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Let R be a hereditary noetherian prime ring with quotient ring @ and
let A=M,N---N M, be a maximal invertible ideal of R, where M,, -, M, is a
cycle (cf. [2] for the definition of cycles). The main purpose of this paper is to
prove the following theorem:

Theorem 1.1. (1) The completion R of R with respect to A is a bounded
hereditary noetherian prime ring with quotient ring QR R. The Jacobson radical
Aof Ris AR=RA and A? is a principal right and left ideal of R.

2) R has the following decomposition;

k, k, k,
R= (elﬁ@---@eﬁ)@(ezﬁea---@ezk)@-n@(eﬂk@---@elfe)

such that each e;R is a uniform right ideal of R, e is an idempotent in R and
e,-fé/e;/i is a simple right R-module which is annihilated by M,, where k; is the Goldie
dimension of R|M,.

In case R is a Dedekind prime ring and A is a maximal ideal of R, Gwynne
and Robson proved that R is also a Dedekind prime ring [5] (in fact, it is a prin-
cipal ideal ring). We can not use their techniques to prove the theorem. The
theorem is proved by using properties of cotosion R-modules.

Applying the theorem to module theory, we prove, in section 2, the follow-
ing theorems:

Theorem 2.1. Any module over R has a basic submodule.

Theorem 2.2. Under the same notations as in Theorem 1.1, any indecom-
posable right R-module is isomorphic to one of the following R-modules;

eRle A" (n=1,2,-), R, e(Q®R), E(eRleA) (i=1,,p)
where E(ei}?/e,-fi) is the R-injective hull of eilé/e,-fi.
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In [18], Singh determined the structure of those bounded hereditary noe-
therian prime rings over which every module admits a basic submodule. If
R is a commutative complete discrete valuation ring, then Theorem 2.2 was
proved by Kaplansky [7, p. 53]. The author generalized the result to modules
over g-discrete valuation rings [11, Corollary 4.4]

In an appendix we present some properties on cotorsion R-modules which
are obtained by modifying the methods used in the corresponding ones in mo-
dules over Dedekind prime rings.

This paper was written while the author was a visitor at Guru Nanak Dev
university, India. As I was doing my research, I got several hints from Prof.
Singh’s lectures and from discussions with him. I would like to express my
tahnks to him for his kind invitation to G.N.D. univ. and fo1 his hospitality.

1. The proof of Theorem 1.1

Throughout this paper, R denotes a hereditary neotherian prime ring
(for short: hnp-ring) with quotient ring @ and K=@Q/R=+0. In place of ®p,
Homg, Extp and Tor®, we just write @, Hom, Ext and Tor, respectively.
Since R is hereditary, Tor,=0=Ext" for all n>>1 and so we use Ext for Ext?
and Tor for Tor,. Let M be a right R-module. An element m of M is said
to be torsion if O(m)={r&R|mr=0} is an essential right ideal of R. We say
that M is a torsion module if every element of M is torsion. If M has no nonzero
torsion elements, then it is called torsion-free. M is called divisible if MJ=M
for every essentail left ideal J of R. Since R is an hnp-ring, the divisibility is
equivalent to the injectivity by [10]. We denote the Jacobson radical of a
ring S by J(S). Let I be an essential right ideal of R. Define I* by I*=
{g€Q|qISR} Similarly *J= {g=| Jg=R} for essential left ideal J of R.
An ideal B of R is called invertible if (B*)B=B(*B)=R. In this case we have
B*=*B, denote it by B™!. Let A be a maximal invertible ideal of R. The
cancellation set of A, C(A4), is defined to be {cER|cxeA=>xcA}= {cER]|
xc€A=>x=A}}. By [9], each element of C(4) is regular. We denote the
subring of @ generated by {a, c'|aER, c€C(4)} by R,. The following lemma
was proved by Kuzmanovich [9, §3].

Lemma 1.1. (1) R satisfies the Ore condition with respect to C(A), i.e.,
R,={ac'|ac€R, ccC(A)}=1{db|beR, d=C(4)}.

(2) JR)=AR,=R,A and R|A"=R,|]J(R,)" for all n.

(3) If A is a maximal ideal, then R, is a principal ideal ring with a unique
maximal ideal J(R,). So it is a Dedekind prime ring and every ideal of R, is a
power of J(R,).

(4) If A is an intersection of a cycle, say, A=M,N -+ N\ M,, where M, -+,
M, is a cycle, then J(R))=MR,N--NM,R, and M\R,, ---, M,R, is a cycle.
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MR /’s are only maximal ideals of R,, all are idempotents and M.R,=R M.
(5) R/M;=R,/M.R, for all i.

