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1. General framework and basic definitions

In the literature concerning Dirichlet forms and its apations, closability plays a
crucial role. In fact, closedness is one of the defining pridgse of a Dirichlet form.
According to this, a number of closability criterions areolm in particular cases. An
important question is under which conditions closabilgykept after changing the ref-
erence measure.

M. Fukushima, K. Sato, and S. Taniguchi [5] treated this pabfor a regular
Dirichlet form (£, D(£)) which is defined on a locally compact separable metricestat
space. Under technical conditions on some doré D(E), they presented a complete
solution if the Dirichlet form is either irreducible or treient. An earlier paper deal-
ing with this subject is M. Rockner and N. Wielens [13]. Rethresults on Lusinean
separable metric spaces were published in |. Shigekawa afdrguchi [16].

The aim of this paper is to give general analytical cond#idon order to keep
closability when turning to a new reference measure. Ondicp&ar purpose is to
present an extension of an assertions in [5] (namely, Gogolt.2) within a purely
measure theoretic framework, i.e., the state spdteBj is just a measurable space.
In particular, the set is defined exclusively in terms of the initial forng (D(£)) on
L?(E, 11). The main results are Theorems 2.3, 2.4, and 2.5.

We proceed to give some basic definitions.

Derinimion 1.1, Let #, ||.||n) be a separable Hilbert space and fetbe a dense
subset ofH .
(i) A positive symmetric bilinear form (p.s.b.f§ defined onF is said to beclosed
if 7, equipped with thei)Y2-norm || fl|e, := (|| f11% +E(f, £))*?, is a Hilbert space.
(i) Let C be a subspace off . We say that a p.s.béf, () is pre-closableon H
if, for all sequencest, € C, n € N, which are&-Cauchy (i.e.,E(u, — um, un —

2000 Mathematics Subject Classificatiorprimary 31C25, scondary 60J60.

This research is supported by the Deutsche Forschungsggeheit (SFB 256, project B1 b).
Part of this work was carried out while the author was a visitbthe Institut fir Angewandte Math-
ematik der Universitat Bonn, SFB 256.
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Um) —_— 0) and satisfyu, — 0 in H, we have&(un, u,) — 0. If (£,0)

is pre closable orH and, furthermo(e is dense inH , we say thaE(C) is closable
on H.

If a p.s.bf. €, C)is closable onH then there exists a p.s.b‘:} %) on H which
is closed and extends€(C) in the following sense’F O C and E(u, u) = E(u, u),
uecC.

DEFINITION 1.1 (continuation). (iii) The smallest closed extension(6fC) on
H, i.e., that closed extensior (F) on H satisfyingF C F, for all closed extensions
(€, F) of (£,C) on H, is called theclosure of (&, C).

We concentrate on Hilbert spaces of the fofff(E, 1), where E endowed with a
o-algebra3 is a measurable space apds a o-finite measure onK, B). As usual, we
call a closed p.s.b.f.& D(€)) on L%(E, 1) a (symmetriy Dirichlet form if u € D(E)
impliesu A1 e D) andE(wm AL, u A1) < E(u,u). Moreover, we call a nonpositive
definite self-adjoint operatoA  oh?(E, ;1) a Dirichlet operator whenever f € D(A)
yields [Af (f —1)"du < 0. If (£, D()) is a Dirichlet form then the associated. Then
the associated Dirichlet operator is the unique (honpestiiefinite self-adjoint) opera-
tor satisfyingD @ ) ={f € D() : there existsg € L*(E, u) such thaté(f,h) = [g -
hdp forall h € D(€)} and — [Af -hdp = E(f, h), f € D(A), h € D(). For more
details about the interplay between these two notions smegxample, N. Bouleau
and F. Hirsch [3], M. Fukushima, Y. Oshima, and M. Takeda ptjd Z.M. Ma and
M. Rockner [10].

Our presentation starts with an introduction to fractiopaWwers of Dirichlet oper-
ators and Dirichlet forms (Section 1). Here, the aim is to swamze all basic facts
from functional analysis which we need in order to discuss #pplications of our
closability criterions. In particular in Subsection 1.2¢ wrovide a detailed compari-
sion between three different representations of fractiggmavers of the Laplacian in
finite dimension: We consider the representation in form of(ategro-) differential
operator, the representation via spectral resolution, taadrepresentation via multipli-
cation in the Fourier image.

The starting point of Section 2 is a p.s.b.E,(D(E)) on L%(E, i) and the asso-
ciated nonpositive definite self-adjoint operatdr . Thepwse of this section is to
obtain a closability criterion forq, C) = (€™, CM) on someL?(E, M), whereC¥ is a
certain set ofM -classes. Each of tho#e -classes has a véhsibnan be interpreted
as ap-class belonging to some subspatie of D(E). Furthermore£™ corresponds to
&€ when turning fromu- to M-classes. We emphasize that the Gés constructed by
means of the spectral resolution &f ; i.€.js not a core in the sense of [4] and [10].
In the caseM =y with 7 € LY(E, ) N L>°(E, 1), under additional assumptions, we
characterize a property of th&f -negligible sets which isident to the closability
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of (£,C) on L?(E, M) (cf. Propositions 2.1, 2.2, and Theorem 2.3). These strak
results are one central point of our investigations. Howefeer measurest 7y with

T LYE, )N L>(E, 1) and T > 0 p-a.e., we formulate simple conditions en  guar-
anteeing closability (Theorem 2.4). For example, if thdofwing spectral condition

(SC) 0 is an isolated point in the spectrum &f and Ker cong$tthe constant
functions

is satisfied, then we have closability. But also in case tB8&)(is not satisfied, we ob-
tain verifiable closability conditions. Finally, the folling should be mentioned. Under
the conditions guaranteeing closability of,C) on L%(E, M) in Theorems 2.3, 2.4,
the closure of £, C) on L?(E, M) is a Dirichlet form whenever the p.s.b.f€,(D(€))
on L%(E, ) is a Dirichlet form (Theorem 2.5).

In Section 3, we discuss applications of the criterions iabth In particular,
we consider diffusion type forms and their fractional posveorresponding to second
guantization (Subsection 3.1). In this example, we have sihectral condition (SC).
However, we also investigate classical and stable Dirtcfdems onR¢. Here, (SC)
is not satisfied. In this case, Theorem 2.3 provides an ekml&scription of a prop-
erty of the M -negligible sets in terms of Riesz potentials idep to have closability
(see Subsection 3.2).

Finally, we refer to the fact that we use standard notatibtwyvever, note than?
denotes the/ -dimensional Lebesgue measure; but in integmalalso write[ - dx.

1.1. Fractional powers of Dirichlet operators and Dirichle forms. We start
with the presentation of some classical results concerfriagtional powers of Dirich-
let operators due to V. Balakrishnan, T. Kato, and K. Yosiske [18, IX. 11].

