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1. Introduction

Let L be an oriented link in a 3-manifold M. A Seifert surface S for L is
a compact oriented surface, without closed components, such that dS=L.
%(L) denotes the maximal Euler characteristic of all Seifert surfaces for L. L
is a fibered link if the exterior E(L) of L is a surface bundle over S1 such that a
Seifert surface represents a fiber. An oriented surface F in M is a fiber surface
if dF is a fibered link, and FΓlE(dF) is a fiber. Let D be a disk in M, which
intersects L in two points of opposite orientations, L' the image of L after ±1
surgery along QD. We say that L' is obtained from L by a crossing change, and
D (3D resp.) is called the crossing disk (crossing link resp.). For the links in the
3-sρhere S3, Scharlemann-Thompson [14] proved that if L' is obtained from
L by a single crossing change along a crossing disk D, and %(L')>%(L), then
there is a minimal genus Seifert surface S for L such that S is a plumbing of a
surface F and a Hopf band A with F Π D=φ, and ^4 Γl D an essential arc in A.
See Figure 1.1.

D

Fig. 1.1
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In this paper, firstly, we show that a similar result holds for links in rational

homology 3-sρheres if L is a fibered link.

Theorem 1. Let L be a fibered link in a rational homology Z-sphere M.

Suppose that L' is obtained from L by a single crossing change along a crossing

disk D, and that %(L')>%(£). Then there is a minimal genus Seifert surface

Sfor L such that S is a plumbing of a surface F in M and a Hopf band A with

F Π D=φ, and A Π D an essential arc in A.

REMARK. We note that S and F are fiber surfaces (Lemma 2.2, [6, Theorem

7.4]).

Let SQ be the image of S in Theorem 1 after the ± 1 surgery along 3D, and

S1=cl(S—A). Then 50, Sj are Seifert surfaces for L' (Figure 1.2). In section

4, we study the surfaces S09 Sλ.

Theorem 2. Let S0> Sl be as above. Then

(1) SQ is a pre-fiber surface,

(2) ί/%(L')>%(!/)+2 (i.e. S1 is not a minimal genus Seifert surface), then Sλ

is also a pre-fiber surface.

Fig. 1.2

For the definition of pre-fiber surface, see section 4. We prove Theorem

2 in sections 4,5, and 6. In section 7, we give a characterization of a class of pre-

fiber surfaces in case when they bound fibered links. For the statement of the

result, we prepare some notations. Let 2W be the genus n(>l) Seifert surface

for a trivial knot in S3 as in Figure 1.3. For the precise definition of ΣΛ, see

section 7. Then we have;

Theorem 3. Suppose that a surface Sλ in a rational homology 3-sphere M

is a pre-fiber surface of type 1 with L—3St a fibered link. Then S1 is a connected

sum of a fiber surface for L and 2Λ, where n~(X(L)—X(S1))/2. Moreover a

pair of canonical compressing disks for S1 corresponds to thot of ΣΛ.
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Fig. 1.3

Theorem 2 shows that we can get a pre-fiber surface from a fiber surface S
by adding a twist along a properly embedded arc in S, or by removing a band

from S (Figure 1.2). In section 8, we study the converse to this. Namely,

we give a characterization of the arcs in a pre-fiber surface S* the twists along

which produce fiber surfaces, and a characterization of the bands for S* to

produce fiber surfaces in case when the ambient manifold is a rational homology

3-sphere. See the remarks of section 8.
We say that a knot in a 3-manifold M is trivial if it bounds a non-singular

disk in M. Suppose that a knot K is contractible in M. Then it is easy to see

that K is tranformed into a trivial knot by a finite number of crossing changes.
The unknotting number u(K) is the minimal number of crossing changes that are

necessary to transform K into a trivial knot. Let Σn, /+, /_ (cΣ«) be as in

Figure 1.3. Then, as consequences of the above results, we have;

Corollary 1. A genus g (> 1) surface S in S3 is a fiber surface with dS an

unknotting number 1 knot if and only if S is obtained from Σ^ by adding a twist

along an arc a (C Σ^) such that a intersects 1+ and /_ transversely in one points.

Corollary 2. A genus g (>1) surface S in S3 is a fiber surface with dS an
unknotting number 1 knot if and only if S is obtained from Σ^-i by adding a band

satisfying the properties (1), (2) of Proposition 8.2, and then plumbing a Hopf band

along b.
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REMARK. Quach [9] proved that if ^4(ί)(Φl) is an Alexander polynomial
with leading coefficient ±1, then there exists an unknotting number 1, fibered

knot K in S3 with Δκ(i)=A(t), where Δκ(t) denotes the Alexander polynomial

of K. The result implies that, for each £(>!), there are infinitely many un-

knotting number 1, fibered knots of genus g.

In section 9, by using Theorem 2, we study the rational homology 3 -spheres

containing unknotting number 1 fibered knots. We say that a 3-manifold is a

lens space if it admits a Heegaard splitting of genus 1 [6]. Then we have;

Theorem 4. If a rational homology 3 -sphere M contains an unknotting

number 1 fibered knot, then M is a lens space.

REMARK. Moreover we will show that, for each #(>!), every lens space

contains an unknotting unmber 1 fibered knot of genus g, and we will give the

list of lens spaces containing genus 1, unknotting number 1, fibered knots. We

note that there exist lens spaces which do not contain genus 1 fibered knots [7],

As an immediate consequence of Theorem 4, we have

Corollary 3. // an integral homology 3 -sphere Σ3 contains an unknotting

number 1 fibered knot, then Σ3 is homeomorphic to S3.

2. Preliminaries

Throughout this paper, we work in the piecewise linear category, all mani-

folds, including knots, links, and Seifert surfaces are oriented, and all submani-

folds are in general position unless otherwise specified. For the definitions

of standard terms of 3 -dimensional topology, knot and link theory, see [6],
and [10]. For a topological space J5, %B denotes the number of the compo-
nents of B. Let H be a subcomplex of a complex K. Then N(H\ K) denotes

a regular neighborhood of H in K. Let N be a manifold embedded in a mani-

fold M with dimN=dimM. Then FrMN denotes the frontier of N in M.

An arc a properly embedded in a surface S is inessential if it is rel 3 isotopic to

an arc in QS. If a is not inessential, then it is essential.

Let S be a surface properly embedded in a 3-manifold M. A disk D in

M is a compressing disk for S if DΓ\S=dD, and 3D is not contractible in S.

If there does not exist a compressing disk for S, then S is incompressible.

Let S{ be a surface with boundary in a 3-manifold M, (i=l, 2). Let 5, be

a 3-ball in Mf such that B^dSi is an arc, and 5,0*5, is a disk '(Figure 2.1).

Let h : QBl — > QB2 be an orientation reversing homeomorphism such that

h(QBl Π S^h(QB2 Π S2). Then (M1 - Int BJ U h (M2 - Int B2) is a connected sum

of Ml and M2, and is denoted by M^M2. The image of S^U S2 in M$M2 is

called a connected sum of S1 and S2.

A sutured manifold (M, γ) is a compact 3 -manifold M together with a set
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Fig. 2.1

<y(c3M) of mutually disjoint annuli A(j) and tori T(γ) [2]. In this paper, we

mainly treat the case of T(fy)=φ. The core curves of A(<y), ί(γ), are the sutures.
Every component of R(γ) = QM — Int γ is oriented, and Λ+(γ)(Jf2^(fy)resp.)
denotes the union of the components whose normal vector point of (into resp.)

M. Moreover the orientation of jR(γ) must be coherent with respect to s(γ).
We say that a sutured manifold (M, γ) is a product sutured manifold if (M, γ) is

homeomorphic to (Fxl, QFxI) with R+(γ)=Fx {!}, where F is a surface, and
/ is the unit interval [0, 1].

Let (M, γ) be a sutrued manifold. A properly embedded annulus Am M

is a product annulus if one boundary component of A is contained in R+(γ), and
the other is contained in Λ_(γ). A properly embedded disk D in M is a product

disk if QDftj consists of two essential arcs in A(j). A product decomposition
(My γ)-»(ΛΓ, γ') is a sutured manifold decomposition [2] along a product disk.
See Figure 2.2.

D

Fig. 2.2

Let L be a link in a 3-manifold M. The exterior E(L) of L is the closure of

the complement of N(L\ M). A meridian loop for L is a non-contractible simple
loop in QE(L)y which bounds a disk in N(L; M). Let S be a Seifert surface for

L. Then we often abbreviate S Γl #(£) to S. S is a minimal genus Seifert

surface if X(5)=X(L).

Let S be a Seifert surface for L. Then (ΛΓ, δ)=(N(S; E(L))9 N(dS] dE(L)))
has a product sutured manifold structure (Sxl, QSxI). (N, 8) is called the

sutured manifold obtained from S. Then the sutured manifold (Nc, Sc) =
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(cl(E(L)—N)y cl(dE(L)—S)) with R+(8c)=R-(δ) is the complementary sutured

manifold for S. We say that a surface S in a 3-manifold is a fiber surface, if

95 is a fibered link with 5 a fiber. It is easy to see that S is a fiber surface

if and only if the complementary sutured manifold for S is a product sutured

manifold.

Then we easily see;

Lemma 2.1. Every fiber surface in a connected ^-manifold is connected.

Let L be a link with a Seifert surface in a rational homology 3-sphere. It

is easy to see that Seifert surfaces for L determine a unique non trivial element

of H2(E(L)y dE(L)), so that the cyclic covering space for L is well defined.

Then the next lemma follows from the fact that the infinite cyclic covering space

of a fibered link is homeomorphic to (surface) X R, and details of the proof are left

to the reader.

Lemma 2.2. For a surface S in a rational homology 3 -sphere, with L=dS

a fibered link, the following three conditions are equivalent.

(1) Sis a fiber surface.

(2) S is a minimal genus Seifert surf ace for L.

(3) S is incompressible.

Let 5 be a fiber surface. Then there is an orientation preserving homeo-

morphism φ of S such that φ |as=idas, and E(L) is homeomorphic to 5x7/~,

where (x, l)~(φ(x), 0) (x^S). φ is called a monodromy map. QSxI has

an /-bundle structure such that each fiber projects to a meridian loop of
QE(L). Let p: SxI-*E(L) be a natural map, D(c5χ7) a product disk for

the product sutured manifold (5x7,35x7) such that each component of

87)Π (95x7) is a fiber. Then the 2-complex O=p(D) is called a projected

product disk (or pp disk for short). For the pp disk Π> 9-D> 9+D denotes
p(D Π (S X {0})), p(D ΓΊ (S X {1})) respectively. Suppose that there is an ambient

Fig. 2.3



FlBERED LINKS AND UNKNOTTING OPERATIONS 705

isotopy ft for Sxl such that /0=id,/,(!>) is a product disk such that dft(D)Π

(QSxI) consists of fibers of dS X /. Then we say that the pp disk Ώ'=p(fι(D))
is isotopic to Π by an isotopy as a pp disk.