We denote the inverse limit of the rings R/4" (n=1, 2, -++) by R IfAis
a maximal ideal of R, then Risa principal ideal ring by Theorem 2.3 of [5] and
Lemma 1.1. So, to prove Theorem 1.1, we may assume that 4 is not a maxi-
mal ideal of R. Further, since ﬁgﬁm we may assume that R satisfies the
following two conditions;

(a) J(R)=4 is a maximal invertible ideal of R, and

(b) A=M,N---NM,, where M; are idempotent maximal ideals of R
and M, -+, M, is a cycle.

From now on, R denotes an hnp-ring which satisfies the above conditions
(a) and (b) unless otherwise stated. Then, by [2], we have

(1) Every invertible ideal of R is a power of A.

(ii) R is bounded and any essential one-sided ideal of R contains a power of
A. Especially Q= U ,A7".

Let F be the family of all essential right ideals of R and let F, be the family
of all essential left ideals of R. We write I’épzlirn R/I(IF) and ﬁp =lim
R[J(JEF,). They are both rings (cf. [21] for more detailed results). The
ring homomorphisms ¢: R,—R and W Ry —»I@ given by ¢(#)= ([r ~+A%)
and (8)=([s s+ A4"]), where #=([r,+1]) eﬁ and $=([s;+J])€ Ry, are both

isomorphisms by the above (ii). Thus we have

Lemma 1.2. There is a commutative diagram;
l 2 l s l
kF:_) R/);) RF IR
where the vertical maps are all natural inclusions. All maps are (R, R)-bihomomor-

phisms.

Lemma 1.3. (1) IQ/R is torsion-free and injective as right and left R-modules
(2) R is torsion- ~free as right and left R-modules. Especially, R and é/R
are both flat as right and left R-modules.

Proof. (1) In view of Proposition A.3 in the appendix, we have the
following commutative diagram with exact rows:

0—>R——> Ry, —> R, [R —>0
U R
0 — R —> Ext(K, R) > Ext(Q,R)— 0.

Ext(@, R) is a right @-module. So it is R-injective and R-torsion free. By
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Lemma 1.2, so is R/R. By symmetry, R/R is torsion-free and injective as
left R-modules. The second assertion is obvious, because R is hereditary.

Lemma 1.4. Let M be a right R-module. If M is I@-injective, then it is R-
injective.

Proof. By Lemma 1.3, Tor,(N, é):O for any right R-module N and any
n=1. Thus the lemma follows from Proposition 4.1.3 of [1, Chap. VI].

From the exact sequence 0—-R—@Q—>K—0, we get an exact sequence

0—>R—>Q® R—K Q R—0.

Lemma 15. (1) M QR=M for any torsion right R-module M. So M
is a rightR-module. Especially, K =K ®ﬁz(Q®ﬁ)/ﬁ.
(2) QQ®R is injective and torsion-free as right and left R-modules, and QRR
is the injective hull of R as left and right R-modules.

Proof. From the exact sequence 0—R—>R ~—>1%/R—>0, we get the
exact sequence Tor(M, I@/R)—>M®R—>M®R'5—>M®IQ/R. By Lemma 1.3,
Tor(M, R/R)=0=MQ®R/R. Thus M=~MQR.

(2) By Proposition A9 and Lemma 1.2, ](IA€)=AIA3:IA€A. Thus we
have (QQR)A=(QQRA)=QRAR=Q®K. This means QR R is divisible as
right R-modules and so it is R-injective. To prove that QQ®R is torsion-free
as right R-modules, let x=c™'@# be any element in QQR, where ¢ is a regular
element in R and #=([r,+A4"]). If xA"=0 for some m. Then (1Q#)4™=0
and 74™=0. This meansr,A"S A’ for every / and r,€ A" "(I=m+1,m+2, --).
Write §=([r,+A4'"]) (l=m+1,m+2, --) is zero in R. Clearly #=8$. Thus
Q®IA€ is torsion-free as right R-modules. It is clear that Q®IA€ is torsion-free
and injective as left R-modules. To prove that Q®R is the R-injective hull
of ﬁ, we consider the exact sequence 0—>I?—>Q®IA3—>K—>O. Since K is torsion
and Q@k is torsion-free, Q(Z)I’\5 is an essential extension of R as right and left
R-modules. Hence Q@R is the injective hull of R as right and left R-modules.

Lemma 1.6. Let M be a right R-module such that it is torsion-free and
injective as R-modules. Then M is ﬁ—injective.

