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Introduction

Let E be an elliptic curve (an abelian variety of dimension one) defined
over the rational number field Q. After Weil [9], we can define the conductor
of E. But, in general, it would be difficult to find all the curves of given
conductor. But it seems to be easier to find all the curves of given conductor
having @-rational points of finite order >2.

In this paper we determine all the curves of prime power conductor which
have at least three rational points of finite order. There are only finitely many
such curves up to @-isomorphism. They are listed in the table at the end of the
paper.

Since each of them has @-rational points of finite order, we can take a special
cubic equation as a global minimal model for it. Further, since that curve has
a prime power conductor, the coefficients of that equation must be a solution of
a certain diophantine equation. Therefore, the determination of such curves is
reduced to elementary diophantine problems.

Some of them have no complex multiplication and non-integral invariants.
Let E be one of them and Q(E,) be the field generated by the coordinates of the
n-division points of E over @. Then we can determine the Galois group of Q(E,)
over @ for all prime 1.

1. Integrality of rational points of finite order

Let E be an elliptic curve defined over @ A Weierstrass model for E over
Q is plane cubic equation of the form

(1) y*+axy+a,y+x*+ax*+ax+a; =0

with a,EQ, the zero of E being the point at infinity. We define auxiliary
quantities by
182 = a%_“'az

B,=2a,—aa,
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Bﬁ = a§—-4as

B, = ai—ajaa,+adlata,0i—4aq, .
The discriminant A is defined by
A = B38,—8B5—278%+98.8.8:

and the invariant J is defined by

J = (Bi—24B.)[A .

This model is minimal at a prime p if each a, is integral at p, and ord,(A) is
as small as possible. Since the ring Z of rational integers is a principal ideal
domain, it is easy to see that we can find a global minimal Weierstrass model for
E over Q, i.e., a cubic equation as above with each a;€ Z, which is simultaneous-
ly minimal at all p. For a detailed discussion of minimal models of elliptic
curves, see Néron [2]. It should be noted that the conductor NV of E and the
discriminant A of the global minimal model for E have same prime divisors.

Lemma 1. Suppose that each a; is a rational integer in (1). If t,=(x,, y,)
15 a rational point on (1) of finite order m>2, then x, and y, are integers.

Proof. After the transformation

6’x = X+3a2—12a,

2
(2) 6'y = Y—3a,(X+3a2—12a,)—4-3',,

we get
(3) Y+ X4+ AX+B=0
where

A = 3(3a}—12a,)*+2(6%a,—3%a3) (3ai—12a,)+-6'a,—2°- 3'a,a,
B = (3a3—12a,)’+(6%a,— 3%a}) (343 — 12a,)°+6°a,—2* - 3°3
+(6%a,—2°3'a,a;) (3a3—12a,).

Hence 3°| 4, 3°| B and 44°4-27B°=—2°-3"A.

Let (X,, Y,) be the transform of (x,, ¥,) by (2). Then by Theorem 22.1 of
Cassels [1] X, and Y, are integers. Hence 6°, and 6%y, are integers. By the
assumption we have Y 0. So the tangent of (3) at (X,. Y ) is

Y-Y,=—-(BX}+4)2Y ) (X—-X,).
Put (X,, Y,)= —2(X,, Y)), then X, and Y, are also integers, and we have

(4) BX3+Ay/2Y,) = —(2X+X,).
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Hence
(5) (BX3+A)2Y)eZ.

First, we shall show that ord,(x,) and ord,(y,) are non-negative. If X, is odd,
then 4 is odd by (5), so is a,. Hence 6%, is even by (2). If X is even, then
4 is even by (5), so is a,. Hence 6%, is even by (2). In either case, we have
ord,(x,)>—1. Multiplying (1) by 2%, we see that 2°y, is integral at 2, hence
ordy(y,)>—2. Hence ord,(y3)>—3 by (1), i.e,, ord(y,)>—1. This implies
ord,(x3)>—2, i.e., ord,(x,) >0 and ord,(y,)>0.

