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1. Introduction

Let G/K be a Hermitian symmetric space where G is a connected non-
compact semisimple Lie group and K CG is a maximal compact subgroup. We
fix a discrete subgroup T" of G which acts freely on G/K and for which the
quotient X=T"\G/K is compact. Let E,— G/K be a homogeneous C> vector
bundle over G/K induced by a finite-dimensional irreducible representation 7
of K. Then E, has a holomorphic structure and one can define a presheaf by
assigning to an open set U in X the abelian group of I'-invariant holomorphic
sections of E, on the inverse image (under the map G/K—X) of U in G/K. Let
0,— X be the sheaf generated by this presheaf and let H(X, 6.) denote the gth
cohomology space of X with coefficients in €,. In this paper we continue the
program initiated in [23] of obtaining some general vanishing theorems for the
spaces H%(X, 0,) by the application of recent representation-theoretic results.
This allows for a unified view-point and one by which, in particular, the classical
vanishing theorems of [3], [4], [5], [6], [7], [12], and [13] may be deduced.

Following Hotta and Murakami [4] we represent H*(X, ¢,) as a space of
automorphic forms. Then its dimension can be expressed by a formula of
Matsushima and Murakami [14] in terms of certain irreducible unitary re-
presentations z of G, the multiplicity of z in LAT'\G), and the K intertwining
number of 7 with Ad4 @7 where Ad? is the gth exterior power of the adjoint
representation of K on the space of holomorphic tangent vectors at the origin
of G/K. Based on results of Kumaresan [9], Parthasarathy [17], and Vogan
[21], we have been able to obtain in [23] and [24] a clearer understanding of the
structure of the unitary representations z of G in the Matsushima-Murakami
formula; also see Theorem 3.3 of the present paper. We apply this new
knowledge in conjunction with the Matsushima-Murakami formula to deduce
the main result of this paper, which is Theorem 4.3. We can deduce, in
particular, results of [23] from Theorem 4.3 without assuming the linearity of G.
Thus we drop the linearity assumption in the present paper, which was enforced
in [23].
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2. Unitary representations intertwining y*®7 .,

In this section G will denote a non-compact connected semisimple Lie
group with finite center and K C G will denote a maximal compact subgroup of
G. However, proceeding more generally, we shall not assume that G/K is
Hermitian symmetric (until later). Let g,=Ff,4-p, be a Cartan decomposition of
the Lie algebra g, of G, where {, is the Lie algebra of K and P, is the orthogonal
complement of f, relative to the Killing form ( , ) of g,. Let g, £, b denote,
respectively, the complexifications of g, ), P,. We shall assume throughout
that f contains a Cartan subalgebra § of g; i.e. we assume G and K have the same
rank. This will be the case in particular when G/K is Hermitian. Let A be
the set of non-zero roots of (g, ), let A,, A, denote the compact, non-compact
roots respectively in A, let A*CA be an arbitrary choice of a system of positive
roots, let Ay =A*N A, Ay=ATNA,, and let 28=<A™D, 28,={A>, 28,={A;D,
where we write (P)>=>)a for PCA. Let & denote the integral linear forms

aED
A on Y); i.e. A€h* (the dual space of §) satisfies: 2((0?’;)) is an integer for each

ain A. We define

(2.1) Ft= {A€F|(A+3, a)*0 for a in A and (A+8, a)>0 for o in A}} .

Let g, be the (one dimensional) root space of aEA. Given AEF] A+3, is
the highest weight with respect to A} of an irreducible representation 7,.;, of £.
The Killing form of g, induces a real inner product on p, and since p, is even-
dimensional (because G and K are of equal rank) the spin representation o of
80(P,) has a decomposition c=0"@o " into two irreducible representations o*.

