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0. Introduction

Let Sp(m) (0=m= oo) be the m-th symplectic group. For convenience we
denote Sp(cc) by Sp. Our purpose is to determine the homotopy groups of
Sp(m), =;(Sp(m)). If i<4m—+2 then =, (Sp(m)) is isomorphic to z;(Sp). And
7i(Sp) is well-known by Bott periodicity. Suppose 7=4m-+2, then it is not
difficult to see that if /=0, 1, 3 or 7 mod 8 then z;(Sp(m)) is isomorphic to
7i1(Sp/Sp(m)) and if i=4 or 5 mod 8 then =,(Sp(m)) is isomorphic to
7i+1(Sp[Sp(m))+Z |2, (direct sum), where Sp/Sp(m) is the factor space of Sp by
the subgroup Sp(m). Thus if /=2 mod 4 then the calculation of z; (Sp(m)) can
be reduced to that of 7;.,(Sp/Sp(m)). In the meta-stable range of 7, 4m+4-2=<1
=8m+4, n;(Sp/Sp(m)) is isomorphic to z$(Q, ,-,) for sufficiently large n, where
O,..-m 1s the stunted quaternionic quasi-projective space [8]. And when the
value of 7-4m is small we can calculate the group #{(Q,, ,-») (see [15]). On
the other hand in the case that 7=2 mod 4, even if we know the group
7i+1(Sp/Sp(m)) this is not sufficient to determine z,(Sp(m)). Let i=4n—2.
There are two steps in the computation of 7z,,_,(Sp(m)); one is to determine the
quaternionic James number and the other to solve a certain group extension pro-
blem. Let us explain these. Let X, ; be the quaternionic Stiefel manifold of all
symplectic k-frames in H" (n-dimensional vector space over the quaternions H)
and let p: X, ,—S* ! be the bundle projection which associates with each frame
its last vector. Then the quaternionic James number X {n, &} is defined as the
index of pymyy—y(X, ). Thus X{n, 1} =1, X {n, I} divides X {n, k} if I<k and,
by the classical work of Bott [3], X {n, n} =a(n—1)+(2n—1)!, where a(i)=2 if ¢
is odd and =1 if 7 is even. It is well-known that X, , is homeomorphic to
Sp(n)|Sp(n—k). Let d(n, m)=X {n, n} | X {n, n—m}. Then there exists a short

exact sequence (*):
A i
0 = Tor(wys-s(Xp,nom)) = 7in—o(Sp(m)) = Z|d(n, m) > 0,

where A is the restriction to Tor(z,,_,(X,, ,-»)) (the torsion subgroup of z,,-,
(X,,n-m)) of the boundary homomorphism A’: 7z, (X, ,—m) = 74n-2(Sp(m)) asso-
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ciated with the bundle Sp(m)— Sp(n)— X, som and iy: my,_(Sp(m)) —> m4y—2
(Sp(n—1))=Z|X {n, n} ([3][12]) is induced by the inclusion. Note that z,,,
(X, n-m)=m4_1(Sp/Sp(m)). Thus in the case that i=4n—2(n=m--1), in order
to reduce the calculation of 7,,_,(Sp(m)) to that of z,,_,(Sp/Sp(m)) we must de-
termine the number d(n, m) and solve the extension problem for the above short
eaxct sequence (*).

Concerning the number d(n,m), there is an upper bound d4(n,m) of d(n,m),
that is, d(n,m) divides d4(n,m). This upper bound d4(n,m) is obtained by using
KO-theory. Explicitly d4(n,m) is given by:

dA(n, m) — g.c.d.{a("—l) (25— 1) M(n, s)} ,

=m+1 a(n—— s)

where M(n,s) is an integer defined by the equation:

1 -t _ovs _ <1 (29)!

(e =2 =2 o)

For small values of /, it is known that d(n,n—I)=d*(n,n—1) [16], [17], [18]. So
it seems possible that for all n=m--1, d(n,m)=d*(n,m).

Concerning the extension problem, let j: Sp— Sp/Sp(m) be the projection
and a,Em,_(Sp)=Z be a generator. Then we see that the sequence (*)
splits if and only if ji(e,) is divisible by d(n,m) in =,,_,(Sp/Sp(m)).

