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Abstract
C.A. Giller defined a crossing change for surfaces in4-space, and proved an

unknotting theorem. In this paper, we present such an unknotting theorem for
singular surface braids, extending S. Kamada’s result for those without branch points.
As a consequence, we recover Giller’s unknotting theorem. We also study finite type
invariants for singular surface braids associated with thecrossing changes.

1. Introduction

A surface braidwas introduced by O. Viro [12] and has extensively studied by
S. Kamada [9]. L. Rudolph introduced a similar notion earlier in [11]. By a singular
surface braid, we mean an immersed (closed) surface braid (see§2). We call a trans-
verse double point of a singular surface braid acrossing point. By a crossing change,
we mean an operation for a singular surface braidS inserting a pair of positive and
negative crossing points along a chord that is a straight segment connecting adjacent
sheets ofS (cf. [4, 6]). In this paper, we present an unknotting theorem(Theorem 4.1
in §4) for singular surface braids, which was proved by Kamada [4] for those without
branch points. C.A. Giller [2, 8] proved that such an unknotting theorem for surfaces
in Euclidean 4-space. We recover Giller’s unknotting theorem in Corollary 4.2. In§5,
we also study finite type invariants for singular surface braids associated with cross-
ing changes. These invariants are completely determined bythe number of sheets, the
Euler characteristic and the numbers of (signed) crossing points for each component
(Theorem 5.2).

2. Singular surface braids, chart descriptions andC-moves

Let D1 be an oriented 2-disk and letXm be a fixed set ofm interior points ofD1. Let
U0 be the standard 2-sphereU0 = {(x, y, z, w) ∈ R4 | x2 + y2 + z2 = 1, w = 0} in R4 with
a base pointq0. We denote by pr :D1 × U0 → U0 the second factor projection. LetS
be a compact oriented immersed surface inD1 × U0. ThenS is called a (closed) singular
surface m-braidif the following conditions are satisfied: (i) Singularities of Sare crossing
points, (ii) for an immersionf : F → D1 × U0 associated withS, the composition pr◦ f
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Fig. 1.

is a simplem-fold branched covering map, i.e. for eachy ∈ U0, #{pr−1(y)∩ S} = m− 1 or
m. We may assume that pr−1(q0) ∩ S = Xm. Two singular surfacem-braidsS andS′ are
equivalentif they are ambiently isotopic by a fiber-preserving isotopy{hu}0≤u≤1 of D1×U0,
as aD1-bundle overU0. A singular surfacem-braid istrivial if it is equivalent toXm×U0.
Let S1, : : : , Sl be components of a singular surface braidS, that is, eachSi is the image
f (F i ) of a connected componentF i of F . A (k1, k2)-crossing pointis a crossing point of
Sk1 andSk2. In particular, a (k, k)-crossing point is a self-crossing point ofSk.

An m-chart0 is a (possibly empty) finite immersed graph in an oriented 2-sphereU0

with a base pointq0, which may havehoops(that are closed edges without vertices), satis-
fying the following conditions:

(i) Every vertex has degree one, two or six.
(ii) Every edge is directed, and labeled by an integer in{1, 2, : : : , m− 1}.
(iii) For each vertex of degree six, three consecutive edgesare directed inward and the other
three are directed outward; these six edges are labeled byi andi + 1 alternately for somei .
(iv) For each vertex of degree two, the two edges are labeled by the same integer and op-
positely directed.
(v) Each singularity of0 is a transverse double point of two edges whose difference in
labels is more than one.
(vi) 0 ∩ {q0} = ∅.

A vertex of degree one, two or six is called ablack vertex, a nodeor a white vertex,
respectively (Fig. 1 (A)–(C)). In [6], Kamada gave a method to present a singular surface
m-braid by anm-chart0. Black vertices, nodes or white vertices in a chart0 represent
branch points, crossing points or triple points in a diagramof a singular surfacem-braid. A



UNKNOTTING SURFACE BRAIDS BY CROSSING CHANGES 63

node whose adjacent edges are directed inward (or outward) is called apositive(ornegative)
node. The set of black vertices in0 is denoted byB0. An edge attached to a white vertex
is called amiddle edgeif it is the middle of the three consecutive edges which are oriented
in the same directions; otherwise anon-middle edge. A free edgeis an edge both endpoints
of which are black vertices (Fig. 1 (D)). Aquasi-free edgeis a smooth arc in a chart whose
endpoints are black vertices and the other vertices on it arenodes (Fig. 1 (E)). A quasi-free
edge is calledpositive(or negative) if the number of positive (or negative) nodes is larger
than that of negative (or positive) nodes. Aquasi-hoopis a simple loop in a chart with two
nodes and no other vertices (Fig. 1 (F)). We regard a free edgeas a quasi-free edge, but do
not regard a hoop as a quasi-hoop. Anf-oval nest(or h-oval nest) is a quasi-free edge (or
quasi-hoop) together with some concentric hoops (Fig. 1 (G)–(H)). We always assume that
the base pointq0 is outside f-oval nests and h-oval nests.