EXAMPLE 2.3. A Hopf band A is a ±1 twisted unknotted annulus in S3

(Figure 2.3). A is a fiber surface, and a monodromy map for A is a right or
left hand Dehn twist along the core curve of A.

EXAMPLE 2.4. The genus 0 surface A* of Figure 2.4 is a connected sum
of two Hopf bands, and hence, by [3] or [13], is a fiber surface.

Fig. 2.4

3. Theorem 1

In this section, we prove Theorem 1 stated in section 1. We assume that
the reader is familiar with [5], and [14].

Let L, Z/, and D be as in Theorem 1. Let S be a minimal genus Seifert
surface for L in M. Let Lλ be the link obtained from L by splitting it as in
Figure 3.1, D1 the disk as in Figure 3.1, and Rl a minimal genus Seifert surface
for L! in E(dD^). By the arguments of the proof of [14, 1.4 Theorem], we may
suppose that R± intersects Dl in an arc aλ (Figure 3.2 (i)). Let R be the Seifert
surface for L obtained from Rλ by plumbing a Hopf band as in Figure 3.2 (ii).

Claim 3.0. If E(dD1 U LJ is not irreducible, then the conclusion of Theorem 1
holds.

Fig. 3.1
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(0
Fig. 3.2

Proof. Let P=D1ΠE(dDl\jLl). Then P is a disk with two holes, with
two boundary components lly 12 are meridian loops of Lt, and the rest boundary
component 73 is parallel to dD1 in DΓ Let Sλ be an essential 2-sphere in

S1 Π Pφ φ.Subclaim 1.

Proof. Assume that ASf

1(ΊP=φ. Then, by Figure 3.2, we may suppose
that *SΊ is embedded in E(QDl U £), and QDV U L is contained in a component
of M— Sλ. Since E(L) is irreducible, 5t bounds a 3-ball in £(8AUL), so that
Sλ bounds a 3-ball in E(dDl U Lλ), a contradiction.

Then we suppose that #(S1Γ\P) is minimal among all essential 2-spheres
in E(dDl U A). Let F(c5x) be an innermost disk, i.e. VΓ\P=QV. By the
minimality of #(*% Π P), we see that 3Γ is not contractible in P.

Subclaim 2. 87 ύ parallel to /3 m P.

Proof. Assume not. Then dV is parallel to lλ or /2. Let D* be the disk
in Dl such that 9D*=9F, and S2=V\JD*. S2 is a 2-sphere, and intersects
L! in one point. Then, by plumbing a Hopf band to Rλ in the right or left
side of D1 in Figure 3.2, we may suppose that S2Γ\L consists of one point.
This shows that a meridian loop for L is contractible in E(L), contradicting the
fact that L is a fibered link.

Subclaim 3. Rτ is of minimal genus in M.

Proof. Let D* be the disk in D1 such that dD*=QV, and S2=D* U V. By
Subclaim 2, S2 is a 2-sphere in M which intersects in Z/j in two points. Let Rf
be a minimal genus Seifert surface for L, in M. Since S^nAi consists of
two points, by applying cut and paste arguments on *S2, we may suppose that
S2Γ\R?=D1Γ\R* consists of an arc whose endpoints are S2 r\L^ This shows
that X(R1)>X(Rf). Clearly X(Rf)>X(Rl). Hence χ(Λ1)=(lί?), so that J^ is of
minimal genus in M.
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Subclaim 4. E(L^ is irreducible.

Proof. Assume not. Let S3 be an essential 2-sρhere in E(Lλ). Since Rλ

is incompressible (Subclaim 3), by using standard innermost disk arguments,
we may suppose that S3ΠRι=φ Hence we may suppose that S3f]L=φ.
It is easy to see that S3 is an essential 2-sphere in E(L), contradicting the irredu-
cibility of E(L).

By Subclaims 3 and 4, we see that Rλ is taut in terms of [2]. Hence, by
[2, Theorem 5.5] and the argument of the proof of [3, Theorem 1.1], we see that
E(L) posseses a taut foliation such that R is a leaf of the foliation. Hence R
is a minimal genus Seifert surface for L in M, and this completes the proof of
Claim 3.0.

By Claim 3.0, hereafter, we suppose that jB(9D1Ul/1) is irreducible. Then,
by the argument in the last paragraph of the proof of Claim 3.0, we see that
E(QDl U L) posseses a taut foliation such that R is a leaf of the foliation, so that
E(dDλ\jL) is irreducible, and R is a minimal genus Seifert sufrace for L in
E(QD^). Then we have the following two cases.

Case 1. E(L) is R^-atoroidal.

If R is a minimal genus Seifert surface for // in M, then we have the conclu-
sion of Theorem 1. Suppose that R is not of minimal genus in M. Then by
[5, Theorem 1.8] or [12, 5.1 Theorem], and by the arguments of the proof of
[14, 1.14 Theorem], we see that the surface R* obtained from R by cutting along
aλ is of minimal genus in M (Figure 3.3 (i)). Hence we see that the Seifert
surface S' for L' obtained from Λ* by removing the Hopf band is of minimal
genus in M (Figure 3.3 (ϋ)). We note that X(S') (=X(L')) = X(R) + 2.
Since X(L')>X(L) (i.e. %(L')>%(L)+2), this.shows that R is a minimal genus
Seifert surface for L in M, a contradiction.

sf

Fig. 3.3

Case 2. E(L) is not R^Dl-atoroidaL
Since E(L) is not jRdI?1-atoroidal, there is an incompressible, non-boundary

parallel torus T in E(QDl U L) with the following properties.
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(3.1) T separates E(QD^ into Vl and V2 with QE(QDl)c:Vί, and Rd V2, and
(3.2) i*: H,( T) -> fli( FΊ) is injective.
Let 7Ί, T"2 be incompressible, non-boundary parallel tori satisfying the

above conditions (3.1), (3.2). We say that Tl<T2 if 7\ is isotopic to T\ such
that TίΠTHφ, and V1C.V2, where F1 (F2 resp.) denotes the closure of the
component of E(L)—T{ (E(L)—T2 resp.) which contains dD^ Clearly < is an
order on the tori with the above properties (3.1), (3.2). Then we suppose that
T is maximal with respect to the order.

Claim 3.1. If T is incompressible in E(L), then R is a minimal genus Seifert
surface for L in M.

Proof. Since E(L) is irreducible, and S is incompressible, by using stan-
dard innermost disk arguments, we may suppose that T intersects S in essential
loops, so that each component of TΓ\NC is an annulus, where (Nc, </) is the
complementary sutured manifold for S in M. Since (Nc, γc) is a product
sutured manifold, by [15, Corollary 3.2], we may suppose, by moving T by an
ambient isotopy, that each component of T Π Nc is a product annulus.

Since T is incompressible, and T Π R=φ, we may suppose that T intersects
Dl in essential loops in the annulus cl(Dl—N(al\ DJ). Suppose that some com-
ponent of T Π Dl is contractible in T. Then, by using cut and paste arguments,
we see that dD^^ bounds a disk in E(L), contradicting the fact that E^D^L) is
irreducible. Hence we see that dDλ is ambient isotopic to an essential loop / on
T. Then, by the above, we may suppose that either / is ambient isotopic to a
component of T Π S or each component of / {\NC runs from R~(7C) to R+(γc).
Then since lk(l, L)=lk(dD1, L)=Q, we see that / is ambient isotopic to a com-
ponent of TftS. Hence we may suppose that.8D1nS=φ. This shows that
%(5)<%(Λ). Clearly %(5)>%(Λ). Hence %(S)=%(jR), and R is a minimal
genus Seifert surface for L in M.

Claim 3.2. // T is compressible in E(L)} then T bounds a solid torus in E(L).

Proof. Since E(L) is irreducible and T separates E(L\ we see that T
bounds either a solid torus or a 3-manifold homeomorphic to the exterior of a
non-trivial knot in S3 such that the boundary of the compressing disk is a
meridian loop. Assume that T bounds the exterior E of a non-trivial knot with
a compressing disk C for T such that 9C is a meridian loop for E. Then
QDλc:E. Then B=E \JN(C; E(L)) is a 3-ball such that dD^B, contradicting
the irreducibility of E(QD1 U L).

Claim 3.3. If T is compressible in E(L), then R is a minimal genus Seifert
surface for L in M.

Proof. Assume that R is not a minimal genus Seifert surface for L in M.
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By Claim 3.2, T bonuds a solid torus τ such that QD^τ. Since E^dD^L) is

irreducible, and T is incompressible in E(dD1 U L), we may suppose that T

intersects D1 in essential loops in the annulus Dl—N(a±\ D^). By the argument

of the second paragraph of the proof of Claim 3.1, we see that every component

of T Π Dj is an essential loop in T. Then QD1 is ambient isotopic to an essential

loop / on T.

Let m be an essential simple loop on T. Then M(m) denotes the manifold

obtained from D2 X Sl and M — Int τ by identifying their boundaries by a homeo-

morphism which takes 9(D2 Xpt.) to m. Clearly M(m) is obtained from N by

doing a Dehn surgery along the core curve c of r. Then R(nί) denotes the

image of R in M(m). Let mQ be a simple loop on T such that M(m0)=M, and
R(m0)=R.

Subclaim 1. 77^ absolute value of the intersection number of mQ and I in T

is greater than one.

Proof. Assume that mQ does not intersect /, i.e. m0 and / are parallel.
Then / bounds a disk in r, contradicting the fact that E(dD1 U L) is irreducible.

Assume that m0 intersects / in one point. Then / is isotopic to c in r, con-
tradicting the fact that T is not boundary parallel in E(dDl U L).

Let /* be a simple loop in T intersecting / in one point. By Subclaim 1, we
see that M is homeomorphic to the connected sum of M(/*) and a non-trivial

lens space Ln (Figure 3.4).
Since T is incompressible, and E(dDl \JL) is irreducible, E(c\jL)

(^E(L) — Intr) is irreducible. By the maximality of 71, it is easy to see that

E(L) is Λc-actoroidal. By Subcalim 1, / is not ambient isotopic to m0. Since

R(m0) is not of minimal genus, by [5, Theorem 1.8] or [12, 5.1 Theorem], we see

that R(Γ) is taut, so that of minimal genus.
Let JR* be the image of #* (Figure 3.3 (i)) in Λf(/*). Then;

Subclaim 2. R* is a minimal genus Seίfert surface in M(/*).