Thus if we can show that j(a,)=d4(n,m)R for some BEm=,, ,(Sp/Sp(m)),
then we see that d(n,m)=d#(n,m) and that the sequence (*) splits. For this
reason we want to know the divisibility of jy(e,) in 7,,_,(Sp/Sp(m)). For this
purpose it is convenient to look at p-primary components for each prime p se-
parately. In this paper we are concerned only with 2-primary component.

Let v,(k) be the index of 2 in the prime decomposition of an integer k. For
convenience we denote v,(X{n,k}), v,(d(n,m)) and wv,(d4(n,m)) by X,{n, k},
dy(n,m) and d5 (n,m) respectively. For a space X, z4(X; 2) means the 2-primary
component of z.(X). Then our main results are as follows.

M(n, )" .

Theorem I. Let 1=<m=<3 and n=m+1. Then, the following hold.
0) di(n,1)=2 if nis even and=0 if n is odd.

d3(n,2)=3 if nis odd,=4 if n=0 mod 4 and=>5 if n=2 mod 4.

d3(n,3)=4 if n=1 mod 4,=5 if n=3 mod 3 or if nis even,=6 if n=15 mod
16 and=7 if n=7 mod 16.
1) X, {n,n—m}=v,(a(n—1)+(2n—1)!)—ds (n,m).
2)  anea(SP(m);2) == Tor (zy,_(Sp/Sp(m); 2)) -+ Z|222 ®m) (direct sum).
3) There exists a periodic family o, ,,E m,,—o(Sp(m);2) such that |a, ,| = |ixQly ul
=207 0om  yohere i: Sp(m)— Sp(n—1) is the inclusion and |x| means the order of x.

The above family «,, seems to coincide with those studied by Barratt
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[2], Mori [13] and Oda [19]. Theorem I is, in a sense, an unstable version
of the results in [6], but the methods used in this paper are different from those
in our previous papers [6], [7].

Theorem II. Let 1=<m<5 and n=m-+1. Then,
1) X,{n,m} =vy(a(n—1)-(2n—1)!)—d3(n,n—m),
2)  7uo(Sp(n—m);2)=Tor(z,,_,(Sp/Sp(n—m);2))+Z 1247 mn=m)(direct sum),
3) There exists a periodic family a, , nEwy,-o(Sp(n—m);2) such that |, , pl
= |4y p-ml =243 n=m) yhere i Sp(n—m)— Sp(n—1) is the inclusion.

In Theorem II the assertion 1) was already obtained with a few exceptions
by Oshima [16], [17], [18].
This paper is organized as follows. In §1 we investigate some properties of
d(n,m) and d4(n,m). In §2 we study the relation between z,,_,(Sp(m)) and
James numbers. §3 is devoted to the proof of Theorem I. In §4 we prove
Theorem II.

This paper was motivated by the works of Walker [22] and Crabb-Knapp
[4]. Inthis respect the author thanks them. The author also thanks M. Imaoka
and H. Oshima for valuable discussions with them.

1. The James numbers

Let X {n,k} be the quaternionic James number (see §0) and for n=m--1,
d(n,m)=X {n,n} [X {n,n—m}. As mentioned in §0, there exists an upper bound
d4(n,m) for the number d(n,m). In this section we give some properties of
d4(n,m) and d(n,m) which are needed in later sections. The contents of this
section are very similar to [5]. See [5].

DerINITION 1.1 [22]. Let s=1and #=1. Define a number M(n,s) by the
following equation:

1ty < (29)!
(e =2 = 2 o)

M(n, s)t* .
Lemma 1.2 [22]. 1) The following recursive formula holds:
M(n, s) = M(n—1, s—1)4+-s*M(n—1, s) .
In particular M(n,s) is an integer, M(n,1)=1, M(n,n)=1 and M(n,s)=0 if n<s.
5 ety () o
DErINITION 1.3.