Proof. We let E be the IQ-injective hull of M. Then we have E=M®N
for some R-submodule N of E. By Lemma 1.4, E is R-injective. So N is
also R-injective. Write N=3@N,, where N, are uniform and injective right
R-modules. If N, is torsion for some a, then it is an K-module by Lemma
1.5. Thus we have MSM®PN,SE. This is a contradiction. So N, are
all torsion-free as R-modules and hence E=E/M is torsion-free. E is R-
injective, because E is R-injective. It follows that E is embeddable in a direct
sum of €. From the exact sequence O—>R—>I@—>é/R—>0, we have the follow-
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ing diagram with exact rows and colums:

0 0

| l

0 = Tor(SHQ/E, R) —> EQR —> (SHQ)QR

l |

0 = Tor(SPBQ/E, R) —> EQR— (SDQ)QK.

By Proposition A.10, the right singular ideal Z,Q,(IA?) of R is zero and so
ZpQ®R) =0. Tt follows that Zp(SP®Q)Q@R)=0. Thus ZyE)=
ENZy(SDQ)®R)=0. On the other hand, Zp(E)=E. This means E=0,
from which we have M is ﬁ-injective.

We know from Lemmas 1.5 and 1.6 that Q®IA€ is the injective hull of Ras
right and left R-modules. Thus Q®ﬁ is the maximal right and left quotient
ring of R by 1. +2. Theorem of [3, p. 69]. We denote the ring QRR by

. From the exact sequence 0—>R—>K)—>IA€/R—>O, we get the exact sequence
0-—>Q®R——>Q®ﬁ. Thus we may identify ¢®1 with ¢ in Q®ﬁ, where ¢ Q.
The exact sequence 0—R—>Q—->K—0 induces the following exact sequence
Hom(Q, M)—M—Ext(K, M)—Ext(Q, M) for any right R-module M. Any
indecomposable, injective right R-module is a homomorphic image of @ and
any injective right R-module is a direct sum of indecomposable, injective right
R-modules. So M is reduced, i.e., it has no nonzero injective submodules, if
and only if Hom(Q, M)=0. M is called cotorsion if Ext(Q, M)=0.

Lemma 1.7. T orf'(M, é):O for any right R-module M.

Proof. It is enough to prove that any finitely generated left R-submodule
of @ is ﬁ—projective. To prove this let Rx,+ -+ Rx, be any finitely generated
R-submodule of Q. Write x;=c"'®7;, where ¢ is a regular element in R and
7, €R. c'A"CR for some n. Thus we have x,4"=(c"'®7,) A" (c '@ R)A"=
(c!A"QR)S R and so x,d< R for any regular element d in A4”. Thus we have
SV_, Rx,~3V_, Rx.d which is contained in R. Hence SV, Rx; is IA\’—pro-
jective by Proposition A.10.

Since A4 is invertible, dim 47'/R=dim R/4 (dim denotes the (right) Goldie
dimension). Clearly socle K=A4"'/R. Thus we have k=dim R/A=dim K.
Write K=3Y_,@®D,, where D, are uniform, injective, torsion right R-modules.
By periodicity theorem ([16] and also [4]), there exists a homomorphism f:
D;—D; such that Ker f is zero or finite length.

Lemma 1.8. Qisa simple arintian ring and dimp R=dim R/A.
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Proof. Firstly we shall prove that  is a semi-simple artinian ring. To
prove this let I be any right ideal of @. Itisa right @-module. So it is torsion-
free and injective as right R-modules. Since I is a right R-module, it is K-
injective by Lemma 1.6 and so we have I®L=@ for some right R-submodule
L of Q. Tt follows that ILO=@. This means @ is a semi-simple artinian
ring. Next we shall prove that k=dim R/A=dim} R. Let K= k_DD;.
By Proposition A.3, R=Hom(K, K)=XY_,@®Hom(K, D,)=3"_,&e,R, where
e;€ R and e;=¢?. Suppose that ¢, is not uniform for some i. Then Q=
X@Y for some nonzero right ideals X, Y of @, where e=e,. Since X is a
direct summand of @, we have X —04(g)={x=Q|gx=0} for some idempotent
g in Q. There is a regular element ¢ in R such that g€ R. Thus we have
X=04(cg). On the other hand, eR=e@ N R2X N R=0s(ce) N R=0x(cg).
Thus, by Proposition A.10, Oz(cg) is a direct summand of R. Write Or(cg)=
fl% for some idempotent f in R. Tt follows that elé::fﬁ@((l—f)f@ﬂeﬁ)
and that eﬁ:fl%, because ek is indecomposable by Proposition A.6. So Q=
f Q=X, which is a contradiction. Therefore each e;R is a uniform right ideal
of R and thus dimp R=dim R/A. Finally we shall prove that Qisa simple
artinian ring. 'To prove this let D;, D; be any indecomposable, injective, tor-
sion direct summands of K. As was shown in before the lemma, there exists
an exact sequence 0—Ker f—D,—D,—0 and Ker f is zero or finite length.
Applying Hom(K, ) to the exact sequence, we get the exact sequence
Hom(K, Ker f)—Hom(K, D;)—>Hom(K, D;). The first term is zero, since
Ker f is reduced and K is injective. Thus we have the exact sequence 0—
e,ﬁ——gl@. Applying ® #Q to the sequence we get, by Lemma 1.7, the exact
sequence O—>e,ﬁ® 8 Q—>e,~1@® % Q But ej1A2® jéé is a simple right Q-module
and so e,-]?@ B égeﬂ?@ 2 Q. Now, since R=_ Pe,R, we have Q=Z?, D