Proof. The idea of the following proof can be found in [14]. Let (NQ, δ°),

(N1, SO, (N*, δ*) be the complementary sutured manifolds for R(=R(m0)), #(/),
R(l*) respectively. Let S2 be a 2-sphere in M(l) such that S2 (Ί (M—Int r) is a

disk whose boundary is /, and intersecting R(ΐ) in an essential arc (Figure 3.4 (i)).

Then the image of S2 in N1 is a product disk 3) in (ΛΓ7, δ7), and, by doing the

product decomposition along 3), we get a sutured manifold (ΛΓ, δ), which is

homeomorphic to the complementary sutured manifold for R*. Since R(l) is

taut, (N1, Sl)is taut. Hence, by [2, Lemma 3.12] or [12, 4.2 Lemma], (N, S) is

taut, so that R* is of minimal genus.

Since M=M(l*)#Ln( Figure 3.4 (ii)), Subclaim 2 shows that #* of Figure
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Fig. 3.4

3.3 (i) is of minimal genus. Hence S' of Figure 3.3 (ii) is of minimal genus.

We note that X(L')(=X(S'))=X(R)+2, and χ(L)<%(£,'), i.e. %(L)+2<%(L').
This shows that R is a minimal genus Seifert surface for L in M, a contradiction.

This completes the proof of Theorem 1.

4. Fiber surfaces and pre-fiber surfaces

In this seation, we give the definition of pre-fiber surfaces, and show that
if there is a fiber surface F whose monodromy has a certain property, then we can
get a pre-fiber surface by removing a band from F (Proposition 4.5). And, by
using the result, we prove Theorem 2(1).

Let S be a connected surface in a 3-manifold, and (N\ 8C) the complemen-
tary sutured manifold for S. S is a pre-fiber surface, if there are pairwise dis-
joint compressing disks D+, D~ for R+(8C), R^(8C) respectively in Nc such that
(Ny 8C) is homeomorphic to the product sutured manifold, where N is obtained
from Nc by doing a surgery along D+ U D~~. Then S has two compressing disks
D+y D- such that Int Z>+Πlnt D~=φy D+Γ\Nc=D+y D~Γ\NC=D". We say
that D+

y Ό" is a pair of canonical compressing disks for a pre-fiber surface S.

REMARK. We note that N(dD+y D+) lies in the — side of S.

We say that a pre-fiber surface S is of type 1 (type 2 resp.) if dD+ is non-

separating (separating resp.) in R+(8C). It is easy to see that if S is of type 1, then

(Ncy 8C) is homeomorphic to (D^xS1 tyd+(S'xI) \\d_I?xS\ ΘS'x/), where S'
is a connected surface, \\ denotes a boundary connected sum, and d+ (rf_ resp.)
denotes a disk in S'x {1} (S'x {0} resp.).

EXAMPLE 4.1. Let T be a genus 1 Heegaard surface for a lens space [6], and
D2 a disk in T. Let S=T— IntD2. Then S is a pre-fiber surface of type 1.
In fact, the complementary sutured manifold for S is homeomorphic to (Z^x
Ql IΊ / Tfi \/ T\ h Γ)2 \/ C J ^ TV \/ 7\O PJ ( JLX X ./ ^ \\ L/ X *J , (jL/ X ./ ^.

Let ^4 be an unknotted, untwisted annulus in S3. Then -4 is a pre-fiber
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surface of type 2. In fact, the complementary sutured manifold for A is homeo-

morphic to (IPxS1, <y), where s(γ) consists of two essential loops in d(DzxS1)

which are contractible in D2 X S1.

The next proposition shows that pairs of canonical compressing disks for a

pre-fiber surface are unique.

Proposition 4.2. Let S be a pre-fiber surface, and D+, D", D+, D~ as above.

Let D+/, D~' be a pair of canonical compressing disks for S such that N(QD+/ D+')

(N(dD~' D-') resp.) lies in the — side (+sίde resp.} of S. Then D+'(D~' resp.) is

isotopic to D+ (D~ resp.) by an ambient isotopy of the Z-manifold respecting S.

For the proof of Proposition 4.2, we prepare two lemmas. Let (N, δ) be a

connected sutured manifold such that N is obtained from a (possibly discon-

nected) product sutured manifold (ΛΓ, δ') with N' irreducible by attaching a

1-handle along disks in Λ+(δ'), and δ is the image of δ'. Let D be the dual

core of the 1-handle. Then;

Lemma 4.3. Suppose that N' is disconnected. Let D1 be a compressing
disk for R+(^^. Then D1 is isotopic to D by an ambient isotopy of N respecting δ.

Proof. Since Nr is irreducible, N is irreducible. Hence, by using standard

innermost disk arguments, we may suppose that no component of DΓ\D1 is

a simple loop. Suppose that DΓ\D1=φ. Then QDλ bounds a disk D' in

R+(8r). Since Dl is a compressing disk, we see that Df contains a component of

N'f\ (\-handle), so that D1 is parallel to D. Suppose that D f l A ^ Φ Let

A(cDj) be an outermost disk, i.e. ΔΠ D=dΔΓ\ D=a an arc, andΔΠθA^β
an arc such that a\Jβ=QΔ. Let Δ' be the image of Δ in N'. Then 9Δ'c

Λ+(δ'), and 9Δ' bounds a disk D' in R+(S') such that Δ' is parallel to D'.

Hence we can remove a by moving D1 by an ambient isotopy of N respecting δ.

Then by the induction on #(D Π -DO, we have the conclusion.

Lemma 4.4. Let (N, δ), (N'9 δ') be as above. Suppose that Nr is con-

nected. Let Dλ be a compressing disk for R+(S) such that QDλ is non separating in

R+(δ). Then D1 is isotopic to D by an ambient isotopy of N respecting δ.

Proof. Let D1, D2 be the disks in R+(8') along which the 1-handle is

attached. We may suppose that no component of D Π Dl is a simple loop (see

the proof of Lemma 4.3). We see that if Dfl D\=φ> then we have the conclu-

sion (see the proof of Lemma 4.3). Suppose that DΓiD^φ. Let Δ(cDx) be

an outermost disk, and a=Δ Π D, /3=Δ Π 3A- Let Δ7 be the image of Δ in N'.

Without loss of generality, we may suppose that SΔ'Π D2—φ, and 9ΔTΊ.D1

consists of an arc α' parallel to a in Dλ. Let β' be the image of β in N'.

Then dΔ'=a'\Jβ', and 9Δ' bounds a disk D' in R+(8r) such that Δ' is parallel
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to D'. If D' does not contain D2 then we can move D1 by an isotopy to reduce
#(D Π A) Suppose that D' contains D2. Then trace the arc a=dD1—β from
one endpoint to the other. It is easy to see that there is a subarc α* of δί such
that a*Γ\D=8α*, the image of α* in N' is an arc contained in D', and the
endpoints of the image of α* is contained in 3D2 (Figure 4.1). This shows that,
by moving D1 by an isotopy, we can remove α*. Hence, by the induction on

>! Π D)y we have the conclusion.

or*

Fig. 4.1

Proof of Proposition 4.2. We prove Proposition 4.2 for D+ and D+/. The
other case is essentially the same. Let (Nc, δc), (Ny 8C) be as above. Then
we may suppoe that D+'=D+'Γ}NC is a disk. Let S1/2 be the surface in Nc

corresponding to 5x{l/2} (d(JV, δ')^(SχI, QSxI)). Then by using stan-
dard innermost disk arguments, we may suppose that D+ίΓ\S^2=φ. Then, by
Lemma 4.3 or Lemma 4.4, we see that D+/ is ambient isotopic to D+ in Nc.
This shows that D+/ is isotopic to D+ by an ambient isotopy respecting S.

This completes the proof of Proposition 4.2.

Let F be a fiber surface in a 3-manifold Λf, and φ: F->F a monodromy map.
Suppose that there is an arc a( C S) such that

(4.1) aΓ(φ(ά)=da=dφ(ά), and
(4.2) the components of N(Qφ(ά)\ φ(a)) lie in one side of a (Figure 4.2).

The purpose of this section is to prove

Proposition 4.5. Let F, φ, a be as above. If M is a rational homology

Fig. 4.2
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3-sphere, and a does not separate F, then the surface obtained from F by cutting

along a is a pre-fiber surface.

In case when a separates F, we have

Proposition 4.6. Let Fy φ, a be as above. If a separates F, then there /? a

separating 2-sphere S2 in M such that S2Γ\F~a,i.e. F is a connected sum of two
fiber surfaces.

Proof of Proposition 4.6. Suppose that a separates F into Fl and F2. Since

φ\tF—id&F, and φ is a homeomorphism, we see that φ(Fi) is rel 3 isotopic to Ft.

Hence, we may suppose that φ(a)=a. Take a pp disk Π such that 3_Π =

8+Π^fl. Then Π is topologically an annulus. Then, by adding two meridian

disks to Π> we get a 2-sphere S2 in M, which intersects F in a.

Assume that S2 does not separate M. Let M' be the 3-manifold obtained

from M by cutting along S2, and then capping off the boundary by two 3-cells.

We note that the complementary sutured manifold (ΛP, δ') for the discon-

nected surface F± U F2 in M' is homeomorphic to the sutured manifold obtained

from the complementary sutured manifold (N, 8) of F by decomposing along

the product disk Π Π N. Hence Fλ U F2 is a fiber surface in a connected 3-mani-
fold M', contradicting Lemma 2.1.

Proof of Proposition 4.5. Let al and a2 be the components of FrF N(a\ F).

We may suppose that aλΓ\φ(a) consists of two points, and a2Γ\φ(a)=φ. See

Figure 4.2. Let a be the subarc of al such that Qa=al{\φ(d), and l=(φ(ά)—
N(a\ F)) U ex. Then / is a simple loop on F.

Claim 4.1. There exists a disk D in M such that QD=ly and (Int D) Π F=a.