Let S1 andS2 be singular surfacem-braids presented bym-charts01 ⊂ U0 and02 ⊂ U ′0
with base pointsq0 andq′0, respectively. Theproductof 01 and02, denoted by01 • 02, is
anm-chart obtained by identifying the boundaries ofU0 \ Int N(q0) andU ′0 \ Int N(q′0) for

neiborhoodsN(q0) ⊂ U0 andN(q′0) ⊂ U ′0 in such a way thatN(q0) ∩ 01 = ∅ andN(q′0) ∩02 = ∅. Then, we set a base point of01 • 02 on the identified boundaries. Theproductof
S1 andS2, denoted byS1•S2, is a singular surfacem-braid presented by anm-chart01•02.

REMARK 2.1. A crossing change of a singular surface braid corresponds to insertion
of a quasi-hoop in a chart. See [6]. Thus, in this paper, a crossing change also means
insertion of a quasi-hoop in a chart.

Operations listed below (and their inverses) are called aCI-, CII -, CIII -, CIV - and
CV-move, respectively. These moves are calledC-moves. Twom-charts areC-move equiv-
alent if they are related by a finite sequence of suchC-moves and ambient isotopies.
(CI) For a 2-diskE on U0 such that0 ∩ E has neither black vertices nor nodes, replace0 ∩ E with an arbitrary chart that has neither black vertices nor nodes.
(CII ) Suppose that an edge� is attached to a black vertexB and intersects another edge�
nearB. Shorten� to remove the intersection and moveB across�.
(CIII ) Let a black vertexB and a white vertexW be connected by a non-middle edge� of
W. Remove� andW, attachB to the edge ofW opposite to�, and connect other four
edges in a natural way.
(CIV ) Let N be a node attached by edges�1, �2 and suppose that�1 intersects an edge�
nearN. Move N across�.
(CV) Let a nodeN and a white vertexW be connected by a non-middle edge ofW. Move
N acrossW.
We illustrate examples ofCI-moves in Fig. 2 andCII –CV-moves in Fig. 3.

Lemma 2.2 (cf. [5, 6, 9]). Two m-charts are C-move equivalent if and only if their
presenting singular surface m-braids are equivalent.
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Fig. 2. someCI moves

Fig. 3. CII –CV moves
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3. Factorization graph of singular surface braids

Here, we introduce the notation of afactorization graph[1] to see which sheets
of a singular surface braid are connected. It will be useful in proving Theorem 4.1.

Let S be a singular surfacem-braid presented by anm-chart0 andU0, q0 and B0
be as in§2. A Hurwitz arc systemof 0 is H = (a1, : : : , an) with n = |B0| such that
for 1 ≤ i ≤ n, ai is a simple path intersecting0 transversely (missing all the vertices
except at the initial points) such that
(i) q0 is the terminal point ofai for eachi ,
(ii) the intersection of the images ofai and a j is q0 for i 6= j ,
(iii) the images ofa1, : : : , an appear in this order around the pointq0,
(iv) the initial points are inB0.
For eachi , consider a loop�i in U0 \ B0 with base pointq0 such that it goes along
ai , turns around the initial point ofai in positive direction and comes back alongai .
For loops�i with 1≤ i ≤ n, assign to each intersection point with0 a letter� j if its
intersecting edge of0 is labeled j and directed from left to right with respect to�i ;
otherwise a letter�−1

j , where� j and�−1
j are standard generators of them-string braid

group Bm and their inverse. We obtain a wordw0(�i ) of Bm on these standard genera-
tors by reading off the letters along�i . For w0(�i ) with 1≤ i ≤ n, let wi = �(w0(�i ))
where� : Bm→ 6m is natural homomorphism to symmetry group6m. Then, by the
definition of �i , we see thatwi is a transposition.

DEFINITION 3.1 ([1]). (i) Let H be a Hurwitz arc system of a chart0. The
factorization graph G= (V , E) of 0 associated withH is the graph whereV = {1, : : : , m}
is the set of vertices ofG and E = {(x, y) | ∃i s.t. wi = (x, y)} is the set of edges of
G. And we define the weightW((x, y)) of an edge of (x, y) ∈ E as the number of
elementsi s.t. wi = (x, y).
(ii) For a given graphG, we denote the graphs of its connected components as
G1, : : : , Gl where l is the number of the connected components of the graph. For
each connected component, letGk = (Vk, Ek), where Vk are the vertices ofGk and
Ek are the edges.

