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Abstract

The Exponential attractor, one of notions of limit set in nit&-dimensional dy-
namical systems, is known to have strong robustness andoisrkto be constructed
under a simple compact smoothing condition. In this pape¥, study a dynami-
cal system determined from the Cauchy problem for a quasitimbstract parabolic
evolution equation. We give a general strategy for consitrgcthe exponential at-
tractor and apply the abstract result to a chemotaxis-gr@ystem in non smooth
domain.

1. Introduction

Exponential attractor which has been introduced by EdemskdNicolaenko and
Temam [4] is one of very important notions of limit sets in ttheory of dynamical
systems in infinite-dimensional spaces (see [2, 3, 19, d6]¢ exponential attractor is,
if it exists, a compact set with finite fractal dimension whicontains a global attrac-
tor interiorly and attracts every trajectory in an exporantate. In many mathematical
models, exponential attractors are considered esseitidldets. In some pattern for-
mation model, the formation is considered to perform in apoaential attractor rather
than in a global attractor. And the fractal dimension of apamential attractor is taken
as a number of active modes and the attraction of every toajeds taken as a re-
duction of the degrees of freedom in the process of pattemmétion which is called
the slaving principle.

Exponential attractors are also known to have very stroagilgly in approxima-
tion. Indeed the first and third authors [1] have shown undgtakle conditions that
an exponential attractor attracts even approximate soisitin its neighborhood expo-
nentially and continues to trap them in the neighborhooéver. This then shows that
we have global reliability of numerical computations whiake practiced for investi-
gating profiles of the solutions which evolve in the exporardttractor and for know-
ing a structure of the exponential attractor.

Eden et al. [4] presented also a very useful method for coctstn of exponential
attractors in Hilbert spaces. They showed a method how tstagst an exponential
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attractor from a property called the squeezing property nbalinear semigroup which
defines the dynamical system in consideration. More regeMiranville, Zelik and
the second author [6] presented another more general methadh is available even
in Banach spaces. They presented a new condition of sempigralled the compact
smoothing Lipschitz property, see (5.2), and showed a ndetifoconstructing an ex-
ponential attractor from this property. The latter methe#&ms to have advantages in
several view points. In [4], the authors consider a maxinealfsr the relation of cone
property of semigroup which is closely related to the sqimepproperty. Such a max-
imal set is however obtained only by using Zorn's lemma. Ih 5 compact smooth-
ing Lipschitz condition of semigroup is only used, which egvus hope for numer-
ical implementations. As we have no uniqueness of expcaleatiractors, these dif-
ferent methods may give different exponential attract@st we have to remark that
Miranville and the second author [5] have shown for reactiffusion systems that
the two methods have the same sharpness in the estimatectdl fd@mensions of at-
tractors.

In this paper we are concerned with construction of an exptedeattractor for
a dynamical system determined from the quasilinear alispa@bolic evolution equa-
tion in a Banach space. As observed in [4, Chapter 3], theesijug property seems
to fit only to semigroups which are determined from semilinegolution equations
and does not necessarily seem to fit to semigroups deternfiiaedquasilinear equa-
tions. So we intend to verify the compact smoothing Lipscipitoperty of semigroup.
To this end we shall utilize a representation formula of sohs for the quasilinear
equation in terms of the evolution operators for the lindastiact equations. The the-
ory of linear abstract parabolic evolution equations wagimated by Tanabe [22, 23]
on the basis of the theory of analytic semigroups. Then it desloped by many au-
thors (see [7, 24, 25]). To verify the desired compact smogthwe need however
very refined properties of the evolution operator which may lme necessarily used in
the linear theory itself.

We shall also consider an application of our abstract regals chemotaxis-growth
model presented by Mimura et al. [14] in mathematical biglolp the paper Osaki
et al. [18], an exponential attractor was already constdicvhen the regior2 is
a two-dimensional bounded domain of clag$ (cf. also [17]). In [18] the authors
established the squeezing property of semigroup to use thodh of Eden et al.,
but this required us a shift property thatu e H(Q) with du/dn = 0 on IQ
implies « € H3(Q). This is the reason why we needetf-regularity of Q. But
the compact smoothing requires us only a weaker shift ptppiat Au e L?(RQ)
with du/dn = 0 impliesu e H?(R). Therefore,C2-regularity of Q is sufficient and
more interestingly we can work even in a convex domain (sée /% well known,
the spatially discretized approximate problems are ugdalimulated in polygonal do-
mains (see [15, 16]).
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Not only to the chemotaxis-growth model but our abstractiltescan be expected
to apply to many other interaction diffusion systems (se®)[2

This paper is organized as follows. In Section 2 we review dkelution opera-
tors for linear parabolic evolution equations and list thaioperties used in the sub-
sequent sections. Section 3 is devoted to constructing kmations to a quasilinear
abstract equation and to representing them by the evolutpmrators. First result on
this subject was obtained by Sobolevskil [20] (cf. also),[&fterward his result was
generalized by Lunardi [12] and Yagi [29, 30]. We shall presia this paper a very
refined result with its proof. In Section 4 we establish Lipsttontinuity of local so-
lutions with respect to initial values, which provides ditg the compact smoothing
Lipschitz condition. We shall present in Section 5 a genstedtegy for constructing
an exponential attractor for a dynamical system determiinech the quasilinear ab-
stract equation. Along these lines we shall apply in SecBoour abstract result to
the chemotaxis-growth system.

Notation. Let X be a Banach space with norin- |x . If there is no fear of
confusion, || - ||x is denoted by - || . Lek be a subset ofX , thelkX is a met-
ric space with the induced distaneeU,(V )|¥ — V|x U,V € X). ForU e X
and a setB C X, d(U,B) is defined byd U,B ) = infcgd U,V ). For two
sets B1, B, C X, their distanced B1, By) is defined byd Bi, B2) = maxh (B1, By),
h(B2, B1)}, whereh (B1, By) denotes the Hausdorff pseudodistance given by

(1.0 h (B1, B2) = supd(U, Bz) = sup inf d(U, V).

UeB, UeB, VB2

For two Banach spaceX and L£(X,Y) denotes the space of bounded linear
operators fromX intar with the uniform operator noim ||z yy. For eachf e X ,
pr(A) = I|Af]ly is a seminorm of£(X, Y). The topology defined by all these semi-
norms is called the strong topology 6fX, Y). For example, a sequendd,},-123..
of linear operators inC(X, Y) is said to be strongly convergent to an operatore
L(X,Y)on X if textitY-lim, . A, f = Af for all f € X. WhenX =Y ,L(X, X) is
abbreviated aL(X).

Let X be a Banach space and ket be an inter@all X( ;C%I X( ; X®< 1)
and CY(I; X) denote the space ok -valued continuous functions, etdlkcbntinuous
functions with exponen® , and continuously differentialilenctions equipped with
the usual function norms, respectivel§(/; X) is the space o¥X -valued bounded func-
tions (not necessarily measurable) equipped with the npfis = sup, || f ¢ )l x -

2. Review of evolution operators

Let X be a Banach space with norjn- | . We consider a family of dgndel
fined closed linear operators ¢ ( ),<0t < T , actingXin . We assumetheaspectral
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seto (A ¢)) is contained in a fixed open sectorial domain
o(A() C Ty ={»eC;|argr| <¢}, O<¢ < %
and the resolvent satisfies

(2.1) I —AE)) e <

, Ag€Xy, 0<t=<T
Aen HEEe BEIS
with some constantM > 1. In additiord ¢ () is assumed to have ataonhsio-
main D(A(t)) = D and to satisfy a Holder condition of the form

(2.2) TACKAGEY ™ — A(s) ey < Nt —s*, 0<s,t<T

with some exponent & u < 1 and some constdnt-  DObeing a Banach space
equipped with a graph norrh - |lp = [|A(Q) - |x.