Proof. Let Π be a pp disk for F such that 8-Π=Λ, d+Ώ=φ(ά). We
note that Π Π dE(L) consists of two meridian loops. Let Dly D2 be meridian

disks for L such that 9D, U dD2= Π Π dE(L), and Q = D U Dl U D2. Then we
identify F Π E(L) to F. Let B be the rectangle in F such that one edge is a, two

edges are the components of φ(ά)Γ\N(af, F), and the last edge is a. Then

D= Π U B is topologically a disk such that dD=l, and D Π F=B U /. Then, by

deforming D by pushing B—(a U a) slightly to the —side of F, we get a disk D
satisfying the conclusion.

Let S1 be the surface obatined from F by cutting along α, and D as in

Claim 4.1. Then D Π Sλ=dD=/, and we have

Claim 4.2. No component of the surface obtained from S1 by doing a surgery
along D, is closed.

Proof. If / is non-separating in Sly then Claim 4.2 is clear. Hence assume

that / separates Sλ into S' and S" such that S' U D is a closed surface. Since
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a is non-separating in F, there is a simple loop m on F such that wn/=φ, and
m intersects a in one point. Then m intersects the closed surface Sr U D in one
point, contradicting the fact that M is a rational homology 3-sphere.

Let a' be the component of ΐrFN(φ(ά)\F] such that fl'Π/=φ. Then
we have

Claim 4.3. There is a properly embedded arc a" (C F) such that a!1 ΓΊ (a U a')
=φ, clf Π l=φ, and a\}a'{Ja" cuts off an annulus JL from F such that I is a core
ofJL.

Proof. Let F' be the component of the surface obtained from F by cutting
along αU o! such that /C-F'. Then / is parallel to the component of QF' which
meets a\Ja'. By Claim 4.2, there is a component /' of QF such that ΓdF'.

Let β be an arc in F' such that βΓ[l'=dβΓ\l' consists of one point, the other
endpoint of β is contained in /, and, Int/?n /— φ. Then FrF'N(β\J /; F') con-
sists of two components such that one is a simple loop parallel to /, and the
other is an arc α" properly embedded in F'. It is easy to see that a" satisfies
the conclusion.

Claim 4.4. Let a', a", JL be as in Claim 4.3. Then there is a 3-ball B3

in M such that B3 Π F—JL, and JL looks as in Figure 4.3 in B3.

Fig. 4.3

Proof. Let D, B be as in the proof of Claim 4.1. Then N(JL U D M) is a
3-ball, and JL, D looks as in Figure 4.4 in the 3-ball. Since D is obtained from

Fig. 4.4
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D by pushing B—(a\Jά) to the—side of F, it is easy to see that the conclu-
sion holds.

Let D, a', #", B3 be as in Claim 4.4. By Figure 4.3, we see that the com-
plementary sutured manifold (NC

F> SC

F) for F looks as in Figure 4.5 (i) in B3. Let
Π be a pp disk for F such that 9_Q]=0. Then we may suppose that ΠcJ33,

and Δ=Π Π Ne

F is a product disk for (Ne

F, δ£) (Figure 4.5 (i)). Let (N19 5̂  be
the product sutured manifold obtained from (NF, SC

F) by a product decomposi-

tion along Δ, D~, D+ the disks properly embedded in cl(E(L)—N^) as in Figure
4.5 (ii). Let S2 be the surface obtained from *SX by doing surgery along D. See
Figure 4.6. Finally, let (N19 δx) ((ΛΓί, δί) resp.) be the sutured manifold obtained
from Sj (the complementary sutured manifold for *Sj resp.).

Fig. 4.5

Fig. 4.6

Since Sl is obtained from Fby cutting along a, and (NF, 8C

F) is properly

isotopic in E(dF) to the sutured manifold obtained from F (note that F is a
fiber surface), we see that (Nίy SJ is ambient isotopic to (Λ^, δx) in M. Hence,

hereafter, we identify (Nί9 δt) to (N19 S ,̂ and we identify 5Ί to 5Ίx{l/2}
(C51X/=JV1). Then D+, D~ are compressing disks for R+(8i), R.(Sl) in

Ni^cl^QS^-NJ) respectively. Let TV* be the manifold obtained from Nl

by doing surgery along D+\JD~. Then (JV*, δί) is ambient isotopie to the

sutured manifold obtained from S2 (see Figure 4.6). This shows that Sj is a
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pre-fiber surface, and this completes the proof of Proposition 4.5.

As a consequence of Proposition 4.5, we have;

Proof of Theorem 2(1). Let D be the crossing disk for L. Then, by
Theorem 1, we see that S looks as in Figure 1.1. Then S0 looks as in Figure

4.7 (i). Let 5* be the surface obtained from SQ by adding a band b as in
Figure 4.7 (ii). We note that S0 is a plumbing of F and a fiber surface A* in S3

(Example 2.4). Hence S* is a fiber surface. Moreover, by Figure 4.7 (ii), it is
directly observed that the arc a in Figure 4.7 (ii) satisfies the assumptions of
Proposition 4.5 (cf. Figure 4.3). Hence, by Proposition 4.5, we see that SQ is

a pre-fiber surface.

dD

Fig. 4.7

Let SQ be as in Theorem 2, a0 as in Figure 1.2, and D+, D" a pair of
canonical compressing disks for the pre-fiber surface S0. Then the next lemma

will be used in section 6 to prove Proposition 6.1.

Lemma 4.7. Let SQ> a0ί D+, and D" be as above. Then 9Z)+, and dD"

are ambient isotopic in S0 to a loop intersecting #0 in one point.

Proof. Without loss of generality we may suppose that the Hopf band

A is attached to the + side of F (Figure 1.1). Then there is a compressing

disk D" for SQ such that dD" corresponds to the core curve of A, and

N(dD" D~) lies in the + side of SQ. Then by the proof of Theorem 2 (1)

(Figure 4.7), and the proof of Proposition 4.5 (Figures 4.5, 4.6), we see that D"

is a component of a pair of canonical comporesing disks for 50. Hence, by

Proposition 4.2, we see that dD" is ambient isotopic to a loop intersecting aQ in

one point. Let a(dS) be the arc correspondsing to a0 (Figure 4.8). Then it is

directly observed from Figure 4.8 that there is a pp disk Q such that d+\Σ\=a,

9+Πn9-D = 9β, and the components of N(da; 9_Π) lie in pairwise different

sides of a. Hence there is a monodromy map ψ: S—> S such that ty~\ά) Π 0=

da, and the components of N(dψ~\a)', ψ~\a)) lie in pairwise different sides of a.
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D

Fig. 4.8

Fig. 4.9

Let Π' be pp a disk such that 3_Π'=β> 3+Π'—Ψ(^) Roughly speaking,
D'=Ψ(D) Then Π' looks as in Figure 4.9 in the 3-ball B=N(a\ M).

Let b0 be an unknotted band, and Δ0 a disk in a 3-ball B0 as in Figure 4.10.

Let h: dB-*dB0 be a homeomorphism such that h(S ndB) = h(bQΓ\dB0), and

A(Π' Π 9B)=h(ΔQ Π 9#0) Then (M—Int 5) U hBQ=M, and it is easy to see that
(S— Int 5) U bQ=So and D+^(Π '—Int ΰ) U Δ0 is a compressing disk for S0 such

that N(dD+; D+) lies in the-side of S0.

By definition, it is easy to see that 9D+ is ambient isotopic to a loop
corresponding to ty(the core curve of A). Hence D+ is a component of a pair
of canonical compressing disks for S0. Hence, by Proposition 4.2, dD+ is

ambient isotopic to a loop intersecting aQ in one point.
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5. Propositions

In this section, we prove some technical propositions. For the statement

of the results, we give some definitions.

Let M be a compact 3 -manifold, μ a subsurface of QM. For a connected

surface S properly embedded in (M, μ), let

= max{0, -

When S is a union of connected surfaces S^ •••, Sn, let

Then, we define the function

x:H2(M, μ)-+Z

by

x(ά) = min{%_(5) | S is an embedded surface representing a}.

We say that S is worm minimizing if %_(S)=#([S]), where [5] denotes the

homology class in H2(M, μ) represented by S.

Let S' be a compact, connected surface with 35" Φφ, 70, 7j non separating

simple loops in S'. Let N=S'xIy S=dS'xI, and /0=-70x{0}, ζ= 7,x{l}

(ddN). Let ΛΓ0 be the manifold obtained from TV by attaching a 2-handle 5)0

along 70, W the manifold obtained from N by attaching two 2-handles along /0 U /i

We may regard that N is obtained from N0 by attaching a 2-handle 3)λ along 7X.

S0, δ denote the images of δ in N0, N respectively. Then (N, δ), (JV0, δ0), (̂ > S),

have mutually coherent sutured manifold structures. The purpose of this sec-

tion is to prove Propositions 5.1 and 5.2 below.

Proposition 5.1. Suppose that Λ±(δ) are not norm minimizing in H2(N, δ).

Then ΊQ is ambient isotopic to a loop disjoint from Ίλ.

REMARK. It is easily observed that if 70 and Ίλ are disjoint, and not parallel

then Jf?±(δ) is not norm minimizing in H2(N, δ)

Proposition 5.2. Suppose thai (N, δ) is a product sutured manifold. Then

70 is ambient isotopic to a loop intersecting Ίλ in one point.

As a consequence of Proposition 5.1, we have;

Corollary 5.4. Let S0 be a pre-fiber surface of type 1 in a rational homology

Z-sphere M, D+, D~ a pair of canonical compressing disks for S0, and S1 the surface

obtained from SQ by doing a surgery along D+. Suppose that X(L)>'X,(SQ)-}-2,

where L=dSQ. Then dD+ is ambient isotopic in S0 to a loop disjoint from 9Z>~,

and *SΊ is a pre-fiber surface, where D~ is a component of a pair of canonical com-
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pressing disks for Sλ.

The proof of Proposition 5.1 is done by using the outermost fork argu-
ment of M. Scharlemann [11]. And the proof of Proposition 5.2 is done by
using the Haken type argument of Casson-Gordon [1].

For the proof of the propositions, we prepare one lemma. Let (E, 6) be
a connected sutured manifold. Suppose that there is a non separating com-
pressing disk C for R+(S) such that (E, £) is a product sutured manifold, where
E is obtained from E by cutting along C, and 5 the image of € in E. Let A
be an incompressible product annulus in (E, 6). Then;

Lemma 5.3. A is ambient isotopic to an annulus disjoint from D by an
ambient isotopy of E respecting 8.

The proof of Lemma 5.3 is done by using the same arguments as that of
Lemma 4.4. Hence we omit it.