e,Q and e,-égejé for any pair 7, j. This means Q is a simple artinian ring.

By Proposition A.9 and Lemma 1.2, J(R)=AR=RA. We denote it by
A. Clearly A*=A4"R=RA" for every n.

Lemma 1.9. (1) Any ideal B of R contains a power of A.
2) R is a bounded hnp-ring with quotient ring €.

Proof. (1) Since Qisa simple artinian ring, we have $=0BQ. Write
1=3g.b;p;, where q,-eé, b,€B and p,-EQ. There exists a natural number !/
such that A’qigl?. Write p,=3x,;®%;;, where x;;EQ and i',-jel?. Again
% ;A"SR for some m, and so p;,A" = (Exij@)i'ij)A;(Exij@I%)A'”:2x,~,~A’”®
RSR. Thus B2A(Sqpb,p)A"=A"" and so BRAM™.

(2) Since A*=0 for every n, R is a prime ring by (1). Let I be an essen-
tial right ideal of R. Then I Q=4q. By the same way as in (1), I contains a
power of A. So Ris right bounded and I is a finitely generated right ideal of
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R, because I%/A”zR/A”, by Proposition A.9, which is an artinian ring for every
n and A" is finitely generated. Since dimg R=F, R is right noetherian. By
symmetry, R is left bounded and left noetherian. Thus it follows that R is
hereditary by Proposition A.10. Clearly Q is the classical quotient ring of R.

Let k=dim R/A4, let A=M,N---NM,, where M,, -+, M, is a cycle. We
denote the dim R/M; by k;. Then k=k,+---+k,, because R/A=R/M,P--- P
R/M,. Let S; be a simple right R-module such that S;M;=0.

Lemma 1.10. R has the following decomposition:
k, k, k,

—t— ——

—_—
R= (e, RD De,R)D(e,RD - Be,R)D - B (e, RD -+ Be,R)
such that each e,R is a uniform right ideal of R, et=e; and e,-Ié/e,AgS,- (1=i5p).
Proof. By Lemma 6, Theorems 7 and 8 of [4], we have
O(M)|R = O/(M))|R = 2 DS,

O(M,)|R = O,(M,_))|R = 23+~1®S,,
O(M,)|R = O,(M,)|R = 3»®DS, .

It is clear that socle K=A"'/R=0,(M,)/RP:-PO(M,)RPO,(M,)/R (cf.
Lemma 4.8 of [8]). Thus we get the following decomposition:

k, k, k,

—~t— —— e~

K = D,®-®D,®D,P- DD,D+- DD, D+ BD,,

where D; are injective, uniform and torsion right R-modules such that secle
D;~S,;,,(1<i=<p—1)and socle D,=S,. By proposition A.3, we get K=
Hom (K, K)=>Y_, ®>@Hom(K, D,)= >/, DS *iPe, R, where eR are
uniform right ideals of R and e; are idempotents in R. If ij, then R is
non-isomorphic to ejllé by Proposition A.6. We consider the factor ring;

I%/./i == (ellé/elfieamG}eﬁ/e,fi)@m@(epﬁ/eﬁﬁ@---@epk/eﬁfi) .

IA?/A is a right R/A-module. So it is completAely reducible. Further k=
dim R/A=dim R/A=dims R. Thus each ¢;R/e;A is a simple right R-module.
For each 7, we consider the exact sequence

*) 0—>e,A—>e,R— eRle,A—0.
Applying Tor( , K) to (*), we have Tor(e,/ R, K)—>Tor(e; Rle,A, K)>e,AQK—
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e, RQK —e, l@/e AQK. The ﬁrst and last terms are zero, because R is
R-flat by Lemma 1.3, e;Rle,A is torsion and K is divisible. Further,
Tor(e; ﬁ/eA K)=¢,R|e, A by Exersise 2 of [22, p. 81]. Thus we have the exact
sequence

(**) 0 — ¢, Rje,A — e, AQK — ¢, RQK(=D,) > 0.

