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1. Introduction

Recently Kamae and Keane [5] have obtained a simple proof of Hopf’s ratio
ergodic theorem using an idea due to Kamae [4] and Shields [9]. In this paper the
same idea will be applied to obtain elementary proofs of pointwise ergodic theorems
for superadditive processes relative to measure preserving transformations. The
main tool is a maximal ergodic theorem for superadditive processes, whose proof
has been motivated by Jones [3] and Akcoglu and Krengel [1]. For related results
we refer the reader to [2], [6] and [10] (see also [7] and §1.5 of [8]).

2. A maximal ergodic theorem

Let (X,F,u) be a o-finite measure space and T : X — X be a measure
preserving transformation. As usual, two measurable functions f and g are not
distinguished provided that f(z) = g(z) a.e.on X. A family F = {F; ; : 0 <17 < k}
of measurable functions is called a superadditive process in L;(u) if it satisfies

(1) FiroT = Fiq1 k41 for 0<i<k,

(ii) Fii>Fir+ Fiy for 0<i<k<lI,

(iii) the functions F; are all integrable and ~(F) = sup {n™! [, Fo, dp :
n > 1} < oo.

It should be noted here that since [y Fo.nim dp > [y Fondp+ [y Fo,m dp by
(i) and (ii), it follows easily that (F) = lim, n™" [, Fy ndp. (This is standard. See
e.g. Lemma 1.5.1 of [8].) F is called a subadditive process in Ly (p), if —F = {—F; 1}
is a superadditive process in L;(u), and an additive process in Li(u) if F is
a both superadditive and subadditive process in Li(u). F is called an extended
superadditive process if it satisfies (i) and (ii), but not necessarily (iii).

The following maximal ergodic theorem is basic throughout this paper.

Theorem 1. Let F = {F;; : 0 < i < k} be a nonnegative superadditive
process in Ly (u). If g is a nonnegative measurable function on X and
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n—1
E = {z:sup [Fon(z) - Zg(TkzL‘)] >0}
n21 k=0
then we have
& [ adn<a®) <.
Proof. For N > 1, let us put
n—1
By = {a s, o, [Fon(o) = 3 o(T*)] > 0).

Since En 1 E, it suffices to show that inequality (1) holds for E instead of E. To
do so, let K > N and for z € X, write A(z) = {k:0< k< K- N, T*z € En}
and

00 otherwise .

k= { min A(z) if A(z) #0
L=

If k1 # oo, then T*1z € En by definition, and there exists an n;, 1 < n; < N,
such that

n1—1

Fon, (TH2) = Y g(T**'2) > 0.
=0

Next, write Aa(z) = {k: k1 +n1 <k < K — N, T*z € Ey} and

{ min As (z) if Ay () # 0
ke =

00 otherwise .

If ky # 0o, then T*2z € En and there exists an ng, 1 < ny < N, such that

nz—l

Fon,(T*22) = Y g(T**'z) > 0.
1=0

Continuing this process, we find finite sequences {k;}/—; and {n;};_, such that
(i) 0<k <ks<...<k.<K-N,
(i) 1<n;<N for i=12,...,r
(iii)  the integer intervals [k;, ki +n;) (i =1,2,...,7) are pairwise disjoint
and satisfy Fo ., (T*z) > Yo" g(Thtiz),
(iv) if k € A(x) then k € [ki, ki +n;) for some ¢ with 1 < i <.
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Since F and g are nonnegative, it then follows that

Fy K(w >2Fk,,k +n1 ZF()”, Tk’.’L')
=1 =1
n;—1 —N-1
>Z(Z T’H'l ) Z (9-xEN) Tz).
i=1 =0 =0

Therefore

1 K
R >
I /XFO,K(x) dp >

-N
/ gdp,
En

and by letting K 1 oo, we have y(F) > [ £, 9 @ The proof is complete.

3. Pointwise ergodic theorems
For the remainder let us fix an integrable function e with 0 < e(z) < o0 on X

and write
(e ]

C={x:Ze(Tkw):oo} and D=X\C.

k=0
Clearly C and D are in Z, where we let Z={E € F : T™'E = E (mod p)}.