Let A be a Dirichlet operator of?(E, 1), i.e., A is a densely defined nonpositive
definite self-adjoint operator iL?(E, p) with (Af, (f — 1))z, < 0, £ € D(A).
Furthermore, let B, ;3o be the associated symmetric strongly continuous sub-Marko
contraction semigroup ir.?(E, y); sub-Markov means that & f < 1 implies 0<
Pf<1,t>0, f e L*E,pu). Let 0< o < 1. We introduce

1 o+ico N
Srals) = 2—/ e dz, t>0, s>0, 0 >0,
v o

—ioco

where the branch of* is so taken thatRe z(*) > 0 for Re(z) > 0. Note thatf, , is
independent otr. We define

P f = f and P f ::/ fial)Pifds, t>0, felL?E,p).
0

(P,(O‘)),>0 forms a symmetric strongly continuous semigrouplif(E, p1). AS f;.o(s) >
0 foralls, >0 and[;° fia(s)ds =1,¢ > 0 (cf. [18, IX. 11, Propositions 2 and 3]),
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(P{¥),_, is, moreover, contractive and sub-Markov. The correspandiresolvent op-
erator can be represented by

sinar [ r® dr
R :—/ — At L3(E, p).
e T Jo (r ) fl—2r°‘COSoz7r+r2°" feLAE m
Hence, the generatot®) of (P()) _ is given by
(1.) D (A®) = RELAE, 1)

and

1
I'(-a)

A@f = /0 TN pf— fydi. f e D(A)(C D (4€),

(see [18, IX. 11, Theorem 2]) wherle  denotes the Gamma-fumctrurthermore, we

set AM = A and (P,(l)),>0 = (P,)i>0. By the properties of(P,(o‘)),>0 mentioned

above, the operator(®) is also a Dirichlet operator. Introducinge{"), . as the

(right continuous) resolution of the identity with respéat—A), we have

D (—A®) = {f € L3E, p): /

[0,00)

N EO) f |2y < oo}
and

(1.2) —A@) :/ AE®, 0<a<l.
[0,00)

We proceed to give the relations between the spectral rimoduof A andA(®. We
define

D((—A)*) = {f €LY E, p): /[O )Azo‘dllE&”flliz(E,m < oo}
and

(—A)* = / A dEV, 0<a<l.
[0,00)

Proposition 1.2. We have

(1.3) EM=EY.. A>0, and —A©®=(-A)"

which meansin particular, D (—A®) = D((—A)®), cf. (1.1). Furthermore,(—A)" is
a Dirichlet operator 0 < o < 1.
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For the readers convenience, we recall the proof of thesie Feds:
Proof. The casex = 1 is trivial. Let 0< o < 1. Fort > 0 and f € L?(E, p),
we have

/ e—)\l dEg\a)f - P,(a)f
[0,00)

/ POF £ (s)ds
[0,00)

:/ / e N AEDF f,.a(s)ds

s=0 JA€[0,00)

= / / e frals)dsdED f
A€[0,00) Js=0

= / e_)\a, dEg\l)f,
[0,00)

where the last equality follows from [18, IX. 11, Propositid]. Hence,
/ e MAE f = e MdEY,
[0,00) [0,00)

which implies (1.3). The last assertion of the propositiofioivs from the fact that
— A is, as mentioned above, a Dirichlet operator. O

The associated Dirichlet form can be expressed by

D (£@) =D ((-A©)"*) = {f € LAE, 1) /[O ))\d||E(A°‘)f||iz(E,#) < oo}
and

EO(f. )
(1.4) = /(_A(a))l/zf (—A(a))l/zgd,u, f geD (5(0‘)), 0O<a<l

From Proposition 1.2 and (1.4), we obtain immediately:

Proposition 1.3. Let 0 < o < 1. We haveD (£()) = D ((—A)*/?) and

ENf g) = £°(f 8) = ((~A)/2 . (- 4)*/2g)

L2(E, 1)
( = / A" d (Eg”f, Eg1>g) . ) f.geD(EW).
[0,00) L2(E, )

Let D (£%) := D ((—A)*/?). Then(£%, D (£%)) is a Dirichlet form.
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To be consistent, we denof@ £)(:= D(£Y) and & = &L

1.2. Fractional powers of the Laplacian. In this subsection, we introduce
three different representations of the LaplacianRshand its fractional powers. In par-
ticular we discuss the interplay between the representatioform of an (integro-)
differential operator, the representation via spectradoldion, and the representa-
tion via multiplication in the Fourier image. Basic factseataken from M. Reed
and B. Simon [11], E.H. Lieb and M. Loss [8], and S.G. SamkoA.AKilbas,
and O.l. Marichev [14]. Further presentations of relatefid® are, for example, in
N. Jacob [6], A.V. Skorokhod [15], and E.M. Stein and G. WHitg].

However, the applications we are interested in requirenskbms of these refer-
ences. They are formulated and proved below.

Let d € N. Define

D(A) = D(A)

(15) = {f e LR, A% : zd: 88—f € L%(R?, A?) in the sense of dIStI’IbutIOV}s
i=1

and

(1.6) Af =Af = Z - 2f f € D(A) = D(A).

According to [11, Theorem IX.27]A is selfadjoint. With

Fo(x) = / W Vap(x)dx, ke R,

and
F ) = # /e—' £ip(%)di, x € R
we have
(1.7) D(A) = D(A) = {f € L3R?, AY) : |3]2F f € L*R?, AY)}
and
(1.8) —Af=—-Af=F Y (RPFF). feDA)=D(A),

cf. the same reference. In virtue of (1.8),= A is nonpositive. The operatot = A
is the generator of the semigroup; (> in L%(R?, A9) given by

1 1
P f :/f(y)WexP (_4_t| : —Y|2> dy, f€L*RY AY.
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Since (7 )>o is a symmetric strongly continuous sub-Markov contracts@migroup,
the operatorA = A is a Dirichlet operator. Let

1 a<|x|<b

. RY 0< < .
0 otherwise ’ *€RY, 0<a<b<oo

it = {
In order to compare representation (1.7) and (1.8) with

(1.9)  D(A)=D(A) = {f e LYR?, A : A2 d||[ED 2 < oo} ,

[0,00)
and
(1.10) —Af=—-Af= ; )AdEg”f, f € D(A) = D(A),
let us state the following:
Proposition 1.4. We have
(1.11) EQf=F MxonnF ). feL R, AY), A20,

Proof. Formula (1.11) is an immediate consequence of thetrgpheesolution of
the operatorD M ) ={f € LARY, A?): |- 2f € LARY, AY)}, Mf(x) = |x[?f(x),
x € RY, f e D(M), and the fact that (@¢/2F~* can be be regarded as a unitary
operator L2(R4, A?) — L?(R¢, A%). Consult also, for example, L.A. Ljusternik and
W.1. Sobolev [9, VII, §9]. O

Subsequently, we are interested in fractional powers-df = —A. In order to
be compatible with the results of Subsection 1.1, we maimdgcentrate on the case
a<l1.

Proposition 1.5. Let 0 < oo < 1. We have
(112)  D((—A)") = D((—A)") = {f € L*(R?, AY) 1 | F f € LR, A)}
and

(1.13) (A f=(A)f=F 1 (Z*Ff), feD(~A)")=D(-2)").

Proof. In virtue of (1.9), (1.10), and (1.11), it holds that

D((—A)%) = {f e LAR?, AY): N | EQ f122g0 nay < oo}

[0,00)
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{f e L¥R, AY): )\ZQd||f_l(Xo,Al/fo)||i2(Rd,Ad) <00

[0,00)

—— ——

{ feL¥RY, AY): / N d|| FH(xo a2 F £ 2, pay < 00
[0,00)
and

(=a)"f = o )/\“df_l(Xo,wsz)

. /[O NdF Mo ). f € DAY,

Recalling that (2)?/2F~! is a unitary operato.?(R?, AY) — L2(R4, A9), from the
spectral resolution of the operatd M(*)):={ f e LR, A?):|- [** f € L%(R, A%)},
M@ f(x) = [xP*f(x), x € RY, f € D(M®), relations (1.12) and (1.13) can be
obtained. U

For 0< a <1, define

D(J(oz)) = {f c LZ(Rd, Ad) : )\_O‘dHEg\l)inZ(Rd’Ad) < OO}

[0,00)

and

J@) f o= A 2gEDf e D).
[0.¢)

As in Proposition 1.5, one can verify

(1.14) DI ={f e LX R, AY) : |37 F f € LR, A%)}
and
(1.15) JOVf=FL(RFf) ., feDU).