Again, applymg Hom(Q, ) to (*), we get 0=Hom(Q, ¢; ﬁ/e A)—>Ext(Q, eA)—>
Ext(Q, eR) 0, because ¢, R is cotorsion. Hence Ext(Q, ¢,A)=0, from which
we have eA is a reduced, cotorsion and uniform right ideal of ﬁ It follows
that e, AQK =D, for some j by Proposition A.6. But, by per10d1c1ty theorem,
if 71, then ]~1—1 and if /=1, then j=p. Hence e]%/eA S; for any 7.

Lemma 1.11. Under the same notations as in Lemma 1.10, Ar—4R=Ré
for some A= A?.

Proof. We consider the decomposition;
RIA = (e, Rle, A" De, R|e, AP D B (e, Rle, A @ - De, Rle,A?™) .
Since A is invertible, dimp R=dim R/A=dim R/A?*'. Thus each e, R/e,A?*

is a uniform R-module and so it is a uniserial R-module by Lemma 2 of [16].
Clearly the members of chain e, R>e, A>->e /i”“ are only R-submodules of
e;R containing e, Art, Especially, socle e; Ié/e Arii=e, A"/e AP for each i.
Periodicity theorem says that e; k/e A=e A”/e A1, Thus R/ANA”/A"’rl nd
A”/A"“—[d—l—A”“]R for some 4= A?. It follows that A’— dlé—{—A”“ By
Nakayama’s Lemma, A?=4R and, by symmetry, Ar=Rb for some beAr.
But, by the same way as in [6, p. 37], we have Ar=PRé.

From Lemmas 1.2, 1.9, 1.10, 1.11 and Proposition A.9 we have the first
theorem mentioned in the introduction.

Theorem 1.1. Let R be an hnp-ring with quotient ring € and let A=
M,N -+ N M, be a maximal invertible ideal of R, where M; are idempotent maximal
ideals of R and M,, -+, M, is a cycle. Then

(1) Risa bounded hnp-ring with quotient ring QR R. J(R)=AR=RA
and A? is a principal right and left ideal of R.

(2) R has the following decomposition:

k, k, k,

—— —A e

R= (e, RD - De,R)D(e,RD - De,R)D -+ D(e, RD -+ De, R)

such that each e; R isa uniform right ideal of R, e, is an idempotent in R and
e; I@/e Aisa simple right R-module which is annihilated by M;, where k;=dim R| M.
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2. Applications

In this section, we shall prove, by using Theorem 1.1, that any K-module
has a basic submodule, and shall characterize the structure of indecomposable
R-modules. By Theorem 1.1, R=(e,R®-De,R)D- B (e, RD-De,R),
where e, are uniform idempotents in R. Then Q= (e Q- EBeIQ)EB EB(e,QEB

@epé). So Q/R Sv_ @S Pe/e,R. Since K~@/R and dim K=
dlmR R, each e é/e Ris a uniform, injective and torsion rlght R-module. By
Theorem 4 of [15], the set of right R-submodules of e @/e Ris linearly ordered
by 1nclu51on In this case, the set of right R-submodulcs of eé/e R is
{eA "e,RIn=0,1,2,}. Thus e, R<e,A~'< - <eA "< ..« are only propei
right R-submodules of e,é containing e R

Lemma 2.1. Under the same notations as in Theorem 1.1, any torsion-
free and uniform right R-module is isomorphic to e Cj or e; R for some 1.

Proof. Let M be a torsion-free and uniform right R-module. If M
is R-injective, then it is isomorphic to e; Q for any . If M is not 1nject1ve,
then it is reduced. Since M=MR—= M. DX *iPe; I@) we have 0=Me; R
for some j and 0==uxe; R for some x&M. There exists an eplmorphlsm fe I@——>
xe j}'?. If Ker f is non zero, then e é/Ker fis torsion. But xe; Ris torsmn-free
This is a contradiction. Thus f is an isomorphism. Cons1der the diagram

O—>xe,ﬁ—>M

W
e R

)
00

Since e Q is injective, f! is extended to g: M —e é It is clear that g is a
monomorphlsm and g(M) is a proper k—submodule of e Q contammg e; R, be-
cause M is reduced. Thus g(M)—e A" for some n. Smce e; A- ”/e A"’“l isa
simple right R- module, e]A "le; A‘”“—[d—l—e A- ”“]Rand e; A- ”—&R—l—(e A- )A
for some de€e; A, By Nakayama’s Lemma, e; A-"=4R. Since 4R is R-pro-
jective, it is 1somorphlc to a direct summand of Ié and so it is reduced, torsion-
free, uniform and cotorsion R-module. Thus, by Proposition A.6, dR=
Hom(KX, Di)ge,ﬁ for some uniform, torsion, injective right R-module D;.
Hence M=<¢, R, as desired.