Lemma. If F is a nonnegative superadditive process in L; (p) then lim,, Fy ,, ()
< oo a.e.on D.

Proof. Since F is nonnegative, we have sup, Fyn(z) = lim, Fy,(z) a.e. on
X. Write E = {z : lim,, Fyn(z) = 0o} N D. Then it follows that for any o > 0

EcC{z: sup [Fon(z Za e(T*z)] > 0},

and thus by Theorem 1 we get o [, e du < v(F) < oo. Since a > 0 was arbitrary,
this yields |, pedp =0 and hence uE = 0. The proof is complete.

Theorem 2. If F is a nonnegative superadditive process in L; () then the

limit
FO n( )
Zz 0 e(Tl )
exists and is finite a.e. on X. In particular if X = C then the limit function
R(F,e)(z) is invariant under T" and for any A € 7 we have

R(F,e)(z) = Iirrln

1
(2) / R(F,e)-edy =1lim —/ Fy, dp.
A n o nJja
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Proof. By Lemma it suffices to consider the case X = C.
Step 1. First suppose Fy , has the form Fy,, = ZZ;& o T* for some non-
negative f in L;(u). Since Y po,e(T*z) = co a.e. on X = C, it follows that the

functions o o
() = limnsup (Z fo Tk(:v))/(z eo Tk(x))
ol
fo(@) = lim inf (; fo Tk(z)) / (; eo Tk(a:))

are invariant under 7. As in the proof of Lemma, we see that f~(z) < oo a.e. on X.
To prove that f~(z) = fo(z) a.e. on X, write E = {z: f.(z) <a<b< f~(x)},
where a and b are real numbers. It follows that F € Z, and if x € E then

n—1
3) sup [Fon(z) — Z b- e(Tka:)] >0
n k=0
and .
(4) sup [Z a-e(Tz) — Fo,n(a:)] > 0.
" k=0

Thus by Theorem 1

(5) b/IEeduSLfdugé/lzedp.

Since a < b, this yields [, edu =0and pE = 0. Thus R(F,e)(z) = f~(z) = f(z)
ae.on X =C.

To prove that (2) holds, we may assume without loss of generality that A =
X = C, since A is an invariant set under T. Let E(a,b) = {z : a < R(F,e)(z) < b},
where 0 < a < b. By Theorem 1 together with the fact that FE(a,b) € Z, we have

(6) a/ edpg/ fdu<b edpu.
E(a,b) E(a,b) E(a,b)
On the other hand, it is clear that
(7 a/ edpg/ R(F,e)-edugb/ edpy.
E(a,b) E(a,b) E(a,b)

Combining (6) and (7), we get

/ R(F,e)-eduga/ edu+(b—a)/ edu
E(a,b) E(a,b) E(a,b)
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S/ fdu-i-(b—a)/ edpy.
E(a,b) E(a,b)

Similarly,

/ fd,ug/ R(F,e)-ed,u+(b—a)/ edp.
E(a,b) E(a,b) E(a,b)
Thus

(8) | /E CAUTID du| < (b-a) /E 2

Since given an € > 0 we can choose nonnegative real numbers a,, and b,, n > 1,
so that 0 < b, — a, < € for each n > 1, the open intervals (a,, b,) are pairwise

disjoint, and
o0

X =J Ban,bn)  (mod p),

n=1

it then follows from (8) that

/fdu /RFe) ed”|<z'/a,.bn (f — R(F,e) - €) du
< (bp — an) Z/

Since € > 0 was arbitrary, this proves that (2) holds for A = X = C.
Step 2. Next suppose F is any nonnegative superadditive process in Lj(u).
As before, write

eduge/ edu.
b'¢

an bn

[z )~hmsup Fon(z /(z:eOT’c x))

and
folz )—hmmf Fon(z /(ZeOTk )

Since Fo nt1(z) > Fo1(z) + Fo,n 0 T(z) and Y po,e(T*z) = 00 ae. on X = C,
we have f~(Tz) < f~(z) and f(Tz) < f~(z) a.e. on X = C. Thus for any a >
0, {z: () <a} CcT{z: f(z) <a}) and if the set E=T"*({z: f~(z) <
a})\ {z : f~(x) < a} is of positive measure, then there exists a nonnegative
integrable function f with {z : f(z) > 0} C E and [, fdu > 0. Since T"z ¢ E
for all z € E and n > 1, we then have

lirrzn (gf(Tkx))/(nz: e(Tkx)) =0 forae. z€X.