The condition (2.1) yields that eachA r () is the generator ofaaalytic semi-
groupe ™40 7 >0, on X, and the semigroup satisfies

1A@R) e ™A iy < Cor ™8, 6>0, >0,

whereA ¢ § denote the fractional powers 4ft (). From this estinhe following es-
timate is easily obtained:

(2.3) e ™ —BA@) lley <Ct’, 0<6<1 >0

Under (2.1) and (2.2), Tanabe [22, 23] constructed a uniquauion opera-
tor U(z,s) for the family A¢), O< ¢ < T . That isyU t«(s ) is a family of bounded
linear operators orX defined for®s <t < T  with the following basic gadies:
ayUu,s)UG,r)=U¢r)for0<r <s <t =<T,U¢,s)=1for0<s <T;
b) U(t,s) (resp.A{ YV (,s)) is strongly continuous ok for & s < ¢t < T
(resp. 0< s <t < T ) with the estimatg¢U ¢,(s [|}x) < C (resp.[|[A €V €5 Yoy <
C(t —s)™Y); U(t,s) is strongly differentiable orX in  for > s withhU ¢(s /pt =
—A(1)U(t,s); and d)U ¢, s ) is strongly differentiable in  far <+ on the domab
with U (¢, s)/ds = U(t, s)A(s). In this sectionC denotes a universal constahich is
determined in each occurrence by the exponent and initiaétaats appearing in (2.1)
and (2.2).

By further investigations, we can establish the followirggimates of the evolution
operator; for the proofs, see [29, 30]. As for estimates afrafor norms,

(2.4) IA@ U, )llcpn < Ct—s)™", 0<6 <l+pu, 0<s<t<T,
(2.5) U2, $)A() ey < Colt =5)™", 0<6 <p, 0<s<t<T,
(2.6) IA@U(, $)A(S) llcey <Cle—s)'Y 0<6<1 0<s<it<T,
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(2.7) IA@W U, $)A@) lley <€, 0<0<1 0<s<t=<T.

As for difference of the evolution operator and the semigrowe verify the fol-
lowing. For 0<f < 1 and k¢ < 1,

(2.8) NAGY{U G s)—e “IOVA@) “lleey < Cle—s)* ", 0<s<i<T.
ForO<#d<land g < 1,

(29) NACY{UG s)— e TINA@G) ey < Clt —s5)P"", 0<s<t<T.

Fork =0Q 1,
(2.10) IACYU €, s AG)* —e Aoy < Cr—s)*, O<s<r<T.
For0<6 < 1,

1A U, $)A@s) ™ = e D ) < Clog((r — )™ + 1) — sV,

O<s=<t<T.

(2.11)

Let us now consider the Cauchy problem of a linear evolutiqunagon

dUu
— +AQ)U =F(), O<t<T,
(2.12) dt

U(0) = Uy
in X. We assume that the initial valug, is from
(2.13) Up e D(A(0Y), 0<p<1
In addition, F is anX -valued Holder continuous function stilht
(2.14) FeC’(QT]X) O<o<1

Then it is well known that (2.12) possesses a unique soluiionhe function
space:

U e C([0, T]; X) nCY((0, T]; X) N C((O, T]; D).

And the solution is represented by the formula

(2.15) Ut)=U¢, 0)Uo+/01 U(t,s)F(s)ds, 0<t<T
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with an estimate

(2.16) HA@)/OI U(t, s)F(s)ds

=Gl Flless O<t=T
X

(see [22, 23)).
Furthermore it is possible to verify the following refinedoperties

(2.17) APUec(QT];X) and *PU € C([0, T]; D).
In fact, let us first prove these in the case wheg B < 1. From J2.15
AWD)PU®) = A(0Y Ug + {e 4O — 13A (0¥ Uy
12
+{A@N)PU @, 0)A(0) # — e MO A(0YP U, + / ADPU(t, s)F(s)ds.
0
Then, by (2.4) and (2.11), we conclude thatr #U): () is convergenA(0Y Uy
ast — O0; that is,A (AU « ) is continuous at = 0 iK -norm. For<0: < T ,
we write A¢YU¢) = A¢YLA()U(r). By some calculation it is seen from (2.2)
that A ¢ Y~* is Holder continuous i inC(X)-norm. Hence,A (AU « ) is continuous

for 0<t < T also.
To see the second assertion of (2.17), we write

AU @) = A@)U (¢, 0)A(0)Y #A (O Up + / [ AU, s){F(s) — F(t)}ds

(2.18) ) 0

+ f (AUt s) — A@t)e A ds F (1) + {1 — e AV F(r).
0

Here it follows from (2.4) that
P IA@U (1, 0AO) Pl ey <C, 0<t<T;
and it is clear that' PA(r)U(¢,0)A(0) Pu — 0 ast — O for everw e D; then,

since D is dense inX , it follows that'PA(r)U(t,0)A(0Y#f — 0 ast — O for
every f € X . It is easy to see that

/t AU, s){F(s) — F(t)}ds
0

= Cot’||Flice,

H | (AOU (. 5) = A1y asF ()| < crr P,
0

Hence we conclude that*~?A(t)U(r) converges to 0 as — 0 ik -norm. It is
the same forr*PAQ)U(t) = A(0)A @) PA()U(t). This means that'PU(r) is
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continuous at = 0 with respect tB-norm. Therefore the second assertion of (2.17)
is also verified.

Let us now consider the case when = 1. We use again the forn2ula)(
with 8 = 1. From (2.10) it is seen that, as — @1 Y, (4) (®)converges
strongly to 1 onX . It is also easily seen that, ras> €040 converges strongly
to 1 on X. ThereforeA t(J t() converges th (Q) As the continuity ofA { ¥/ ()
is known for 0 < ¢+ < T, the first assertion of (2.17) is proved whgn = 1.
From A (OY ¢) =A (O ¢ Y*A(r)U(¢), the second assertion is also proved.

3. Quasilinear abstract parabolic evolution equations
We consider the Cauchy problem for an abstract evolutioraou

dUu
— +AU)U =FU), O<t < oo,
(3.1) dt

U(O) =Up

in a Banach spac& .Leéf be a second Banach space which ismrly embed-
ded inX , and letK be an open ball & ] such that

K={Ue€Z,|Ulz<R}, 0<R<o0.

For eachU € K ,A U ) is a densely defined closed linear operatax in h thi¢ do-
main D(A(U)) independent oU € K F is a nonlinear operator frath o Up
is an initial value at least fronk

We make the following structural assumptions.

The spectral set A [{ )) is contained in a fixed open sectoriataio

o(A(U)) C Zy={reC;largr| < ¢}, O0<¢ < %
and the resolvent satisfies

(3.2) 0 —AU) e <

T g Ty UcK.

The domainD(A(U)) = D is independent o/ € K D being a Banach space with
a graph norm| - |lp = |A(O) - |lx. And AU ) is assumed to satisfy a Lipschitz con-
dition

(3.3) IAUXAUY™ = A(V) Yley < NIU = Vlly, U,V €K,

whereY is a third Banach space such that ¥ ¢ X with continuous etiiogd
The nonlinear operatoF  also satisfies a usual Lipschitz itiond

(3.4) IFU)=FV)lx <LIU-=Vly, UVEeK.
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There are two exponents@a < 8 < 1 such tlYA(U)*) ¢ Yand D(A(U)?)
Z for everyU € K with the estimates

IUlly < D1IAW)Tllx U € D(A(U)?), U €K,

(3.5) ~ ~ ~
IUllz < D2lA(UYPUIx, U € D(A(U)P), U €K,
D; (i =1, 2) being some constants independent/o& K

For the initial valueUy € K, we assume a compatibility condition

(3.6) Up € D(A(Up)?) with the same8 as above
Then the following result on local existence is proved.