In Fig. 4, two examples of factorization graphs withm = 6 are given.

REMARK 3.2. Two Hurwitz arc system of a chart are related by someslide ac-
tions. See [9]. It is easy to see that slide actions do not changeVk. Thus, we also
denoteVk for a Hurwitz arc system of a chart0 by Vk(0).

Let nk be the maximal number among the elements ofVk. A factorization graph
is good if it is satisfied thatVk = {x | nk−1 + 1 ≤ x ≤ nk} for each 1≤ k ≤ l . (For
example, see Fig. 4 (ii).) By Remark 3.2, the property of being good is independent
of the choice of Hurwitz arc systems.
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Fig. 4.

Lemma 3.3. By C-moves, any chart0 can be transformed to another whose fac-
torization graph G is good.

Proof. Interchanging sheets in neighborhood of pr−1(q0) ⊂ S leads to exchanging
of the vertices ofG. This is done by insertion of some concentric hoops aroundq0,
which is aCI-move.

4. Unknotting theorem

An m-chart is unknottedif it consists of some quasi-free edges or if it is empty
(cf. [9]). A singular surfacem-braid isunknottedif it can be presented by an unknotted
m-chart. In this section, we will prove the following theorem.

Theorem 4.1. Any singular surface braid can be transformed to an unknotted
one by crossing changes and its inverse operations.

A crossing change of a surface in 4-space is inserting a pair of positive and neg-
ative crossing points in the sense of [2].

Corollary 4.2 ([2, 6]). Any surface in4-space can be transformed to an un-
knotted one by crossing changes and its inverse operations.

Proof. A surface in 4-space can be represented by a (singular) surface braidS
(cf. [9]). By Theorem 4.1,S can be transformed to an unknotted singular surface braid
U by crossing changes and its inverse operations. Since an unknotted singular surface
braid is an unknotted surface in 4-space (cf. [7, 9]), we havethis corollary.

In order to prove Theorem 4.1, we prepare Proposition 4.3 andLemmas 4.4–4.8.

Proposition 4.3 ([4]). Any chart without black vertices can be transformed to the
empty chart by the some number of insertion and deletion quasi-hoops and C-moves.
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Fig. 5.

Fig. 6.

Lemma 4.4. Any chart0 can be transformed to a chart consisting of f-oval nests
by insertion and deletion of quasi-hoops and C-moves.

Proof. A move illustrated in Fig. 5 is realized byC-moves, insertion and dele-
tion of quasi-hoops. See Fig. 6: (1) Insertion of a quasi-hoop (2) a CI-move and a
CV-move (3) CV-moves and aCIV -move. By such moves andC-moves, each black
vertex can be an end of a quasi-free edge. Applying the procedure as in Fig. 29.2
of [9], we take all quasi-free edges near the base pointq0 of U0. Then, we have a
chart0′ such that0′ ∩ E includes no black vertices for a 2-diskE in U0. By Propo-
sition 4.3, 0′ ∩ E becomes empty by inserting and deleting quasi-hoops andC-moves.
This completes the proof.

DEFINITION 4.5. An f-oval nest (or h-oval nest) issimple if the label of the
quasi-free edge (or quasi-hoop) isi and the labels of the concentric hoops in the order
from inside to outside arei + 1, i + 2, : : : , i + k (for somek) and orientations of the
hoops are induced from that ofU0. See Fig. 7. We consider that a quasi-free edge (or
quasi-hoop) is a simple f-oval nest (or simple h-oval nest) with empty hoops.
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Fig. 7.

Fig. 8.

Lemma 4.6. The replacement illustrated in(i) and (ii) of Fig. 8 are realized by
C-moves.

Proof. (i) is given in [3, 5] and (ii) follows from Fig. 9.

We remark that a given orientation of each hoop in a chart can be reserved by
insertion and deletion of quasi-hoops, and we call it anID-move. See Fig. 10.

Lemma 4.7. (i) Any f-oval nest in a chart is transformed to a simple one by
some insertion and deletion of quasi-hoops and C-moves.
(ii) Any h-oval nest in a chart is transformed to a simple one by some insertion and
deletion of quasi-hoops and C-moves.

Proof. In this proof, for each f-oval nestf , we denote the number of hoops of
f by n( f ). We prove the following assertion for anyn( f ). (i) is a consequence of it.
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Fig. 9.

Fig. 10. ID-move
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Fig. 11.