Furthermore, for 0< a < 1, defineq,(a) := 2°74/°I'(a/2)/T((d — @)/2), DI V) =
L?(R?, A4), and

@5 * f(y)dy (@)

=yl

In virtue of a theorem due to S.L. Sobolev (see, for exampld],[Theorem 25.2),
1®) is a continuous operatad I()) = L2(R?, A?) — L?(R?, A%) whenevera < d /2
and p =2/(d — 2).
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Proposition 1.6. LetO< a <landa < d/2. ThenI™f=J@f fc D).
Proof. T For p € CS°(RY), we knowFyp € L¥(R?, AY) N L>=(R?, A?). Recall-
ing a < d/2 this yields |X|~*Fy € L2(R4¢, A%). On account of (1.14), it holds that
© € D(J). It follows from [8], Theorem 5.9, that

(1.16) 1o =J1p, e CeRY;

when turning to the reference above, take the special defindf the Fourier trans-

form therein into account.

2° Let f € D(JW) and g, € C&(RY), n € N, be a sequence wit, —— f in
n—oo

L2(R4, A9). Since I®: L?(RY, AY) — LP(R?, A?), continuously, there exists a subse-
quencen; k € N, such that

(1.17) 1@, — 1@F Alae.
On the other hand, (1.15) implies
(1.18) J©@y,=F1 (xo.1 (IXI7Fen)) + F1 (X100 (IX]7*Fepn)) . neN.

As ¢, —— fin L¥[R?, AY), we haveyo 1Fp, — xo.1Ff in L?(R?, A9). The
Schwarz inequality implies

xo1(IX[7*Fen) = (x0al%]™) (x0.1F¢n)
—— (x0.1/%|7%) (x0.1F f)

n—oo

= xoa(IR7°Ff) in LYR?, AY);

note that, according tax < d/2, we havexo 1|x|~* € L?(R?, A?). Furthermore, the
Hausdorff-Young theorem yields

(119)  F(xor (7 Fen)) —— F H(xoa(|F70Ff)) in LoR? AY).

Finally, o5 —— £ in L?(R?, A?) implies

(120)  F7* (X100 (F7"Fn)) —— F 1 (x1oo (IRI77FF))  in LAR?, AY).

It follows from (1.18)—(1.20) that there is a subsequenge! €N, such that
T, = F (R Fen, )

= FHEFS)

l—o00
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(1.21) = J9f Adae.

Relations (1.16), (1.17), and (1.21) show th&t) f = J() f, f € D(J). O
Proposition 1.7 ([14, Theorem 26.3]). Let 0 < o < min(Y, d/2). Definec,(a) =

J(1—en)|t|=4=>dt wheret = (t1, ..., 1s). Then for f € D(I'™Y) = LR?, A?) and

@ =19 f, the limit

1 () — (- — )
(1.22) D@y = —lim / LAV < S 2y
Cd(a) elo |y|>e |y|d+a

exists inL2(R?, A4) and we have
D(a)l(a)f = D(a)go =f.

For 0< a < 1, define

(1.23) D, :={ € LR, AY) : lm / %(;a—y)dy exists in LR, A%) b .
210 Jiyse 1Yl

Proposition 1.8. Let 0 < « < 1. Then we have
D.=D ((—A)“/Z) .

Furthermore for ¢ € D,, we have

1 ¢ —e(—y)  r2(pd Ad
(—A)*/2p = nm/ 2o Y gy in LARY, AY).
Cd(a) el0 Jiy|>e |y|d+a

Proof. T Lete >0 andy € L%(RY, AY). Since x..o|y|~“*) € LY(RY, AY), it
holds thatZ [, . _[y|~“* (- —y)dy = F (Xe.00|y| ")) - F, cf. [8, Theorem 5.8].

ly[>e 17
Therefore, we obtain

i ) —(d+a —(d+a
Fl o e W -/ YT dy - Fo = F (xeoolyl ™) - Fop
|y|>e |y| |y|>e
= / (1 _ et‘()‘c,y)d) |y|—(d+a) dy - Fo
ly|>e
_ ma/ (1_ ei<fc/|fc|,r>d) 11|~ gt . F
It >el3|

(1.24) = / (L—e™) |t| " dt - |3|*Fop.
lt|>el3
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2° Define
ca(a;0) :=/ (1 — e”l) |t|_(d+°‘) dt, ¢6>0.
[t]|>6
We have|l — ¢'t| = 2| sin(t,/2)| and, thus,
.t
(1.25) lca(a; )| < 2/ ’sm%’ t| =) dr < 0.
Furthermore, by dominated convergence,
(1.26) ca(a; 9) ﬁ ca().

Therefore, (1.24) yields

o —(—y)
|y|d+a

(1.27) F dy 5 ca(@) |X|*Fp Al-ae.
£—

[y|>e

This implies that lim o F [ . _{© — o — y)}/|y|*** dy exists in L(R?, A?) if and

only if e

(1.28) |X|*Fp € LAR?, AY)

and

(1.29) cala;e|x)) |X|*Fe — ca(a) |R|Fp in LAR?, AY),

cf. (1.24). Taking (1.25) and (1.26) into considerationfollows from dominated con-
vergence that (1.29) is a consequence of (1.28). Thus,

Iim/ wd}) exists in L2(R?, A9)
elo Jiyse Iyl

if and only if we have (1.28). In this case, (1.27) implies
1 . e —p(—v) —1j2 ; 2(md Ad
—Ilm/ — L dy=F *x|*Fe in LR, AY).
Cd(a) el0 Jiy|>e |y|d+a

Now, the assertion of the proposition is a consequence 4R2)1(1.13), and (1.23).
O

We summarize the efforts of Proposition 1.5 and Propositighin the subsequent
Theorem.
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Theorem 1.9. (a) Let0 < o < 1 and let(A, D(A)) be given by(1.5), (1.6)
Furthermore let (E(Al))A>0 be the resolution of the identity with respect toA,
cf. (1.9) and (1.10) Then for the operator(—A)“ defined by

D((—A)*) = {f e LR, AY): /[O )A2“d||E&”f||iZ(Rd,m < oo}

and
Cayr=) NAEQf, f € D(=8)"),
we have
D((—A)*) = {f € LARY, AY) 1 [P*F f € LAR?, AY)}
and

(—a)*f=F H(kPFf) . feD(=a)).

(b) Let 0 < a < 1. Then we have

D ((—=A)*2) = v e L2R?, AY) : lim =229 4 exists inL? R?, A4
¥ y
el0 Jiy|>e |y|d+a

and

(—A)*/2p =

: e —(—y) . 2md A d a/2
|Im/ ————=dy in L°(R", AY), @ED((—A) )
Cd(a) el0 ly|>e |y|d+a

2. General closability results

In this section, we ask for closability after changing théerence measure. More
precisely, we start with a closed p.s.b.£, O(€)) on someL?(E, ), keep the form
£ unchanged, and present criterions for closability on sdi€E, M). We empha-
size that the underlying state space is a measurable sgade) (ot necessarily en-
dowed with a topological structure. This would suggest tinat results below cannot
be derived by using probabilistic methods. Moreover, we faska Dirichlet form on
L?(E, M) whenever £, D(£)) is a Dirichlet form onL?(E, ).

The main results are, on the one hand, a structural theordreof@m 2.3) which de-
scribes a property of thé/ -negligible sets in order to hawsatbility and, on the
other hand, a simple practicable criterion (Theorem 2.4).

2.1. Definitions and notations. Let (E, B) be a measurable space. Further-
more, letL? E,v), 1 < p < oo, denote the usual redl? -spaces with respect to a
o-finite positive measure on (E, B).
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Suppose we are given a nontriviatfinite positive measurg. on (E, B) and a
nonpositive definite self-adjoint operatdr  IP(E, ). Let (E)) >0 denote the (right
continuous) resolution of the identity with respect-ta, i.e.,

_Af = NdE\f., f € D(A).
[0.00)

Note that, for all admissible functiong and alla ,b € (0, ) with a < b, we define
f[a,b) QO()‘) dE)\f by Qp(a)(Eaf_Ea—Of)"'f(a,b) QO()‘) dE)\f and thatf[o,b) QO()\) dE)\f =

QO(O)EOf + f(O,h) QO()‘) dE)\f
We setl(x) :=1, x € E, and we introduce thepectral condition

(SC) The pointA = 0 belongs to the spectrum of . Furthermore, there exists 0
such that nao\ € (C, 0) belongs to the spectrum of . Finally, Kér {z-1:c¢ € R}.