Theorem 1. Under (3.2)(3.5), let Uy € K satisfy the condition(3.6). Then
there exists a unique local solution {8.1) in the function space

3.7) { U € CH(0. Ty,); X) N CP([0, Ty ); ¥) N C(0. Ty ); 2).

AWPU e C([0, Ty,l; X), U e C([0, Ty,]; D).
Here, Ty, > 0 is determined by the normhA(Uo)? Uollx and the modulus of continuity

(3.8) wyy (1) = sup |[{e=*4Y) — 1}Up||, as ¢ — O,

0<s<t
Note that from(3.5) and (3.6) it holds that Z #im,_,¢e Ao yy = Uy,

Proof. Similar results have already been obtained in [29, i80which the do-
mains D(A(U) are allowed to vary withU € K but the spacé is assumed to be
reflexive. To get rid of the reflexiveness we shall need in firisof more refined ar-
guments than those in [29, 30].

Our proof consists of several steps. Throughout the p@of nos a universal
constant which is determined in each occurrence by the eqsrand by the initial
constants appearing in the structural assumptions in afspeay.

Step 1. For S such that < S < co , we set a Banach space

Z(8) = Cig([0, SI; Y) N B([0, ST; 2)

with some fixed exponent such that<-Ou < 8 — «
Here,C{’g}([O, S]; Y) denotes the space of -valued continuous functionghviare
Holder continuous at the initial time, namely

Cio([0, 8] ¥) = {U e C([0, SI; Y); Osups

Wo-—Uol |

Y
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equipped with the norm

1@ — vy

1Ullcs qo.stv) = U lleqo.syivy + OSUD ”

<t<S§

It is readily verified thatcfg}([o, S]; Y) becomes a Banach space.
We set also a subset &(S) in such a way that

K(S) = { U € Z(5); U(0) = Us,

U(t)—U
sup |U(f)|lz < Ry and  sup 10@) = Uil < 1}.
0<t<S§ O<s<1<S [t —s|#

Here, R, is a constant fixed as
(3.9) [Uollz < R1 < R.

The nonempty sek’(S) is clearly closed inZ(S).

STEP 2. For eachV € K(S), Ay(t) denotes a family of linear operators, r ()=
A(V(@®), O0<t=<S. And Fy is a Holder continuous functionFy ¢t ()E V(¢ ()),
0 <t < S. We consider the Cauchy problem of a linear evolution eqoat

dUu
— +Ay(t)U = Fy(t), O0<t<S,
2.10) {dl VU = Fo(e), 0<1=

U(0) = Uo.

It is quite easy to observe that, ¢ () satisfies (2.1) and (2.2) tie exponenj
fixed above. AslUy and Fy satisfy (2.13) and (2.14), respectively, there existgigue
solution U to (3.10) in the space:

U € C([0, SI; X) N C}((0, ST; X) N C((0, SI; D),
AU e C([0, ST, X), 1+ PU e (o, S]; D).

The solutionU is indeed given by
t
U()=Uv(t, 0)U0+/ Uy(t,s)Fyv(s)ds, 0=<t<S§,
0

where Uy ¢, s ) denotes the evolution operator for the family + ().

We can then define a mapping  frok(S) into Z(S) by setting® ¢ ){ ) =U (),
0<rt <SS, for eachV € K(S).

Step 3. If S > 0 is sufficiently small, thenb maps the s€(S) into itself.
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Indeed, forU =® ¥ ), we writelU () as
U(t) — Up = {0 — 13U,

Uy (1. 0) = e O 4, (0) P AUo) U + / U, )Py (5) ds.
0

Then by the same calculations as in Step 3 of the proof of [3&ofem 3.1] (note
that (3.3) implies clearly [30, (A.ii)] withv = 1) of using (8), (3.8), (2.4), and (2.9),
we can verify that

(3.11) IU €)= Uollz < Claw,t) + *|Uollg + 1+ ), O0<r1<S5,

here and in what follow${Up||s stands for the quantityA Up)?Uollx. Hence, ifS > 0
is sufficiently small, then (3.9) implies that

(3.12) supllU(t)llz < Ra.

0<r<S§

In a similar way, we can estimated, ¢ £ ¢ (¥  also. In fact, from
t
AP U0 = A0V Uy (1. 0AV(©O) PAU) Vo + [ Av(f Ut 5)Fv(5) s
0

we verify that
(3.13) IAy ¢ YU ¢)lx < C(Uollg+1), 0<t<S5.

In order to verify the Holder condition of/ , let us write

U0 - U6) = el ) - BU )+ Uy Ty ()de
=[{(Uv(t,s) — e IO 4 {o I E) 3] Ay (5) P Ay (5)PU (5)
+/t Uy(t,t)Fy(r)dt, O0<s<t<S.

Then, by the same calculations as in Step 3 of the proof of T8@orem 3.1] of us-
ing (2.3), (2.4), (2.9), (3.5), and (3.13), we can verifyttha

(3.14) IUE¢)-UGNy <CQUllp+1)¢ —s)™, 0=<s=<t=<S.

Hence, if S > 0 is sufficiently small, then

sup IU@) —U@)lly

<1
O<s<t<S$ (t—s)»
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Step 4. If § > 0 is sufficiently small, then the mapping K(S) — K(S) is

a contraction with respect tf - || z(s)-norm.
Indeed, foru; = ¢; ),V: € K(S), i =1, 2, we have

Ui(t) — Ua(t) = {Uy, (¢, 0) — Uy,(t, 0)}Ug +/O {Uv,(t,s) — Uy,(t, s)} Fy,(s)ds
+/ Uy, (t, s){Fy,(s) — Fy,(s)} ds.
0

Here we establish the following lemma.

Lemma l. For0<6 <1,

(3.15) Ay, (£)"{Uv,(t, 0) — Uy, (t, OB Uollx < Cot”™ || Uollpll V1 — Vallct, o.51:1)
' 0<t<S5.

Let F € C°([0,T]; X),o0 > 0. Then for 0 < 6 < 1,

Avl(t)ﬂ /OI{le(t, s) — Uy, (t, s)}F(s)ds

(3.16)

X
< Coot ™| Fllce IV = Vallet o5y, 0<1 <.