Proof of Proposition 5.1. Let F be a norm minimizing surface in (N, δ)

such that [F]=[R+(δ)]GH2(N9 §). Since [ί1]=[Λ+(5)], by piping the boundary
components of F, if necessary, we may suppose that dF= s(S) (Figure 5.1).

Fig. 5.1

The next claim will be used in the proof of Corollary 5.4.

Claim 5.0. N is irreducible.

Proof. Assume not. Let F be a surface in N corresponding to S' X {1/2},
and V19 V2 the closure of the components of N—F. Then (Vly V?) is a
Heegaard splitting of N in terms of [1]. Henee, by [1, Lemma 1.1], we see

that there is an essential 2-sρhere S^ in N such that V{ Π S1 consists of a disk.
Then it is easy to see that N is a connected sum of a lens space and a product
sutured manifold. But this contradicts the fact that R±(S) are not norm mini-
mizing.

Claim 5.1.

Proof. Assume that F Π^=φ. Then we can regard that FdNQ. Let
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D be the disk properly embedded in N0 such that Z)=(70X/)U(*fo core of <DQ).
Then the manifold N0 obtained by cutting NQ along D is homeomorphic to
R_(ΰ0)χl, where Λ_(S0)x{0} corresponds to /2_(δ0). Since NQ is irreducible,
by using standard innermost disk arguments, we may suppose that FΓ\D=φ.
Hence we may regard that FdN0. Then, by [15, Corollary 3.2], we see that

F is a parallel to Λ_(S0). Hence X(F)=X(S')+2(=X(J2.(S))), a contradiction.

We may suppose that F intersects 3)l in horizontal disks Ely ••-, En in this

order. Let F0 = cl(F— U , -ι £,-)> and A{ (i= 1, •••, n— 1) the annulus in dN0

bounded by 3£"t U dEi+1. Let D be as in the proof of Claim 5.1. We suppose
that $(dF0(~}dD) is minimal among all disks ambient isotopic to D in NQ. Let

a be the dual core of the 2-handle S)\. Then a is an arc in N such that
aΓidN=anΛ+(S)=9α. Since ί1 is norm minimizing, by [12, 3.5 Lemma b)],
we may suppose that F separates N into two components MQ9 MI such that
M0DΛ_(δ), M^R+fi). This shows that a intersects F an even number of

times and the signs of the intersections are alternately different on a. Hence we

have;

Claim 5.2. n is an even number, and the orientations on QElt ,dEn

induced from F0 are alternately different in dN0.

Claim 5.3. If n—2, then 70 is ambient isotopic to a loop disjoint from 7lβ

Proof. Let F1=(F—(El U E2)) U A Then X(F1)=X(F)-2. By the argu-
ment of the proof of Claim 5.1, we see that ί\ is parallel to Λ_(δ0). Hence,
there is a product annulus A in N0 such that AΓ\R+(ΰ0)=lι. Let D(dN0) be
as in the proof of Claim 5.1. Then D cuts (N0, S0) into a product sutured
manifold. Hence, by Lemmas 5.3, we may suppose that D and A are disjoint.
We note that A0=D Π N is the product annulus 70 X / in (ΛΓ, δ). Hence 70 X {1}
and /! are disjoint, and we have the conclusion.

By Claim 5.3, hereafter, we suppose that n>4 . Let D be as above. Then,
by using standard cut and paste arguments, we may suppose that DΓ[FQ con-

sists of arcs. We suppose that #(3DΓl/ι) is minimal among all disks ambient
isotopic to D in JV0. Then;

Claim 5.4. No component of DΓ\F0 is an inessential arc in F0.

Proof. Assume that a component β of D Π F0 is an inessential arc in F0.
Then there is a disk Δ0 in F0 such that FrFoΔ0=/3. By doing 3-comρression on
D along Δ0 in N0, we get two disks D', D" whose boundaries lie in Λ+(S0).
Since 3Z) is non separating in Λ+(S0), at least one of the disks, say D', is non
separating in ΛΓ

0. By Lemma 4.4, we see that D' is ambient isotopic to D. On



FlBERED LINKS AND UNKNOTTING OPERATIONS 721

the other hand, by moving D' by an ambient isotopy, we have #(9D'n/ι)<
# (3D Π /i), a contradiction.

We get a planar tree T by corresponding each component of D—F0 to a
vertex, and each component of D Π F0 to an edge. We regard that T is embed-
ded in D and each edge of T intersects D Π F0 in one point which is contained in
the corresponding component of DΓlFQ. See Figure 5.2. Let 7 be a com-

ponent of D Π ^0>
 and #y the edge of T corresponding to 7. Then 7 Π £γ consists

of a point, which separates 7 into two arcs rγl and 72. One endpoint of 7,- lies in

U /li 9E"y. Labell the corresponding side of eΊ by k if the endpoint lies in QEk.
Then we can labell the each side of the edges of Γ by {1, ••-, n}.

•ώ 1

I
3 4

2 I
I

2 t

^
3

2

ΐ

4

3

2 3

Fig. 5.2

In general, for a tree £?, an outermost vertex is a vertex with valency 1. An

edge adjacent to an outermost vertex is called an outermost edge. A fork is a
vertex with valency >3. Let £F be the collection of the forks of 3. Let 3' be

the tree obtained by removing all components of 3— 3 which contains an outer-
most vertex. An outermost vertex for 3' is an outermost fork of 3. If 3ϊ=φ,
then 3 does not contain an outermost fork. If v is an outermost fork, then the

components of 3— v which contain no forks are called outermost lines of v. If v0

(e0 resp.) is a vertex (an edge resp.) which is contained in an outermost line of v,

then we say that v0 (e0 resp.) is dominated by v. Then we have;

Claim 5.5. If there is an outermost edge of T which is labelled by i and

i+l for some ίe{l, •• ,n— 1}, then there is a norm minimizing surface Fr in

(ft, 5) such that [F']=[F] and,

Proof. Let Δ be the closure of the component of D—F0 corresponding to
the outermost vertex adjacent to the outermost edge. Let F1=(F~(Ei\J Ei+l))

(jAf. By Claim 5.2, we see that F1 is orientable. Then [F1]=[F]^H2(N9 5),
and X(F1)=X(F)— 2. Since the core arc of A> intersects 9Δ in one point, 9Δ

is an essential loop in Fλ. Hence Δ is a compressing disk. Let F' be the
surface obtained from Fλ by doing a surgery along Δ. By moving F' by a tiny
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isotopy, we see that F' satisfies the conclusion.

Claim 5.6. Suppose that there is a vertex v of T such that v is not an outer-
most vertex, and the adjacent edges of v are labelled alternately by i and i-\-l
(Figure 5.3). Then there is a norm minimizing surface F' in (N, S) such that

f+1

H-l

Fig. 5.3

Proof. Let Δ be the closure of the component of D—F0 corresponding to
v, and F^F—ffi U EM)) U A{. Then ί\ is orientable (see the proof of Claim
5.5), [FJ=[F], and X(F1)=X(F)—2. Δ Π ί\=8Δ, and the absolute value of the
algebraic intersection number of 9Δ with the core of A{ is the number of the
edges adjacent to v. Hence Δ is a compressing disk for ί\. Let F' be the
surface obtained from ί\ by doing surgery along Δ. By moving F' by a tiny
isotopy, we see that F' satisfies the conclusion.

Claim 5.7. If there is an outermost line with the pattern as in Figure 5.4,
then there is a norm minimizing surface F' in (N, S) such that [F']=[F], and

1 υ 2 n v n—1

n-l

Fig. 5.4

Proof. Suppose that there is a pattern of Figure 5.4 (i). The other case is
essentially the same. Let Δ be the closure of the component of D—F0 corres-
ponding to v (Figure 5.4), and F1 = (F—(E1\JE2))\JA1. Then ΔΓΊF^ΘΔ.
Hence if 8Δ is not contractible in ί\, then, by compressing F1 along Δ, we
have a surface F' satisfying the conclusions. Hence, in the rest of the proof, we
suppose that 9Δ is contractible in JF\. Then Δ Π cl(F—(El U E2)) consists of two
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Fig. 5.5

inessential arcs βl9 β2 in cl(F— (E^E2}} such that 8&c9£, (ί=l, 2). Hence

there are two planar surfaces P19 P2 in FQ such that FrFQPi=βi (Figure 5.5). By

Claim 5.4, we see that P, is not a disk.

Sublcaim 1. T contains a fork.

Proof. Assume that T does not contain a fork. Then, by tracing the

edges of Tfrom v1 (Figure 5.4), we see that there are n components βl9 β2y /33, •••,
βn of DΓ\F0 such that dβfddEi (ί=l, •••, n), where βl9 β2 are as above. Then
it is easy to see that some /3; contained in Pl is an inessential arc in F0) con-
tradicting Claim 5.4.

Let vQ be the outermost fork which dominates vly v2 an outermost vertex

dominated by vQy and located next to v±. By using the argument of the proof

of Subclaim 1, we have;

Subclaim 2. The outermost line between VQ and vl contains at most n—1

edges.

Subclaim 3. Either the conclusions of Claim 5.7 holds or the outermost edge

adjacent to v2 is labelled by 1 and n.

Proof. Suppose that the outermost edge is not labelled by 1 and n. Then,

by Claim 5.5, we see that either the conclusions of Claim 5.7 hold or the edge is

labelled by two Γs or two n's. Suppose that the second case occurs. If the

outermost line between v0 and v2 contains more than n—1 edges, then we have

a contradiction as in the proof of Subclaim 1. Hence the outermost line con-

tains at most n—1 edges, and this fact together with Subclaim 2 show that
there are exactly n edges between vλ and v2 in Γ, and the outermost edge adjacent

to v2 is labelled by two n's (Figure 5.6). Then, by tracing the edges in T from

V L to v2, we again have a contradiction as in the proof of Subclaim 1.

Suppose that the second conclusion of Subclaim 3 holds. If the outermost

line between v0 and v2 contains more than n/2 edges, then we have a pattern

of Figure 5.3 in the outermost line, so that we have the conclusion of Claim 5.7
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Fig. 5.6

by Claim 5.6. Assume that the outermost line contains j(<nβ) edges. By
Subclaim 2, we see that there are exactly n edges between vl and v2 in T

(Figure 5.7).

1 .

Let βly /32> /?a, •••, βn be the components of DΓ\F0 corresponding to the
edges between vl and ϋ2 in T. Then, for i<n—j, dβiddEf. Then fix some
βk(k<n—j) sue such that βkdPly and βk is innermost, i.e. /3Λ cuts off a planar

surface Pk from F0 such that no component of QEl U 9E2 U ••• U 3£"«-y is contained
in Pk (Figure 5.8).