RemArRk. (1) We mention that if (SC) holds them is finite.
If (SC) is satisfied then we define

7 =inf{C < 0:no\ € (C,0) belongs to the spectrum of} .

We set
[ = if (SC) is satisfied
771 0if (SC) is not satisfied
Throughout the paper, we suppose the validity of the follgyvcondition:
(C) If (SC) is not satisfied then Ker £} and p(E) = oo.

In other words, we suppose that either (SC) (which includesAK={c-1: ¢ € R}
and u(E) < o0), or KerA ={0} and u(E) = co. However, this restriction is irrelevant
for the applications we are interested in, see Section 3abelo

We define

D(J) = {f € LYE, p): A Ef o, < oo}

[, 00)
and
Jf = NY2E\f,  fe D).
[,00)

Furthermore, we introduce

D ((—A)l/z) = {f € LAE, p): M| Ex I3z, < OO}

[0,00)
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and

(—A)Y2f = : )Al/szAf, feD ((—A)l/z) .

Finally, the closed p.s.b.f&( D(E)) on L%(E, 1) associated withA is given by
EG.0= [(AVr (A, £ g € DE)= D ((-A12).

Remarks.  (2) Both, the definition ofy and condition (C) imply that, for allf
L?%(E, 1), we have

(2.1) f—Eof = dE\f .

[,00)

(3) Define
Cu::{E0f+/ dEAfZO<a<b<Oo,fEL2(En“)}'
la.h)

Under condition (C), the sef* is dense inL?(E, p). Furthermore, sinc€* C D(J),
the setD ( ) is dense i?(E, ). In particular, condition (SC) implies thab J( ) =
L(E, p).

Let M be a nontrivialo-finite positive measure onE(, B). Let M, denote its abso-
lutely continuous part with respect fo. Furthermore, letM; denote the singular part
of M w.r.t. u. Throughout the paper, we suppose th4t is nontrivial.

Let T{' € B be a set, satisfying(T'{) = 0 and M; € \ T¥) = 0. Furthermore,
let u; denote the singular part gf with respect toM . Letl’™ < B be a set with
M(T'M) =0 andu,(E \ TM) = 0. For everyu-class f € L%(E, p), fix a version

fu€ fwith f,=0onT/
and let
™ denote theM -class which satisfigs € (.

The mappingL*(E, ) > f — fM is independent of the choice of, and, hence,
linear. Moreover, defing Fp € L%E,pu): =0 onE\TM}. We observe that

(2.2) fM=g¢M ifandonlyif f—geSnct, f gecC
Furthermore, we define

c={f": fecry.
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Finally, we introduce the condition
(W) Ssncr ={0}.

By (C), condition (W) is equivalent to{A)/%p =0 for all ¢ € SN C*. Thus, (W) is
equivalent to

(2.3) Ew+rp,u+rp)=E,u) foral pe SNC* and allu € C*.

Since, under (W), for everyi-class f € CH, there is no furthep-classg € C* with
g # f such thatf” =M ¢ (), see (2.2), we can identify

c=cr.

The identificationC = C* justifies the notationst(u™, u¥) instead of&(u, u) and
(—A)Y?uM instead of A)Y?u, u € C*. In order to avoid confusion while reading
the following text, we suggest to replace aRyc C by the commonM - ang-version
fu € £ fM where f € C* such thatf™ =F .

Relations (2.2) and (2.3) imply that (W) is necessary andicsent for well-definiteness
of (£,C) on L%(E, M) wheneverC C L%(E, M).

RemARrks. (4) The following relations are important for the proofs the subse-
quent results: By the definition @* and relation (2.1), we observe that under condi-
tion (C),

¢t € D(-A)Y) N D),
(—A)Y3(c*) @ signy -1} = ¢,
J(C") @ {signvy -1} = C*,
J(—A)Y?f = f—Eof, fecCh

(5) Let (C) be satisfied. By definition, we ha@ C D(£). Moreover,C* is dense in
D(&) with respect to £)Y2-norm: Assume that there exisisc D(£) with

0=Mﬁ&=/

[0,00

=(so,/ (1+A)dEAf)  fecn
[0,00) L2(E, 1)

Here, on account off £of +f[a’h)dEAf with 0 < a < b < oo, We havej’[o’oo)(1+
NdE\f € L3, ). However, {Ji0.syL *NAENSf © f € CM} = CM is dense in
L?(E, ), cf. Remark (3). Hencep = 0 in L2(E, ). Therefore,||¢]|¢, = 0.

(6) Condition (W) is a condition o4 . For example, (W) is stid if 1, is absolutely
continuous with respect to/

)(l +)\) d(E>\<p’ E)\f)LZ(E,,u)
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(7) The following example demonstrates that condition (Vdesl not imply thaty is
absolutely continuous with respect M

Let £ :=[0,1), let p : E — [0, 00) be a strictly increasing continuous function,
and letm :E — [0, c0) be a nondecreasing function satisfying

(2.4) 0=m(0) = limm(y) < m(x) < limm(y), x€E,
y—0 y—1
and
- 2
(2.5) /[O’l)m(x) dp(x) = 0, /[O’l)p(x) dm(x) < 0.

Accordingly, we have the limit circle case, O is a regular thaary, and 1 is an en-
trance boundary. Lef, be the measure generated by . Furthermoreptetdenote

the set of all real valuedi-classesf € L2(E, ) such that there exist a-class

g € L%E, p) anda € R with

x oy
f)=a+ /0 /0 ¢(s) u(ds)dp(y). x € E.

We setD,,D,f =g and

D(A) = {feﬁ* :/[Ol)D,,,D,,fdM:O}.

Finally, let A :=D,,D, be the restriction oD, D, to the sdd A( ).

According to U. Kuchler [7, Proposition 14 is a nonpogtidefinite self-adjoint
operator inL?(E, p). It follows from the definitions ofp as well ag and from (2.4),
(2.5) thatu(E) < oo, i.e., 1 € L?(E, u). By the definition of D @ ), the point = 0
belongs to the spectrum of and we have Ker {< 1: ¢ € R}. In virtue of [7,
Theorem 1],y > 0. Hence, we have (C).

We specify the choice ofi: Let 1 be absolutely continuous with respectAd on
[0,1/2)U (1/2, 1) and letu({1/2}) = 1. Furthermore, letM be the restriction of the
one-dimensional Lebesgue measuxé to [0, 1). We observe that is not absolutely
continuous with respect to/

We havel'¥ ={1/2} and S ={c - xq1/2} : ¢ € R} where x(1/,(x) = 0, x €
E \ {1/2}, and x1/21(1/2) = 1. Moreover, since every € D(A) has a continuous
version andC* C D(A), it holds thatS N C* = {0}, i.e., condition (W) is satisfied.

2.2. Formulation of the results. We consider the bilinear form
E(u,v) = /(—A)l/zu (—AY?vdp, u, veC=cH

and ask for closability onL?(E, M) whenever (W) is satisfied. Recall that condi-
tion (W) implies that the form &, C) is well-defined onL?(E, M) wheneverC C
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L%(E, M).
Before stating the results, let us introduce some conditi®tecall thatD { ) is dense
in L%(E, 1).