Proof. In order to verify these fundamental results, we havemploy the evo-
lution operatorsUy, , #, s )i =1 2) for the families of Yosida approsition Ay, , ¢)

(i=12) of Ay, () (cf. [23, p.207]). Indeed we observe that
Ay, () {Uvpn(t, 0) = Uy,un(t, 0)} Ay, 2 (0) 7
= /OI Ay n(0)'Uvpa(t, s)
X Avya(S{Ava ()™ = Ay, n(8) ™ Av,n(5)Uv, (s, 0) Ay, ,(0) 7 ds.
Letting n — oo, we obtain that
Ay, (1) {Uv, (2, 0) = Uy, (t, 0)} Ay, (0)*

= /0’ Ay, ()" Uy,(t, )
x Ay, (8){Avy(s) ™ — Av,(5) Ay, (s)Uv,(s, 0)Ay,(0)# ds.
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Therefore,
| Av, (£)"{Uv, (£, 0) — Uy, (t, 0)} Av,(0) Pl £y
<cC /0 (= )P HVAS) = Vals)lly ds

t
< C/ (t —s) s P Lds| vy — Vallct (o.51:v)-
0

From this the first assertion is verified.
Next, we write

Avonlt)’ fo (Urant. s) — Uvn(t, )V E(s) ds

B 1 t 0
—/(; /v AVl,n(t) UVL”(t’ T)
X Ay (O Avn (1) = Ay, (D) Avn (Vv (7. ) F(s) d ds

t
i / Avn () Vvt DDAV (O Avn (@) = Aven ()7
0
T
X Ay, a(7) / Uy, n(7,s)F(s)ds dr.
0

From (2.16),Av,,.(7) fO’ Uy,..(t, s)F(s)ds satisfies a uniform estimate

< CollFlco (o, s1:%) »
X

HAVZ,”(T) /r Uy, (7, s)F(s)ds
0
and asn — oo ,
An(@) [ Ve 9P dr = 400) [ Oz 9P ds = (o)
0 0
Then, lettingn — oo , we obtain that
Avl(t)Q/ {Uv,(t,s) — Uy,(t, s)} F(s)ds
0
= /0 AV1(I)9UV1(I’ T)AV1(T){AV1(T)_1 - AVz(T)_l}g(T)dT-

Hence,

HAVl(t)H /(; {Uv,(t,s) — Uy, (¢, s)} F(s)ds
X

<c / (6 — ) I Va(e) — Va(@)lly dT | Fllce
0
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t
< C/ (¢ — 1) i dr||Vi— Vallcs o.sin 1 Fllce
0

We have thus proved the second assertion of the lemma. O

Using this lemma withv 8 , we obtain that

I{Uv,(t, 0) — Uv,(t, 0)} Uoll 2z +

/(; {Uy,(t, s) — Uy,(z, s)} Fy,(s) ds

= Ct"(I0ollp + DIVa — Vallct qo.s1:1)-

z

In addition, by (3.4) and (3.5), it is easy to see that

H/(; Uy, (2, s){Fv,(s) — Fy,(s)}ds

< PV = Vallen qo.s:m) -
z

Hence,
(3.17) 1UL = Uzllso.s1z) = CS*(I1Uollp + DIVL = Vall et qo.s1:v)-

Cfg}—norm of Uy — U, is also estimated in a quite similar way by applying
the lemma withd = . Indeed,

1{Uv, (¢, 0) — Uy, (t, O)} Uolly +

/0 {Uy,(t, s) — Uy,(z, s)} Fy,(s) ds

< CtP (| Uollg + 1) V1 — Vallet qo.siry. 0 <2 =8.

Y

In addition,

H./o Uy, (t, s){Fv,(s) — Fv,(s)}ds

< iy — Vallcs (o.s1:1)-
Y

Therefore,
sup ¢ |[{UL(t) — U2(t)} — {U1(0) — U2(0)} Iy
(3.18) 0<t=s
< CSP~(|Uollg + 1) V2 — Vallet qo.s1v), 0< S =T.
This together with (3.17) then yields that
U1 = Uzllzs) < CS*(1Uollg + DIIVL — Vall 259, Vi, V2 € K(S).

Hence,® is a contraction frortf(S) into itself, providedS is sufficiently small.
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STEP 5. Take aTy, = § > 0 in such a way that the results of Steps 3 and 4
are valid. Then, there exists a unique fixed painte /C(S) of ®. SinceU satisfies
the formula

(319) U Q‘) =Uy é‘, OI]0+‘/O[ UU(t,S)FU(S)dS, 0<t< TUO,

U is shown to be a local solution to (3.1) on the interval 10,] which satisfies all
the conditions of (3.7), except that € C  ([Dy,]; 2).

From (3.11), it is seen that/ 7 () is continuouszat = 0 in the -noNean-
while, U (¢) is already known that/ € C ((@%,]; D) c C((0, Ty,]; Z). Therefore,U €
([0, Ty,): 2).

STeP 6. Finally the uniqueness of local solution in the space)(&7verified
by the same arguments as in Step 6 of the proof of [30, Theordi So we omit
the proof.

We have thus accomplished the proof of the theorem. [l

For more regular initial values such d% € D(A(Up)”) with an exponenty |,
B <y <1, we can prove a stronger result.

Corollary 1. Let an initial valueUp € K satisfy a stronger compatibility condi-
tion

(3.20) Up € D(A(Uy)), B<y=<L1l
Then the local solutionU obtained imheorem 1satisfies

U e CH(0, Ty,); X) N CY ([0, Ty,L; Y) N CY ([0, Ty,]; 2),

(3.21) N
AUY'U € C(0, Ty,; X), 17U € C([0, Ty,]; D).

Furthermore Ty, > 0 is determined by A(Uo)” Upllx alone

Proof. By the same arguments as in Steps 3 and 5 of the proohebrém 1,
we can verify from (3.20) that the solutiobl  belongs to (3.2dg¢pendence ofy,
on [|[A(Uo)" Usllx alone is verifed as in [30, Remark 3.1]. [l

We finally notice some global existence result. For an ihit&ues Uy satisfying
(3.20), assume that every local solution to (3.1) satisfigsiari estimates

U@z < Ry, < R, 0<t<Ty,
[AU@)'U@)llx <Cup,, 0<t=<Ty

with some uniform constant®,, and Cy, independent off; . Then (3.1) possesses
a global solution on the whole interval,[6c ). In fact this isnnclear, because Corol-
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lary 1 yields that any local solution on an interval ¢y ] canéog¢ended over the in-
terval [0, Ty +7] with some fixed time length > 0 independent 7Gf

4. Lipschitz continuity for initial values

We shall verify Lipschitz continuity of solutions to (3.1)itv respect to the initial
values. For this purpose we introduce a set of initial values

B={Uoe Z; |Uollz < Riand |[A Uo)"Uollx <C1}, B<y<=<1

with some constants & R; < R and O0< C; < oo. Then, for eachlUy € B, there
exists a unique local solution. Moreover, by Corollary 1, see that (3.1) possesses
a local solution in the space (3.21) at least over a fixed vatd0, 73] for every initial
value Uy € B, Tp > 0 being determined from the sét

We then show the following theorem.

Theorem 2. Let (3.2)(3.5) be satisfiedLet U and V be the local solutions to
(3.1) with initial values Uy and V, in the setB, respectively Then there exists some
constantCp > 0 depending on the s&8 alone such that

PIU@) = V@)liz + U = VEOlly +IUE) = V©)lx
<CpllUg— Vollx, 0=<t<Tp.
Proof. LetUy ¢,s) (respUy f,s )) denote the evolution operator foramify of
linear operatorsAy t( ) A U t()) (respdy ¢ ()& V(¢ ())).

From (3.19) we have

(4.2)
U(t)—V(t) = Uy(t, 0)(Uo — Vo) + {Uy(t, 0)— Uy (t, 0)} Vo

1 t
+ [ 1Wele.9) - Uve R s+ [ Ut s) ) - Fe)) ds.
0 0
Let us first estimat& -norm of/ 7 (3 V 7 (). By (2.4) and (3.5) we have
Uy (2, 0)(Uo — Vo)lly < DillAu(t)*Uy(t, 0)(Uo — Vo)llx < Ct “||Uo — Vollx.

By (3.4) and (3.5),

H /0 Uu(t. $)(Fuls) — Fu(s)) ds

<c / (t — ) 1U(s) — V($)ly ds.
Y 0

For estimating other terms in the right hand side of (4.1),rejgeat the same ar-
gument as in the proof of Lemma 1. Indeed, arguing in the same as for (3.15)
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with 0 = «, we observe that

I Ay (£)*{Uy(t, 0)— Uy (t, O} Vollx < ClIVollg /0 (t —s) s HU(s) = V(s)lly ds.