k=0
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But this is a contradiction by Step 1. It follows that {z : f~(z) < a} € Z and
hence f~ is an invariant function under T'. Similarly f. is an invariant function
under T'. Since Theorem 1 can be applied to infer that f~(z) < oo a.e. on X, it
remains to prove that f~(z) = f-(z) a.e. on X and (2) holds for any A € Z. Here
we may assume without loss of generality that A = X = C, and it suffices to prove
that

(©) /Xf~-edu=/xf”-edu='y(F)<oo

To do so, let F(a,b) = {z : a < f~(z) < b}, where 0 < a < b. It follows that
F(a,b) € Z, and for = € F(a,b) we have

SUP[FOn Za e(T*z)] > 0.

Thus Theorem 1 implies

/ a-edy <lim 1 / Fo,n dp.
F(a,b) n N JF(a,b)

It follows that

/ f"-ed,uﬁ/ b-ed,u:/ a-ed,u+(b—a)/ edu
F(a,b) F(a,b) F(a,b) F(a,b)

1
< lim —/ Fon du+(b—a)/ e du.
n N JF(a,b) F(a,b)

Now, given an ¢ > 0, let us choose pairwise disjoint open interval (a,, b,) C
(0, 00), n > 1, such that b, —a, < € for each n > 1, and

oo

X =|J F(an,bn)  (mod p).

n=1

Then we have

/fNedu Z/F(ab) dps

oo

< Z ( lim - Fo dp) + (bn — an)/ e du)
F(an,bn)

—] koo k F(an,bn)

IN

v(F) +e/e dp.

Since € > 0 was arbitrary, we get [, f~ e du < (F).
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Next for an integer K > 1, let ex = Ef;ol eoT*. Applying Step 1 to TX and
ek instead of T and e, we see that for almost all z € X

(10) lim e (T"Kz) / (nf eK)(Tfo)) =0,

=0
and thus the function
Yo Fox(T¥z)
21—0 eK(TlK'Z')

R(F(K),ex)(z) = lim

satisfies

R(F(K),ek)(z) < limninf ﬁ‘% = fo(z) a.e.on X,

where the last equality follows from (10). Since f.. is invariant under T, we then

have
/f~ edy=— /fN- ZeoT’)

1=0
>l/R(F(K) K d—l/F d,
K Jx ,€K) " K M~K ; 0,K G,

where the last equality follows from Step 1 applied to T¥ and eg. Letting K 1 oo
shows that [, f~ -edu > ~(F), and hence (9) follows. This completes the proof.

Theorem 3 (cf. [2]). Let F' = {F}, } be a nonnegative extended superadditive
process and let P = {z : lim, Fj,(x) > 0}. If F = {F;;} is a nonnegative
superadditive process in L;(u) , then the limit

FO n(w)

n Fy,(z)

exists and is finite a.e. on the set P. In particular, if X = C then P € 7 and the
limit function R(F,F¥')(z) is invariant under T'.

R(F,F)(z) = lim

Proof. By Lemma we may restrict ourselves to the case X = C. Since

Fon(a) _ Fon(@)/(Tig e T'(z)
Fn(@) — F o (@)/(Sig e Ti(a))

it then suffices by Theorem 2 to prove that the limit

R(F',e)(0) = lim =20

Yimo €0 T (x)
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exists (but may be infinite) a.e. on P and R(F',e)(z) > 0 a.e. on P. To do so, let
1
I(F')={A€Z:sup ﬁ/ Fy ,, dp < oo}
n A

Since the measure u is o-finite, there exist sets A in Z(F'),k > 1, such that if we
set Y = U2, Ay then Y € 7 and for any B € 7 with uB >0 and B C X \ Y we
have

1
sup —/ F§ , dp = oco.
nJp ’

n

Since Theorem 2 implies that Ar N P € Z and for almost all  in Ay N P the limit
R(F' e)(z) exists and satisfies