(@ If v+ = 0 then there existp with 2< p < oo and a continuous operator
J': L%(E, i) — LP(E, p) satisfyingJ' f = Jf, f € D(J).
(b) If v =0 then we have Kef’={0}.

If v > 0 then we setp = 2. If we have = 0 and (a) is satisfied then simplify the
notation as follows: Write/f instead of f, f € L2(E, ).

Remark. (8) An example of the validity of (a) and (b) in case ¢f= 0 is dis-
cussed in Subsection 3.2 below.

(o) CC LAE, M).
(B) LP(E, 1) C L¥(E, M,), continuously (in the sense of

(o) <e( )

for somec > 0 and all f € LP(E, p)).

Finally, we formulate a condition on th&®, -negligible setse Wiention that this con-
dition makes sense only in case that (a) is satisfied.

(CL) If v =0 then there is na) € L%(E, ) with 1) # 0 and J) = 0 M,-a.e. Ify >0
then there are ne € R and nowy € L(E, u) with op ¢ {d-1:d € R} andJyp =c- 1
M,-a.e.

Below, condition (CL) will play the role of thelosability condition

RemARk. (9) Suppose the validity of condition (C). If condition (Tls satisfied
then we have (W). This can be verified as follows: Suppose (Wt does not hold.
Then there existp € SNC* and 0< a < b < oo such thaty = Egp + f[a,h) dE\p &
{d -signy -1 :d € R}, recall thatM, is nontrivial. For) := f[a’h) NY2dE @, we
havevy ¢ {d -signy-1:d € R}. The definition ofS and/y + Egp = p(€ §) imply
Ji+ Eqp =0 M,-a.e. Hence, (CL) does not hold.

Subsequently, we state the results of this section. We wii#ht two technical propo-
sitions which are the frame for two of the main assertionaneig Theorems 2.3
and 2.4.

Proposition 2.1. Suppose(C), (a), and («). If condition (CL) is satisfied then
(€,C) is pre-closable onL?(E, M). If, in addition, C C L?(E, M), densely then (€, C)
is closable onL?(E, M).
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Proposition 2.2. SupposgC), (W), (a), ¢), and (5). If (£, C) is pre-closable on
L?(E, M) then (CL) is satisfied.

We turn to the main purpose of this section. By means of cmmd{CL), we de-
scribe a property of thé4 -negligible sets in order to havesathdity wheneverM is
absolutely continuous with respect toand 7 = dM/dp € LY(E, ) N L=(E, ). Im-
mediate consequences of Propositions 2.1 and 2.2 are:

Theorem 2.3. SupposgC) and (a). Let M = 7 with 7 € LY(E, ) N L>=(E, p).
If condition (CL) is satisfied ther(&, C) is closable onL?(E, M). Converselyif con-
dition (W) is satisfied and&, C) is closable onL?(E, M) then we haveCL).

Theorem 2.4. Suppose(C), (a), and (b). Let M = 7u with 7 € LY(E, ) N
L>*(E,pn) and 7 > 0 p-a.e. Then we have(CL); hence (£,C) is closable on
L%(E, M).

We are now interested in Dirichlet forms dif(E, M). Let (E*, F*) be the clo-
sure of €,C*) on L%(E, p). In virtue of Remark (5), we haveS(, F*) = (£, D(E)).
If (£,C) is closable onL?(E, M) then let €M, FM) denote the closure of€(C) on
L%(E, M).

Theorem 2.5. SupposgC) and (a). Let M = 7 with 7 € LY(E, ) N L>=(E, p).
SupposgCL), or (b) and 7 > 0 p-a.e.If (E#, F*) = (€, D(E)) is a Dirichlet form on
L?(E, i) then (M, FM) is a Dirichlet form onL?(E, M).

2.3. Coincidence of closures. This subsection is devoted to a general observa-
tion. Among other things, we demonstrate that the closuresicocted in Theorem 2.3
coincides, for example, with those of M. Fukushima, K. Satod S. Taniguchi [5] or
I. Shigekawa and S. Taniguchi [16] provided that all cowdis in the related criteri-
ons are satisfied.

To this end, let £, u), (£, D(E)), and A, D A)) be as above. Choose two sets of
p-classesCt# and C%* dense in P £), (£1)%?). As in Subsection 2.2, introduce two
sets of M -classes(! and C?, such that we can identifg® ~ Cc%# and C? =~ C%*
whenever

(W) SnctH=85nCc3+ ={0};

note that the definition of the se&¥ in Subsection 2.2 is inddpat of the choice
of C* there. For the well-definiteness of,(C) and €, C?) on L2(E, M) whenever
C C L%(E, M), let us suppose the validity of condition (J)Mn this subsection.

Proposition 2.6. Let M = 7p with 7 € L*(E, p).
(@) If one of the formg&, CY), (&, C?) is closable onL?(E, M) then so is the other
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one.
(b) Suppose that one of the fornis, CY), (£, C?) is closable onL?(E, M). Then the
corresponding closure¢ct, 1) and (£2, F?) coincide.

RemaRrks. (10) Part (b) of the previous proposition follows from p&a) when
choosingC? to be maximal, i.e.C? = (D(£) \ S) U {0} and showing thatF? C F'.
Note that @ €)\ S) U {0} is dense inD §) with respect to &)*2-norm.

(11) A closablity criterion as in [5, Theorem 4.1], [16, Them 8.4], or Theorem 2.3
of the present paper consists of (a set of) conditions

(S) on the spaceH, B, 1),

(F) on the initial closed form&, D(€)) on L%(E, p),

(M) restricting the class of measurd¢  of, (B, 1),

(W) guaranteeing well-definiteness Iif(E, M) of a subset ofu-classesC > C* dense
in D(E) with respect to thefll/z-norm,

and a sufficient or even necessary and sufficient condition

(CL) guaranteeing closability of€(C) on L?(E, M) whenever (S), (F), (M), (W) are
satisfied.

Let (£, D(€)) be a non-negative closed form on so&E, ;) andC be a subset of
u-classes dense i €] with respect to theg;’>norm, satisfying the conditions {5

(F), (M), (W1) and (), (F2), (M2), (W,) of two such closablity criterions. Suppose
that these conditions implyf  =u with 7 € L°°(E, u). If the related closability con-
ditions (CLy) and (CLy) are both necessary and sufficient ones then they are equiva-
lent. If (CLy) is a necessary and sufficient condition and {Cis a sufficient condition
then (Cly) implies (CLy).

2.4. Proofs.
Proof of Proposition 2.1.  Le#, € C*, n € N, be a sequence with

(2.6) u —— 0in LAE, M)
and
(2.7) (—A)Y2u, —— f in LXE, p)

for some f € L?(E, ). RecallC = C* C D((—A)Y?) and that, by §), u¥ <
L?(E, M). We show thatf =0 inL?(E, u).

For the sake of clarity, we treat both cases; 0 and~ > 0, separately.

1° Let v =0. It follows from (2.7) that

u, —— Jf in LP(E, 1),
n—oo
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recall condition (a). Selecting a subsequence if necessarsy may assume that
u, —— Jf p-a.e. On the other hand, selecting again a subsequence e&s@y,
relation (2.6) implies that:¥ —— 0 M,-a.e. From these relations, we obtaifi =0
M,-a.e. Finally, condition (CL) impliesf =0 idL?(E, p).