Assertion. Let f be an f-oval nest in a chart. Then, f can be transformed to a
simple one f′ with n( f ′) ≤ n( f ) by ID-moves and C-moves.

We prove this assertion by induction onn( f ). If n( f ) = 0, it is obvious. Supposed that
n( f ) = 1. In the case where the difference of labels of the quasi-free edge and the hoop
of f is 1, by Lemma 4.6 (i) and anID-move (if necessary),f can be transformed to
a simple f-oval nestf ′. In the other cases, the hoop is removed byC-moves (CII -
moves andCIV -moves). Thus, we proved the assertion ifn( f ) = 1. If n( f ) ≥ 2, we
consider sub-f-oval nest̃f of f consisting of the quasi-free edge and hoops except
outermost hoopl of f . By induction, we transformf̃ to a simple f-oval nestf̂ with
n( f̂ ) ≤ n( f̃ ). Then, f̂ ∪l is an f-oval nest withn( f̂ ) ≤ n( f )−1. If n( f̂ )< n( f )−1, by
induction hypothesis, we can transform̂f ∪ l to a simple f-oval nestf ′. It is supposed
that n( f̂ ) = n( f ) − 1. Let �, � and � be the labels of the quasi-free edge off̂ , the
outermost hoop off̂ and l , respectively. In the case where� < � − 1 or � > � + 1,
we removel by C-moves, so we havef ′ = f̂ . In the cases where� = �, � + 1, by an
ID-move andC-moves (if necessary), we transform̂f ∪ l to a simple f-oval nestf ′.
In the other case, see Fig. 11 and Fig. 12. (If the orientationof l is reverse in Fig. 11



UNKNOTTING SURFACE BRAIDS BY CROSSING CHANGES 71

Fig. 12.

and Fig. 12, we should change it by anID-move.) Thus, the proof of the assertion is
complete.

(ii) is proved by a similar method. (Use Lemma 4.6 (ii) instead of Lemma 4.6 (i).)
This completes the proof.

For a chart0 consisting of simple f-oval nestsf1, : : : , fk, we consider a Hurwitz
arc systemH = (a1, : : : , an) such that for any 1≤ i ≤ n, ai ∩0 ⊂ f j . Such a Hurwitz
arc system is calledsimple. We remark that the factorization graphG is independent
of the choice of a simple Hurwitz arc systemH .

Lemma 4.8. Let G1, G2 and G3 be the factorization graphs of charts01, 02

and 03 consisting of simple f-oval nests, respectively, associated with simple Hurwitz
arc systems. Suoopse that G1, G2 and G3 are locally different each other as inFig. 13
(a), (b) and (c) and the remainding parts are the same. Then, 01, 02 and 03 can be
changed each other by C-moves.
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Fig. 13.

Fig. 14.
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Proof. In the casei < j < k, 01 and02 are locally different each other as in the
first stage and the last stage of Fig. 14. Each steps in Fig. 14 is done byC-moves.
Thus01 and02 are changed each other byC-moves. And see Fig. 15 for02 and03.
The other cases are treated similary.

Proof of Theorem 4.1. LetS be a singular surface braid presented by a chart0.
By Lemma 4.4,0 is transformed to a chart0′ consisting of some f-oval nests. We may
assumed that a factorization graph of0′ is good by Lemma 3.3. By Lemma 4.7 (i),0′
is transformed to a chart0′′ consisting of some simple f-oval nests. By Lemma 4.8,0′′
is transformed to a chart0′′′ of which factorization graph associated with simple Hurwitz
arc system is illustrated in Fig. 16.0′′′ is unknotted, so we have Theorem 4.1.

Corollary 4.9. Any singular surface braid can be transformed to be a product
U • O1 • · · · • Os by crossing changes(and no inverse operations), where U is an
unknotted singular surface braid and Ot is a singular surface braid presented by a
chart consisting a simple h-oval nest for each1≤ t ≤ s.

Proof. Instead of deleting quasi-hoops on proof of Theorem 4.1, we take a quasi-
hoop near the base pointq0 of U0 by applying the procedure as in Fig. 29.2 of [9].
Then, the resulting chart is the product of an unknotted chart and some h-oval nests.
Thus, by Lemma 4.7 (ii), we have this corollary.

5. Finite type invariants

S. Kamada introduced finite type invariants of surfaces in 4-space associated with
crossing changes (finger moves) in [8] and 1-handle surgeries in [10]. The author [3]
defined finite type invariants of surface braids associated with simple 1-handle surg-
eries. We consider similar invariants of singular surface braids, which are finite type
invariants associated with crossing changes.