Similarly, in the same way as for (3.16) with o= ,

|

Thus we obtain an integral inequality

Au(t)°‘/0 {Uu(t,s) = Uv(t, )} Fy(s)ds ECIIFvllcu/O(t—S)_“IIU(S)—V(S)Ilyds-

X

t
o(1) = Cl|Uo — Vol x + Cyt® / (c — 5) s Yg(s) ds
0

which is satisfied byp #( ) 2| U «( > V «(|)y .
For all s such that O<s <t , we then see that

@(s) < C||Uo — Vol x + Cps” / (s — o) ™o tdo sup ¢(o)
0

O<o<s
< C||\Uo — Vollx + Cpt?™ sup ¢(s).
O<s<t

Therefore,

{1— Cpt"™} supg(s) < CllUo — Vollx-

O<s<t

This shows that, ift is sufficiently small, say €t < ¢3 with some fixegl > 0,
then

@(t) < sup(s) < CllUp— Vollx, 0<t <ep.

0<s<t

It now suffices to consider the case when ¢ . Then,
€p
6(1) < Cl[Uo — Vallx + Car*[Up — Vollx / (t — s)™sP=L dg
0
P t t
#Cartel " [ (-9 “pls)ds < € (IIUo— Volle + [ ¢ —S)“w(S)dS)-
Ep 5]
Solving this integral inequality of Gronwall’s type, we adunde that
() < CpllUg— Vollx, ep <t <Ts.
Hence,

(4.2) “IUE)=VEly = CpllUo— Vollx, 0=t =Ts.
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Estimation of Z andX -norms ot/ t(¥ V () is now immediate. By (2.4)dan
(3.5),

Ay ()P Uy (t, 0)(Uo — Vo)llx < Ct#||Uo — Vollx.

Similarly, by (2.4) and (4.2),

HAU(r)ﬁ /0 Uut, $){Fuls) — Fy(s)) ds

X

1
= [ (=97 IUE - Vel ds
0
t
< Cu [ (1= 5) s dslUo — Vollx = Car' Uy — Volx.
0
In addition, by the same argument as for (3.15) and (3.16) wit 8, we verify that

Ay ()P {Uy(t, 0) — Uy (t, O)} Vollx +

At /O (Uult, s) = Uy (t, )} Fy (s) ds

X

t
< ¢y / (t — )PP U(s) - V(s)ly ds
0
t
<Cg / (t —s) PsP " Lds||Ug — Vollx < Cpt || Uo— Vllx-
0

Summing up these estimates, we conclude that
PIU@) = VOlz < D2’ |Av ()P {U () = V(O)}x < CsllUo = Vollx, 0=t <Ts.

It is similar for the estimation oflU () V #(|l)x . We may argue as forl& and
(3.16) withe =0. ]

5. Exponential attractors

Let X be a Banach space with norfin- ||x . L&t be a subset oX X being
a metric space with the distande - ( - ) induced frgm|x . A family ofilimear
operatorsS 1 ), <t < oo , from¥ into itself is called a semigroup oA’ if S(0) =1
(identity in X) and S¢ +s) =S¢ 6) for 0< t,s < oo. A semigroup is called
a continuous semigroup oft if

(5.1) G, Up)=8@k)Uy is a continuous mapping from J[Bo XX into X.

Let S(r) be a continuous semigroup oki. Then the set of all¥-valued continuous
functions S (- Yo, Up € X, on [0,00) is called a dynamical system determined by
the semigroups #( ) on the phase spaten the universal spac& . The system is de-
noted by 6 () X, X).
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From now on we assume that the phase space is a compact s€t ofom. F
the compactness ot it is immediately seen that the set

A= () s@x

O<t<oo

is a global attractor of  #(,}¥, X). That is, 4 is a compact set oX A is an in-
variant set ofS () (this means that: (4)= A for everyr > 0), andA attractsX’ in
the sense thai S(r (Y, A) converges to 0 as— oo , whefe -( - ) is the Hausdorff
pseudodistance defined by (1.1).

The exponential attractor is then defined as follows (seenkEteal. [4]). a sub-
set M such thatd ¢ M C X is called an exponential attractor of ¢ (¥, X) if
(1) M is a compact subset of  with finite fractal dimension;
(2) M is a positively invariant set of (), namely r (M c M for everytr > O;
(3) M attracts the whole spac& exponentially in the sense that

h(S()X, M) <Ce™®, 0<t<o0

with some exponend > 0 and a constant- 0.

Concerning construction of exponential attractors we emes. method of [6]. We
assume the following two conditions. There exists anothend8h spac&Z ¢ X  with
a compact embedding such that the operatar ( ) with some fixed sati8fies
a Lipschitz condition of the form

(5.2) IS¢ Wo— SE)Volz < LalUo— Vdlx, Uo Voe X

with a constantL; > 0. The mappingG # Uo) = S()Up from [0,¢*] x X into X
satisfies the usual Lipschitz condition

(5.3) G &, Uo) — G(s, Vo)llx < La{lt —s|+[[Uo— Volx}, t,s€[0,17], Uo, Vo€ X.

Theorem 3. Let S(¢*) satisfy (5.2) with some Banach spacé embedded com-
pactly in X and letG satisfy(5.3). Then, an exponential attractak1 is constructed
for the dynamical systerts(z), X, X).

Proof. It is known by [6, Proposition 1] that, under the Lip#gz condition
(5.2), an exponential attractoM* is constructed for a discrete dynamical sys-
tem (S¢* ), X, X) defined byS {* ). Then it is easy to construct an exponentiah@tt
tor for the continuous dynamical system on the basis\¢f and (5.3), see [4, Theo-
rem 3.1]. ]

In the second half of this section we shall describe a gerstralegy for applying
Theorem 3 to a dynamical system determined from the Cauoblylgm of an abstract
parabolic evolution equation.



EXPONENTIAL ATTRACTORS 119

Let X be a reflexive Banach space. We consider the Cauchy pnofie an ab-
stract parabolic evolution equation

dUu
W+A(U)U:F(U), O0<t < oo,

U(O) =Up

(5.4)

in X. For eachU € Z ,A U ) is a densely defined closed linear operatax iwith
a constant domai(A(U)) = D, whereZ C X is a second Banach space with a con-
tinuous embedding. The domaiR is a Banach space with a graph noim |p =
IA(Q) - |lx. F is a nonlinear operator frold  int&

For 0< R < o0, let

Kr={U € Z;|Ulz <R}.

We assume that, for eack > 0, the family of linear operatbr§ ( x Kg, and

the nonlinear operatoFF Kz — X satisfy all the structural coodii (3.2)—(3.5) an-
nounced in Section 3 with a third Banach space such that ¥ C X which
is independent ofR . If necessary, we may replacd/ ( ) (rdsp. )ALY) + kg
(resp. F +kg ) in the equation of (5.4), whekg is some sufficiefdlge constant
depending onR , for verifying (3.2) and (3.3). Since

F(U) — A(U)U = {F(U) +kgU} — {A(U) +kg}U, U €D,

such replacement does not cause any essential change dibagua
In addition to these conditions, we assume that

(5.5) Z is compactly embedded ix.
Let y, whereg <y < 1, be an exponent such that the condition
(5.6) D, =D(AU)), UeZ

holds. Of course this condition is always true if we take =Dl.is a Banach space
with a graph normj| - [lp, = |A(Q)" - ||x. SinceD, =D(A(0)') C D(A(0Y’) C Z, (5.5)
implies naturally thatD,, is also compactly embedded & . Meanwhile, the reflexivity
of X implies that ofD,,.