2° Let v > 0. In this case, it follows from (2.7) that

(2.8) Un — Eottn = J ((—A)l/zun) L Jfin L¥E, ),

cf. Remark (4). We observe thdou, = ¢, - 1 for somec, € R, n € N. Furthermore,
we note that, on account of (2.6) and (2.8), all accumulapoints of the sequence
cny n € N, are finite. Let—c € R be an accumulation point of the sequergen & N.
Selecting a subsequence if necessary, from (2.8) we get

Uy —— Jf —c-1in L¥(E, p).

n—oo

Selecting again a subsequence if necessary, we verify

(2.9) u, —— Jf —c-1 p-a.e.
As in part © of the proof relation (2.6) implies that, — 0 M,-a.e. (selecting a

subsequence if necessary). According to (2.9), we ryave ¢-1=M,-a.e. Furthermore,
(2.7) implies f ¢ {d-1:d € R\{0}}. Finally, condition (CL) yieldsf =0 inL%(E, j).
O

Proof of Proposition 2.2.  We suppose that (CL) does not hald eonstruct a
sequencer, € C*, n € N, such thawu” —— 0 in L%(E, M) and (-A)Y%u, —— f

in L%(E, p) for some nontrivial f € L?(E, ). In particular, we suppose that there
existc € R and a functiony € L%(E, ) with

(2.10) Y& {d signy-1:d e R} and Jy =c¢-signy-1 M,-a.e.

We set

(2.11) Un ::/ NY24E\p —c-signy-1 (e CH), neN,
[an,bn)

where 0< a, < b, < o0 anda, —— 0, b, —— oo. According to (2.11), we have

(—A)Y?u, = / dExi) —— dE\i) — Eot)p
[an.by)

n—oo [0,00)

(2.12) = ¢ —Eo #0 in L¥(E, p),
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wherey — Eqyp # 0 is a consequence of convention (C) and the first part of0f2.1
Moreover, in virtue of condition (a), we have

up = J(=A)Y?u, — ¢ -signy-1
€ LY(E, p).
By (2.12) andJ Eogv) =0, it holds that

(2.13) u, —— Jy —c-signy-1 in LP°(E, p).
Taking into consideration that we have assumedl &nd (5), by the second part of
(2.10) and by (2.13) we verifg® —— 0 in L?(E, M,). Therefore in the sense of

the identificationC =~ C* (cf. Subsection 2.1)

u —— 0 in L¥(E, M).
Together with (2.12) we conclude thaf,(C) is not pre-closable whenever (CL) does
not hold. O

Proof of Theorem 2.3. °1 According toM =7u and 7 € L*°(E, ), we have
C =~ C* C L%E,u) C L%E, M), ie., we have ¢). We show thatC is dense in
L%(E, M).
Let T, C T, C -+ (T, € B(E), n € N) be an increasing sequence with |$<, T,
and u(T,) < oo, n € N. Furthermore, letyz,(x) =1, x € T, and x7,(x) =0, x € E\T,,
n e N.
Now, fix & € L%E, M) and a function® € ®. We observe thatp, := ((® - x7, A
n)V (-n)) € LXE, 1) 0 L(E, M), n € N, and thatg, —— @ in L(E, M). (Si-
multaneously, we regarep,, n € N, as au- and as a’ﬁMoo-cIass.) Let > 0 and
chooseno € N such that|jp,, — ®|;2g,m < /2. Furthermore, fixyy € C* with
1Y — nollree.y < s/2||7-||;lc/é,#). Furthermore, keep in mind that* is dense in
L?(E, ), cf. Remark (3). Then

1/2 <
19" = enslleaenny < 1715 1Y = Prollizcesy < 5 -

Hence, ||M — ®|| 2z 1) < €. Therefore,C is dense inL%(E, M).
2° In virtue of M =7 andt € L*°(E, 1), we have

(2.14) LP(E,u) C LP(E, M), continuously

Furthermore, by X p < co and M (E )< oo it holds thatL? €, M )C L?(E, M), con-
tinuously. With (2.14), we obtain®). Now, Theorem 2.3 follows from Propositions 2.1
and 2.2. O
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Proof of Theorem 2.4. ©°1 Let v € L%(E, u) with J+) = c -signy -1 M-a.e. for
somec € R. On account ofr > 0 p-a.e., we have/y = ¢ - signy - 1 u-a.e. By the
definition of J, it holds thatc = 0 ify > 0. Hence, we have/y) = 0 u-a.e. in both
casesy =0 and~y > 0.
2° Lety > 0. Then (C) andJy = 0 p-a.e. yieldy € {d-1:d € R}. Together
with 1° we observe that/y) = ¢-1 M-a.e. for some € R implies¢y € {d-1:d € R}.
Thus, we have (CL).
3° Lety=0. Then Ket/ ={0} (see (b)) and relatiod’y) =0 u-a.e. implyy) = 0. In
virtue of 1°, J¢) =0 M-a.e. impliesy) =0, i.e., we have (CL).
4° The assertion follows from<2 3°, and Theorem 2.3. O

Proof of Theorem 2.5. °1 Let u € F*. By definition,C* is dense inF* with
respect to £}")/2-norm. Hence, we can choose a sequengec C*, n € N, with
up —— u in (E4)Y2-norm. In particular,

(2.15) upy —— u in L¥(E, p)
and
(2.16) EF(um — tn, um — uy) — 0.

According toM =7u, 7 € L*(E, ), and (2.15), we have

(2.17) ul —— uM in L(E, M).

n—oo

It follows from (2.16) that

(2.18) &M (uM —uM, uM — uM) — 0.

Now, the closedness o€, M) on L?(E, M), u, € C* ¥ C C F™, n € N, and
relations (2.17) as well as (2.18) yield —— u™ in (EM)Y/2-norm andu™ € FM.
Finally,

EMu, u) = lim EF(up, uy) = lim EM@M, uM) = M uM, u™).

2° As (£#, FM) is a Dirichlet form,u € C* = C impliesu® A 1 € F#. By the results
of step P, we can establishu/ ")\ 1= @u*A1)M € F as well as

EM(@M AL @)Y AL =E*u AL ut AL < EF(u,u) = EMWM, uM), uecCH

Since €M, FM) is the closure of §, C) on L%(E, M), the setC is dense inF™ with
respect to £M)/?-norm. Now, the assertion above is a consequence of [10]p-Cha
ter 1, Proposition 4.10. U
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Proof of Proposition 2.6.  First, let us mention that undér 7 with 7 €
L>®(E, 1), we haveC!, C?> C L%(E, ) C L% E, M). Without loss of generality, we
suppose thafi7|| oo, ) = 1.

Let us suppose thatt(C?) is closable onL?(E, M). It is sufficient to show that, for
C?=(D(€)\S)u{0}, the form €, C?) is also closable ol.?(E, M) and thatF? C F..
For this, letg € L?(E, M) andu®® € C?, n € N, be a sequence with

(2.19) u? ——g in L%(E, M)
and Eu® —u?, u? — 4@y — 0 which implies
(2.20) (—A)Y2u) —— f in L¥(E, )

for some f € LA(E, 11). As ul® € D(E), n € N, andC? is dense inD &) with respect
to (£1)/?-norm, there is a sequeneé? € C1, n € N, with

1

E@P — u@, u® — u@) + [lu® — u@| 2z = E1P — u@, u® — u?) < —.

Next, M =7p and ||7{| L (£, = 1 imply

1

-, neN.
n

n

@21) P )+ [P P <

From (2.19), (2.20), and (2.21), we may conclude that

(2.22) uY —— ¢ in LYE, M)
and
(2.23) (—AY2D 5 in LY(E, ).

Taking into consideration that€(C?') is closable onL?(E, M), for g = 0, the last
two relations lead tof = 0. Now from (2.19) and (2.20), it fell® that €,C?) =
(£, (DE)\ S)uU{0}) is closable on?(E, M), as well. Furthermore, choosinge F?
arbitrarily, relations (2.22) and (2.23) show that the ssmex(V, n € N, converges in

(FL, &Y and that its limit isg € F1, i.e., F2 C FL O

3. Applications

In this section, we give examples of infinite and finite dimenal forms which
are closable on somdé?(E, M). Here, closability will be shown by using Theo-
rems 2.3 and 2.4. In particular, we consider diffusion typenfs and their fractional
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powers corresponding to second quantization (Subsectibnadd classical and stable
forms onR¢ (Subsection 3.2).

