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1. Introduction
Recently Kamae and Keane [5] have obtained a simple proof of Hopf 's ratio

ergodic theorem using an idea due to Kamae [4] and Shields [9]. In this paper the
same idea will be applied to obtain elementary proofs of pointwise ergodic theorems
for superadditive processes relative to measure preserving transformations. The
main tool is a maximal ergodic theorem for superadditive processes, whose proof
has been motivated by Jones [3] and Akcoglu and Krengel [1], For related results
we refer the reader to [2], [6] and [10] (see also [7] and §1.5 of [8]).

2. A maximal ergodic theorem
Let {X,T,μ) be a σ-finite measure space and T : X —y X be a measure

preserving transformation. As usual, two measurable functions / and g are not
distinguished provided that f{x) = g(x) a.e. on X. A family F = {Fi,k '• 0 < i < k}
of measurable functions is called a superadditive process in L\ (μ) if it satisfies

(i) Fitk o T = Fi+ltk+1 for 0 < i < fc,

(ii) Fiit > Fiίk + Fkiι for 0 < i < k < /,

(iii) the functions F{^ are all integrable and 7(F) = sup {n~1 Jχ Fo?n dμ :
n > 1} < oo.

It should be noted here that since Jχ -Fo,n+m dμ > Jχ F 0 , n dμ + Jχ F 0 , m dμ by
(i) and (ii), it follows easily that 7(F) = limn n " 1 Jχ FoiUdμ. (This is standard. See
e.g. Lemma 1.5.1 of [8].) F is called a subadditive process in Zα(μ), if —F = {—F^k}
is a superadditive process in Li(μ), and an additive process in L\{μ) if F is
a both superadditive and subadditive process in Li(μ). F is called an extended
superadditive process if it satisfies (i) and (ii), but not necessarily (iii).

The following maximal ergodic theorem is basic throughout this paper.

Theorem 1. Let F = {Fi^ : 0 < i < k} be a nonnegative superadditive
process in Li(μ). If g is a nonnegative measurable function on X and
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n-1

E = {x : sup [FOin(x) - V g(Tkx)) >
n ^ k=0

then we have

(1)

Proof. For N > 1, let us put

n - l

EN — {x : max fin n(x) ~ s^ Q(T x)] > 0}.
Kn<N ' *-^

k=0

Since EN t -̂ 5 it suffices to show that inequality (1) holds for EN instead of E. To

do so, let K > N and for x <E X, write A(a ) = { & : 0 < f c < l f - i V , Tfca: <Ξ ^ΛΓ}

and
J minA(x) if -A(x) Φ 0

I oo otherwise .

If &i 7̂  oo, then Γ f c lx G 1£JV by definition, and there exists an ni , 1 < ni < iV,

such that
m-i

Next, write A2(a0 = {A: : jfei + nx <k < K - N, Tkx e EN} and

ί 2(x) if i42(a?) 7^0
_

y oo otherwise .

If k2 Φ oo, then T f c 2x G E v and there exists an n 2 , 1 < n 2 < Λ̂ , such that

n2-i

1=0

Continuing this process, we find finite sequences [ki}r

i=ι and {πi}r

i=ι such that

(i) 0 < fei < k2 < . . . < kr < K - N,

(ii) 1 < m < N for z = l ,2 , . . . , r ,

(iii) the integer intervals [k{, k{ + rii) (i = 1, 2, . . . , r) are pairwise disjoint

and satisfy FOtn>(T^x) > Σ ^ " 1 ff(Tfc + ^ ) ,

(iv) if fc € A (a;) then fc € [fcj, fcj + n,) for some i with 1 < i < r.
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Since F and g are nonnegative, it then follows that

r r

i=l l=Q

Therefore

-77 / F0,κ(x)dμ>——- / gdμ,
κ Jx κ

 JENIEN

and by letting K f 00, we have 7(F) > JE g dμ. The proof is complete.

3. Pointwise ergodic theorems
For the remainder let us fix an integrable function e with 0 < e(x) < 00 on X

and write

C = ix : Σ e ( τ f c a : ) = °°} a n d D = X\C.