Let
(2.2) X* = o*o(ady,) |y

where (ady,) |y, is the adjoint representation of f, on p,. Then X*@7,,5, always
integrates to a representation of K (which we shall denote by the same symbol)
for A€S§ even though 7,,; may not. Let Q denote the Casimir operator of
G and let G denote the equivalence classes of irreducible unitary representations
(=, H,) of G on a Hilbert space H,. Given AES{ we shall want to pin down
the structure of a (7, H,)EG such that z(Q)=(A, A+28)1 and such that
Homy(7, X*@T445,)+F0. Here H, also denotes the space of K finite vectors in
H, which is regarded as a Ug module where Ug is the universal enveloping
algebra of g; thus z(Q) is well-defined. We shall need the following additional
notation. If #Cg is a parabolic subalgebra we shall write §=m--u for its Levi
decomposition where m and 1 denote the reductive and nilpotent parts respec-
tively of 8, A(m) for the roots of m, 6, , for the set of non-compact roots in the
nilpotent radical 11, M for the closed Lie subgroup of G whose complexified Lie
algebra is m, and we shall write 2§, ,=<6, ,>. Let c: §,—>g, denote the Cartan
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involution for the Cartan decomposition g,=¥f,+P, above. Let F be a finite-
dimensional irreducible g module and let §=m+41u2>Y) be a ¢ stable parabolic
subalgebra of g such that the space F* of 1t invariants is a one dimensional
unitary M module. If xem® is the differential of F* then A(A(m))=0 and we
shall write 44(\) for the unique (up to equivalence) irreducible ¢ module with
minimal ¥ type Mb—l—ZSM. This means that Ay(\) is the only irreducible g
module such that (i) Ay(\) |, contains the irreducible ¥ module with Af-highest
weight X |, +23, , and (ii) the Ai'-highest weight of any irreducible ¥ submodule
of Al‘,(k)lr is of the form Mb—l—ZBu -+ 2 ngl3 where ng>0. For the existence

and construction of the g modules Ae(x) the reader may consult [16], [25]. One
knows that the special f type A |,+29, , occurs exactly once in 44(\) | Now let
W be the Weyl group of (g, b) and let Wy be the subgroup of W generated by
reflections corresponding to compact roots. For A€} let

(2.3) P® = {acA|(A+8, a)>0}
be the system of positive roots corresponding to the regular element A8, let

(24) O ={a€EAT (A4S, a)>0}
P, = PONA,, 280 = (PO 25 B — (P,

and for w,eW, 7,€ Wy let

(25) D = w(—POYNPD | @, = w(—A*)N A"
Of = 1 (—AH)NA}.

Proposition 2.6. Let r€ Wy and let ws W be such that Af CwP™, Then
O, =F U (PP, —DE-)), PP, —Df = {aePP|w rac—P®™} .  Also
¢)(WA)CP£1A).

Proof. If a€®%-, then a € AjCP® and ra € —AfCw(—P®)=
wltaE —P® =Pl ,c®P1, and hence PP, =Dt U (PP, —BE). If
aeDPPh, —d*_, then a € PP, wlrae —P™ and we claim a&A}. For
otherwise Ta €A since aE®*-,. Then racwP®=w'rqa € P™ is a con-
tradiction. Thus we must have a & P®™ —Aj =PP; ie. ®¥1, —®f C
{aePP|wlras —P®}. Conversely {a€ P |w 'rae —P®} Cc M, —Pf_,
since ®f_,C A} and since A,NA,=¢. Clearly > P since Af CwP™ N
P, Q.E.D.

Using Proposition 2.6 we can now state the following theorem whose proof
is given in [24] (see Theorem 2.15 there).

Theorem 2.7. Let AcS§ in(2.1), let P™ be the corresponding positive
system in (2.3), and let o € W be the unique Weyl group element such that o A*=P™,
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Let (m, H)EG be such that n(Q)=(A, A+28)1 and such that Homg(z, X*®
Tas+s,)F0. Then there is a pair (7, w)EWxX W and a c stable parabolic sub-
algebra 0=m--u of § containing a Borel subalgebra 9+ 3 G, where Af DA} such
that acaf

(i) H.=A4,\) and the minimal ¥ type | +23, . (which characterizes H,)
has the form \| 428, ,=A+38,47 (w8 —3))

(i) (7, w) satisfy Af CwP®, T(A+8—8®)=w(A+8—8®)=A+5—8",
PP, M, —®F_, and {aEPP|Tacs —P{™} are contained in {a P |(A+

58, a)=0}, and (—1)'*" = £ (— 1)1 ¥ 1= gyt 10!

the cardinality of a set S and n:—;— dimg GIKY (see (2.5)); also ®*-,C {aS Al |
(A+8—8W, a)=0}
(iti) the relative Lie algebra cohomology H'(m, mN%¥, C) (for the trivial

module C=the complex numbers) is non-zero for j=n— |0, ,| — | {a€P®|w 'rac
—P™} |. Hence the latter number is even.

where | S| denotes

ReMaRks. (i) If F is the finite-dimensional irreducible g module with
P®)_highest weight A+8—8™ then H, in Theorem 2.7 satisfies

Homy(H,, AN'pQF) =H(g, ¥, H,QF*) = H'1%lm mnt, €¢) fori>0

(i) A+48,+7 (wd™—38,) is the only t type which occurs both in z|K
and in X* QT a4,

(iii) If oW is the unique Weyl group element such that o,Af=P®
then o A [h=A+8—8™ (see [24]).