1) d4(n, m) = q.c.d. {“(”:3 @~ 1)M(m, )

szn1 \a(n
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where a(i)=1 if ¢ is even and =2 if 7 is odd.
2) d4(n,m) is the index of 2 in the prime decomposition of the integer d4(n,m).

The following propoistion easily follows from [22] or [7].

Propositton 1.4 ([22], [7]). Let n=m+1. Then the integer d(n,m) is a
divisor of the integer d4(n,m).

Proposition 1.5.
1) d4nn—1)=a(n—1)-2n—1)! if n>1.
2) d4n,n—2)=a(n—1)+(2n—1)!(n,24)/24 if n>2, where (n,24) is the greatest
common divisor of n and 24.
3) Ifn=m+1 and (n,m)==(2,1) then di(n,m)<2n—3 (d4(2,1)=2).
4) Let n=m—+1. If df(n,m)=b, then for any k=1 df(n+k-t(b), m)=b. If
d3 (n,m)=>b, then for any k=1 df(n+k-t(b+1), m)=>b. Here t(b)=max{2,2°~3%}.

Proof. 1) is obvious from Definition 1.3 and Lemma 1.2. 2) follows from
the fact that M(n,n—1)=n(n—1) (2n—1)/6. Since, by definition, d7(n,m)<
ds(n,n—2) if n=m+2, 3) follows easily from 2). Now we shall prove 4). It
is enough to show that for any s=m1,

a(n=1) (2 1)10(ns) = ABHHO=D) 5 ,,
a(r—s) BTN = )y BT M HE) ) mod 2.

Note that X —1)_an+1(0)—1) o o e t(b) is even. Unless 7 is odd and s is
a(n—s) a(n+t(b)—s)

even then, «n—1) and a(n+1(b)—1) are integers. Thus using the formula 2) of
a(n—s) a(n-+t(b)—s)

Lemma 1.2 and the fact that for any odd integer /, [#*®=1 mod 2°, we have the

a(n—1)

a(n—s)

number (1/2){<2s;—1>~(2i‘t_11>} is an integer. Since b<2rn—2, by a similar

argument, we have the desired results. q.e.d.

desired result. If 7 is odd and s is even, then =1/2. Butin this case the

The proof of the next proposition is long and we shall omit the details.
An outline is given the last remark of this section.

Proposition 1.6. If n=m-1 then,
ds(n, m)<m(m-1),
As an immediate corollary we have

Corollary 1.7. 1) Ifd4(n,m)=0 mod 2" then for any k=1 d4(n+k-1(b), m)
=0 mod 2°.
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2) For a fixed integer m if we regard the integer df(n,m) as a function of n(n=m
+1), then the function d3(n,m) is periodic.

Proof. 1) is clear from 4) of Proposition 1.5. By Proposition 1.6, the
function df(n,m) has a maximum, say, d. Then using 4) of Proposition 1.5, it
is easy to see that #(d) is a period of the function d3(n,m). q.e.d.

Now we shall investigate the number d(n,m). Let b=1. We denote the
Moore space S'U ; é* by M,, where f: $'->S" is a map of degree 2°. Let z,:
M,—S? be the projection. The following theorem is essentially due to M.
Mahowald [9] [10] (See also [5]).

Theorem 1.8. Let a,en,, (Sp)==Z be a generator. If b=<2n—3 or
b=n=2 then for each k=1 there exists a map

kAb: E4(n+k-f(b))—3Mb — 24"-3Mb,

such that the following diagram is homotopy commutative up to units:

k

A,
SO -3 T - SWn-3),

s

S4(n+k-t(b))—1 S4n-—1

an+k'm /Y”
Sp .

Corollary 1.9. Let n=m+1 and m=1. Let j: Sp— Sp/Sp(m) be the pro-
jection and A, E my,_,(Sp) be a generator. If jio,=2'B for some BEmy, (Sp/Sp
(m)) then for each k=1, jyQuipin=2"Q" for some 8’ E myuiprir)-1(Sp/Sp(m)).

Proof. The assumption that jya,=2°8 for some &y, ,(Sp/Sp(m)) im-
plies that b<d,(n,m). Since d,(n,m)=<d3(n,m)<2n—3, the rest of the proof is
obvious from Theorem 1.8. q.e.d.