Next, we shall show that ord,(x,) and ord,(y,) are non-negative. If we
suppose X0 mod 3, then Y50 mod 3 by (3), hence X,=—1 mod 3. Hence
we have X,=—1mod 3 by (4). Further we can easily see X =X, by (4).

The points —(X,, Y )—(X,, Y,) and —(X,, Y,)—(X,, —Y,) on (3) are also
integral. Hence, by the same reasoning as above, we have

(Y, —Y)/(X,—X)eZ
(Y +Y)(X,—X)eZ.
Since X,—X,=0 mod 3, we have
Y—Y=Y+4+Y,=0mod 3ie. Y, =0mod 3,

which is a contradiction. Hence X,;=0mod 3 i.e., ord,(x,)>—1by (2). By the
same method as above we have ordy(x,)>0 and ord,(y,)>0. This completes
the proof of the lemma.

ReMARK. Assumption being as in Lemma 1, we obtain the x-coordinates of
2-division points on (1) as the roots of the equation

(a,x+a,) —4(x*+ax*+ax~+a) = 0

Hence, if (x,, y,) is a rational point on (1) of order 2, then we have 2’*x,& Z and
2>y, Z. Moreover, if the other 2-division points, say (x,, y,) and (x,, y,), are
also rational points, then we have

XX, = —(a,—a3[4) .
Hence, at least one of them is an integral point.

Lemma 2. Let E be an elliptic curve defined over a finite field k with q-
elements and N be the number of k-rational points of E.

Then we have
N=1—a+tgq,

where
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la|<2V/q .

This is the “Riemann hypothesis” for elliptic curves.

2. Determination of curves of prime power conductor with @
-rational points of finite order

In this section, we shall determine all the elliptic curves of prime power
conductor having at least three rational points of finite order. Since all the
curves of 2-power conductor have been determined in Ogg [3], we shall deal with
the curves of odd prime power conductor. So we shall always mean by p an odd
prime integer. Let E be such a curve and Fbe the group of rational points of
finite order on E. By Mordell-Weil theorem, F is a finite group. Let E(I) be
the reduction of E at a prime /. Since E has a good reduction at 2, E(2) is
also an elliptic curve defined over the field GF(2). Hence E(2) has at most five
GF(2)-rational points by Lemma 2. It is well-known that the reduction map of
Finto the group of GF(2)-rational points on E/(2) is a homomorphism and the
order of its kernel is 2-power. Therefore the order of Fis 2*, 2*.3 or 2*.5,

As was shown in Ogg [3], we note that there is no curve with A=+41.

Theorem 1. There are nine elliptic curves having rational points of order
3 and they have no rational point of order 2.

Proof. Let E be such a curve and (1) be a global minimal model of E.
By Lemma 1, we may assume that a,=0 and ¢=(0, 0) is a point of order 3, hence
a, is not zero. Since 2(0,0)4(0,0)=0, we have

(—a,/a;)’+a,(—a,ja;)+a,=0.
Hence a,/a, is an integer. Put a,=a,a,/, then
A = a}{—8(2a/—a,)*—27a,+9(a}—4a,)(2a,/—a,)} .

By A= p™, we see that a, is odd. Hence a, is even. Hence by the trans-
formation y—y—(a,/2)x, we can take a,=0. Hence we get the global minimal
model of E of the form
(6) y4ay+x*+tax’+aax =0
with
a,€Z
aita,=0, A=a}@8ai—27a;)= +p™, a,>0.
(I) The case a,=1

In this case, we have
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843—27 = (2a,—3)(44i+6a,+9) = xp™

If 2a,—3=+1, then we get a,=1 or 2, curves 1, 2. Next we shall consider the
cases 2a,—3=+4p" (n>0). If p=+3 we have @,50 mod p, hence 4aj+6a,+9=
(2a,—3)*+18a,=+1. This contradicts with a,=Z. Hence p=3. If n=1,
then we get

2a, = 3+3, (2a,—3)+18a,=9(1+343) = 4+3™.
Hence we get a,=0, the curve 3. If n=2, then we have

2a, = 34+9, (2a,—3)*+18a,= 27(3+143) = 43",
Hence we get a,=—3, the curve 4. If n>3, then we have

2a,=3+3", (2a,—3)*+18a, = 3""+9(3+3") = £+3™.
But this is impossible.