Clearly C and D are in X, where we let X = {E e T :T-χE = E (mod μ)}.

Lemma. If F is a nonnegative superadditive process in L\ (μ) then limn F0,n(x)
< 00 a.e. on D.

Proof. Since F is nonnegative, we have supn F0?n(x) = limn F0,n(x) a.e. on

X. Write E = {x : limn ^0^(2^) = oc} Π D. Then it follows that for any a > 0

n-l

£ C {x : sup [F0,n(x) -

and thus by Theorem 1 we get afEedμ < j(F) < 00. Since α > 0 was arbitrary,
this yields JE e dμ — 0 and hence μE = 0. The proof is complete.

Theorem 2. If F is a nonnegative superadditive process in L\(μ) then the

limit

exists and is finite a.e. on X. In particular \ί X — C then the limit function

i?(F, e)(ar) is invariant under T and for any A £ 1 we have

(2) / β(P, e) e dμ = lim - / F 0 , n dμ.
JA

 n n
 JA
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Proof. By Lemma it suffices to consider the case X — C.

Step 1. First suppose F 0 ; n has the form F 0 , n = Y^ZX f oTk for some non-

negative / in L1(μ). Since ΣT=oe(Tkx) = oo a.e. on X = C, it follows that the

functions
n-l n-l

( ) / (

and
n-l n-l

f (x) = lim inf ( V^ / o

are invariant under T. As in the proof of Lemma, we see that f~(x) < oc a.e. on X.
To prove that f~(x) = f~(x) a.e. on X, write E = {x : f~(x) < a <b < f~(x)},
where a and b are real numbers. It follows that Eel, and if x G E then

n-l

(3) s u p [ F 0 , n ( x ) - ^ b e(Tkx)}>0

and

n-l

(4) sup f V a e(Tfcz) - FOtn(xj\ > 0.
n fc=o

Thus by Theorem 1
(5) b e d μ < f d μ < a e dμ.

J E JE JE

Since a < 6, this yields fEedμ = 0 and μE = 0. Thus R(F, e)(x) = f~(x) = f~(x)
a.e. on X — C.

To prove that (2) holds, we may assume without loss of generality that A —
X — C, since A is an invariant set under T. Let E(a, b) = {x : a < R(F, e)(x) < 6},
where 0 < a < b. By Theorem 1 together with the fact that E(a, b) G X, we have

(6) a edμ < f dμ <b e dμ.
JE(a,b) JE{a,b) J E(a,b)

On the other hand, it is clear that

(7) a edμ< R(F,e) edμ<b edμ.
JE(a,b) JE(a,b) J E(a,b)

Combining (6) and (7), we get

/ R(F, e) e dμ < a I e dμ + (b — a) e dμ
JE(a,b) JE(a,b) J E(a,b)
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< I f dμ + (b-ά) I edμ.
JE(a,b) JE(a,b)

ί fdμ<[ R(F, e) e dμ + (b - a) ί e dμ.
JE(a,b) JE(a,b) JE(a,b)

I / (f-R(F,e) e)dμ < (b - a) [ edμ.
1 JE(a,b) JE(a,b)

489

Thus

(8)
lE(a,b) JE{a,b)

Since given an e > 0 we can choose nonnegative real numbers an and 6n, n > 1,
so that 0 < bn - an < e for each n > 1, the open intervals (αn, bn) are pairwise
disjoint, and

X = (J E(an,bn) (modμ),
n = l

it then follows from (8) that

I / /dμ- / β(F,e) edμ < ^ | / (f - R(F,e) - e) dμ
E(an,bn)

edμ <e e dμ.
Jx

< ( 6 n _ α n ) v /
n=ιJE{an,bn)

Since e > 0 was arbitrary, this proves that (2) holds for A — X — C.
Step 2. Next suppose F is any nonnegative superadditive process in L\{μ).