Corollary 1.9 is, in a sense, a geometrical realization of 1) of Corollary 1.7.

ReEMARK. There is a stable version of the James number, that is, the stable
James number X* {n, k} can be defined as the index of pym§,—1(X, 1) in 7,1 (S*77)
[16], where z%( ) is the stable homotopy group. The number X°{n,k} is a
divisor of X {n,k} and is equal to the stable order of the attaching map of the
top cell in the stunted quaternionic quasi-projective space Q, , [16] [8]. Using
KO-theory and the Pontrjagin character, we can obtain a lower bound X4 {n,k},
say, for X°{n,k} ([22], [7]). Then our d4(n,m) is equal to X4{n,n} | X4{n,n—mj}.
Since X {n,n} =X"{n,n} =X*{n,n} ([3], [8], [14]), clearly d4(n,m) is an upper
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bound of d(n,m)=X {n,n} | X {n,n—m}.

There is a (—1)-connected spectrum A (Cf. [4]) which is essentially the fiber
spectrum of the Adams operation y*—1: KO( )p—=KO( )@, where KO( )@
is KO-theory localized at 2. Using A-theory, d4(n,m) can be interpreted as the
modulo torsion index of jyA,,1(Q,.,) in Ay-1(Qy u-m). Then from information
about the stable self maps of the infinite quaternionic qusai-projective space
[14] we can show that for any n=>m-+1 df(n,m)—d35(n,m—1)<2m. (Cf. [5]).
Thus we have d3 (n,m)<m(m-1).

Using a technique similar to that in [5] or [4], it can be shown that if # is
sufficiently large, compared with m, then df(n, m)=v,(X*{n,n} | X" {n,n—m}).
However, in the unstable case, it is not clear whether d3'(n,m)=d,(n,m) or not.

2. The relation between d(r,m) and =, _,(Sp(m))

Let Sp(k) be the k-th symplectic group. Recall that the quaternionic
Stiefel manifold X, ; is defined as Sp(n)/Sp(n—k). Throughout this section

we always assume that 0<<m=<mn—1. Consider the commutative diagram:

Sp(m) —> Sp(n) —1> Xppm

oo b

Sp(n—1) —> Sp(n) -2 g1

where j,p and p, are bundle projections and 7 and unlabeled maps are inclusions.
Applying z4( ) we have the commutative diagram:

Diagram (*¥*)

”I(Xn—l,n—m—l) = ”I(Xn—l,n—m—l)
; ) N J
2l Spn) —> 7YXy pem) — miA(SP(m)) —> 71-1(SP(n))

T

D -
m(Sp(n) —— 7 (S*") — 7,1 Sp(n—1))—> m1-1(Sp(m)) ,
where /=4n—1, A’ and 8 are the boundary homomorphisms induced by the

bundles Sp(m)— Sp(n) EA Xyn-m and Sp(n—1)— Sp(n) & S# 1 respectively and
all straight lines are exact. Note that z,_,(Sp(n))=0, =,(Sp(n))=Z, = ,(S* )=Z
and 7/(X, ,-n)=Z+Torsion for /[=4n—1. Since by definition the index of
D (Sp(n)) in 7,(S**~1) is X {n,n} and X {n,n} is non-zero, it follows that j4 is a
monomorphism. Recall that the James number X {n,n—m} is defined as the
index of p4 in the above sequence; also recall that d(n,m) is defined as X {n,n} |



Homorory GRoupPs OF SYMPLECTIC GROUPS 873

X{n,n—m}. Then we have

Proposition 2.1.  There exists a short exact sequence:
A .
(2'1) 0— Tor(”u—l(Xn,n-m)) - ”4n~2(Sp(m)) — Im lg = 0 ’

where A is the restriction of A’ to the torsion subgroup of ey \(X, 4-p). And Im iy,
the image of iy: 74,—o(SP(m))— 74y—o(Sp(n—1)), is isomorphic to the cyclic group
Z|d(n,m).