(IT) The case a;=p
First, we shall consider the case p=3. Then we have

8a3—3* = 43",

If m’=0, then 8a;—3‘=-+1. But this is impossible. Hence a, is divisible by
3. Put a,=3a/, then we have

8a,°—3 = £3".

If m”=0, then 8a,°=3+1. This is impossible. Hence @, is divisible by 3.
Put a,/=3a,”, then we have

8.3%—1= 1.

Hence we get a,=0, the curve 5.
Next, we shall consider the case p=3. If a, were divisible by p, we would have

8(alp)p*—27 =1.
But this is impossible. Hence 8a3—27p=-+4-1, and we have
27p = 8ai+1 = (2a,+1){(2a,4-1)*F6a} .

If 2a,4-1 is divisible by p, then we get (2a,+1)’F6a,=-+3, 49. This implies
2a,+1=23. But this contradicts with 2¢,4-1=0 mod p. Hence 24,41 is not
divisible by p. This implies 2a,4-1=+43, £9. We can easily see 24,4 1=9,
then we get curves 6,7.
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(III) The case a,=p°
First, we shall consider the case p£=3. If a, were divisible by p, we would have

8(a/p)p—27 = +1.

But this is impossible. Hence a, is not divisible by p, i.e., 8ai—27p*=+1.
Hence we get 27p*=8a3+1=(2a,4-1){(2a¢,4-1)*F6a,}. But we can easily see
by the same method as in (II) that this is impossible. So we suppose p=3.
Then we have

8a3—3° = +3".
It can be easily seen that m’ is not zero. Put a,=—3a,/. Then we have
8a,°—3* = x3"".

If m"”=0, then we get a/=1, the curve 8. If m”>0, put a/=3a,”, then we
have

3.8¢/°—1= 41.
Hence we get a,”=0, the curve 9.

(IV) The case a,=p" (n>2)
If a, is divisible by p, then a, is divisible by p°.  But this implies that (6) is not
a minimal model. Hence we have 8a3—27p"=+41, ie., 27p"=(2a,41)
{(2a,£1)*F6a,}. If we suppose p=3, then we have

3% — (20,4 1) {(2a, £ 1y F6a,} .

Hence we get (2a,4-1)’F6a,—+3. But this contradicts with n>3. Hence we
may assume p=3. Then we have 2a,4-1=43, 49 or (2¢,+1)*F6a,=+3, £9.
But we can easily see that this also contradicts with n>3.

Next, we shall show that E has no rational point of order 2. Suppose
(%o, ,) be a rational point on (6) of order 2. Then x, is a root of the equation
ai—4(x3-+axi+aax,)=0, Put 2x,=X,, then X3+2a,Xi+4a.a,X,—2a5=0.
Hence X, is an even integer. This implies that a, is even. But this is a con-
tradiction. This completes the proof of Theorem 1.

Theorem 2. There are only two elliptic curves which have three rational
points of order 2, and they have no other rational point of finite order except zero.

Proof. Let (1) be a global minimal model of such a curve, then by the
Remark we may assume a,=a,=0, i.e.,

( 7 ) y2+a1xy+x3+azx2+a4x =0,
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then we have
(8) A = a2{(ai—4a,)’— 2%} = £ p™.
By the assumption, the equation (a,x)*—4(x°+-a,x’+a,x)=0 has three rational
roots. Hence we get
(a3—4a,)’—2%, = r* with some rcQ.
By (8) we get r=p”. Hence we have
(9) 2'a, = (ai—4a,—p")(ai—4a,+p") .