The state spac& of the forms discussed in 3.1 is, in generalgadly convex
Hausdorff topological vector space which is, moreover, sBoean. This example is,
therefore, not covered by the results in [5], [16]. In the repée in Subsection 3.2,
the measureg: is not absolutely continuous with respect ¢ . Consequgittlgioes
not meet the conditions of Corollary 4.2 of [5] or Theorem ®fthe present paper.
However, closability onL?(E, M) can be verified by means of Theorem 2.3.

Furthermore, we would like to draw attention to the fact ttheg forms €, D(E))
on L%(E, ) introduced in Subsection 3.1 satisfy the spectral comdiiSC), i.e., con-
ditions (a) and (b) are trivial. In 3.2, we have Kér {0} and u(E) = oo which
means that we have to verify conditions (a) and (b).

3.1. Diffusion type forms corresponding to second quantizgon. Let us sum-
marize the background facts taken from [2] and [19]. Eet  becally convex Haus-
dorff topological vector space. Suppose, furthermoret has Souslinean. Lett’ de-
note its topological dual and le8(E) denote the Boreb-algebra onE . In this ex-
ample, lety be a mean zero Gaussian measure Bni(E)), i.e., eachl € E’ has a
mean zero distribution ifR underp and assume supp= E. We introduceH; as the
real Hilbert space obtained by completiig with respect to the norm associated with
the inner product

(k1, ko), := / grlki, 2)E g ko, 2)E p(d2), k1, ko€ E'.
E
For h € H, and a sequenck, € E’, n € N with k, —— & in H;, we introduce
Xy € L3(E, p) by
X, = lim gk, Vg in L¥E, p).

Let L be a self-adjoint operator oH; such that

for somec > 0, where Ig;, denotes the identity orff;. According to the chaos de-
composition

LYE, 1) = D Ha
n=0

with Hp =R and EB;ZOH,-, n € N, being the closed linear span ¢1} U {]'[j’f':1 X,
hi,...,h, € H;, m <n} in L%E, 1), we can define a familyT ,)o of operators on
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L%(E, ) by

(3.2) T,1=1 and T, (: Hth :n) = :HXE,L,” n
j=1 J=1

neN, hy, ..., h, € H and linearity; here, : ,: stands for orthogonal projectiorioon
Ha.

By virtue of [1, Remark 3.1], and [2, Subsection 7.1%; (> forms a symmetric non-
negative strongly continuous contraction semigroupL3(E, ;). Let A denote its gen-
erator and let &, D(E)) be the corresponding p.s.b.f. This form can be repredebnye

5(u,v):/\/ﬂu-\/ﬂvdu, u, ve D(E):=DH-A).

In addition, introduce the set

FCX(E) ={u: E—->R:u(z)= flu(z), ..., ln(2)),
Z€EE, h,....l, € E', feC[R"), meN},

and the spacé! B (—L) with the inner producthy, ho)y :=(v/—L h1, V—L h2)m,.
SupposeH C E densely and continuously. Now, we can restate a theorem by
S. Albeverio and M. Rockner:
Theorem 3.1([2, Theorem 7.4]). The form(&, D(£)) is the closure of
E(u,v) = /<w, Vo)gdp, u, ve FCl(E),
where Vu(z) is the unique element i  representing the continuous limeap sz —
(Ou/0h)(z), h € H. In particular, (£, D(E)) is a Dirichlet form and(7;),>o is sub-

Markov.

RemArk. (1) The term “diffusion type” in the headline of this Subec corre-
sponds to the choice off

Let us turn to the verification of the spectral condition (SC)
Proposition 3.2. We have(SC).

Proof. The main step is done by T. Zhang [19], Relation (2.14jth the con-
vention (u) == [udu, we have

(3.3) /(—Au)u dp > c/(u — (u))?dp, u e D(A),



588 J.-U. LoBus

where ¢ is the constant appearing in (3.1). Furthermore, 13),(33.1), A\ = 0 is an
eigenvalue of—A and KerA ={c-1:c¢ € R}. Now, (SC) follows from (3.3). U

Subsequently, we apply Theorems 2.3, 2.4, and 2.5 to a ailifem associated with
the nonpositive definite self-adjoint operate(—A)® in L%(E, ), 0 < o < 1.

RemARks. (2) Let us consider the set¥" and C constucted on the basis of the
resolution of the identity with respect te(—A)®. It follows from the definitions of
these sets and from Proposition 1.2, tld4t and C are independent of & o < 1.
Thus, condition (W) is independent ofQ« < 1.

(3) Furthermore, we mention that under (SC), condition (&L)ylso independent of
0 < a < 1. To show this, we denote the resolution of the identity widspect to
—(—A%) by (E(AO‘))»O, 0 < o < 1. Moreover, in order to indicate that the operatbr

constucted on the basis ¢E{")
J.

450 depends on G o < 1, we write J* instead of
In fact, if there arec € R and a functiony® € L?(E, p) with ™ & {d -1 :

d € R} and JY® = ¢-1 M,-ae. thenp@ := [ A=(=)/2gEPy) satisfiesy(®) e

L%(E,p), ¥\ ¢ {d-1:d € R}, and J*y(® = ¢ .1 M,-a.e.; cf. Proposition 1.2. On

the other hand, if there arec R and a functiony(®) € L%(E, i) with () & {d - 1:

d € R} and Jo¢(© = ¢ 1 M,-ae. thenp® = [ AA=)/2 g EUy(@) satisfies

YO e LAE, 1), vV ¢ {d-1:d e R}, and JyM =¢ -1 M,-ae., 0< o < 1.

Defining

gﬂmw:(pAwﬂmpAVﬂQ . u, veC 0<a<l,

L2(E, )

the following two assertions are now a direct consequencéhebrem 2.3 and Theo-
rem 2.4.

Theorem 3.3. Let M = 7 with 7 € L*°(E, ) and 0 < o < 1. If condition
(CL) is satisfied ther(€, C) is closable onL?(E, M). Converselyif condition (W) is
satisfied and£?, C) is closable onL?(E, M) then we haveCL).

Theorem 3.4. Let M = tp with 7 € L>*(E, u) and 7 > 0 p-a.e. Then for 0 <
a <1, (£ C) is closable onL?(E, M).

As the p.s.b.f. & D(£)) associated with the operatot  is a Dirichlet form on
L?(E, i1), Proposition 1.3 and Theorem 2.5 imply:

Theorem 3.5. Let M = 7 with 7 € L*°(E, u) and 0 < a < 1. SupposegCL)
or 7 > 0 p-a.e.Then the closurde™M, F>-M) of (£2,C) on L?(E, M) is a Dirichlet
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form.

3.2. Discussion of the finite dimensional case.Let d € N and letA = A be
the Laplacian orR? with domain

D(A) = D(A)

d 2
= {f € LR, AY) ) %f e L?(R?, A?) in the sense of distributior}s,
i=1 i

see (1.5). HereA = A is a nonpositive definite self-adjoint operator, where Orisaa-
cumulation point of the spectrum. Thus, condition (SC) is¢ satisfied. Consequently,
we havey = 0. Furthermore, we observe that Ker {8}. Therefore, withy := A9,
condition (C) is satisfied. As a consequence, condition §G3l$o satisfied for the op-
erator A)* = (—A)* defined on

D((—A)) = {f e LR, AY): /0 N | EQ 1220 pay < oo} :

where 0 < o < 1 and (E(Al))A>0 is the resolution of the identity with respect to
—A = —A, cf. Section 1. For alternative representations -efAj* = (—A)%, we re-
fer to Theorem 1.9. Corresponding to the exponent (0, 1], we denote the form
(&, C) appearing in Theorems 2.3-2.5 h§“( C) and the operatord and’ in con-
ditions (a), (b) byJ® and J’*, respectively. Note thaf is independent of & o < 1,
recall the definitions of the set¥* as well asC and Proposition 1.2.