Proof. 'The proof follows easily by chasing Diagram (**). q.e.d.
Concerning the splitting of the above short exact sequence we have

Proposition 2.2. The following are equivalent:
1) (2.1) is split.
2)  There exists an element a,, ,, Em,,_o(Sp(m)) such that |a, | = |ixQly »| =d(n,m),
where |x| is the order of x.
3) Let a,Emy,-(Sp(n))=<Z be a generator. Then jio,—d(n,m)B for some BE

”4#—1(Xn,n—m)-

It should be noticed that the 2-primary version of the above proposition
still holds. This follows easily from the proof of Proposition 2.2 below.

The proof that 1) is equivalent to 2) is clear. For the proof that 2) is
equivalent to 3), we need

Lemma 2.3. Let a be an integer. Then the following are equivalent:

1) jya,=a-RB for some BEw, (X, 4-m)-
2) There exists an element o such that |a|=|ixa|=a.

Proof. Let genr,,-,(S**"") be a generator and y be a generator of the free
part of 7, (X, ,-m)==Z+Torsion. If jia,=a-B for some BEr,, (X, 1-m)

then a puB=+X{n,n}g. Thus X {n,n}/a is an integer and p,B—= iX{n n}

Put a=A’(B8). Then clearly « is of order a. Since igax=14A’ (,8)-6(1)*,6’)—:{;

Ma(g) and since 0(g) is a generator of the cyclic group 7,,_,(Sp(n—1)=
a

Z|X {n,n}, therefore iy is also of order @. Thus 1) implies 2). Suppose that
Jx0,=d(n,m)y—+v for y (a generator of the free part) and v (a torsion element).
Then if the statement 2) holds, clearly « is a divisor of d(n,m). Note that p,y=

+ X {n,n—m} g. By chasing the Diagram (**) it is easy to see that ,*(d(” \) A )
is of order @. Thus if the statement 2) holds then there exists an element a' of

order a such that i*a'=i*(MA’y). Therefore by the exact sequence (2.1)
a
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we have that MA’y=a’+A’fy’ for some y'€Tor(m,y_1(X,,4-m)). On the
other hand since ——A’fyza(M A'y)y=a(a'+A'y')=A'(ay’) and A’ is mono-
p .

morphic on the torsion subgroup, Tor(z,-1(X,,.-m)), thus we see that y=—ay’.

Therefore 1) holds. q.e.d.

Proposition 2.4. Suppose i=4m+2. Ifi=0,1,3 or 7 mod 8 then =,(Sp(m))
is isomorphic to 7;,(Sp/Sp(m)) and if i=4 or 5 then =,(Sp(m)) is isomorphic to
7i1(Sp|Sp(m))+Z|2 (direct sum).

Proof. Consider the exact sequence;
] A
o> mi(SP) TS mia(SPISPOM) S wSpm)) — m(Sp) — -

If =4 or 5 mod 8 then #;(Sp)=Z/2. Note that Sp(1) is homeomorphic to S3.
As is well-known there exist periodic families u,Emg44(S®) and pyn E7g15(S°)
which are of order 2 and detected by d-invariant of KO-theory [1]. This implies
that if /=4 or 5 mod 8 then =;,(Sp)=Z/2 is a direct summand of z,(Sp(m)).
Thus if =4 mod 8 then A is monomorphic. If /=5 mod 8 then, since 7;,(:Sp)
=0, A is monomorphic. Thus if =4 or 5 mod 8 then we have the desired
result. The other cases follow from the well-known structure of z;(Sp) and the
cases =4 or 5 mod 8. g.e.d.

Combining Corollary 1.9 and a 2-primary version of Proposition 2.2 we
have the following theorem.

Theorem 2.5. Let n=m—+1 and b=dj(n,m). If jya, is divisible by 2° in
Tan-1(Xpn-m) OF if there exists an element o Em,,_,(Sp(m)) such that |a|=|isa|
=2 and if d3j(n+k-t(b), m)=b for some k, then dy(n-+k-t(nb), m)=b and
Tyturi1) —2(SP(M) 5 2) is isomorphic to the direct sum of Tor (7yusr109)-1(SP/Sp(m);
2)) and Z|2°.