Let Lm be the family of equivalence classes of singular surfacem-braids. We
consider a pairS = {S, {c1, c2, : : : , cn}} where S is a singular surfacem-braid and
c1, c2, : : : , cn are mutually disjoint chords that are straight segment connecting adja-
cent sheets ofS. (See [8] for a precise definition of a “chord”.) For eachn-tuple of
signs ("1, "2, : : : , "n), we denote by

(5.1) S"1,"2,:::,"n

the singular surfacem-braid obtained fromS by a crossing change aboutci (that is a
finger move alongci ) for every i (1 ≤ i ≤ n) with "i = +1. In a chart description, a
crossing change is presented by the insertion of a quasi-hoop. A mapv: Lm→ A (A is
an abelian group) is called anorder k invariantif, for any pairS = {S, {c1, c2, : : : , ck+1}},
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Fig. 15.

Fig. 16.
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the following equation holds:

∑

("1,"2,:::,"k+1)

"1"2 · · · "k+1 v([S"1,"2,:::,"k+1]) = 0.

A map v : Lm → A is called afinite type invariantif v is an orderk invariant for
somek.

EXAMPLE 5.1. LetS be a singular surfacem-braid with l componentsS1, : : : , Sl .
For eachk (1≤ k ≤ l ), let Fk be the component of the sourceF of the immersion f
associated withS such that f (Fk) = Sk. (See§2.) We define maps fromLm to Z as
follows;

�k([S]) = (the number of sheets ofSk),

�k([S]) = (the Euler characteristic ofFk),

d+
k1,k2

([S]) = #(positive (k1, k2)-crossing points),

d−k1,k2
([S]) = #(negative (k1, k2)-crossing points),

dk1,k2([S]) = #((k1, k2)-crossing points),

ek([S]) = d+
k,k([S]) − d−k,k([S])

for 1≤ k, k1, k2 ≤ l . Then, we define the following two invariants;

d([S]) =
l∑

k1=1

l∑

k1≤k2

dk1,k2([S]),

e([S]) =
l∑

k=1

ek([S]).

If S2 is obtained fromS1 by a crossing change, then

d([S1]) = d([S2]) + 2, e([S1]) = e([S2]), �([S1]) = �([S2]).

Therefore,e and � are order zero invariants andd is an order one invariant.

Theorem 5.2. Let v : Lm→ A be a finite type invariant. Let S1 and S2 be sin-
gular surface m-braids with l components. If �k([S1]) = �� (k)([S2]), d([S1]) = d([S2]),
ek([S1]) = e� (k)([S2]) and �k([S1]) = �� (k)([S2]) for any 1≤ k ≤ l and some� ∈ 6l , thenv([S1]) = v([S2]).

This theorem is a consequence of Theorem 5.3.
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For any pairS = {S, {c1, c2, : : : , cn}} of a singular surfacem-braid S and a set of
n mutually distinct chordsc1, c2, : : : , cn each of which is a straight segment connecting
adjacent sheets ofS, we have an element

∑

("1,"2,:::,"n)

"1"2 · · · "n[S"1,"2,:::,"n ]

of the freeZ-module ZLm generated byLm. Denote byLm
n the submodule ofZLm

spanned by all elements as above. Evidently, we haveLm
1 ⊃ Lm

2 ⊃ · · · .

Theorem 5.3. Let S1 and S2 be singular surfacem-braids with l components. If�k([S1]) = �� (k)([S2]), d([S1]) = d([S2]), ek([S1]) = e� (k)([S2]) and �k([S1]) = �� (k)([S2])
for any 1≤ k ≤ l and some� ∈ 6l , then [S1] − [S2] ∈ Lm

n for any n.

From now on, we may assume that�k([S]) = �k([S′]), �k([S]) = �k([S′]), ek([S]) =
ek([S′]), dk,k′ ([S]) = dk,k′ ([S′]) and dt ,t ′([S])+2 = dt ,t ′ ([S′]) for 1 ≤ k, k′ ≤ l and{k, k′} 6=
{t , t ′} where S′ is a singular surface braid obtained from a singular surfacebraid S
with l components by a crossing change such that inserting crossing points are (t , t ′)-
crossing points. This is possible by a suitable choice of indices of components ofS′.

In order to prove Theorem 5.3, we use the following lemmas andProposition 5.9.

Lemma 5.4. Let S be a singular surface braid with l components. If k 6= k′

(1≤ k, k′ ≤ l ), then d+
k,k′ ([S]) = d−k,k′ ([S]). In particular, dk,k′ ([S]) is even if k6= k′.