0 < R(F',e)(z) = R(F',e)(Tz) < o0,

it only remains to consider the part Z = X \ Y. It is now enough to show that the

function .
0 n (1" )

P 01 eoT(x)

satisfies f,(z) = oo a.e. on Z. Since Y po,e(T*z) = 0o a.e. on Z, we see, as

before, that the function f. is invariant under T'. Thus, for any a > 0, the set
a) = {z : fu(z) < a} N Z isin Z. Further, for the function ex = Zf{:?)l eoT?,

where K is an integer with K > 1, we see that if z € F(a) then

f+(z) =liminf

/ n—1 vy 1K
T —o Fo (T
a> f.(z) = liminf —M)—— > lim inf Eln‘)l xl , m),
n Y ex(TiKa) " Yiso eK(T’Kz)

where the equality follows from (10). Thus z € E(a) implies

n—1
sup [Z a-ex(THz) ZF’ (T ) ] 0,
" Ti=0 i=0

and hence by Theorem 1
/ Fé’Kd,uS/ a-exdy=aK edpy.
E(a) E(a) E(a)
It follows that
sup —/ FOKd,u<a/ edu < oo
k>1 K E(a)

and hence E(a) C Y. But, since E(a) C Z by definition, we get uE(a) = 0.
Consequently f.(z) = co a.e. on Z. The proof is complete.
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Corollary 1. If F = {F} ;. } is a superadditive process in L;(u) then the limit
f(z) =lim, n~1F () exists and is finite a.e. on X.

Proof. Immediate from Theorem 3.

Corollary 2. If F' = {F;,} is a nonnegative extended superadditive process
then the limit f'(x) = lim, _1F0 () exists (but it may be infinite) a.e. on the
set C; = {z : lim, n~! Ez—o T*z) > 0}. Further there exists a nonnegative su-
peradditive process G’ = {Gj ,} for which the averages n~'Gj, () fail to converge
for almost all z in X \ C; .

Proof. By the relation

Fyn Tz
WBy (o) = en Bl €2 T'C)
Ez =0 eo T’L(]‘.) n
the first half of the corollary follows directly from the proof of Theorem 3.
To prove the second half, let {Ax} be an increasing sequence of measurable

sets such that pAxy < oo forall N > 1and X \ C; =limy Ay . Let

n—1
lgn = Z XA] o Ti
=0

By Theorem 2, if f is a nonnegative integrable function with {z : f(z) > 0} C
X \ C; then lim, n~! Y77 f(T?z) = 0 a.e. on X. Using this, we see that there
exists an integer k1 , k1 > 1, such that

)

(A \{z: —1gr,(z) <271} <271
Take a positive real number a; and a measurable set B; such that

ay/(ky+1)>1, pBy <oo and pu(4;, \T % (B;)) <27

Then define
0 if 1<n<k
_ n—1 )
7Y Y@ xm) ot i n> k4L
1=k

As above, there exists an integer ko , k2 > k7 , such that

1 _
p(A2 \ {z 5 (19, () + 298, (2)] < 277}) < 272
Next take a positive real number az and a measurable set By such that

ay/(ka +1)>1, pBy<oo and pu(As\T7*(By)) <272
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By repeating this process we can find sequences {k;},{a;} and {B;} such that
1<k <k <... aj/(kj +1)>1, pB; < o0, u(Aj \T_kj(Bj)) < 277 and

J
u(A; \{z: klz 19k, (z) <277}) <277 forall j>1,
J =1

where we let for [ > 2

0 if 1<n<k-
n—1

19n = Z (a1 - XB,_,) oT' if m>ky+1.

i=kj_1

If we put ko = 0 then for each n > 1 there exists a unique integer j, j > 1, such
that k;_; <n < k;. Then we define

J
fitn =D 1gnoT' for i>0.
=1
It follows by construction that G’ = {G}, : 0 < i < k} becomes a nonnegative

extended superadditive process, and for almost all z in X \ C; we have

limsup n~'Gj ,(z) > 1 and limninf n'Gy,(z) =0,

n

whence the proof is complete.
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