3. Proof of Theorem I

This section is devoted to the proof of Theorem I in §0. Throughout this
section we use the following notation. a, is a generator of z,_,(Sp) and j,:
Sp— Sp/Sp(m) is the projection. a(k)=1 if k is even and =2 if k is odd. Let
t(b)=max {2, 2°7%}. We denote the greatest common divisor of integers & and
I by (&,1).

The following proposition is well-known (for example, [12]).

Proposition 3.1. Let n=1. Then,
1) jo(p)=d4n+1,n)-g,, where g, is a generator of m.,.s(Sp/Sp(n))=Z and
d4(n+1,n)=a(n)-(2n-+1)!,
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2) j(apip)=d4(n+2,n)-g', where g’ is a generator of m,,.(Sp|Sp(n))=Z and
d4(n+2,m)=a(n+1)-(2n+3)!(n+2,24)/24.

Lemma 3.2.
0 if nis odd,
amn={, 7"
2 if n is even.

Proof. From the recursive formula of Lemma 1.2 it is easy to see that

M(n,2) is 0dd if n=2. Thus yz(“g_”—_g 31M(n,2)=2 if n is even and =0 if n
a(n—

isodd. On the other hand, since M(n,s) is an integer, v,( aE”_ 1;(2s—1)!M(n, 5))
a(n—s
=M =D(25_1)1). It is clear that if s=3 then v(X"—D2s—1)1)23.
a(n—s) a(n—s)

Therefore we have
" . a(n—1)
di(n,1) = min {v,(=——(2s—1)! M(n,s))}
22 a(n—s)

_,an—1)
= )31 M.2)

_ { 0 if nis odd,
12 if n is even. q.e.d.

Theorem 3.3. jpa,=2% "8 for some BEm,-,(Sp/Sp(1)).

Proof. From 1) of Proposition 3.1, it is obvious that j.a, is divisible by
4. Then, by Corollary 1.9, for any k=1, ji+@ty4p; is divisible by 4. Thus from
Lemma 3.2 we have the desired result. q.e.d.

Lemma 3.4. Let n=3. Then,
3 if nis odd,
di(n,2) = {4 if n =0 mod 4,
5 if n =2 mod 4.

Proof. By the use of the formula 2) of Lemma 1.2 and by simple arithmetic
(I used a computer.), we see that d7(3,2)=3, d4(4,2)=4, and d5(6,2)=d3(10,2)
=5. Then, by 4) of Proposition 1.5, it follows that for any k=1, d5'(3+4k-#(4),2)
=d3(3,2). Thus we obtain that d5(3+2k,2)=3. Similarly, since d5'(4+k-#(5),2)
=d4#(4,2), we obtain that dj(4+4k,2)=4. Since d4(6,2)=>5, it follows that
d#(6-+8k,2)=>5 for any k=1. Since d5'(10,2)=5, d#(10+8k,2)=5. Therefore,
for any k=1, d5 (6+4k,2)=5. q.e.d.

Lemma 3.5. There exists an element BEmy,(Sp(2);2) such that both B
and i3 are of order 2°, where i:Sp(2)— Sp(4) is the inclusion.
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Proof. Consider the homotopy exact sequence associated with the bunlde

Sp(1) 5 Sp(2) £> S7, where 7' is the inclusion and p is the projection:

malSP(1) 5> 7a(Sp2) Lo ma(ST).

According to [11], there exists an element [p"/]Ez,(Sp(2); 2) such that 8[p”]=
147’ is of order 4 and ex(")=1/4 in Q/Z), where ¢, is the Adams e-invariant,
O is the rational number field and Z, is the integers localized at (2). Thus
clearly [p”]is of order 2°. In order to show that 74[p”’] is still of order 25, con-
sider the commutative diagram:

2a(SP(1)) —> ma(Sp(2) —2> ma(Sp(4)