(iv) The proof of Theorem 2.7 leans heavily on the recent unpublished
results of D. Vogan [21]. Vogan’s results depend in part on the important
theorem of S. Kumaresan [9] which specifies the structure of an irreducible §
component of Ap that can occur in an irreducible unitary g module H, when
7(Q)=0.

(V) De=A7—0\.

3. Unitary representations intertwining Ad4®z,
We now assume that for G, K in section 2, the quotient G/K admits a G
invariant complex structure; i.e. G/K is a Hermitian symmetric domain. We

choose the positive system A* above to be compatible with the complex structures
on G/K. This means that

(3.1) pr= 21 G

tasay

where p=p*@p~ is the splitting of p into the spaces of holomorphic and anti-

1) Hence |6,.,] = dimuNyp.
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holomorphic tangent vectors p*, P~ respectively at the origin in G/K. The
spaces p* are K and I stable abelian subalgebras of . The condition of the
compatibility of A* with a G invariant complex structure is equivalent to the
following: every a € A; is totally positive; i.e. for each ain A; we have a+BE A,
for any B€ A, such that a+B€A. If ph* is integral and Aj dominant we
write (7w, V) for the corresponding irreducible of representation of  (or of K if
(Tus V,L)EK' ). Let L* denote the representation space of X*. Then we have
3.2) 21 BATPT =LEQV;,

(-Di==*1
as K modules. Here note that dim V’; =1 by Weyl’s formula since (8,, )=0
for a=A{ in the Hermitian symmetric case. Again n:% dim; G/K=

dim¢ G/K=|A%|. We now prove the following Hermitian analogue of Theorem
2.7.

Theorem 3.3. Let A, P™ o be as in Theorem 2.7 where A is the A} -highest
weight of (ta, Va)EK. Let (z, HYEG be such that n(Q)=(A, A+28)1 and
such that Homg (H,, N'P*QV,)%0 where >0 is fixed. Then there is a pair
(7, w)EWX W and a c stable parabolic subalgebra 0=m-+u of g containing a
Borel subalgebra H+- 2+gw where AT DAY such that H,, (v, w), 0 satisfy con-

acsA?
ditions (1), (ii), (iii) of Theorem 2.7 where in (i) is chosen according as (—1)**=--1.
If Ay .= {aEPP|w'rac —P®™} (see Proposition 2.6), then q satisfies qg=
| Apruwl —210aNAp 0| + | Ol where O, is given by (2.4).

Proof. Suppose that Homg(H., A’P*@V,)+0. Writing ¢g=n—(n—q)
and using (3.2) we have for (—1)""?=4-1 the K module inclusion A'p*QV,C
L*QV; QVy\=L*@V s, so that Homg (H,, L*@V y,5,)#+0 since H, |z and
Ap*@QV, contain a common K type Vy. Thus Theorem 2.2 applies. Tbe
Aji-highest weight p satisfies p=A+<Q,> where Q,CA; such that |Q,|=g.
Let Q,=A; —Q, so that p=A+28,—<Q,>. Define Q;=(Q,—0,) U —(Q,N 04%)
CP®=0,U—0O} where QA=A;—0,. Then one easily checks that

(3.4) |0s]=10,1—210,N 04l +10xl and
<Qa> = <QA>_<QZ>

Let Q,=P{»—Q,. One has §,+8{¥=<0,> so that using (3.4) p=A+38,43,—
{Qp=A+8,+8,—K0>+<0>=A+38,+8»—<0Q,>. On the other hand by
remark (ii) above A+-8,+7 (w8 —3§,) is the only f type occurring both in 7| ¢
and X* @4, which means that p=A+38,47 w8 —8;)=A+38,+ 8> -0
and hence T wd®—§)=8M—<0,>. Therefore <Q,UDi-1> (see (2.5))=
QO+ DL -D=C0D+8—7718,=8,+ 8V — 7 wd M=) — 7718w M =D, .
Thus by (5.10.2) of Kostant [8] Q,U®!-1=®%,. Then Q,=®™, —P;-1=



100 F.L. WiLLIAMS

A, ... (by Proposition 2.6) and since Q,=P{»—Q;, O,=A; —Q, we get |4, . ,|=
n—|Qs| =n— Q| +21Q;NOal — [Oal (by 34)=0:1142]0:N Ol — Ol
=q+2|0;N0Ox|—|0Oxl. But by definition of Q, we have Q,N Q,=0,—0,=
OANQ=0sNAx,, and hence |Ap.,|=g+2|0sNAxrul—|0al" This
proves Theorem 3.3.