Let B be any bounded set dP,, and take a semidiametdt &  sufficiently
large in such a way thaB C Kr . By Corollary 1, for evetyy € B, there exists
a unique local solution to (5.4) on a fixed interval, 1¢ 7z > 0 istetenined
from B. If we can show a priori estimates for all local solugostarting fromB ,
then the global solutions are constructed. In fact, assuraethere exist constani®g
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and Cp such that the estimates

IU@OIz<Rg <R, 0=<t=<Ty,

(5.7)
IU@®lp, < Cs, O0<tr=<Ty
hold for every local solution/ on [@y ] withy (0) €y € B. Then, (5.4) possesses
a global solution on [0co ) for every, € B.
Furthermore, if such a result is true for each bounded Bet D, then (5.4)
possesses a global solution for every initial valige D, in the space:

U e C"™([0, 0); Y) N C* ([0, 00); Z) N C([0, 2); D), 27U € ([0, o0); D).

As a result, we can define a semigrofip () which mapsinto itself and mapsD,
into D for ¢+ > 0 by settingS { /o = U(r), whereU is the global solution witty (0) =
Uy. Set, for each bounded sst ,

(5.8) B= U S()B (the closure in the nornfj - |Ix ).

0<t<oo

The second estimate of (5.7) jointed with reflexivity ®f implies thatB is a bounded
set of D,. Therefore,3 is a compact set oX . Utilizing Theorem 2 finite times in
view of (5.7), S¢) is, for anyr , a continuous mapping frofi, ¢) into X. Conse-
quently,

s@) | s@Bcse | soBc |J sos.

0<t<oo O<t<oo 0<t<oo

this shows thatB is a positively invariant set ofS (). According to Theorem 2
again, S ¢ ) is Lipschitz continuous from5(d) into X and the Lipschitz constant is
uniform in any bounded interval [@ ]; this then yields thats, o) = S(t)Up is
a continuous mapping from [6o 3 B(d) into X. In this way we have constructed
a dynamical systemS(z (, B, X) determined from the problem (5.4).

The crucial part is to establish an absorbing estimate. Ve ghat there is an ab-
solute constanC  such that, for every bounded Bet Dpf there is a timerg > 0
for which the following estimate holds:

sup sup||S(t)Uollp < C.

t>tg UpeB

Using this constanC , we define a set
X1={U €D;|Ullp = C}.

In terms of the dynamical system, whéh O Aj, A is always an absorbing set
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of (S(¢), B, X), that is there is a timeg > 0 such that
(5.9) SeyBc iy forall t > 15.

In addition we set

(5.10) x=J sostx)a= |J soxca,

O<t<oo tx) St<0Q

wherety, > 0 is a time such thaf (%, C A7 for all 1 > tx,. Then, by the same ar-
gument as aboveY} is a compact set ok and is a positively invariant setSaof (); in
particular, § € ) X, X) is also a dynamical system. Furthermore in the sense o}, (5.9
every dynamical systemS(s (8, X) with B > X is reduced to the dynamical sys-
tem (S¢) X, X) in finite time & 15 +1x,).

We are now ready to apply Theorem 3 to the systefnt (A(,)X). From Theo-
rem 2, S ¢*) satisfies with sufficiently small timé& > 0 the conditi(b.2). Similarly,
we have

IS(®)Uo — S(t)Vollx < CllUo— Vollx, 0=t <t*,Uo, Vo€ X.
In addition, forS ¢ Yo = U(¢),

[ ) =| [ oo - sweumia
s T X s

<C(t—s) sup [URD)|Ip<Cl—s), O0<s<t<=<rt"

O<t=<r*

15()Uo — S(s)Uollx =

X

Therefore, (5.3) is also fulfilled.
In this way we can construct an exponential attractor for ( X,)X).

6. Outline of application to chemotaxis-growth system

6.1. Chemotaxis-growth system. We are concerned with the Cauchy problem
of the following chemotaxis-growth system

3 .
T =adu—V-(uVx(p)} + fu) in 2 x (0.00),
9% _pa +d in Q x (0, 00)
— = —c u x (0, 00),
(6.1) ot p—cp
du 9
—u:—p:O on 92 x (Qoo)
on on
u(x,0) =ug(x), p(x,0)=po(x) in €,

whereQ is a bounded convex domain?.
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Here, x (o) is a real smooth function gf € —6o,0c0 ) with uniformly boumde
derivatives up to the third order

(6.2) sup

—00<p<0C

di
X@ﬂ<m,i:L23
dpt

The functionf ) is a real smooth function afe —¢o, 00 ) such that (0) ar
(6.3) f@)=>Fpu +vyu for sufficiently large |u|

with two constantsu > 0 and-oco < v < 00

As for derivation of this system, see [14] and [18].

In this section we use the following notatior®. is a boundedvex domain in
the plane. As well known, a convex domain is a Lipschitz dom@if. [9, Corollary
1.2.2.3]). For 0< s < o0 ,H* 2 ) denotes the Sobolev space, its normgbdenoted
by || - |- (see [9, Chap. 1] and [27]). For 8 so < s < s1 < 2, H*(Q) coincides
with the complex interpolation spacé/{°(2), H*:(2)]y, wheres = (1—6 }o+06s1, and
the estimate
(6.4) I W < Cl- 00 - s

holds. When 0< s < 1H* Q@ Y L” Q ), where/p = (& s /) 2, with continuous
embedding. When = 1H%(Q) c L(R) for any finite 1< ¢ < oo with the estimate

1-p/q r/q
|- llee = Cpgll - M- Mo s

where 1< p < g < oo (by virtue of Stein [21, Chap. VI,Theorem 5] this cam b
verified even in a Lipschitz domain). When > H* Q (9 C Q) with continuous
embedding.

We shall make use of the following known estimates (see [18jy any O<e < 1,

(6.5) luvll e < Cellullgasvllgre,  u,v e HY(Q).
Let x1(p) be a smooth function defined feroo < p < oo . Then, for ank® < 1,

(6.6) Ixi(RepMgsw < pe(lplla=), p € H (),

I x1(Rep)— x1(Ren Mg < pe(llollgre + Inll gre)llo — nll gas,

6.7
©1 p.n € H™(Q),

where p. (- ) denotes some continuous increasing function méted from x1( - ).
From these facts we immediately verify that

IV - {ux1V iz < Cellull gl xall mre Nl ol 12,

6.8
©8 ue H™(Q), x1 € H(Q), p € H3(Q)



EXPONENTIAL ATTRACTORS 123

with an arbitrarye , 0< ¢ < 1. For the definition of the spag& (<), see (6.11).
The HY(Q)-norm of V - {ux1Vp} is estimated as follows. We have

KV - Aux1Ve}, w) @ty sl

/ uyxiVp - Vwdx
Q

< llullpzaollxliz=IVollrzollVwlire < Cellullae | xell gl ol gz lwll g

with 0 < ¢ < 1. Therefore,

IV - A{uxaV oy = Collullasllxall gl ol a2,

(6.9) ue H(Q), x1 € H¥(RQ), p € H2(RQ)

with an arbitrary O< ¢ < 1. Let us considé¥ - {ux1Vp} as a linear operator with
respect tou , then it is a bounded operator fréf*™(Q) to L?(Q) and, at the same
time, from H® @) to H(R)'. So by interpolation we obtain that

IV - AuxaVolluvey < Cellull vzl xall 1ol w2,

6.10
(640 ue HY?"(Q), x1 € H™(Q), p € HZ(Q)

with 0 < ¢ < 1.
Consider a sesquilinear form

a(u,v)=/ Vu-Vde+/ uvdx, u,ve Hl(SZ).
Q Q

From this form we can define realization of the Laplace operatA + 1 in  un-

der the Neumann boundary conditions af (see Lions and Magdre Chap. 2,

No 9]). Identifying L2($2) and its dualL?(R2)’, we consider a triplet of spacds'(Q2) C
L?(Q) c HY(Q)'. Then, A= —A +1 becomes a densely defined closed linear operator
of HY(Q) with D(A) = H(). Meanwhile, the part of4 in L?($2), which is defined

by Au = Au for u € D(A) = {u € HY(Q); Au € L?(Q)}, is a positive definite self-
adjoint operator ofL2(£2) with

(6.11) D(A) = HZ(Q) = {u € HA(Q); 2—Z =0 on asz}.