I oo e

il

7(0) —> 7(Q) — 7300,

where Q, is the quaternionic quasi-projective space of dim 4n—1 and 6: Sp(n)—

Q~2~0, is James’s stable splitting [8]. Let XE@(Q,) be the element which
corresponds to 1€ KO (HP*™') under the Thom isomorphism. (Q, in the Thom
space of a certain Spin(3) bundle.) Let f: S'®»*®»-2 0 be a stable map for
some k=1. Then the e-invariant e(f): KO*"(Q,)— O/Z can be defined as the
functional Pontrjagin character ([1], [21], [22]). Then ex(w')=1/4 implies that
e(0m') (¥)=1/4. By naturality and additivity of the e-invariant, it follows that
e(0[p”]) (%)=1/32. 'Thus, by naturality again, we see that e(fi,[p”]) (X¥)=1/32.
Thus 74[p”] is still of order 2°. q.e.d.

Theorem 3.6. jz*a,,=2"ﬁq<”'2),8 for some BEn,,_,(Sp/Sp(2)).

Proof. From 1) Proposition 3.1 it is clear that jsa; is divisible by 5. In
particular, jxa; is divisible by 2. Thus, by Corollary 1.9, for any 2=>1 0345
is divisible by 2%. 'Therefore in the case that # is odd, by Lemma 3.4 we have
the desired result. From 2) of Proposition 3.1, since »,(d4(4,2))=4, jya, is
divisible by 2*. Since #(4)=2, using Corollary 1.9, we see that for any k=1
Jo+Qlyry, s divisible by 2% Therefore if #=0 mod 4 then we have the desired
result. For the case that #—=2 mod 4, using Lemmas 3.5 and 2.3, we see that
J0t is divisible by 2°. Since #(5)=4, using Corollary 1.9 we have the result.

q.e.d.

Lemma 3.7.
if n=1 mod 4,
if n=23 mod 8 or n is even,
if n=15 mod 16,
if n="7 mod 16.

df(n,3) =

N SN o p
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Proof. By the use of the recursive formula 1) of Lemma 1.2 it is easy to
see that if # is even and =4 then M(n, 4) is odd. Thus if # is even then

o (X2 =V 71 Mn 4))=0y(2-71)=5.  If 525, then (X% L) (26— 1)1 M(n, 5)) =
a(n—4) a(n—s)

¢ En— l;(Zs—l)!);ﬁ. Thus, if # is even then d5 (n,3)=5. By using techniques
a(n—s

like those in the proof of Lemma 3.4, other cases follow from the facts that
d;i(5, 3)=4, d4(7, 3)=d4 (23, 7)=7, d#(11, 3)=>5 and d4(15, 3)=6. These facts
were verified by computer. Details are omitted. q.e.d.

y(

Lemma 3.8. jna,=2"R for some B my(Sp/Sp(3)).

Proof. For convenience, in this proof we localize all spaces at (2). So
homotopy groups should be considered as 2-local groups. Let 3, be a generator
of the free part of m,(Sp/Sp(k))==Z,+2-Torsion. Remark that there are
several choices of B,. Let j': Sp/Sp(2)— Sp/Sp(3) be the canonical projection.

Consider the following commutative diagram:
7 Sp)  ——  wu(SP)

e e

wal(SPISP2) 22> 7 SBISP() — o> (ST

|« | |
me(Sp(2) —  wu(SP(3)) —> mH(SY),

where all straight sequences are exact. Since 2%(% is the modulo torsion
index of js, from the fact [16] that d,(7,3)=7 and d,(7,2)=3, it follows that
for any choice of B, there is a choice of B3; such that

J5(B2) = 2'Bs+1,

where ¢ is a 2-torsion element of 7,,(Sp/Sp(3)). Since 2*z,(S™)=0[20], it follows
that 9(¢)=0. Thus, there exists an element #'& Tor(z,(Sp/Sp(2)) such that
j&t'=t. On the other hand it is known that 2%z,(Sp(2))=0 [19]. Since A:
Tor(zy(Sp/Sp(2)) = 7x(Sp(2)) is monomorphic, it follows that 23%=23%jt'=
J%(2%")=0. Therefore, from Theorem 3.6, jyat;=ji(jx0t;) =j4%(2°B2) =2%2'B5+1)
=2783,. This completes the proof. q.e.d.