In the statement of Tbeorem 3.3 no conditions are imposed on AE%}.
However suppose for example that we impose the following condition: we
assume every a € P is totally positive. Then we have the following refinement
of Theorem 3.3.

Corollary 3.5. Let (74, Vy), P®, o, (w, H,) be as in Theorem 3.3 with q
fixed. Suppose in addition that P™ is compatible with a G invariant complex
structure on G|K;i.e. assume every mom-compact root in P™ is totally positive.
Then there is a Weyl group element w and a c stable parabolic subalgebra §=m-+u
satisfying the conditions of Theorem 2.7 where in (i), (ii), (ill) r€ Wy may be
assumed equal to the identity element (thus for example H, is characterized by the
minimal § type A+8,+wd™—8, and j=n—|0,,|—|DP |)and in (i) 4 is
chosen according as (—1)""'=41. ¢ satisfies q= | D | —2| QA NDP |+ | O4l.

Proof. Choose (7, w), §=m-1u as in Theorem 2.7 or Theorem 3.3. Since
every non-compact root in P™ is totally positive and since 7€ Wy we have
TPM=P{™. This implies that

(3.6) Ap g = 710D
Also one has 7Q,=0, and hence by (3.6)
3.7 T(OANApr0)=0rNDP .

Thus in Theorem 3.3 we have g= |4, . | —2|OxNAp 70|+ 104 =D | —
2]10,N®P|4104]. Also by (3.6) we see that in statement (iii) of Theorem 2.7
we have j=n— 1[0, ,| —| 4.0l =n—10,,| — | P |. To complete the proof of
Corollary 3.4 we must show that in statement (i) of Theorem 2.7 7~ Y(wd™—8§,)
=wd™—§,. Now since the positive system P is compatible with a G in-
variant complex structure on G/K we have (85", a)=0 for a in A} so that 48
is Af-dominant. Also since Af CwP™ we have (w8™, a)=(8™, w™a)>0 for
o in Af so that w8 —§, is Af-dominant. Similarly A48—8™ is P™ domi-
nant (since (A48, a)>0 for « in P*™) and in particular A48—8™+w8™—§,
=A+0,— 0P +wd™—3, is Aj-dominant. Moreover 77}(A48—38™+wd™—
8) =A+8—8M 7 Y wd™M—§,) (since TTH(A+8—8M)=A+48—8"™ by state-
ment (ii) of Theorem 2.7)=A+8,— 8+ 7" (wd™—8,)=n[5+28, ,— 8™ which
is also Af-dominant since —8{ is Aj-dominant. But since only one transform
of A+8—8M+wd8™—3, under the Weyl group Wy can be Aj-dominant we
conclude that A48 —8™M 4w —8, =1 (A48— M 4wd™—§,)=A+5—8®™
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+7 w8 —3,) and hence wS‘A)—Skz;r"(wS‘A)—Sk) as desired.

Proposition 3.8. Suppose in Theorem 3.3 the parabolic subalgebra §=m-u
is g itself. Then A=8"™—8 and g=n—|Q,].

Proof. =g means that 1=0, m=g. Then 6,,=¢ and A(m)=A.
Recalling that A(A(m))=0 (see section 2) we have A(A)=0 and hence A |y=0.
By remark (iii) following Theorem 2.7 o\ [y=A 4 8—8®); hence A48—38* =0
= A=8"™—-§. Also since 8, ,=¢ the equality of f types A |p+28, ,=A+85,+
T wd™—3,) in (i) of Theorem 2.7 reduces to 0=38P -7 }(wd™—3§,), since
A=8M—§=58M—3§, and so A+5,=8M. But this says that (D), >=8"—
Tl =) - N — 7718, =28N + 8, — 171§, = (PP DDt -1D = (PP U Dt -1>
(see (2.5)) and hence P, = P{™ U ®f-1 by (5.10.2) of [8]; i.e. P, — Dk -1=PP
or A, . ,=P® by Proposition 2.6. Then by Theorem 3.3 ¢g=|4,.,]1—2/0sN
An el +1051=0—2]0nl+10s| =n—1|O4l.