By the convexity ofQ , one can conclude € H%(Q) from Au e L%(Q) (see Gris-
vard [9, Theorem 3.2.1.3]). Then, we have

H¥™%(Q), when 0<6 < }
(6.12) D(A%) = [HY(Q), H(Q)]s = 2
H?-YQ), when 1
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(cf. [11, Chap. 1, Proposition 2.1]), and

H%(Q), when 0<6 < 3
(6.13) DA’ =[LA(Q). H{()y = s
H%(Q), when 2= <1
(see [16, Sec. 2)).

6.2. Abstract formulation. In formulating the chemotaxis-growth system as
an abstract equation, we set the underlying space as

(6.14) X :{C‘)) ue HYQ) andp e LZ(Q)} .
In addition, ¥ andZ are set as

(6.15) Y = {(Z) ‘ue H(Q) and p € H“Sl(SZ)} ,
(6.16) Z= {(Z) u e H2(Q) and p € H1+82(sz)}

with arbitrarily fixed two positive exponents ©¢; < g2 < 1/2.
For eachU :(j;) € Z , a linear operater U( ) is defined by

(6.17) AUY :(fél B;f?) (Z) 7= (Z) € D(A(U)).

Here, Ay = —aA + 1 is a closed linear operator df'(Q) with D(A;) = HY(R),
Ay = —bA +c is a self-adjoint operator af3(Q) with D(A2) = H2(Q2). And By(U) is
a linear operator o 1(Q)’ defined by

BiU)B =V - {ux'(Rep VB}. U € Z,7 e D(ByU)) = HE(<Q).

We notice by (6.6) and (6.9) that, for any<Oe < &5,

~ ~ u ~
6.18) 1ByU)5llgrsy < Collullepe(lplysBlye e, U = (p) € 2.5 e HAS)

with some continuous increasing functign - () determined @y - ).(The domain
of A(U) is therefore given by

DAWU)) =D = {(Z) ;e HY(Q) and 7 € Hﬁ(sz)}, UeZ.
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The nonlinear operatoF  of (5.4) is defined by

_(u+ f(Reu) e
619 P (e

We notice from (6.3) that

(FReu whnynl = C [ (ui+ Diwids
< C(lulZza ey + Dlwllgven < Clullfe + Dlwllpr,  u € H(Q), w e HY(Q).
Consequently,
If(Rew ey < C(llullFe +1). u € H?(Q).

In this way we have an abstract formulation of (6.1) as thecBgyroblem of
the form (5.4) in the product space

6.3. Construction of local solutions. Let 0 < R < oo, and set
Kr={U € Z; |Ullz < R}.
We have to verify that all the structural assumptions (32}) are fulfilled byA U ),

Ue€Kg, andF .
For A € C — (0, o0),

(L — A(U))U =F, UZ(Z)GKR, I7=<§)6D, Fz(f)ex

if and only if

7= (0 — A HBUU) — A2) Y + F),
p=(G—A)™.

By (6.18) ¢ =), we observe that

1%l gty < CrIG- — AL ey 10 — A2) "l gz + 11 Fllarzy )
P12z < 1A — A2) "l 2z 17 22

Then, for an arbitrarily fixed O< ¢ < n/ 2, the spectral setA U ( )) is teamed in
an open sectorial domain

o(A(U)) C 2y = {1 €C; |argr| < ¢}, U € Kg
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with the estimate

Cr
[A| +1

Ix — AU)) e < A€ Xy, U € Kg.

Hence, (3.2) is verified.
Let U,V € Kg with U =(}) andV =(}) . Then, since

AUYAU) = A(V) HF = (A(V) — A(UBA(V) *F

_ (o By(V) — By(U)

AWVYYF, Fex
0 0 )(V),e,

(3.3) is reduced to the condition
I{B1(U) — By(V)ollary < Cr(llu — vllges + o — ¢l g Bl 2. 7 € HG(R).
But this is verified by similar calculations as for (6.9), liaihg (6.6) and (6.7)

with ¢ = ¢;.
From (6.3) we observe that

((F(Reu)— f (Rev ) w)piyse] < c/ﬂ = ol(ju] + o] * L)jw| dx

< Cllu — vl pza—ep(llull p2raen + V]| p2ra-ep + D)Wl L2761
< Cllu — vllges(lull ez + N0llgee + Diwllga,  u,v € HA(Q), w e HY(RQ).

Then, from (6.19), (3.4) is also verified.
To verify (3.5) we consider a decompositioghU ( YW= B+U ( ) with

(A1 O _ {0 B1(U)
A_(OAQ) and B(U)—(o 0 .
From (6.12) and (6.13) it is seen that, for<® < 1,

(620)  D(A)= {(;) 7 e [HYQ), HYQ), and 7 € (LX), Hﬁ(sz)]e} .

Meanwhile (6.18) £ =) yields that
IBUU)Bliury < Crllpllyz=, 7 € HG(SQ).
Therefore, on account of (6.13),

IBU)U|x < CrllA%U|x, UeD
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with 6, = (2 — &2)/2 < 1. This shows thaB U ) is dominated by  with an expo-
nentd. From the relation of resolvent

(h—AU) = (- A= - AU) TBU)R - A)
it follows that
1= AU = (o= A) ey < Cr(M + 1792, a g 5,
By a standard argument (cf. [10, Chap. 1,Theorem 7.6]), wetban verify that
(6.21) DAW)) =D(A%), 0<60<1U e K.

with uniform norm equivalence. Hence, in view of (6.15) a®dLg), it is sufficient to
take

_ 1+eq

_1+82
o =
2

and 8 = 5

for the space condition (3.5).

Therefore, by virtue of Theorem 1, for any initial functiong € H*2(2) and po €
H*2(Q), there exists a unique local solution to (5.4). Moreoorollary 1 provides
that, if

. 1
(6.22) uo € H(Q) and ppe H™(Q) with & <e¢ < >

then the local solution belongs to the function space:
(6.23)
u € CH(O, Tyyl; HX(R)) N CEV2([0, Ty,]; H(R)) N C([0, Tyol; HH(R)),

V2 e C([0, Ty,]; HH()),
p € CH(O, TuJi LARQ)) N € 9/2((0, Ty, J; HY™(2)) N C([0, Ty,]; HY* (),
142 & C((0, Ty,]; HE ().

Here, Ty, > 0 is determined by the normiA Ut)? Uo||x alone, wherey = (1+ )) 2;
and, from (6.20) and (6.21), this norm is equivalent||i@ || g + || coll g1+

If we appeal to the maximal regularity of linear abstract &@ns, then we can
obtain the optimal regularity for ~ also. In faat, belongs to

(6.24) u € C((Q Ty,]; H2()).