An R-submodule N of a right R-module M is called pure if any ﬁmte system
of linear equations X3, x7;;=s,€N is solvable in M, where #; ER then it
possesses a solution in N. By the remark to Theorem 3.6 of [20], N is pure in
M if and only if Mc N N=Nzc for every regular element ¢ in R. By using the
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above result, Theorem 10 of [16], Lemma 2 of [17] and Lemma 2.1, the proof
of the following two lemmas proceeds just like that of Lemmas 3.4 and 3.5 of
[11], respectively.

Lemma 2.2. Any non injective right R-module contains a mon zero pure,
uniform and cyclic right R-submodule.

Lemma 2.3. Let M be a right R-module and let N be a pure R-submodule
such that M|N is not injective. Then there exists an element yEM such that
NNyR=0 and N®yR is pure in M.

An R-submodule B of a right R-module M is said to be basic if it satisfies
the following conditions:

(1) Bisa direct sum of uniform, cyclic right R-modules,

(i1) B is pure in M, and

(iii) M)/B is an injective R-module.

From Lemmas 2.2 and 2.3, we have

Theorem 2.1. Any right R-module possesses a basic R-submodule.

REMARK. Any two basic submodules of a right R-module are isomorphic
(cf. the remark to Theorem 3 of [18])

Corollary 2.1. R is a block lower triangular matrix ring over D|M, where
D is a discrete valuation ring with maximal ideal M (cf. Theorem 2 of [18]).

Let R be an hnp-ring and let 4 be a maximal invertible ideal of R. A
right R-module M is A-primary if any element in M is annihilated by a power
of A.

Lemma 2.4. Let R be an hnp-ring, let A be a maximal invertible ideal of
R and let M be a right R-module. Then

(1) M is A-primary if and only if it is a right R-module and is torsion as
right R-modules.

(2) If M is A-primary, then M is R-injective if and only if it is IA?-injective.

Proof. If M is A-primary, then M =M Q@ R, by the same way as in
Lemma 1.5 and it is torsion as right R ,-modules. Thus it follows that M is
R-injective if and only if it is R,-injective by Proposition 3.11 of [23, p. 232].
So we may assume that R=R, and J(R)=4.

(1) is obvious, since A"=A"R=RA" for every n.

(2) Sufficiency follows from Lemma 1.4. To prove necessity, suppose
that M is torsion and R-injective. Let E be any essential extension of M as
right R-modules. Any essential right ideal of R contains a power of A. This
means E/M is torsion as right R-modules and so E is a torsion right R-module.
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By assumption we have a decomposition R=M®N, where N is a right R-
module. But N is a right R-module by (1). Thus N=0 and M=E. Hence
M is R-injective.

Lemma 2.5. Under the same notations as in Theorem 1.1, any reduced,
. . . . . . A .
uniform and torsion right R-module is isomorphic to e; I@/e,.A" for some i and some n.

Proof. By the same way as in Lemma 1.11, e,ﬁ/e,-/i” is a uniserial, torsion
right R-module of length 7z and socle eilé/e,.A”ze,-/’l\”“/e,-A” for each 7. So, by
the periodicity theorem, we have {elfll\”"‘/el 4% ..., ep/l\”“l/eﬁfi”}z {Sy, =+, S,}.
Now let M be any reduced, uniform and torsion right R-module and let socle
M=S,. Then, by Lemma 2 of [16], M is uniserial. Suppose that the length
of M is n, then we have the following diagram:

0— 8,— M
L
e;Ar3)e, A"
)
E

for some ¢, where E is the injective hull of eiz‘i”‘l/eifi”. The monomorphism
is extended f: M—E. Clearly f is also a monomorphism. Hence M = f(M)=
eiIA?/eiA”, because e,-I@/eiA” is the only R-submodule of E which is of length #.