Proposition 3.9. Let A€ be such that every non-compact root in P is
totally positive. Let

(3.10) PR = 3} g

ac PN

be the ¥ module of holomorphic tangent vectors for the corresponding G invariant
complex structure on G|K compatible with P™; cf. (3.1). Suppose weW is a
Weyl group element such that Ay CwP™. Then we have a ¥ module inclusion

V

n—| &V (A)+
8 1 aopenr— 53 & A P

Proof. In the proof of Corollary 3.5 we observed that indeed 8V 4wd®™)—§,
is Aj-dominant. Of course

GAl)  SPLwd®—, — 28M— (31— M) — (P P .
Write PV —®P = {a,, -+, a;}, t=n—| D], and let
(3.12) X = Xg, A\ AXq, where Xo,E8s,— {0} .

We claim that X& A'p™* is a A} -highest weight vector. By (3.11) X is clearly
a weight vector of the weight 8§V 4-w8™—3,. Let B€A} be arbitrary and
choose Xg=05— {0}. We must show that

(3.13) adyyX = 31X, A Al X Avrs AXy = 0.
If B+ is not a root [Xg, Xa;]=0. Assume B-+a;isaroot. Then B+a;EPM

since a; E P{™ is totally positive. On the other hand a;&®% implies w™la; €
P®™,  Also by hypothesis Aj CwP™ so w'BeP™. Hence w™(B+a;)=
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w ' B+w o, eP®); ie. Bt+a; P —®P which implies that 8-+8;=some
a;, i#+j. Then [Xg, Xo;]=a multiple of X,. We conclude that (3.13) is valid
and U(Y)X is a f submodule of A*p™* f-equivalent to Vignr, ,5m_s,.

Corollary 3.14. Let A, P™), and w be as in Proposition 3.9. Then we
have the k module inclusion Vy y5 4,65, CV p 4550 Q V504 1585, C Vp g5 5@
AP where t=n— | DP|.

Proof. A-+8,1wd®—§, = AL8,— M 18N 1 ws™ 8,
= AFS 8D L 5D L gpd® 5, .

Corollary 3.15. Let (75, Vi) € K where A€ F and every nom-compact
root in P™ is totally positive. Let (n, H)EG be such that =(Q)=(A, A+28)1
and Homyg(H,, N'P*@V,)*0. Let u=A43,+wd™—38, be the minimal ¥ type
of H, given by Corollary 3.5. Then relative to the positive system P“=P{™ U
—P{¥=A} U—P®, H,is a highest weight § module with highest weight .

Proof. We have ¥ module inclusions V,.C H, and (by Corollary 3.14)
ViCVprs- s QAP where t=n—|DP| and where A+8—8® is P4
dominant. Since |(A+8—38®) ™ |Z—](8®), §®)|2=|A+81°— (8, 8)|*=
7(Q2) Corollary 3.15 follows from Lemma 3.7 of [6] or from the proof of Lemma
2 of [4].

The fact that any (z, H,)€G as in Corollary 3.15 has to be a P®-highest
weight g module is also proved in [23] (see the proof of Lemma 2.4 there) by
different means.

4. Vanishing theorems

In this section we again assume, as in section 3, that G/K is a Hermitian
symmetric domain and that the positive system A* is compatible with the G
invariant complex structure on G/K. We fix a discrete subgroup I" of G which
acts freely on G/K and for which the quotient X=T\G/K is compact. Let
r=7,&K be a fixed finite-dimensional irreducible representation of K acting on
a complex vector space ¥V, where A€ is the Aj-highest weight of 7. The
induced C* vector bundle E, — G/K has a holomorphic structure. To prove
this one usually assumes that G is a real form of a complex Lie group G¢ (i.e. G
is linear). Since we are not imposing the latter assumption on G we appeal to
the more general criteria of [19], [20] for the existence of holomorphic structures
on homogeneous bundles. The induced sheaf 8, — X of abelian groups over X
given in the introduction will also be denoted by €,. Let Ad% denote the
adjoint representation of K on A’p*. Then as in [4] the sheaf cohomology
H'(X, 0,) can be identified with the space 4(Ad}®T,, (A, A+28), T) of auto-
morphic forms of type (Ad4 ®7,, (A,A+428), T); i.e.
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(4.1) HYX, 0y) = {f: G—=> A"D*@V,|f is C=, f(va) = f(a),
f(ak™) = (Ad; @7,)(B)f(a) for (v, a, k) in T X Gx K and
Qf = (A, A+20)f} .