To prove this we considet as a solution to the linear equation

d
(6.25) d—‘t‘ + Aw = Fy(t), O<t<Ty,
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in the spaceHX(Q) with Fi(t) = —By(U(t))p(t) + u(t) + f(Reu ¢)). By (6.10) and
(6.23), we observe that

By(U)p € C((0, Ty,]; HYH(R)).
From (6.3) it is clear that
f(Reu)e C((Q Tyl LX)
As a consequence;; € C((0, Ty,]; HYA(K)).

We now notice the fact that is written as

t
AVBu(r) = A B Ay (5) + | ARt A YV E () dr, 0<s <t < Ty,
1 1 1 1 0
)

SinceAi/"' is a bounded operator frolHY/2(Q) to H(Q)' (see (6.12)), we obtain that
u(r) e DAY®) c HY4Q) and u € C ((Q Ty,]; HY4(Q)).

Furthermore, since € CY2((0, Ty,]; L3(R2)), it follows by interpolation property (6.4)
that

u € CY2%((0, Ty,]; HY3(R)).
We next notice thap is a solution to the evolution equation

dp

(6.26) -

+Azp =du(t), O<t<Ty,
in HY(Q) = D(AY?. As u € CY2((0, Ty,]; HY(R)), the maximal regularity of this
equation provides thati,p € CY29((0, Ty,l; HY(R)), that is

p € CY2(0, Ty,J; D(AY?) € CY2%(0, Tu,]; HA(R)).

Then we can use (6.8) wita =/1 8 to obtain thef € CY2%((0, Ty,]; LA()).

This means that the evolution equation (6.25) can be coreid: L?(2) substitut-
ing the partA; of A; in L?(R) for the coefficient operatod;. As a result we obtain
the desired regularity (6.24).

6.4. Global solutions. We assume nonnegativity of initial functiong and pg
in addition to (6.22). Then, by the truncation method (se& [Theorem 3.5]) nonneg-
ativity of u and p is verified.

The goal of this subsection is to show a priori estimates oéllgolutions to (5.4)
in the space:

0 <u e CY(0, Ty]; L3(R)) N C([0, Ty]; H5(Q)) N C((0, Ty]; HZ(R)),

(6.27) lo <pe Cl((O, y]: LZ(Q)) N c([0, Tu]; H1+£(Q)) N C((O, Ty]; 'D(Ag/Z))
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and to obtain global solutions.
Let 0 < R < oo, and consider a set of initial functions

By = {(ZO) ; 0<upe H(Q) and 0< po € H™(Q)
(6.28) 0 )
with uoll%. + [polZe < R} Cm<e<s

We first notice local estimates of the solutions startingririmitial values in B;. As
a matter of fact, Theorem 1 and Corollary 1 provide not only28% but also the esti-
mates

(6.29)  llu €W +p € Nuwe + 2@l gs + 1 p@)llyz) < Cr, 0<1t<Tg

for all local solutions on a fixed interval [@x ] with initial fictions from B}, Cx
and Ty being dependent only aR
In view of this fact, we can assume that initial functionsisfgt

O<uoe HY(Q) and 0< po € HZ(RQ).

We next show global estimates of the solutions starting finitial functions like
this. We can verify that the estimate

(6.30) e @ Y ur + IOl a2 < pllluollar + llpollkz), 0=t =Ty

holds for every local solution in the space

0 <ue CY(O, Tyl; LAR)) N C([0, Tyl; H{(R2)) N C((0, Ty, HA(K)),
0 < p e CY(0, Ty]; LK) N C([0, Ty]; HX(L)) N C((O, Tu]; D(AY?)

with some continuous increasing functign - () determinecohbsly.

In fact, this result is proved by an analogous method to tlefpof [18, Propo-
sition 4.1]. The arguments in Steps 1-3 of [18] are availatitbout any change, be-
cause the normgu| zz and | p|lzz are not used yet. The arguments in Step 4 can be
recovered as follows, althouglp| 2 was used. Indeed, we have

’ 3 2/3
- / X' (Pu?Apdx < Cllul%:l(A2 — ©)pllz < Clullll(Az — )pll 12 I(A2 — ol 7,
Q

2 3/2 1/3 2/3 2 3/2 2/3
< Clul?s 1145 21 11 A2p1175 < CllullllAY 20112570 ol

utilizing the moment inequality

3/2 1/2 1/2 1/2 3/2:
120l 2 < 1A 2ol 721 AS ol 7, o e D(AYD).
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Similarly,

Q
4/3, 12/3 3/2 .2/3, .4/3

< ClullZlIVplZe < ClulZslplls ol < CllullZ:1AY “pll 5ol

In this way we can substitutgAy?p| > for |l xs.
In the meantime we obtain from (6.26) that

1d

5 7 14200172 + 143 %0(0)112, = (A3 %u(z), AY?p(2))

1 30 » L d% 4 2
< §||A2 P(f)||Lz+E||A2 u(®)ll72-

Thus we have arrived at the same estimate as [18, (4.15)].

As the norms||u||zz and ||p|zs are not used in the first half of Step 5, the same
estimate as [18, (4.17)] is valid. Hence we have establigbe2D).

As an immediate consequence of (6.29) and (6.30), we obt@irgliobal existence
of solutions. For any initial functiongo and po in By, (5.4) possesses a global solu-
tion in the space (6.27) with an arbitrary<0T, < oo

6.5. Exponential attractor. We are ready to define a dynamical system from
the Cauchy problem (5.4) and to construct an exponentiedcittr.
We fix an exponeny = (1¢&/) 2 with, < ¢ < 1/2. Then, from (6.20) and (6.21),

DAWU)Y)=D, = {Uo = <Z°) yup € H°(R2) and pp € Hl""(Q)}
0
is independent ot/ € Z . We then set
D; = {UO: <”°> €D, ug>0 andeZO}.
£0

We have already known, for each bounded 8¢t of D) given by (6.28), that
(5.4) possesses a unique global solution. Since ® < o© is ampittilis means
that a nonlinear semigroug ¢ () is defined m We can now argue along the lines
announced in the preceding section. We define aefrom By by the same way
as (5.8), thenBj is a compact set off and is a positively invariant setSof ().
If By is equipped with the induced metric fromh- ||y , thehr () satisfiesl)(5
Thus, S ¢) B, X) is shown to become a dynamical system.

Furthermore from the decaying estimate (6.3) ot ( ), we caabdish the ab-
sorbing estimates fof ¢ () as in [18]. In fact the same estimate [18, (4.4), (4.9),
(4.12), (4.15)] and the first half of the estimate [18, (4]1l8amely

2 -5 2
lu(@)5: < Ce lluollfys + p(luoll 2 + llpollz), 0=t < oo,
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are all verified by the quite similar techniques as in [18]e3& estimates then imply
existence of an absolute constant  such that, for any bouseles; of D;, it holds
that

sup sup||S())Uollp = C

1>1g UpeB},

with a suitable timerz > 0 depending oR . Furthermore, a set offthe x| =
{U eD;;||U|p < C} is an absorbing set.

We finally define a sett* from X| by the same way as (5.10). TheA," is
a compact set ofX and is an absorbing and positively invargantof S ¢ ). There-
fore a dynamical systemS(t ( X*, X) is defined which absorbs every larger sys-
tem (S ¢) B, X) in finite time.

As the Lipschitz conditions (5.2) and (5.3) 6fr () addz, (o) are easily verified
by Theorem 2, we conclude by Theorem 3 that the dynamicakesy<f ¢) X, X)
possesses an exponential attractor.
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