If we replace y by y+ax, then a, is replaced by a,+2a. By (8) we see that q,
is odd, so we can take a, to be an arbitrary odd integer.

(I) The case n=0
We get A=aj and 2°a,=(ai—4a,—1)(ai—4a,11), hence we have
ai—4a,—1 = 432p*
ai—4a,+1 = £32p"+2 = £2pf
If we suppose >0, then we get +16p+1=41. But this is impossible.
Hence, by 4-16+ 1= p#, we get p=17. 'Then we get the curve 10 by taking
a,=1.
(IT) The case n=1
First, we shall consider the case p=1 mod 4, then by (9) we have
ai—4a,—p = +32p"
ai—4a,+p = +32p"+2p = £2pP
If =0, then +164-p=-+1. Hence weget p=17 and a,—=—1 by taking a,=1.
But we can easily see that this curve is isomorphic to the curve 10 over Q. If
a=1, then +16+1=p#. Hence we get p=17, the curve 11 by taking a,=1.
If «>2, then +16p®*41==+1. But this is impossible.
Next, we shall consider the case p=3 mod 4, then by (9) we have
ai—4a,—p = +2p°
ai—4a,+p = +2p°+2p = +-32pP .
By the same method as above, we obtain =2 and p=17. But this contradicts

with p=3 mod 4.

(III) The case n>2
Put a,=+p" If a>3, then by (9) ai—44,=0 mod p>. We may assume a,=0
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mod p, hence a,=0 mod p°. Therefore by (9) 2,=0 mod p*. But these imply
that (7) is not a minimal model. Hence we get 0<a<<2. If wesuppose a=0,
then by (9) we get

+2° = (ai—4c,—p") (al—4a,+p") .
If p=3 mod 4 and # is odd, then we get

ai—4a,—p" = 42

ai—4a,+p" = +2+2p" = +32.

Hence we get 2p"=-+32+2. But this contradicts with n>2. If p=1 mod 4
or 7 is even, then we get

at—4a,—p" = 432
ai—4a,+p" = £3242p" = £2

Hence we get 2p”= +32+2. But this also contradicts with n>2. If we suppose
a>1, then by (9) we get +2°p*=(a}—4a,—p")(a?—4a,+p"). Hence we have
@ —4a,=0 mod p, and we may assume a=2. If p=1 mod 4 or = is even, then
we gei

ai—4a,—p" = +32p

ai—4a,+p" = +32p+2p" = £2p.
Hence we get n=2, p=17, a,—=64, and a,=—17* by taking a,=1. But we can
easily see that this curve is isomorphic to the the curve 11 over Q. If p=3
mod 4 and 7 is odd, then we get

ai—4a,—p" = £2p
a—4a,+p" = £32p.
This implies p=17. But this is a contradiction.

Since these curves have a good reduction at p for p=3 and p=>5, the latter
half of Theorem is obvious by Lemma 2.

Theorem 3. There are three elliptic curves which have rational points of
order 4. Each of them has only four rational points of finite order.

Proof. Let E be such a curve and (1) be a global minimal model of E, then
by Lemma 1 we may assume that a,=0 and ¢ =(0, 0) is 2 point of order 4. Hence
a,+0. Moreover, after the transformation y——y (if necessary), we assume
a,>0. Put —2¢=(x, y,). Then we have

(_a4/a3)2+a1(—‘a4/a3)+az = —X,
Yo = (_a4/a3)xo O
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Since (x,, y,) is a point of order 2, we get

2y,+ax,+a,=0.

Hence

_2(_‘14/‘13) {(_a4/a3)2+a1(_a4/a3)+a2} —a, {(_a4/a3)2+ al(_a4./a3)
+a2}+d3 =0.