Proof. If S is unknotted, let0 be an unknotted chart presentingS. Since each
node in0 is on a quasi-free edge, each double point is (k̃, k̃)-double points for some
k̃ (1 ≤ k̃ ≤ l ). Therefore,d+

k,k′ ([S]) = d−k,k′ ([S]) = 0. If S is not unknotted, by Theo-
rem 4.1, S can be transformed to an unknotted singular surface braidS′ by crossing
changes and its inverse operations. Since a crossing changeis insertion of a pair of a
positive and negative double points andd+

k,k′ ([S
′]) = d−k,k′ ([S

′]), we see thatd+
k,k′ ([S]) =

d−k,k′ ([S]).

Let Vk(0) be as in Remark 3.2 and we denote the minimal and maximal numbers
of Vk(0) by �k(0) and nk(0), or �k and nk for short, respectively.

Lemma 5.5. Let S1 and S2 be singular surface m-braids with l components. If�k([S1]) = �� (k)([S2]), d([S1]) = d([S2]), ek([S1]) = e� (k)([S2]) and �k([S1]) = �� (k)([S2])
for any 1 ≤ k ≤ l and some� ∈ 6l , then S1 and S2 can be transformed to S′1 = U1 •
O1

1 • · · · • Os1
1 and S′2 = U2 • O1

2 • · · · • Os2
2 with Vk(01) = V � (k)(02), dk1,k2([S

′
1]) =

d� (k1),� (k2)([S′2]), ek([S′1]) = e� (k)([S′2]) and �k([S′1]) = �� (k)([S′2]) by the same number of
crossing changes where Uj is an unknotted singular surface braid, Ot

j is a singular
surface braid presented by chart consisting of a simple h-oval nest and0 j is a chart
presenting S′j for each j = 1, 2 and 1≤ t ≤ sj .
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Fig. 17.

Fig. 18.

Proof. By Corollary 4.9,S1 and S2 are transformed tôS1 = Û1• Ô1
1•· · ·• Ôs1

1 and
Ŝ2 = Û2 • Ô1

2 • · · · • Ôs2
2 by some crossing changes, respectively. We may asuume that

Vk(0̂1) = V � (k)(0̂2) by insertion of some concentric hoops aroundq0 before applying
Lemma 4.7 (i) in the proof of Corollary 4.9 (Theorem 4.1) where 0̂ j is a chart pre-
senting Ŝj for j = 1, 2. Sinced(S1) = d(S2), applying crossing changes trivially as in
Fig. 17 if necessary, we may also assume thatd(Ŝ1) = d(Ŝ2). It is obvious that cross-
ing changes do not change�k and ek for eachk. Thus, it is satisfied thatek([ Ŝ1]) =
e� (k)([ Ŝ2]) and �k([ Ŝ1]) = �� (k)([ Ŝ2]). By Lemma 5.4,dk1,k2(Ŝ1) and d� (k1),� (k2)(Ŝ2) are
even numbers for 1≤ k1 6= k2 ≤ l , so we see thatdk1,k2([ Ŝ1]) − d� (k1),� (k2)([ Ŝ2]) is
even. Sinceek([ Ŝ1]) = e� (k)([ Ŝ2]), we also see thatdk,k([ Ŝ1]) − d� (k),� (k)([ Ŝ2]) is even
for 1 ≤ k ≤ l . Therefore, applying crossing changes forŜ1 and Ŝ2 as in Fig. 18 for
all pairs (k1, k2) (1 ≤ k1, k2 ≤ l ) such thatdk1,k2([ Ŝ1]) 6= d� (k1),� (k2)([ Ŝ2]), we can ob-
tain singular surface braidsS′1 and S′2 such thatdk1,k2([S

′
1]) = d� (k1),� (k2)([S′2]) for any

1 ≤ k1, k2 ≤ l . Then, the charts01 and02 thus obtained, or the charts corresponding
to S′1 and S′2, respectively. Here, we need the same number of crossing changes for
Ŝ1 and Ŝ1 to haveS′1 and S′2 because ofd(Ŝ1) = d(Ŝ2). Since the crossing changes as
in Fig. 17 and Fig. 18 do not changeVk for 1≤ k ≤ l , the lemma is proved.
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Fig. 19.

By u(S1, S2), we denote the minimal number of crossing changes that are needed
to satisfy the statement of Lemma 5.5.

Lemma 5.6. If |i − j | = 1, then the local operations illustrated inFig. 19 (i)–(iv)
are C-move equivalence, where each fr and f′s is a quasi-free edge for1 ≤ r , s ≤ 5
such that the number of nodes in fr is equal to the number of nodes in f′r .

Proof. See [7] for (i)–(iii). The operation (iv) follows from Fig. 20.