As before, write

n-l

and

fc=0

n - l

=limninf Fo,n(x)

Since F0,n +i(z) > F0|i(a?) + F 0,n o T(x) and Σ ^ l o e ( r f c χ ) = °° a e o n X = C>
we have /^(Γx) < /~(a;) and /^(Γx) < /^(x) a.e. on X = C. Thus for any α >
0, {x : /~(x) < α} C T-λ({x : /~(x) < α}) and if the set E = T~ι({x : /~(x) <
a}) \ {χ : /^( x ) < α} ^s °f positive measure, then there exists a nonnegative
integrable function / with {x : f(x) > 0} C E and fχfdμ> 0. Since Tnx £ E
for all x G £ and n > 1, we then have

n - l n - l

^ ( Σ f(τkχή I ( Σ β(Γ f c χ)) = ° f o r a e x

A;=0
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But this is a contradiction by Step 1. It follows that {x : f~(x) < a} G X and

hence /~ is an invariant function under T. Similarly f^ is an invariant function

under T. Since Theorem 1 can be applied to infer that f~(x) < oo a.e. on X, it

remains to prove that f~(x) = f~(x) a.e. on X and (2) holds for any A G X. Here

we may assume without loss of generality that A = X = C, and it suffices to prove

that

(9) f^ edμ=f~-edμ = j(F) < oo.
Jx Jx

To do so, let F(α,δ) = {x : a < f~(x) < δ}, where 0 < a < b. It follows that

F(a, b) G X, and for x G F(a, b) we have

n-l

sup [FOin(x) ~ Y\ a e(Tkx)] > 0.
n ^ 1 k=o

Thus Theorem 1 implies

/ a e dμ < lim — / FQ^U dμ.
JF(a,b) n n JF(a,b)

It follows that

/ f~-edμ< b- e dμ — \ a e dμ + (b - a) e dμ
JF(a,b) JF(a,b) JF(a,b) J F(a,b)

< lim — / Fotn dμ + (b — a) e dμ.
n n JF(a,b) ' JF{a,b)

Now, given an e > 0, let us choose pairwise disjoint open interval (α n , bn) C

(0, oo), n > 1, such that bn — an < e for each n > 1 , and

Then

Since

we have

e > 0 was

X

OO

/][( l im

oo

[ JF(ar

l r

e dμ.

arbitrary, we get

F(an,

Γ

F{

fχf~

bn)

J e dμ

3,Λ dμ)

- e dμ

(mod

+ iK-

<7(F)

μ).

-an) i / e dμ]
JF(an,bn)
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Next for an integer K > 1, let eκ = Σ*~Q eoT\ Applying Step 1 to Tκ and

instead of T and e, we see that for almost all x e X

π - 1

(10) lim eκ(TnKx)/(Σeκ)(TiKxj) = 0,
i=0

and thus the function

satisfies

R(F(K),eκ)(x) < liminf n_l = f~(x) a.e. on X,
Σi=o eκ(TιKx)

where the last equality follows from (10). Since /^ is invariant under T, we then

have
κ-\

> 1 / R(F(K),eκ) -eKdμ=^ ί F0,κ dμ,κ Jx κ Jx

where the last equality follows from Step 1 applied to Tκ and eκ Letting K t oo

shows that Jχ f^ edμ > 7(F), and hence (9) follows. This completes the proof.

Theorem 3 (cf. [2]). Let F' = {F'ik) be a nonnegative extended superadditive

process and let P = {x : limn FQU(X) > 0}. If F = {î ,fc} is a nonnegative

superadditive process in L\ (μ) , then the limit

exists and is finite a.e. on the set P. In particular, if X — C then P G I and the

limit function i ϊ ( F , F / ) ( x ) is invariant under T.

Proof. By Lemma we may restrict ourselves to the case X — C. Since

it then suffices by Theorem 2 to prove that the limit

R(F\e)(x)=\im J ^ l
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exists (but may be infinite) a.e. on P and R(F',e)(x) > 0 a.e. on P. To do so, let