Under the same notations as in §1, we obtained the exact sequence (cf.
Lemma 1.10) 0—S,—>eA®K—D,—~0 and D, ,=~e,AQK 2<i<p), D,~
e,AQK. By Proposition A.6, we have f;: e R=e, A (I=isp—1)and f,:e,R==
e,A. These f;’s induce the isomorphisms

f. eilé/e,-/l‘” = e,-HA/e,-HA"“ , [ eplé/epfi” ~ elA/e,A"“

for every n. 'Thus we have the following ascending chains:

(¢))] f(/’)
1 »
elllé/el/l\ = eZA/ezﬁzg ezlé/ezz"l\zg e e,,l@/e,,fi” = eIA/eIA”“(;eII/?/eIAI’“;
A pnti o A Apn+itl A pntitl
"'C——;eik/eiAp”h = ¢, Ale;, A" ;eiﬂf‘)/eiﬂApn e

We denote the inductive limit of e,ﬁ/e,-/i’”“ by R(MY). Itis clear that R(MY)
is a uniform, A-primary right R-module and that the length of it is infinite.
Hence R(M?)=E(e,R/e,A), the injecitve hull of e, Rfe,A, by Theorem 19 of
[4]. Similarly we can define R(M7) (2=<j=mn). Thus we have

Proposition 2.1. Let R be an hnp-ring and let A=M,N---NM, be a
maximal invertible ideal cf R, where M, -+, M, is a cycle. Then R(MY),--+,R(M3)
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are only non-isomorphic indecomposable, injective and A-primary R-modules.

ReMARK. R(MY) are a natural generalization of the typical, divisible,
indecomposable and torsion abelian group Z(p~).

Theorem 2.2. Under the same notations as in Theorem 1.1, any indecompo-
sable right R-module is isomorphic to one of the following modules:

e:RjeA" (n=1,2, ), eR, e(QRR), RMr7) (1=i<p).

Proof. Let M be an indecomposable right R-module. Suppose that
M is Ié—injective. Then it can not be mixed, i.e., it is torsion or torsion-free.
If M is torsion, then M =R(M7) for some 7 by Lemma 2.4 and Proposition
2.1. If M is torsion-free, then it is isomorphic to e; (Q®1A?). If M is not in-
jective, then it is reduced. Assume that M is torsion-free. Then we have a
following pure exact sequence 0—e;,R>M—>M /eiIA€—+0 for some 7 by Lemmas
2.1 and 2.2. M/eiIAQ is torsion-free by Lemma 1.5 of [20]. Thus eR is a
direct summand of M by Proposition A.8. Hence M =e,R. Finally if M is
not torsion-free, then it has a uniserial torsion summand by Proposition 2.1 of
[19]. Thus M is a uniserial torsion R-module. By Lemma 2.5, we have
M ge,-l%/e,fi” for some 7 and some #.

Appendix

We shall present, in this section, some results on cotorsion modules over
hnp-rings which are obtained by modifying the methods used in the correspond-
ing ones in modules over Dedekind prime rings (cf. [12] and [13]). So we
shall omit the proof of these except Proposition A.10. Since Proposition A.10
is a new result, we shall give the proof of it. Let R be an hnp-ring with quotient
ring @ and let F be any right additive topology on R. An element m of a right
R-module M is said to be F-torsion if O(m)= {r&R|mr=0} € F, and we
denote the submodule of F-torsion elements of M by #,(M) (for short: ¢(M)). If
t(M)=0, then we say that M is F-torsion-free. A right additive topology F
on R is called trivial if all modules are F-torsion or F-torsion-free. By the
same way as in [12, p. 548], F is non-trivial if and only if it consists of essential
right ideals of R (This result is true if R is a prime Goldie ring (cf. [14])).

From now on, F denotes a non-trivial right additive topology on R. We
put Ry=UI*(I €F), a ring of quotients of R with respect to F. The family
F, of left ideals J of R such that R; J=R; is a left additive topology on R. We
call it the left additive topology corresponding to F. F, is also non-trivial by
Proposition 1.1 of [12]. We write Ry =U*]J(JEF). Clearly R.=Rj,
It is well-known that R is R-flat and the inclusion map R—R; is an epimor-
phism. A right R-module M is said to be Fj-divisible if MJ=M for every
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JEF,. We can define the concepts of F,-torsion and F-divisible for any left
R-module.

Proposition A.1. (1) (K)=Ry/R=t;(K), where K=Q[R. Thus ¥K) is
(F, F))-divisible.

(2) Let I be an essential right ideal of R. Then I €F if and only if I*|R is
F-torsion (cf. Proposition 1.4 of [12]).

Following [22], a right R-module D is F-injective if Ext(R/I, D)=0 for
every I €F.

Proposition A.2. A right R-module is F-injective if and only if it is F,-
divisible. In particular, M @R, and M ®t(K) are both F-injective for any right
R-module M (cf. Lemma 2.5 of [12]).