Lemma 5.7. Let U1 and U2 be unknotted singular surface braids with l com-
ponents such that Vk(01) = V � (k)(02), dk,k([U1]) = d� (k),� (k)([U2]), ek([U1]) = e� (k)([U2])
and�k([U1]) = �� (k)([U2]) where0 j is a chart presenting Uj for 1≤ k ≤ l and j = 1, 2.
Then, U1 is equivalent to U2.

Proof. Thek-th componentU k
j of U j is presented by a chart0k

j consisting of

quasi-free edges with labels for eachs ∈ Vk(0 j ) \ {nk(0 j )}. Then, U j is presented by
a chart01

j • · · · • 0l
j . We prove the following assertion.

Assertion. 0k
j can be transformed to a chart Dk by C-moves that satisfies the

following conditions(seeFig. 21):
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Fig. 20.

Fig. 21. Dk
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Fig. 22.

(1) The factorization graph of Dk associated with a simple Hurwitz arc system is as
in Fig. 16.
(2) The number of quasi-free edge with at least one node is|ek(U j )| if ek(U j ) 6= 0;
otherwise1.
(3) The number of quasi-free edge with at least two node is0 or 1.
(4) The quasi-free edge with labelw has nodes ifw ≥ nk(0 j ) − d where d is the
number of quasi-free edge without nodes; otherwise it dose not have node.
(5) V(Dk) = Vk(U j ).

If the number of quasi-free edges in0k
j is more than|V(0k

j )|−1, that is,U k
j is not

a sphere, then it is easy to prove this assertion by Lemma 5.6 (iii). In case the num-
ber of quasi-free edges in0k

j is equal to|V(0k
j )| − 1 ande(S) > 0, by Lemma 5.6 (i)

and (ii), 0k
j is a chart01 consisting of quasi-free edges that are positive. We may

assume that01 satisfies the condition (4) by Lemma 5.6 (iv). Applying the opera-
tion as illustrated in Fig. 22 if necessary, we obtain a chartDk satisfying the condi-
tions (1)–(5). The other cases are treated similary. This completes the proof of the
assertion.

Since Vk(01) = V � (k)(02), dk,k([U1]) = d� (k),� (k)([U2]), ek([U1]) = e� (k)([U2]) and�k([U1]) = �� (k)([U2]), both U k
1 and U k

2 can be also presented by the same chartDk

for 1≤ k ≤ l . Therefore, bothU1 andU2 are presented by the chartD1 • · · · • Dl , and
henceU1 is equivalent toU2.

Lemma 5.8. Let S be a singular surface braid with l components such that S=
U • O where U is an unknotted singular surface braid, O is a singular surface braid,
whose crossing points are two(k, k′)-crossing points(k < k′), presented by a chart
consisting of a simple h-oval nest. Then, S is equivalent to U• Ô such thatÔ is a
singular surface braid presented by a chart consisting of a simple h-oval nest of which
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Fig. 23.

the labels of the quasi-free edge and the outermost circle are nk(0u) and �k′ (0u)− 1,
respectively, where0u is a chart presenting U. (Fig. 23.)

Proof. Let 0̃ be a chart presentingO. (0̃ is a simple h-oval nest.) It is seen
that the labels of the free edge and the outermost circle are in Vk \ {nk} and Vk′ \ {nk′}
wherenk = nk(0u) andnk′ = nk(0u). The chart0u has quasi-free edges with labeli for
any i ∈ (Vk ∪ Vk′ ) \ {nk, nk′}. Applying the operation in Fig. 24,0u • 0̃ is equivalent
to 0u • 0̂ where 0̂ is as in Fig. 23.

Proposition 5.9. Let S1 and S2 be singular surface braids with l components
such that S1 = U1 •O1

1 • · · · •Os1
1 and S2 = U2 •O1

2 • · · · •Os2
2 with Vk(01) = V � (k)(02),

dk1,k2([S1]) = d� (k1),� (k2)([S2]), ek([S1]) = e� (k)([S2]) and �k([S1]) = �� (k)([S2]) where for
each1≤ t ≤ sj and j = 1, 2, U j is an unknotted singular surface braid, Ot

j is a sin-
gular surface braid presented by chart consisting of a simple h-oval nest and0 j is a
chart presenting Sj . Then, S1 is equivalent to S2.

Proof. If the crossing points ofOi
j are (k,k)-crossing points,U j •Oi

j is unknotted.