Pi

Fig. 5.8

By Claim 5.4, we see that some dEm(m>n-—j+l) is contained in dPk. Since

j <n/2 and βk is innermost, we see that βm joins QEk and 3 .̂ This shows that

m==n-±-l—ky so that Pk is an annulus. Then, by Claim 5.4, we see that every
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component of D Π F0 which meets QEm joins QEm and dEk. But this contradicts

the fact that #(9DndEm)=%(dDΓidEk), and this completes the proof of Claim
5.7.

Completion of the proof of Proposition 5.1. We suppose that

is minimal among all norm minimizing surfaces representing [JR+(δ)]. If

ίf(Fn5)ι)— 2, then, by Claim 5.3, we have the conclusion. Assume that w>2.
By Claim 5.5, we see that each outermost edge is labelled by either two Γs,
two n's or 1 and n.

Suppose that T does not have a fork. If an outermost edge is labelled by
two Γs or two w's, then we have a contradiction by Claim 5.7. If an outer-

most edge is labelled by 1 and w, then we have a pattern of Figure 5.3 in T,
so that we have a contradiction by Claim 5.6. Hence T has a fork.

Let v be an outermost fork for T. If all the outermost edges dominated
by v are labelled by 1 and n, then by Claim 5.6, we see that each outermost line
contains at most n/2 edges. Hence the adjacent edges of v are labelled alternate-
ly by n/2 and w/2+1, contradicting Claim 5.6. Hence we may suppose that
some outermost edge dominated by v is labelled by two Γs. Then, by Claim
5.7, we see that v is adjacent to the edge. Let v1 be an outermost vertex which
is dominated by v and next to the outermost edge. By Claim 5.5, we see that
there are at least n—ί edges in the outermost line between v and v^ Then,
by Claims 5.5 and 5.7, we see that the edge adjacent to v1 is labelled by 1 and
n. Hence we have a pattern of Figure 5.3 in the outermost line, contradicting

Claim 5.6, and this completes the proof.

Proof of Corollary 5.4. Let (Nt, δ, )((ΛΓ?, δf) resp.) be the sutured manifold
obtained from S, (the complementary sutured manifold for S{ resp.) (ί=0, 1).
Then we may suppose that Dί=D±nNc

Q are disks properly embedded in NQ,

and (cl(Nl —N(D$ U DO Nf>), 85) is properly isotopic to (Nly Sλ) in E(L). Hence,
hereafter, we identify (Nl9 8,) to (cl(Nc

0-N(D$ (J DΪ ΛΓJ), δg). Then (ΛΓf, δf ) is
obtained from (N0, δ0) by attaching two 2-handles N(DΪ;NC

0), N(Dj; Nξ) along
the simple loops dD+x {!}, 3D' X {0} in (NQ, δ0) (s*(S0xI, 3S0X/)).

Casel. %_(S1)>0.

In this case, Sλ is not norm minimizing. Hence, by Claim 5.0, and [5,
Lemma 0.4] or [12, section 3], we see that -R+(δί) is not norm minimizing in
H2(Ni, SI). Then, by Proposition 5.1, we may suppose that dD+ and 3D" are
disjoint. Moreover since M is a rational homology 3-sphere, they are not
parallel. Let Df=D^[JJl±

ί where Jl+,Jί~ are the product annuli 9Z)+X/,

9Z>~ x/ in (N0t SQ). Then Dί , I>Γ are mutually disjoint disks properly embedded
in NI such that Df U DΪ cuts (JVJ, δί) into a product sutured manifold. Hence
Si is a pre-fiber surface and clearly D~ corresponds to Z>Γ
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Case 2. X.(S1)=0.

Since %_(SΊ)=0, %_(*SΌ) *s either 0, 1 or 2. Since ιS0 is a pre-fiber surface
of type 1, S0 contains a non separating loop. Hence it is easy to see that SQ is

either a torus with one hole, or a torus with two holes. If S0 is a torus with

one hole, then S1 is a disk so that %(L)=l=%(S0)+2, a contradiction. Suppose
that SQ is a torus with two holes, so that Sl is an annulus. Then

Claim. There are mutually disjoint disks Elr E2 in M such that (El U E2) Π

Proof. Since %(L)>%(S0)+2, we see that there is a Seifert surface 8

for L such that %(£)— 2, so that £ is a union of two disks. Then, by using

standard innermost disk, outermost arc arguments, we see that either 6 satisfies

the conclusion of Claim, or 6 intersects Sλ in essential loops in Sλ, so that

Si is compressible. Suppose that the second conclusion holds. Then by -doing

a surgery along a compressing disk for Sl9 and moving the resulting surface by

a tiny isotopy, we get a pair of disks satisfying the conclusion.

By the above claim, we see that Eiy E2 are embedded in (Nί, δί), so that,

by regarding Eι\jE2

 as ^ the proof of Proposition 5.1 shows that dD+ is

ambient isotopic in S0 to a loop disjoint from 9D". Hence, by the argument
of Case 1, we see that the conclusion holds.

Proof of Proposition 5.2. Let {Dly ••-,£)„} be a system of mutually disjoint

product disks in (2V, δ) such that U A decomposes (N, S) to the product sutured

manifold (D*X/, 9D2X/). Let S be the surface corresponding to *S"x {1/2} in

N. S is a Heegaard surface of (N, S) [1]. Then, by the arguments of the

proof of [1, Lemma 1.1], and the distinguished circle argument of Ochiai [8,

Lemma], we may suppose that each D, intersects S in an arc. We note that

the arguments in [1, Lemma 1.1] and [8] work for product disks. Hence the

image of S in D2xl is a torus with one hole T with QT^dΣPx {1/2}. More-

over, by using the core disks of the 2-handles, we see that T has two compress-

Fig. 5.9
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ing disks D0> Dλ such that 9Z>t corresponds to /,- in 5", Λ/"(9Z)0; D0)
 nes *n the

+ side of Γ, and N^D^ DJ lies in the — side of T. This fact together with
Lemma 4.4 shows that 70 is isotopic to a loop intersecting 7: in one point. See

Figure 5.9.

6. Monodromy maps

Let L, L', S, F, ^4, 50, 5Ί, and M be as in Theorem 2S and & as in Figure 1.1.
Let φ: F-»F be a monodromy map, and a (cF) a component of FrF ΛΓ(6; F)
(Figure 1.1). The purpose of this section is to prove the following proposition.

Proposition 6.1. If %(Z/)>%(L)+2J> then, by deforming φ by a rel 9
ambient ίsotopy, if necessary, we may suppose that aΓ\φ(a)=da=θφ(a)} and the

components of N(dφ(a) φ(a)) lie in one side of a (Figure 4.2).

REMARK. Proposition 6.1 together with Proposition 4.6 shows that if
%(L')>%(L)+2, then a is non separating in F.

Then we give a proof of Theorem 2 (2). As a consequence of Proposition
6.1, we have;

Corollary 6.2. Let S be as in Theorem 2 (2), and ijr: S-*S a monodromy

map of S. Then there is a non separating simple loop I in S such that Λ|Γ(/) is

ambient isotopic in S to a loop disjoint from I.

Proof of Proposition 6.1. Let (N, δ), (ΛΓ0, S0), (N19 SJ be the sutured
manifolds obtained from 5, 50, 5X respectively, and (Nc, δc)> (JV$, Sg), (ΛΓί, δί)
the complementary sutured manifolds for S, SQy S1 respectively. By Theorem
2 (1) (section 4), SQ is a pre-fiber surface. Let DO, DO" be a pair of canonical
compressing disks for S0. Then we may suppose that D^ looks as in Figure 6.1.

By Lemma 4.7, we may suppose that QDo intersects a0 of Figure 1.1 in one
point. By Corollary 5.4, we may suppose that ΘDJ and 9Z>o~ are pairwise
disjoint. Hence 9DJ looks as in Figure 6.2.

Claim 6.1. There is a disk D in M such that DΠ Sl=DΠ Int 6Ί=
and D intersects the band b in an essential arc aλ.
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Fig. 6.2

Proof. We identify S1 to the surface obtained from S0 by doing a surgery

along DQ. Let D=D£. By Figure 6.3, it is directly observed that D satisfies
the conclusions.

Fig. 6.3

Let Π be a pp disk for F such that d-\3=a, d+O=φ(a). Suppose that

φ(ά) does not run through b. Then it is easy to see that we have the conclu-

sion of Proposition 6.1. Hence suppose that φ(a) runs through b. Then, by

deforming Π by an isotopy as a pp disk, we may suppose

(6.1) 3 + Π Π i consists of arcs joining the components of FrF&, and

#{(9+D Π b) Π #1} is minimal among the rel 3 isotopy class in b, and
(6.2) If a is a component of 9+Π Π (F—b) such that dadFτF b, then α is

not rel 9 isotopic in cl(F—V) to a subarc of Fr^ b.
Since 9_Π Π D=aΓ\D=φ, we see that each component of Π Π D is either

an arc whose endpoints lie in 9+Π , or a simple loop. Then;

Claim 6.2. If necessary, by applying cut and paste on D, we may suppose

that Π Π D consists of arcs.

Proof. Let (Nc

Fy 8F) be the complementary sutured manifold for F. Then
we may suppose that Π Π Ne

F is a product disk. Suppose that a component /

of Π Π D is a simple loop. We may suppose that / C (Π Π NF). Then / bounds
a disk in Π Hence, we can apply a cut and paste on Z), by using the disk,

to remove /. Do the same untill all the simple loops are removed.
Let/>: FxI-+E(dF) be a natural map (section 2), and 3) the product disk
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in (Fxl, QFxI) such that p(<D)=Π Then, by Claim 6.2, we see that p~\D)
consists of arcs whose endpoints lie in S) Π (Fx {!}). Then let Δ be the closure
of an outermost component of 3) — p~\D) which does not intersect 3) Π (Fx {0})

(Figure 6.4). Then β=p(Δ)ftD(=p(Fr£)Δ)) is an arc with βΓia1=dβ. Let
a be the subarc of ̂  such that da=dβ. Then a\J β bounds a disk D* in D.
If D* does not contain daλ (Figure 6.5 (i)), then, by (6.2),^>(Δ)U-D* is a com-
pressing disk for F, a contradiction. Hence Qaγ C D* (Figure 6.5 (ii)). Then
Π*=D* u p(Δ) is a pp disk for Fsuch that 8_Π*=*ι Since 9+D*=(0ι—«) U
(p(Δ) Γ\F)y by moving Π* by a tiny isotopy as a pp disk, we get a pp disk Q]**
such that 9_Π** is properly isotopic to a in F (in fact, it moves through 6), and
9+Π** does not go through b. Since 9_Π** is ambient isotopic to aly we have
the conclusion of Proposition 6.1.