By the formula of Matsushima-Murakami [14] we therefore have

(42) dim HYX, 0,) = PN m(T") dim Homg (H,, A'D*QV,)
(m,H)EG
7(Q) = (A, A+20)1
where m,(T") is the multiplicity of 7 in the right regular representation of G on
LAT\G). Using (4.2) we immediately deduce from Theorem 3.3 the following
main theorem.

Theorem 4.3. Let AT} in (2.1) be the A -highest weight of (75, Vi) EK.
Let o €W be the unique Weyl group element such that o A*=P™ where P™ is the
system of positive roots in (2.3). Suppose that H(T\G|K, 0,)=*0. Then there is
a pair (7, w) in Wy X W and a c stable parabolic subalgebra 0=m--1 of g containing
the Borel subalgebra %)+ >} Qo for some positive system AfDAE (cf. earlier
notation) such that acal

(1) ¢=14nrul —210aNAxq 0l +1Qnl where AA,T,w: {aePP|w'raE
—P™} and where Q, is given by (2.4)

(il) AfCwP™ (so that by Proposition 2.6 Ay , =P, —Di-1), T(A+8—
M) =w(A+8—8®)=A+8—8W, and Ay , ,, DL, and {aEPP|Tae —PP}
are all contained in {a P |(A+8—8W), a)=0} ; D*-1C {a= A} |(A+8—8D,
a)=0} ; see notation of (2.5)

(ili) the relative Lie algebra cohomology H’(m, mNE, C)*+=0 for j=
n—10, 4| — | Ap - .| (hence the latter is an even number) where, as above, 0, , is the

set of non-compact roots in the nilradical n of Qand n:% dim; G/K
(iv) For (—1)*"*=4-1 we have (—1)|¢”|=3|:(——1)l %A)zi(—l)"Jr 1Oual,

As has been noted ®,=A; —0Q,, and if o;€W is the unique Weyl group
element such that o, AT =P™ then (A+8 —8®, o,(A(m))=0 where A(m) is the
set of roots for the reductive part m of §. From Corollary 3.4 we obtain

Corollary 4.4. Let A€F{ in Theorem 4.3 satisfy the ‘condition that every
non-compact root in P™ is totally positive. Then if H'(T\G|K, 6,)=*0 we can
choose we W satisfying A CwP™ and a c stable parabolic subalgebra 0=m-+-u>

9+ D) Qu such that

ac At DA}
(i) ¢=1DP|=2]02sN PP |+ |Onl
(ii) Hn—|0u.n|_]q’$ﬂA)l(m’ mnf’ C):‘:O
(i) OWC {aC PP (A+8—5D, a)=0}.
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Statement (iv) of Theorem 4.3 holds.

Consider for example the special case when A is actually A*-dominant.
Then P™=A" so that A indeed satisfies Corollary 4.4. Also in this case
Or=A; so that Q,NPP =®P. Thus by (i) of Corollary 44 H*+ 0=
g=| DD | —2| DY | +n=n—|DPP| and hence by (ii) H* % (m, mN¥, C)=0.
Thus we have proved the following conjecture of R. Parthasarathy.

Corollary 4.5. Suppose the A} -highest weight A of 7 is actually A*-dominant.
Then if HY(T\G/K, 0,)=0 so is H*~'%."(m, m N ¥, C) for some ¢ stable parabolic
subalgebra §=m--u of g.

a.
Our argument shows moreover that in Corollary 4.5 g=n— |w(—A") N A*|

()
for some we W with A CwA*, w(—AT)NATC{acA; [(A, a)=0}; wA=A.
Let [(w)=|w(—A") N A™| (=length of w) and let

(4.6) ny = {a€Ar (A, a)>0}].

Then | {a€A;|(A, a)=0} | =n—n, so that by (b.) (w)<n—n, and by (a.)
g=n—lw)>n,. Thatis

Corollary 4.7 (Hotta-Murakami [4]). Suppose A is A*-dominant. Then
HYT\G/K, 0,)=0 for q<ny, in (4.6). More generally for H(T\G|K, 0,)=*0
q=n—Kw) for some w W satisfying w(—AT)NATC{a€A; |(A, a)=0}, wA=A.

We define
(4.8) R = R(Q)=min{|0,,||8=c stable parabolic subalgebra of g, 0 +g} .

Again note that for #=g u=0 and hence |0, ,|=dim 1 Np=0. The values
R(G) have been computed by Vogan for general symmetric spaces. Specializing
his results to the Hermitian case we have the following table for the irreducible
Hermitian symmetric spaces.