Thus, we may assumed that the crossing points ofOi
j are (k, k′)-crossing points with

k < k′. Now, Vk(01) = V � (k)(02), dk,k([U1]) = d� (k),� (k)([U2]), ek([U1]) = e� (k)([U2]) and�k([U1]) = �� (k)([U2]) where 0 j is a chart presentingU j for 1 ≤ k ≤ l and j = 1, 2.
Therefore, by Lemma 5.7,U1 is equivalent toU2. By Lemma 5.8,Sj is equivalent to
U j • Ô1

j • · · · • Ô
sj

j where Ôi
j is a singular surface braid aŝO in Lemma 5.8. Since

dk1,k2([S1]) = d� (k1),� (k2)([S2]) for k1 6= k2, it is see thatÔ1
1 • · · · • Ôs1

1 is equivalent to
Ô1

2 • · · · • Ôs2
2 . U1 is also equivalent toU2, so U1 • Ô1

1 • · · · • Ôs1
1 is equivalent to

U2 • Ô1
2 • · · · • Ôs2

2 . Therefore,S1 is equivalent toS2.

Proof of Theorem 5.3. We prove the following assersion for every n ∈ N.

Assertion. Let S and S′ be singular surface m-braids with�k([S1]) = �� (k)([S2]),
d([S1]) = d([S2]), ek([S1]) = e� (k)([S2]) and �k([S1]) = �� (k)([S2]) for any 1≤ k ≤ l and
some� ∈ 6l . If u(S1, S2) ≤ r , then [S1] − [S2] ∈ Lm

n for any n≥ r + 1.
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Fig. 24.

Let �k,0 := �k([S1]) = �� (k)([S2]), d0 := d([S1]) = d([S2]), ek,0 := ek([S1]) = e� (k)([S2])
and �k,0 := �k([S1]) = �� (k)([S2]) for any 1≤ k ≤ l and some� ∈ 6l .

Let n be an integer withn ≥ r + 1. Take r mutually disjoint cordci or di for
1≤ i ≤ r each of which is a straight segment connecting adjacent sheets of S1 (or S2)
satisfying the following conditions:
(i) The surgery resultS′1 (or S′2) along cordc1, c2, : : : , cr (or d1, d2, : : : , dr ) are as
in Lemma 5.5.
(ii) ci (or di ) is a parallel copy ofc1 or d1 for any r + 1≤ i ≤ n.
For the pairS1 = {S1, {c1, : : : , cn}} (or S2 = {S2, {d1, : : : , dn}}) and for ann-tuple of
signs ("1, : : : , "n), let (S1)"1,:::,"n (or (S2)"1,:::,"n) be a singular surfacem-braid as the fo-
mula (5.1). And letp = p("1, : : : , "n) be the number of positive signs in then-tuple of
signs ("1, : : : , "n). Then�k([(S1)"1,:::,"n ]) = �� (k)([(S2)"1,:::,"n ]) = �k,0, d([(S1)"1,:::,"n ]) =
d([(S2)"1,:::,"n ]) = d0+2p, ek([(S1)"1,:::,"n ]) = e� (k)([(S2)"1,:::,"n ]) = ek,0 and�k([(S1)"1,:::,"n ]) =�� (k)([(S2)"1,:::,"n ]) = �k,0. If p> 0, we see thatu((S1)"1,:::,"n , (S2)"1,:::,"n)≤ r −1.
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We prove the assertion by induction onr . If r = 1, then (S1)"1,:::,"n
∼= (S2)"1,:::,"n

for any ("1, : : : , "n) with p = p("1, : : : , "l ) > 0 by Lemma 5.9. Thus,

∑

("1,:::,"n), p>0

"1 · · · "n[(S1)"1,:::,"n ] + (−1)n([S1])

≡
∑

("1,:::,"n), p>0

"1 · · · "n[(S2)"1,:::,"n ] + (−1)n([S2]) (mod Lm
n ).

Therefore, we have [S]− [S′] ∈ Lm
n . If r ≥ 2, then by the induction hypothesis we

have [(S1)"1,:::,"n ] − [(S2)"1,:::,"n ] ∈ Lm
n for any ("1, : : : , "n) with p = p("1, : : : , "n) > 0.

Thus,
∑

("1,:::,"n), p>0

"1 · · · "n[(S1)"1,:::,"n ] + (−1)n([S1])

≡
∑

("1,:::,"n), p>0

"1 · · · "n[(S2)"1,:::,"n ] + (−1)n([S2]) (mod Lm
n ).

Therefore, we see that [(S1)"1,:::,"n ] − [(S2)"1,:::,"n ] ∈ Lm
n . This completes the proof

of assertion. SinceLm
1 ⊃ Lm

2 ⊃ · · · , we have [S] − [S′] ∈ Lm
n for all n.
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