This shows that 24,/a, is an integer. Put

(10) 2a, = aa,,

then

(11) (a/—a,)(a,*—2a,a/+4a,)+4a,= 0 .
Put

a/—a,=a

(12) a4/2—2a1a4,+4a2 = 18 )
then

(13) al+4a,=0

(14) ai—4a,= o’—f.

Hence we get

A = a3{(a’— BY B/++2a'B—27(—aB[4)'+N—aBl4) a(c’—B)}
= a3 (a’+48)/16 .

(I) The case a, is even
By (12), 8 is divisible by 4. Put 8=4/3’, then we have

A = a3B (a*+168") = xp™.
First, we shall consider the cases 8’= =1, then by (13) we get a,=+«a. Hence
A = aj(aj+16) = +p™.

If a, is divisible by p, then a3+ 16= 1. But this is impossible. Hence a,— +1.
Therefore we may assume a,=1 and a,=1. Hence we get the curve 12. Next,
we shall consider the cases 8'=+p" with n>0. If a==1, then by (13)
(3’=Fa, Hence we get A=a3(1F16a,), so 1F16a,=+1. But this is impos-
sible. Hence we may assume ¢=0 mod p and @,=0 mod p, then by (12) we
have a/=0 mod p. If B8 is divisible by p? then by (12) we see that a, is divi-
sible by p>. Hence we get ;=0 mod p° by (13) and a,=0mod p* by (10). But
this contradicts with the fact that (1) is a minimal model of E. Hence we get
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B'==%p and a=0 mod p, so
A = aip*a’£16p) = £p”.

By (13) we may put = p™ with m’>0, then we get p*™ '+16==1, so
p=17, the curve 13 by taking a,=17.

(ITI) The case a, is odd

By (10), (12), (13), we see that a, is even and « is divisible by 8. Put a,=2a,’
and a¢=8a’, then we have

A = a/*B'(16a*+B) = +p™.

First, we shall consider the cases 8= +1. By looking at (14) modulo 4 we have
B=—1, then by (13) a’=a,’. Hence we have

A= a/(16a"—1) = £p™.

Therefore a, is not divisible by p, so we assume a;/=1. But this is impossible.
Next, we shall consider the case 8=0mod p. If a’==+1, then 8= Fa,.
Hence we have

A=a3(16Fa)) = £p™.

Hence we get a,/=p=17, the curve 14. If « is divisible by p, then we may
assume that 8 is not divisible by p%. For if 8 is divisible by p? then we get
a/=0 mod p by (12), a,=0 mod p* by (12), ;=0 mod p° by (13) and a,=0 mod
p* by (10) by taking a,=p. But this contradicts with the fact that (1) is a mini-
mal model of E. Hence we have 3=+ p and A=pa,*(16p™ + p) with m’ >2.
Hence we have

16p™ 11 =1.

But this is impossible.
The latter half of Theorem 3 is immediate by the same reasoning as in the
proof of Theorem 2.

Theorem 4. There are only two elliptic curves which have rational points o,
order 5, and then they have no rational point of order 2.

Proof. Let E be such a curve and (1) be a global minimal model of E.
By the lemma 1 we may assume @,=0 and ¢=(0, 0) be a point on (1) of order 5.
Hence a,#+0 and —t=(0, —a,). Put —2t=(x,, y,), then x, and y, are integers,
and we have

(—aay’+a(—aja)+a,= —x,.

Hence a,/a, is an integer. Put a,=a,a,/, then we have
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A = a}{(a?—4a,)(a;"—a.a/+a,)—8ay2a, —a,)’—27a3+ 9a,(a} — 4a,) (2a, —a,)}
= &p™.