In order to apply Theorems 2.3-2.5 t6°, C), we have to check conditions (a)
and (b) which are not trivial in this situation.

Proposition 3.6. Let0 < a < 1 and o < d/2. Then with J'* := I*, condi-
tions (C), (a), and (b) are satisfied. Furthermore, the p.s.b.f. associated \itd)* =
(—A)?/2 is a Dirichlet form.

Proof. 1 We consider the Riesaz-potential,

o= 1 v(y)dy
34 e %1(04)/| ’

=yl

where v4(c) = 2°7%/2I'(a/2)/T((d — )/2) andT" denotes the Gamma-function. Fur-
thermore, we recall thaf®y is a continuous mappind.?(R?, AY) — LP(R4, A?)
whenevera < d/2 andp = 2/(d — 2«), see, for example, [14], Theorem 25.2. In
this case, we havgd®f = 1~ f for all f € D(J?%), cf. Proposition 1.6. Hence, with
J'* = I*, condition (a) is satisfied. As a consequence of Propositigh we have
Ker7® = {0}. This implies condition (b).
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2° The second assertion of the proposition is a consequencedio8 1, especially
of Proposition 1.3. ]

The closability result of Theorem 2.4 is certainly not sisimg since, in finite di-
mension, we have the fundamental probabilistic solutiora teimilar closability prob-
lem by M. Fukushima, K. Sato, and S. Taniguchi [5]. Howevehedrem 2.3 and
Remark (9) of Section 2 assert that in caseMf 7&¢ with 7 ¢ LY(R?, AY) N
L>®(R?, A), the form €<, () is closable onL?(R¢, M) and condition (W) is satisfied
if and only if there is noy € L?(R?, A?), ¢ # 0 such that/®y = 0 M-a.e. In this
sense, the explicit representation (3.4) I6f provides an analytical characterization of
the M -negligible sets in order to state closability 6f(C) on L?(R¢, M).

In order to demonstrate that by means of Theorem 2.3, we ally @ble to treat
more complicated situations than by means of Theorem 2.4coveentrate on the
cased = 1. We show that there are sétsc B(R) with AY(L) > 0 and measures
M =7At with

7€ LYE, u) N L>=(E, ),

7> 0 Al-ae. onR\ L, and

7=0 Al-ae. onL
such that £, C) is closable onL?(R, M). We introduce such a sdt C [0, 1] with
AY(L) = 1/2 which is, moreover, closed and has no inner point with retspe the
usual topology inR. Chooses € (0, 1/2) and leth :=2°/(1—-27F). Let L, = L} =
[0, 1]. We proceed by iteration. Far € N, construct

o

L= |L*

n+l n+l>
k=1

n

whereLl,,, ..., L2, are disjoint closed intervals of equal length, as followplitSLX
into three intervals

k — y2k—1 k k 2k
Ln - Ln+1 U (an+1’ bn+1) U Ln+1

such that the right-hand side boundary point 7t is af,,, the left-hand side
boundary point ofL2, is b*,,, and

(3.5) b —ak =27 WE) e, 20

Set



CLOSABILITY OF BILINEAR FORMS 591

n—1
The Lebesgue measure bf2, o, (ak,q. bty is

Z on—1p—lo—n(1+p) — p~1o—(145) Z 2718

n=1 n=0
1
=3
Therefore,
oo 2"t 1
AN L) =AM (10, 1N\ Ulapa bha) | = 5
n=1 k=1

Lemma 3.7. Let g € L%(R, AY) with ¢ # 0in L%(R, A') andg = 0 Al-a.e. on
R\ L. Furthermore, supposg < 1 A'-a.e. onR and g =1 Al-a.e. on some € B(R)
with G C L and AY(G) > 0. If 0< 8 < a < 1/2theng & D ((—A)*/?).

Proof. T Let H := G\ {af,.bf,,ineN, ke{l,...,2""1}}. We observe
that, for all x € H with g(x) = 1, the functiony, : (0, c0) — R given by

0x(e) = / 8(x) —s(x —y) glgz —Y) dy, >0,
ly|>e |yl

is decreasing irr € (0, c0). Thus, Theorem 1.9 (b) ang =A'-a.e. onH as well as
AY(H) > 0 imply that it is sufficient to show that, for akt ¢ H with g(x) = 1, there
is a sequence, = ¢,(x) > 0, n € N, with e, —— 0 and

(3.6) lim /|| Mdy=oo.
Y|>¢en

n—oo |y |l+a

2° ForxeL,neN, andk € {1,...,2""1}, define

k H k
ayyy I x <ayyy

kK — k ——
Cp1 = Cuan(X) 1= {

bk,, otherwise
and

k : k
by 0 x <y

ak,, otherwise

drlzc+1 = d;];+1(x) = {

Keeping in mind the construction df , for all € L, we have

’x—c,]§+1’<2—];1, neN.
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Let [ = I(n) be a number such thak —c/,;| = Mincgy  piny [x — k], n € N
Then it holds that
1(n) 1
(3.7) X = Cue1| < o s ne€N.
Finally, for x € L, define
_ — ; 1(j)
en =en(x) = min — , eN.
(x) je{Lons n} X Cj+1 n

Obviously, €,).en = (e2(x))nen is @ decreasing sequence of positive real numbers
with ¢, —— 0.

n—oo

3° We haveH C L. By the properties of , for alk € H with g(x) = 1, it holds

that
/ s@) 8k =) 4 / ) —sbr =)
[y[>en |y| {yeR:|Y|>5n’ X_YQL} |y|
1
(3.8) - / EESN
{yeR:|y|>e,, x—y¢&L} |y|

In virtue of the definition of £,).en = (£4(x))nen and relations (3.5), (3.7), for all
x € H with g(x) =1, we obtain from (3.8)

glx) —glx —y) bl ! 1y~ )
[ S 5 ) )
y|>en

> Z 1271 (277 + b—lz—j(lw))—(l*a) ‘
j=1

Let jo € N be a number that guarantees'2—/% < 1, j > jo. Then, for allx € H
with g(x) =1 andn > jo, we get

n
S pip ) -

/ 8(x) l_lﬁg‘ o)) dy >
[y|>en Yy i=jo
= plo—(1+) Z 2i(a=p)
J=Jo
Now, from «« > 3, the validity of relation (3.6) can be concluded. U

Theorem 3.8. Let 0 < 3 < a < 1/2. Furthermore let 7 € LY(R, AY) N
L>®(R, A'). Supposer = 0 Al-a.e. onL andr > 0 Al-a.e. onR \ L. Define
M = 7AL Then(€2,0) is closable onL?(R, M).
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Proof. 1 Assume that £*,C) is not closable onL?[R, M). Since condi-
tions (C) and (a) are satisfied (by Theorem 3.5), under ttdaraption, condition (CL)
is not satisfied (by Theorem 2.3). Thus, there exists L%(R, A1) with v # 0 and

(3.9) I1°9=0 A'ae. onR\L,

cf. Proposition 3.6. Recalling Kér* = {0}, without loss of generality, we may sup-
pose thatI®y) > 1 on someG € B(R) with G C L and AY(G) > 0. As mentioned
in Subsection 1.2, fop =/41—2a) > 2, we havel®) € LP(R, A'). Because of
(3.9), this yields7®y € L2(R, AY). Finally, from Propositions 1.7 and 1.8, we get
1% € D ((—A)*/?).

2° Proposition 1.3 implied“y € D(E®). Therefore,

(3.10) g =I°YALle DEY)=D ((—A)O‘/Z) .

Sinceg satisfies the hypotheses of Lemma 3.7, under the aisanagbove, we get a
contradiction. Thus,&?, C) is closable onL?(R, M). O
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