For a right R-module M, we define Mm:y_@ M|M]J (J<F,). Then itis
a right Ry -module, where Ry =lim R//, which is a ring (cf. [21, §4]).
Proposition A.3. Let M be an F-torsion-free right R-module. Then there

is a commutative diagram:

M, 2 Hom #(K), M @K)) =~ Ext (¢K), M)

I T &

M M M

Here a(th)(q)=m,®q, where M=([m;+MJ])EM,, and g€#K) such that
Lg=0 and LeF,. f is the connecting homomorphism induced by the exact
sequence 0—>R—>R;—R;/R—0 (cf. Lemma 2.7 of [12]).

A right R-module G is said to be F-cotorsion if Ext(R;, G)=0. The union
of all F,-divisible sumbodules of a right R-module M is itself F,-divisible and
is denoted by MF=;if MF~=0, then M is said to be F-reduced. From the

Z
exact sequence 0—R—R;—#(K)—0 we derive an exact sequence Hom (R, M)
%

Lum —Ext(#(K), M) for any right R-module M.

Proposition A4. (1) M/MF= is F-reduced.
(2) Imi*=MF= (cf. Lemma 1.1 of [13]).

Proposition A.5. Let G be an F-reduced right R-module. Then G is
F-cotorsion if and only if it is F>-pure injective in the sense of [13] (cf. Proposition
1.4 of [13]).

Proposition A.6 (Harrison duality for modules over hnp-rings). The cor-
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respondence
4 D — G = Hom (¢(K), D)

1s one-to-one between all F-torsion, F-injective right R-modules D and all F-reduced,
F-torsion-free, F-cotorsion right R-modules G. The inverse of (A*) is given by the
correspondence G—G QH(K). The isomorphism f: Hom (t(K), D)Q#K)—D is
given by f(xQq)=x(q), where xHom (t(K), D) and q=t(K) (cf. Theorem 2.2
of [13]).

Proposition A.7. (1) Ext (¢K), M) is F-reduced and F-cotorsion for every
right R-module M.

(2) Let G be F-reduced. Then G is F-cotorsion if and only if G=
Ext (#(K), G) (cf. Proposition 5.2 of [21] and Lemma 1.2 of [13]).

Proposition A.8. Let G be F-reduced and F-cotorsion. Then Ext(X, G)=
0 for every F-torsion-free right R-module X (cf. Lemma 1.2 of [13]).

Let M be an F-torsion right R-module. Then M is a right Re-module
as follows: For any me M, fz([r,—}—l])GkF, we define m#=mr;, where J=
O(m). Similarly an Ftorsion left R-module is a left ﬁFl—module. Let
S(#(K)) be the right socle of #(K). Then it is a left R-module and is F,-tor-
sion. Thus it is a left R ,-module. Let G=Hom(#K), D), where D is an
F—torsmn and F-injective rlght R-module. From the exact sequence 0—

S(K)) J #(K), we have an exact sequence 0—Kerj —>G—>Hom(S(t(K)) D)—0
as right R r,-modules.

Proposition A.9. (1) Ker j*=NG]J, where ] ranges over all maximal left
ideals in F,. Especially J(R, )= NR; ,J (cf. Lemma 2.6 and Corollary 2.7 of
[13))- ,

(2) R/]gl%Fl/Rm]for every JEF, (cf. Corollary 2.8 of [12]).

By Proposition A.3, ﬁF =~Hom (#(K), #(K)) and #(K) is F-torsion and F-
injective. So kpl is F—reduced F-torsion-free and F-cotorsion by Proposition
A.6. Let I be any finitely generated right ideal of ﬁ Then there exists an
exact sequence:

(A*¥) 0-»Kerf—>2:?=1@1@F,f>1—>0

for some n. Since kF, is F-reduced, Ker f and I are both F-reduced. Ap-
plyving Hom(R,, ) to (A**), we get the exact sequence Hom (Rj, I)—
Ext(Rp, Ker f)—>Ext(Rp, Z,=1€]9RF )—>Ext(Rz, I)>0. But Hom(Rj, I)=0=
Ext(Rp, 231 1€BIQF ), because R; is F)-divisible, I is F-reduced and I?F is F-
cotorsion. Thus we have Ext(Rj, Ker f)=0. So Ker f is F-cotors1on By
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the same way as in Lemma 1.3, ﬁl“; is an F-torsion-free right R-module and
so [ is also F-torsion-free. It follows from Proposition A.8 that the sequence
(A**) splits. Hence I is I/?Fl-projective. Thus we have

Proposition A.10. R, , 15 a right semi-hereditary ring and so the right singular
ideal of ﬁp, is zero.
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