Put 2t=(x,, y,), then ax,+a,=—(y,+y,). Let E(2) be the reduction of E at
2, then E(2) has just five GF(2)-rational points and they are the reductions of
{nt|n=1,2,3,4,5}. Since tmod2=(0,0)and —¢ mod 2=(0, 1), we have
either 2¢ mod 2=(1, 0), —2¢ mod 2=(1,1) or 2¢ mod 2=(1, 1), —2¢ mod 2=
(1,0). In either case, we get y,+y,/=1 mod 2, i.e., ax,+a,=1 mod 2. Since
a, and x, are odd, @, must be even. Hence we may assume a,=0. Hence
we can assume that

(15) y+ay+x+ax’+aax =0
is a global minimal model of E; and we have
A = a3{16a3(a,+a3)—64a,ai—27a5—72a,a,a,} ,

and t=(0, 0), —t = (0, —a,), —2t=(—(a,+43), a,(a,+al)).

After a suitable translation, if necessary, we may assume that a, and a,+aj are
positive. By the assumption, the tangent of E at the point —2t intersects E at
the point —z. Hence we get

(16) a(a,+ai)+a, _  3x34-2ax4-aa, _ _ 3(a,+ai)’—2a,(a,+aj)+aga,
—(a,+ai) 2y,ta, 2“4(“2"‘43)""‘13 .

By the same reasoning as before this js an integer. Hence a,+ a3 divides a,. Put
a;=ay'(a,+a}), then we have by (16)

— 3(a2+a3)_2a2+ a3,a4

a,+a)
o 2a,+ay

Hence

(17) a,+a; = a;/(2a,+a;) .
First we shall consider the case a,/=1. By (17), a,+a=2a,+1=a,, hence we
get
2a,= a,—1
4a, = 4a,—(2a,)’ = —a3+6a,—1,
and consequently
A = a3{(—a3+-6a,—1) a,—8ay(a;—1)*—27a3—9a (a,— 1) (— a3+ 6a,—1)}
= a3(a3—1la,—1) = xp™.

Therefore we have a,=1 or a}—11a,—1=+1. Hence we get a,—1, 11, curves

15,16. Next, we shall consider the case a/=p™ with #’>0. Then by (17) we
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have a,=(a,+a})a/=a/*(2a,+a/). If we suppose 2a,+a/=0mod p, then
a,=0 mod p. Hence by (17) we get a,=0 mod p* and ¢,=0 mod p*>. But this
contradicts with the fact that (15) is a minimal model of E. Hence we get
2a,+a/=1, i.e., a/*=a, and a,+a3=a;, so
24, = —a/+1
4a, = —a,*+6a,;—1.
Hence we have
A = a/'{(—a*+6a/—1)a/—8a/(—a;+1)°—27a; ' —9a/*(—a;*+6a,—1)
(—a,/+1)}
= a/(—a/ —11a/+1) = xp™.
Therefore we have —a;*—11a,/+1==+1. So a/=—11. But this contradicts
with a,’>0.
The latter half of Theorem 4 is immediate by the same reasoning as in the
proof of Theorem 1.

3. Determination of the Galois group

Let E be an elliptic curve defined over Q. For a prime number /, put
E,= {teE|lt=0}.

Let Q(E,) be the field generated by the coordinates of the points of E,. then the
field Q(E,) is a normal extension of @ of finite degree. Put

G, = Gadl(Q(E))/Q) .

Taking a basis {t,, ¢,} of E,, we get a faithful representation R, of the group G,

in GL(2, Z/1Z);
ty t,
( ) = R,(o-)(t ) forany o€G,;.

t2

If the invariant of E is not an integer, then it is known that G, is isomorphic to
GL(2, Z/I1Z) for almost all / (see the theorem of Serre [4] IV-20). Moreover
in some cases, following Serre [4] IV-20, we can determine the (finite) set of I’s
with R/(G,)+GL(2, Z/|Z).

Lemma 3. If R/(G)) satisfies the next three conditions a), b), c), then
R,/(G)) s equal to GL(2, Z|I1Z).
a) detR,(G)=(Z/iZ)".

b) R,(G,) contatins the element <(1) D with respect to a suitable basis of E,.
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c) E, is irreducible as G ,-module.
Proof. See the lemma 2 of Serre [4] IV-20.