TaBLE 4.9
G R(G) real rank 1 dimg GIK
of GIK 9

Su(n,m), n>m m m nm
Sp(n,R) n n i(";—l)
SOy(n,2), n>2 2 2 n
SO*(2n), n>3 n—1 (2] D)
real form of Ej 8 2 16

real form of E; 11 3 17
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In Theorem 4.3 H’(m, mN¥, C)#0 for j=n—|0,,| —|A44..| by (iii); hence
7=0. Thatis |4, ,,|<n—10,,| and if 8%g |4, . ,|<n—R(G). Thus ap-
plying Proposition 3.8 we get

Proposition 4.10. Suppose in Theorem 4.3 that either A =+ 8™—8 or
qFEn—|Qnl. Then A, ., there satisfies |A, .| <n—R(G). Similarly w in
Corollary 4.4 satisfies | @Y | <n—R(G).

Note that, in general, by Theorem 4.3 we always have |4, ,,[, || <
[ {eP®|[(A+8—8", a)=0}|. In Corollary 4.7 g=n—Il(w) for H*=0. By
Proposition 4.10. (w)<n—R(G) if either A=0 or ¢=0; i.e. g=n—I(w)>R(G)
which establishes

Corollary 4.11. Suppose A is A*-dominant. If A=0 then H(T'\G/K, 6,)
=0 for 0<q<R(G). If A=0 then HY(T\G/K, 0,)=0 for 1<q<R(G).

In particular we see that since for G in Table 4.9 rank of G/K < R(G) the following
weaker version of Corollary 4.11 holds.

Corollary 4.12. If G/K is irreducible then H'(I'\G|K, 0,)=0 for 0< ¢<
rank fo G|K, A A*-dominant, A+0. The (0, q) Betti number of T'\G|K vanishes
for 1<g<rank of G/K.

Corollary 4.12 is of course well-known; see Theorem 4.2 of [6] and Theorem
4 of [4]. In the case where G/K is irreducible a slight improvement of Corollary

4.11 is given by Theorem 3.5 of [23]. Another extreme case is the case Qy=¢;
def.
ie. (A+96, a)<0 for acA;, PM=AL = Ay U—A;. If H*#+0 then from

Corollary 4.4 g=|®| for some weE W such that Af CwA,, DV C {ae—A; |
(A+28,, «)=0} and (by (ii) of Corollary 4.4) H* " %s(mmnN%, C)=*=0 for
some ¢ stable parabolic §=m-+u. By Proposition 3.8 =g unless A=—23, or
g=n. Barring the latter two cases we have |®{ | <n—R(G) by Proposition 4.10
so that g<n—R(G). This gives

Corollary 4.13. Suppose (A+38, a)<<0 for a in A;. If A+—26, then
HYT\G/K, 0,)=0 for g>n—R/(G). If A=—23, then H'(I'\G/K, 0,)=0 for
n—R(G)<q<n. In any case we always have H'(T\G/K, 0,)=0 for ¢>| {a €
—AL(A+25,, )=0} .

The last statement of Corollary 4.13 is statement (i) of Theorem 3.12 of [23].

However in [23] G is assumed to be linear. We now indicate how the main
result of [23] (Theorem 2.3) can be deduced with the aid of Corollary 3.5; see
Theorem 4.16.

Proposition 4.14 Let A€ S and let wE W be a Weyl group element which
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satisfies Ai CwP™, w(A+8—8M)=A+8—3®), and ®P C {aePP|(A+3—
3™, a)=0} (cf. (ii) of Theorem 4.3) Then A+8—8™+wd™ is a regular element
(t.e. (A+8—3®+wd™, a)=0 for every a in A) and the corresponding positive
system

(4.15) P’ = {a€A|(A+8—8®+wd®, a)>0} coincides with wP™ .
Also P —®® = PN PW .