3)

(0

Fig. 6.5

Proof of Theorem 2 (2). By the remark of Proposition 6.1, we see that
SO is a type 1 pre-fiber surface. Hence, by Corollary 5.4, we see that *SΊ is a
pre-fiber surface.

Proof of Corollary 6.2. Let / be a non separating simple loop in *S corres-
ponding to 9D;τ of Figure 6.1. By [3], we see that ψ=ψ2oψ>ly where ̂ : S-*S
is an orientation preserving homeomorphism such that -ψ^ | A is a Dehn twist along

l> ihlc/(s-ji)=icl., ψ2\F=φ> and Ψ2lβ/(s-F)=id Then, by Proposition 6.1, it is
easy to see that ι/r(/) is ambient isotopic to a loop disjoint from /.
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7. Proof of Theorem 3

In this section, we prove Theorem 3 stated in section 1.

Firstly, we prepare some notations. Let S be a surface in a 3-manifold M,

and a (cM) an arc such that aΓ\S=da (clntS), and the components of

N(da\ a) lie in one side of S. Let A be the component of dN(a\ M)—S which

is an open annulus. Then Sa=(S — Int N(a\ M})[jA is a surface, and has the

orientation coherent to S. See Figure 7.1. We say that Sa is obtained from

S by adding a pipe along a.

Fig. 7.1

Let Sy ay Sa be as above, and (Nc, 8C) the complementary sutured manifold

for S. Then we may suppose that a'=aΓ\Nc is an arc such that 3α'C/?+(δc)

or da'dR_(8c). We suppose that Qa'c:R_(8c). The other case is essentially

the same. Let (Nc

aί 8c

a) be the complementary sutured manifold for Sa. Then,

by Figure 7.2, we immediately have;

Lemma 7.1. (Nc

a, 8c

a) is homeomorphic to (Nf, δ'), where Nr is obtained

from cl(Nc

a—N(a'\ Nc

a)) by adding a l-handle along disks in jR+(δ), and δ' is

the image of 8C in Nr.

Fig. 7.2

Then we give the definition of the surface ΣΛ in S3 (see section 1). Let

D be a disk in S3. Fix a Z^-boundle structure with D a fiber on E(dD). Then

we define a sequence of arcs a^ a?ί ••• as follows.

Let al be an arc in S3 such that N(da1y aλ) lies in the — side of Z), al Π D=
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θα^dlnt D), and there is a disk Δ such that ^c9A, ΔΠ Int D=dΔ — Int a^

an arc in D. Clearly al is unique up to ambient isotopy of S3 respecting D.

Fig. 7.4

Suppose that ak has defined. Then let ak+1 be an arc such that N(dak+1 ak+1)
lies in the — side of D, ak+1 Π Int Δ=φ, akdϊnt ak+l (so that cl(ak+1—ak) consists

of two arcs), cl(ak+1—ak) Γ\D = Q(ak+l—ak), and each component of ak+1—ak is
transverse to the fibration on E(QD). By the induction on ι, it is not hard to see

that a{ is unique up to the ambient isotopy of S3 respecting D.

Let ΣI be the surface obtained from D by adding a pipe along aλ. Then
a2 Π ΣI—da2 and we let Σ2 be the surface obtained from ΣI by adding a pipe along

a2> and so on. We note that each 2n has two compressing disks D Γ, D% corres-
ponding to a meridian of any and Δ respectively. Then 3DJ are /* of Figure 1.3.
Then we have

Proposition 7.2. 2M ά a pre-fiber surface of type 1, and D$, D» is a pair of
canonical compressing disks for ΣΛ.

Proof. The proof is done by the induction on n. By the observation in

Example 4.1, we see that ΣI is a pre-fiber surface of type 1, and Dί, DΪ is a pair
of canonical compressing disks for ΣI

Suppose, by induction, that Σ» satisfies the conclusion of Proposition 7.2.
Let (Nn, Sn)((Nc

n> δn) resp.) be the sutured manifold obtained from Σw (the com-

plementary sutured manifold for Σn resp.) Let Dϊ=D* Π Nc

ny 3)ΐ=N(Dϊ Ni)9

and Nn.^c^N'n-^US)-)}. Then (Nn_^ 8c

n) is ambient siotopic to the

product surtured manifold obtained from Σ,,-!. Hence Nn^ has a ΣΛ_ι-bundle
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structure such that each fiber corresponds to Σ Λ _ιX {x}(x^I). We regard 3)^
are 1-handles attached to Nn_^ Ey defintion we may suppose that a=an+l Π Nc

n

is an arc such that aΓ\^)n=φy and aΓiίDή is a vertical arc in Wή(
Hence a Π Nn-ι consists of two arcs aly a2.

/A\

Fig. 7.5

Claim. By moving an+1 by an ambient isotopy of S3 respecting Σrt, if neces-

sary, we may suppose that al9 a2 are transverse to the fibration on Nn^ (Figure 7.5).

Proof. By Figure 7.6, we may suppose that each component of an+l—an

is close to a meridian loop in 3£"(3ΣΛ). Since the fibration on dE(QΣn) induced
from the fibration on Nn_l is a fibration by longitudes, we see that the components
of an+1—an are transverse to the fibration. Hence aly a2 are transverse to the
fibration on ΛL.i.

Fig. 7.6

The complementray sutured manifold (Nc

n+ι, δiUi) for Σn+ι is obtained from
(Nn, 8cn)y and a as in Lemma 7.1. Hence, by Figure 7.5, we easily see that ΣM+ι
is a pre-fiber surface, and Dί+i, Dή+ 1 is a pair of canonical compressing disks.

This completes the proof of Proposition 7.2.

Proof of Theorem 3. The proof is done by the induction on n=(X(L) —
X(S1))/2. Let Z)+, D~ be a pair of canonical compressing disks for 6Ί and *52

the surface obtained from *% by doing a surgery along Z)+, (Ni9 8;)((7V5, δ?) resp.)
the sutured manifold obtained from 5t (the complementary sutured manifold for

Claim 7.1. If %(Sl)=%(L)—2) then Sl is a connected sum of S2 and
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Proof. By Proposition 5.2, we may suppose that dD+ intersects 9Z>" in one
point. Let a be an arc in *SΊ such that one endpoint of a lies in QSly the other
endpoint is dD+ Π 9£>~, and Int a Π (9D+ U dD~)=φ. Then the regular neigh-
borhood B of a U D+ U D~ in M is a 3-ball such that 5 Π *SΊ is a regular neigh-

borhood of a U 9D+ U 9£)~ in Slβ QB desums S1 into 52 and Si-

Claim 7.2. //%(*SΊ)<%(L)— 2, ί/^ 52 w 0 pre-fiber surface of type 1.

Proof. By Corollary 5.4, we see that S2 is a pre-fiber surface. Assume

that S2 is of type 2. Then, by Corollary 5.4, we may suppose that JD* Γl D~=φ,
and 9D~ is a separating loop in S2, i.e. 9D+ U 9D~ separates Sj. Let 53 be the
surface obtained from S1 by doing surgery along D+ U D".

Subclaim. No component of S3 is closed.

Proof. Assume that a component S of S3 is closed. Let 7(C 5X) be a simple
loop which interects dD+ in one point. Then, by pushing / to the — side of

*SΊ> we get a simple loop intersecting S in one point, contradicting the fact thet
M is a rational homology 3-shpere.

By Subcalim, we see that S3 is a disconnected Seifert surface for L. Then,
by doing compressions on *S3 as much as possible, we get a disconnected, incom-

pressible Seifert surface S* for L. By Lemma 2.2, we see that S* is a fiber

surface, contradicting Lemma 2.1.

Completion of the proof. Claim 7.1 shows that if w=l, then the conclusion
holds. Suppose that n>l. By Claim 7.2 and the induction, we see that S2 is
a connected sum of a fiber surface and Σ Λ _j (Figure 7.7). Let S3 be as in the
proof of Subclaim.

Fig. 7.7

(ΛΓf, 81) is homeomorphic to (D2 xSlί\ (S2xl) \\D2X S1

9 QS2X/). Let
Df=D±Γ(Nc

ly and 3)Ϊ = N(D? ΛΓf). Then, we may identify (cl(Nί—(3)ί\J
^Γ)), δί) to (ΛΓ2, δ2), where 52x{l/2} corresponds to S2. We regard 3)1, 3)1
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are 2-handles attached to (Nl9 δj). Then (Nλ U 3)ί U 3)ϊ, δO is properly isotopic

to (NC

2, Sξ) in E(L). Hence we identify (NC

2, Sξ) to (N, U ̂  U ^>Γ, δj). Let .4+,
^4~ be pairwise disjoint product annuli in (Nί9Sι) (C.(N2, 82)), such that A+Π
R^δj^QDϊ, A-nR+βJ^dDτ. LetD}=A+(jDl, D7=A~\jDTy and Φϊ=

N(D$m> Nξ) (Figure 7.8). Then D2, D2 represents a pair of canonical compres-

sing disks for S29 and (cl(Nc

2—(3)2 U ΦΓ)), δj) is ambient isotopic the sutured
manifold (AΓ3, δ3) obtained from 153. Hence we may regard that N2 is obtained
from Nz by a attaching two 1-handles 3)2, 3)2* Then fix a D2-bundle structure
on <Djs^D2xI, and ^-bundle structure on N3=S3xL Let α be an arc in N2

such that αΠθΛ^^α Γl#+(δ2) = 9tf, aftίDϊ^φ, tfίΊ.Φi~ is an arc transverse
to the fibers, and a Π Λ^3 consists of two arcs transverse to the fibers. It is easy

to see that the arcs with the above properties are unique up to the ambient
isotopies of N2 respecting the fibers. Let a.^ be an arc as in Figure 7.7. Then,
by the arguments of the proof of Proposition 7.2 (see Figure 7.6), we see that the

arc aιΓ\Nft has the above properties. Moreover, by Figure 7.8, we see that Sλ

is obtained from S2 by adding a pipe along a^ This shows that Sl is a con-

nected sum of a fiber surface and 2«, and it is easy to see that a pair of canonical
compressing disks for Sλ corresponds to that of Σn.