Theorem 5. Let E be one of the curves 1,2, 6.7, 10, 11, 12, 13, 14, 15, 16,
in the table at the end of the paper. If E has a Q-rational point of order I, (I,=2, 3,
or 5), then R,(G,)=GL(2, Z|I1Z) for every prime 11,

Proof. We shall consider the case where E is the curve 16. This is the case
dealt with in Shimura [6]. In this case we have

E: y+11y+x*—14x°+55x = 0
J=—22.31%11"°,

Let / be a prime number not equal to 5, then R,(G,) satisfies the condition b) of
Lemma 3 by the lemma 1 of Serre [4] IV-20. The condition ) is equivalent to
the fact that Q(E,) contains a primitive /-th root of unity, which is well-known.
We shall show that the condition ¢) is satisfied for such /. Assume this is not the
case. Then taking a suitable basis {t,, ¢,}, we have

RIG,)C {(g j)eGL(z, Z/IZ}
Put

4= <t2>
E'=E|A,

then E’ is an elliptic curve defined over @ and has rational points of order 5.
Let X be the canonical isogeny of degree / from E to E’, then E’ is not isomor-
phic to E, because E has no complex multiplication. By Serre-Tate [5], E has
a conductor of 11-power. Hence E’ must be the curve 15. By Vélu [7], we
see that there is an isogeny A\’ of degree 5 from the curve 15 to E, i.e., we get

A b %
E— FE —E.
Then Ao\ is an endomorphism of E and its degree is 5. But this is impossible
since E has no complex multiplication.
By Vélu [7], E; is completely reducible as Gy-module. This shows that
Ry(G,) is isomorphic to (Z/5Z)* and Q(E;)=Q(e*"*").
For the other curves we can prove the theorem by the same method as above,
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TABLE y?+axy+asy+x2+ax?+ax=0

a a3 a, a 4 N J type of F
1 0 1 -1 1 | —-19| 19 215.19-1 a cyclic group of order 3
2 0 1 —4 2 37| 37 215.53.371 »
3 0 1 0 0 -3 33 0 »
4 0 1 -9 -3 | -%& 3 —215.3.538 »
5 0 3 0 0 | —37 3 0 »
6 0 19 —16 76 | —193 19 —218.73.19-3 »
7 0 37 —25 185 373| 37 215.53.73.37 -3 »
8 0 9 -9 27 | -3 33 0 ”
9 0 9 0 0 | —3u 3 0 »
10 1 0 -8 17 172| 17 33.73.133.17 2 (2, 2)-type
11 1 0 —140 173 178 172 | 33.73.133.17-2 »
12 1 1 1 0 17 | 17 33.118.171 a cyclic group of order 4
13 17 173 —17 173 177 172 33.118.17-1 »
14 1 34 —20 153 | —17¢| 17 —33.113.17¢ ”
15 0 1 1 0 | —-11| 11 —212.11-1 a cyclic group of order 5
16 0 11 —14 55 | —115| 11 —212.313.11-5 »

There are some isogenies connecting these curves, which are eaéily computed
by the method of Vélu [8]. Let E“be the curve g on the table, then we obtain
the isogenies of degree 2

E ~E10 E12/<(__1 0)>, E14 EIO E14/<<17 123)>

E®~E" = E“[K(17, —17)>,
the isogenies of degree 3

E'~E* = B0, 0)), E'~E' = E*(0, 0)),
the isogeny of degree 4

B ~E* = B0, 0),
and the isogeny of degree 5

E"~E" = E*/(0, 0)>.

ReMARK. There are some other isogenies of degree 3 among the curves E®,
E*, E°, E°, E°. But we exclude them, since we have no need for them to com-
plete the proof of the theorem 5.
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