Theorem 3.9. js*a,,=2"'24("'3>,8 for some BE 7y, _,(Sp/Sp(3)).

Proof. Since v,(d4(4,3))=>5 and #(5)=4, using Proposition 3.1 and Corollary
1.9 we see that jua,.y is divisible by 2° for any 2=1. Since jxa is divisible by
2% in 7,5(Sp/Sp(2)), it is clear that jua is divisible by 2° in 7,y(Sp/Sp(3)). This
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implies that if # is even then jaa, is divisible by 2° in 7, _,(Sp/Sp(3)). By Lemma
3.8 it is obvious that jpa, is divisible by 2! for 5<I<7. Thus j3,a74 .. is divi-
sible by 2/ for any 2=1. Since #(5)=4, #(6)=38 and #(7)=16, we see that if n=3
mod 8 then jga, is divisible by 25, if =15 mod 16 then jaa, is divisible by 2°
and if #=7 mod 16 then jua, is divisible by 2. Similarly we see that if n=1
mod 4 then jga, is divisible by 2* in z,,_,(Sp/Sp(3)). Thus, using Lemma 3.7
we have completed the proof. q.e.d.

Now the proof of Theorem I is clear. By Theorems 3.3, 3.6 and 3.9,
dy(n,m)=d3 (n,m) for m=1,2 or 3. Thus, using Proposition 2.2, we have the
desired results.

4. The proof of Theorem II

This section is devoted to the proof of Theorem II. The next theorem
follows from [16], [17] and [18]. The ambiguity for m=>5, mentioned in [16],
is removed. Details will appear in the forthcoming paper [15].

Theorem 4.1. Let 1=<m<5 and n=m-+1. Then,
dy(n, n—m) = d4 (n,n—m) .
Proposition 4.2. Let 1<m=5. Then for any n=m-1,
2 T0t(4yA( S/ Sp(n—m); 2) = 0.

Proof. If m=1 or 2 then =,,_,(Sp/Sp(n—m)) is torsion free. Thus the
assertion is clear. Now consider the exact sequence:

Tan-1(S4 M) — 7, ((SP[Sp(n—m)) — 74u-1(Sp/Sp(n—m—+-1)) .

Let m=3. Then =,,_,(S*% 2) is isomorphic to Z/2-+Z|2+Z]2 if n=4 and to
Z|2+Z|2 if n=5 [20]. Thus, from the above exact sequence, it follows that
2Tor(me,-1(Sp/Sp(n—3); 2))=0. Now let m=4. Since z,,_,(S*"7*;2) is iso-
morphic to Z/2 if =6 and to zero if #=5 and n=:6 [20], using the exact sequ-
ence for m=4 we obtain that 2?Tor(z,,_,(Sp/Sp(n—4); 2))=0. Similarly using
the structure of z,,_,(S*~17; 2)[20], we see that 2%Tor(z,,_,(Sp/Sp(n—5); 2))=0.
q.e.d.

Proof of Theorem II. For convenience we localize all spaces at (2). Thus
homotopy groups are always (2)-local groups. By Theorem 3.6, jaa,=2*B,,
where k=d3 (n,2), B, is a generator of the free part of 7,_,(Sp/Sp(2))=Z +2-
torsion. Let j': Sp/Sp(2)— Sp/Sp(n—m) be the canonical projection. Then
clearly if n=m-2 then j,_,=j’cj,. Let k'=d3(n,n—m) and k=d3(n,2). Since
24zm=m) g the modulo torsion index of j,_,s: 74u—_1(SP) — 74,1 (Sp/Sp(n—m)),
Theorem 4.1 implies that j48,=2¥"*8,_,-t, where ¢ is a 2-torsion element of
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Zin-1(SP/Sp(n—m)) and B,_,, is a generator of the free part of z,,_,(Sp/Sp(n—m))
=Zp+2-torsion. Then j, o, =j4(jret,)=j4(2*B:)=2% B, m+2*. Since k
=3, by Proposition 4.2 2#¢=0. Therefore we have j,_a,=2¥8,_.. The rest
of the proof is similar to that of Theorem I. This completes the proof of
Theorem II.
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