Proof. For a€Ai (A+8—8®+wd®, a)=(A+8—38"), a)+(8, w™'a)
>0 since w™'Af CP®™. Suppose acPP®. If (A4+8—38™, a)=0 then (A+
8—8M 8™, o)=(8®, wlar)*0. Assume (A+8—3®, @)>0. Then a&
@ since by hypothesis @ {aeP™|(A+86—8®), a)=0}. Thus we must
have w™'a€P™®. Since A+8—8® is P®™-dominant (A-+8—38®, a)-+(8™,
w'a)>0. Thus we have shown (A+8—8®+wd™, a)+0 for e € P which
proves A+8—8®™+wd™ is regular. Let aEP™ be arbitrary. Then (A+3—
M L w8™), wer)=(w Y (A+8— M wdD), a)=(A-+38, ) (since w (A+8—8W)
=A+8—8®) which is positive. That is waEP' = wP™CP' = wP™=P'.

def.
Now &P = w(—P®™)NP®™=—P'NP™ and since ®» C P the last equation

implies that P{»— @M =P’ N PP since A=P'U —P’.

ReEMARK. In Proposition 4.14 (and hence in Theorem 4.3) the condition
PN {aC PP |(A+8—8M, @) =0} is automatically satisfied. Indeed for
a€ P PP 0 (A4 88D, a) = (w YA+ 8—8D), wla) = (A 4 8—8D,
w™'a) <0 (since w'a = P™) and so (A+8—38P, a)=0.

Theorem 4.16. Assume that G is linear and its complexification G€ is simply
connected. (In particular if AEY* is Af-dominant integral the irreducible finite-
dimensional representation of t defined by A integrates to a representation of K.)
Let AT be such that every non-compact root in P™ is totally positive. If
HYT\GIK, 0,)=*0 then there is a parabolic subalgebra 0,=m,+1u, of § which
contains the specific Borel subalgebra f)—l—aefl;‘,(mga such that q=216,,N 05|+

|AF—Qnl — [0, Also (A+3—8D, A(my))=0.

Proof. If HYT'\G/K, 0,)=0 then by (4.2) Homg (H,., A'p*@V,)=*0 for
some (7, H)EG such that z(Q)=(A, A+28)1. By Corollary 3.5 H, has
minimal ¥ type p=A+8,+w8™—3§, for some Weyl group element w such that
A CwP® and ¢= || —2|QxNDPP |+ Ol ; w(A+8—8®)=A+8—8M,
By Corollary 3.15 H, is a highest weight ¢ module with highest weight p relative
to the positive system P®=PP U —PN=AF U —P®. Also p+8,—8PM=
A+8,— 8N +wd™ = A+8—8™4wd™ is regular by Proposition 4.14 (see
remark following Proposition 4.14). Thus since G is assumed to be linear we
can apply Parthasarathy’s Theorem A of [17] to conclude the following:
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p=~7y+<0, > for some parabolic subalgebra ,=m;+1u, of g where 6,29+
2} 8. and where A,€H* is P®™-dominant integral, and (A, A(m,))=0.

as PN

Moreover by (3.49) of [17] 6, ,=P' NP where P’ is the positive system de-
fined by the regular element p+8,—8». Hence by Proposition 4.14 0 0=
PP—@P. Then A+8,+wd™—8,=p=As+<{0, > =A+<PP—DP>=
Ag+8P+wd™—§, (by (3.11))=> Ay=A+8,— P =A+8 8™ = (A+8—8D,
A(m,;))=0. We also have |0, ,|=n—|D{| so that g=|DP| —2|Q, N DP|
1Ol =1 104y | 21 Qa— B a| + | Qal =1~ 16, 1| —2(1Oal — | Q1 (6,41
101 =2104 Ny, | — |81, | 1 AT 04 .

ReMARk. If additional information on the Weyl group element o; above
(where oA =P™) were available the preceding proof might not require the ap-
peal to Theorem A of [17]. For example if it were known that {P{¥ —a,A(m)>

@

=8P+ wd™—-§, for §=m-+1u in Theorem 4.3 then Theorem 4.16 would
follow (even for G non-linear) by taking 6,=a,0. However ® is true only
when certain additional restrictions on A are imposed.

Another classical vanishing theorem for the spaces HY(T'\G/K, 8,) is the
following one of Hotta and Parthasarathy; see Proposition 1 of [5].

Theorem 4.17. Let A be the Aj -highest weight of (T, V) ek. Sup-
pose that (A+8—8™), a)>0 for every a in P{™. Then HY(T'\G/K, 0,)=0 for
g% | Oxl.

Here G is not assumed to be linear. Theorem 4.17 follows from a trivial
application of Theorem 4.3. Namely if H/(T\G/K, 6,)=0 then g=|A, . ,| —
210sNApxul +10s] where Ay .,C{aCPP[(A+6—8D™, a)=0}. But
(A+8—38™, a)>0 for a=Ps™ by hypothesis so 4, . ,—~¢. Thus g=|0,].
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