I(F') = {A G X: sup - ί F^n dμ < oo}.
n Π JA

Since the measure μ is σ-finite, there exist sets Ak in X(F'), fc > 1, such that if we
set Y = U^=1 Ak then Y G X and for any B G X with μ£ > 0 and 5 C X \ Y we
have

sup - / FQ dμ = oo.
n Tl J β

Since Theorem 2 implies that Ak Π P G X and for almost all x in AkΠP the limit

JR(F/,e)(x) exists and satisfies

0 < R(F',e)(x) = ϋ(F',e)(Γx) < oc,

it only remains to consider the part Z — X \ Y. It is now enough to show that the
function

jΛx) =limini rJ

satisfies /*(x) = oo a.e. on Z. Since ΣT=oe(Tkx) = co a.e. on Z, we see, as
before, that the function /* is invariant under T. Thus, for any a > 0, the set
E(a) — {x : /*(#) < α} Π Z is in X. Further, for the function ex = Σ;=o e °Tl,
where K is an integer with If > 1 , we see that if x G E{a) then

i i m i n f

where the equality follows from (10). Thus x G E(ά) implies

n-l n-l

i=0

and hence by Theorem 1

sup [ ^ a • eκ(TiKx) - ^ F^κ(TiKx)] > 0,

o,κ Φ ^ / a- ex dμ — aK /

It follows that

sup
1 f W 7 Γ

s u p Ί? \ Fo K dμ < a edμ < oo
K>1 & JE{a) ' 7j5;(α)

and hence E(ά) C F. But, since E(a) C Z by definition, we get μE(a) = 0.
Consequently /*(#) = oo a.e. on Z. The proof is complete.
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Corollary 1. If F = {F^} is a superadditive process in L\(μ) then the limit
f(x) = limn n~1F0^n(x) exists and is finite a.e. on X.

Proof. Immediate from Theorem 3.

Corollary 2. If F' = {F'ik} is a nonnegative extended superadditive process
then the limit f'(x) — limn n~ιF§n{x) exists (but it may be infinite) a.e. on the
set C\ — {x : limn n~ι Σ™Γ0 e(Tιx) > 0}. Further there exists a nonnegative su-
peradditive process G' = {G'ik} for which the averages n~1G'Qn(x) fail to converge
for almost all x in X \ C\ .

Proof. By the relation

/ • C O -Z 12/) '"

the first half of the corollary follows directly from the proof of Theorem 3.
To prove the second half, let {AN} be an increasing sequence of measurable

sets such that μA^ < 00 for all N > 1 and X \ C\ — lim v̂ AN - Let

n - l

l9n = 2^ XAι ° Tl

By Theorem 2, if / is a nonnegative integrable function with {x : f(x) > 0} C
X \ C\ then limn n~1 Σ^o f(Tιx) = 0 a.e. on X. Using this, we see that there
exists an integer k\ , k\ > 1, such that

Take a positive real number a\ and a measurable set B\ such that

Gi/(&i + 1) > 1, μB\ < 00 and μ(Aχ \T~kl(Bι)) <

Then define

' O if 1 < n < fci

29n=\ ^ , _ ^ w ^ < i f n > f c i

i=fcl

As above, there exists an integer fc2 , fe > fci , such that

\ {̂  : i - [l9k2(x) + 29k2(x)} < 2~2}) < 2-2.

Next take a positive real number α2 and a measurable set B2 such that

α2/(fc2 + 1) > 1, μB2 < oc and μ(A2 \ T-k2(B2)) < 2~2.
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By repeating this process we can find sequences {kj},{dj} and {Bj} such that

1 < fci < k2 < . . . , aj/(kj + 1) > 1, μBj < oo, μ(Aj \ T~k> (Bj)) < 2~j and

1 A
μ(Aj \ {x : — 22 Wk3 (x) < 2"J}) < 2~J for all j > 1,

J ι=i

where we let for / > 2

0 if 1 < n < h-ι

L * X^z-i) °Tι if n > kι-ι + 1.

If we put fco = 0 then for each n > 1 there exists a unique integer j , j > 1, such

that kj-ι < n < kj. Then we define

G'i,i+n — 2 ^ ^ n ° •̂ ?ϊ ^ 0 Γ * — ^*

It follows by construction that G ; = {G^ k : 0 < i < k} becomes a nonnegative

extended superadditive process, and for almost all x in X \ C\ we have

limsup n~1G'On(x) > 1 and liminf n~~1Gf

On(x) = 0,
n n '

whence the proof is complete.
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