi and E. Vesentini: On compact locally symmetric Kähler manifolds, Ann. of Math. 71 (1960), 472-507.
- [4] R. Hotta and S. Murakami: On a vanishing theorem for certain cohomology groups, Osaka J. Math. 12 (1975), 555-564.
- [5] R. Hotta and R. Parthasarathy: A geometric meaning of the multiplicities of integrable discrete classes in $L^2(\Gamma \setminus G)$, Osaka J. Math. 10 (1973), 211-234.

- [6] R. Hotta and N. Wallach: On Matsushima's formula for the Betti numbers of a locally symmetric space, Osaka J. Math. 12 (1975), 419-431.
- [7] M. Ise: Generalized automorphic forms and certain homomorphic vector bundles, Amer. J. Math. 86 (1964), 70-108.
- [8] B. Kostant: Lie algebra cohomology and the generalized Borel-Weil Theorem, Ann. of Math. 74 (1961), 329-387.
- [9] S. Kumaresan: On the canonical k types in the irreducible unitary g modules with non-zero relative cohomology, Invent. Math. 59 (1980), 1-11.
- [10] Y. Matsushima: On the first Betti number of compact quotient spaces of higher dimentional symmetric spaces, Ann. of Math. 75 (1962), 312-330.
- [11] ——: A formula for the Betti numbers of compact locally symmetric Riemannian manifolds, J. Differential Geom. 1 (1967), 99-109.
- [12] Y. Matsushima and S. Murakami: On vector bundle valued harmonic forms and automorphic forms on symmetric Riemannian manifolds, Ann. of Math. 78 (1963), 365-416.
- [13] ——: On certain cohomology groups attached to Hermitian symmetric spaces, Osaka J. Math. 2 (1965), 1–35.
- [14] ——: On certain cohomology groups attached to Hermitian symmetric spaces (II), Osaka J. Math. 5 (1968), 223–241.
- [15] S. Murakami: Cohomology groups of vector-valued forms on symmetric spaces, Lecture notes, Univ. Chicago, 1966.
- [16] R. Partharathy: A generalization of the Enright-Varadarajan modules, Compositio Math. 36 (1978), 53-73.
- [17] ——: Criteria for the unitarizability of some highest weight modules, Proc. Indian Acad. Sci. 89 (1980), 1–24.
- [18] —: Holomorphic forms on $\Gamma \backslash G/K$ and Chern classes, to appear.
- [19] J. Tirao and J. Wolf: Homogeneous holomorphic vector bundles, Indiana Univ. Math. J. 20 (1970), 15-31.
- [20] J. Tirao: Square integrable representations of semisimple Lie groups, Trans. Amer. Math. Soc. 190 (1974), 57-75.
- [21] D. Vogan: Manuscript on the classification of unitary representations with relative Lie algebra cohomology, Dept. Math., M.I.T.
- [22] ———: Cohomology of Riemannian locally symmetric spaces, a lecture given at Brown Univ. and the Univ. of Utah.
- [23] F. Williams: Vanishing theorems for type (0,q) cohomology of locally symmetric spaces, Osaka J. Math. 18 (1981), 147-160.
- [24] ———: Remark on the unitary representations appearing in the Matsushima-Murakami formula, Lecture Notes in Math. 880: Non-Commutative Harmonic Analysis, from the Marselle Conference, June 1980, Springer-Verlag.
- [25] G. Zuckerman: Unitary representations in complex homogeneous spaces, Manuscript, Dept. Math. Yale Univ.

Department of Mathematics University of Massachusetts Amherst, Mass. 01003 U.S.A.