This completes the proof of Theorem 3.

fibration by surface
parallel to Si

fibration by surfaces

parallel to S3

Fig. 7.8

8. Arcs and bands for pre-fiber surfaces

In this section, we study the converse to Theorem 2. For the statement of
the result, we prepare some notations. Let <5 be a surface in a 3-manifold such
that 9cSφφ. Let a be an arc properly embedded in cS, D a disk such that
DΓ\<S=a, and <S' the image of <S after.±1 surgery along 3D. We say that <S'
is obtained from <S by adding a twist along a. Let β: /X/->JVbe an embed-

ding such that /8"1(S)=/S"1(9S)=({0}x/)U({l}X/), and the orientation on
/X {0, 1} is coherent with that of dS. Then we say that the surface <S U β(lx /)
is obtained from S by adding a band b = β(lxl). The arc /3(/x{l/2}) is
called the core arc of the band b.

Let T be a pre-fiber surface in a closed 3-manifold Λf, possibly

dimff^M; 0)>0, and D+

y T)~ a pair of canonical compressing disks for T.
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Then we have the following two propositions.

Proposition 8.1. Suppose that a properly embedded arc a (cΓ) intersects

dD+, QD~ in one points. Then the surface T' obtained from T by adding a twist

along a is a fiber surface.

REMARK. Let S be a fiber surface in a rational homology 3-sphere. Lem-
ma 4.7 shows that if we get a pre-fiber surface Sr from S by adding a twist along
an arc α, then the arc on 5' corresponding to a satisfies the assumptions of

Proposition 8.1.

Let (Nc

y 8C) be the complementary sutured manifold for T. Then we may

suppose that a Π Nc is an arc a' such that 3α'clnt Sc for a core arc α.

Proposition 8.2. Let b be a band attached to T with the following properties.

(1) The core arc aofb intersects Z)+, D~ in one points.

(2) There is a disk Δ in Nc such that α'c3Δ, ΔΓ(dNc=dΔΓ(dNc=

έ:/(8Δ—α')> md 3Δ ΓΊ Λ+(δ')(3Δ Π R-(δc) resp.} consists of an arc.
Then the surface T' obtained from T by adding the band b is a fiber surface.

REMARK. Let Sl be a pre-fiber surface in a rational homology 3-sphere as
in Theorem 2 (2), and b a band for Sl as in Figure 1.2. Proposition 6.1, Figures

4.5, and 8.1 shows that the core arc of b has the properties (1), (2) of Propostion

8.2.

REMARK. We note that if F is fibered and the band b satisfies the above con-

ditions (1), (2), then the twists on the band is not essential. In fact, by doing

Stallings twists [13] along dD+, we see that the bands obtained from b by adding

twists also produce fiber surfaces.

Fig. 8.1

Let DΪ=D+ n NC, D-=D- n N*.

Proof of Proposition 8.1. Let D be a disk in M such that D Π T=a. Then
the image of D in Nc is an annulus A such that one boundary component I of A
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is contained in Int Nc and the other is a simple loop in QNC intersecting s(Sc)

in two points (Figure 8.2). Then, by the assumption, we may suppose that /

intersects Z)*, DΓ in one points. Moreover, by taking sufficiently small JO, if

necessary, we may suppose that (D* U D^) Γ\ A consists of two essential arcs in A.

A

Fig. 8.2

Let N=cl(Nc-N(Dϊ U D~ N% and δ the image of δ' in dff. Then (N, δ)

is a product sutured manifold. Let ίΰ++, £D+~ be the disks in Λ+(δ) corres-

ponding to FrNcN(Dc ΛΓC), .S)""1", .2)~~ the disks in Λ_(δ) corresponding to
FrNcN(D7', Nc). Then, by the above, we may suppose that AΠN consists of

two disks Δ!, Δ2 (Figure 8.2) such that Δx Π (3)+~ U -2Γ~)=φ, Δ2 ΓΊ (3)++ U 3)~+)
=φ. The we may suppose that ΔX, Δ2 have the following properties with respect

to the /-bundle structure on (N, δ).
(8.1) Δ; is a union of fibers.

Let P^Fr^ JV(V, N), P2=Fr^ AΓ(Δ2; N). Then, by (8.1), and (8.2), P19 P2

are regarded as product disks in in (Nc, δc), and P!UP2 decomposes (Nc, 8C) into
the union of a product sutured manifold (W, δ') homeomorphic to (N, δ) and
(D2xS1

y 7), where $(7) consists of two essential loops in d(D2xSl) which are
contractible in D2 X S1. We note that / is a core curve of D2 X Sl and if we do

surgery on (D2 X S1, 7) along / then we get product sutured manifold

surgery along /

Fig. 8.3
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(D2 X S1

9 γ') (Figure 8.3). Since the complementary sutured manifold for T' is
obtained from (Nc, δc) and (D2 X S1, γ') by summing them along product disks cor-

responding to P19 P2, it is a product sutured manifold. Hence T' is a fiber surface.

Proof of Proposition 8.2. We may suppose that Δ Π β? (Δ Π-D7 resp.)
consists of an arc with one endpoint lies in dD? (dD7 resp.). Let N —

cl(Nc-N(DΪ U D7 ΛΓ)), and δ the image of δ< in QN. (N, δ) is a product sutured
manifold. Then, by the above, Δ Π N consists of three disks Δx, Δ2, Δ3 such

that ΔιΠ.R-(5)=φ, Δ3ΠR+($)=φ (Figure 8.4). Let 9)++, 3)+~ be the disks in
R+(S) corresponding to FrNcN(DΪ; Nc), 3)~+, 3)— the disks in Λ.(5) corres-

ponding to FτNcN(D7ι Nc) such that 3)++ ΠΔjΦφ, 3)+- Π Δ2Φφ, )̂-+ Π Δ2Φφ,
3) ΠΔ3Φφ. Then we may suppose that Δ^ Δ2, Δ3 have the following pro-
perties with respect to the product structures on (N, δ).

Fig. 8.4

(8.3) There are mutually disjoint disks D19 D2, D3 in N such that Di is a

union of fibers (ί=l, 2, 3), D,θΔy (;=!, 3), A=Δ2, AnR+(5)=Δ1njR+(S),
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(8.4) JV(A; N)-}&+, ΛΓ(Z)2; N)ID(^-U^-+), ΛΓ(Z)3;
Let P,.=Fr^cΛΓ(ZV, ΛΓ) (ι=l, 2, 3). Then, by (8.4), P19 P2, P3 are regarded

as product disks in (Nc, δc), and P1\JP2\JP3 decomposes (Nc, δc) into a union of
a sutured manifold (2V, S') homeomorphic to (W, 5) and a sutured manifold
(B9 TiU^UTs), where 5 is a 3-ball, and s(γι), s(γ2), ^(Ύs) are sutures as in
Figure 8.5.

Fig. 8.5

Let (Λf", δ") be the complementary sutured manifold for T. Then Nc/

is obtained from Nc by removing IntN(b;Nc), and ί(δc/) is obtained from
s(δc)—N(b', Nc) by adding two arcs in FrNcN(b; Nc) corresponding to QbΓίdT'.
See Figure 8.6. Hence Pj, P2, P3 are regarded as product disks for (ΛΓC/, δc/),
and PιUP2UP3 decomposes (-/Vc/, δc/) into a union of a product sutured mani-
fold homeomorphic to (N, δ) and (D2 X S1, γ), where (D2χS1

ί γ) is obtained
from (5, OΊ U 72 U 73) by using b. Then, by Figures 8.5 and 8.6, it is directly
observed that (Z)2 X S1, <y) is a product sutured manifold. Hence (ΛΓC/, δc/) is a
product sutured manifold, so that T' is a fiber surface.

Fig. 8.6

9. Unknotting number 1 fibered knots

In this section, we study unknotting number 1 fibered knots in rational
homology 3-spheres. Firstly, we prove Theorem 4 stated in section 1. Then
we show that, for each £>1, every lens space contains an unknotting number
1 fibered knot of genus g (Proposition 9.2). In Proposition 9.1 we show that a
rational homology 3-sphere M contains an unknotting number 1 fibered knot of
genus 1 if and only if M is a lens space of type LmΛ.
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Proof of Theorem 4. Suppose that M contains an unknotting number 1
fibered knot of genus g. Then, by Theorem 2(1), we see that M contains a pre-
fiber surface S0 of genus g such that dS0 is a trivial knot. Let D+, D~ be a
pair of canonical compressing disks for S0.

Claim 9,1. S0 is a type 1 pre-fibere surface.

Proof. By Figure 6.1, we see that there is a properly embedded arc in S0

which intersects 3D4" in one point. Since S0 has one boundary component,

this shows that 3D+ is non separating in S0. Hence S0 is of type 1.

Claim 9.2. If M contains a type 1 pre-fiber surface S* of genus I, then M
is a lens space.

Proof. The complementary sutured manifold (N^ δ#) for S* is homeo-
morphic to (D'xS1 \\ (D2 x I)\\ D2 x S1, dD2 x /) (cf. Example 4.1). Since
(ΛΓ£, δ#) is the complementary sutured manifold, there is a homeomorphism

/: Λ-^δίjc)— >-R_(δ$c) such that the manifold obtained from N* by identifying the
points in R(8*) by/ is homeomorphic to E(dS%). Let D be a disk in ΛΓ* cor-
responding to Z^X {1/2}. Then D cuts N* into two components ΛΓ+, N~ such

that N+,N~ are solid tori, and R+(8e*) C QN+y R-(δe*) C dN~. There is a
homeomorphism h: QN+-+dN~ such that h is an extension of/ and N+\J hN~
is homeomorphic to M. Hence M admits a Heegaard splitting of genus 1.

By Claims 9.1, and 9.2, we see that if £=1, then M is a lens space. Here-

after we suppose that £>1. Then, by Claim 9.1 and Corollary 5.4, we may
suppose that QD+ and 3D" are disjoint.

Claim 9.3. 3D+ U 9D" does not separate S0.

Proof. Assume that dD+ U dD~ separates S0. Let S* be the component of

S0— (QD+ U QD~) which does not contain 350. Then S = S*)JD+\JD- is a
closed surface in M. By Claim 9.1, there is a simple loop / in S0 which intersects
3D4" in one point. Then, by pushing / slightly to the —side, we see that there is
a simple loop in M which intersects S in one point, contradicting the fact that
M is a rational homology 3-sρhere.

Let Si be the surface obtained from S0 by doing surgery along D+. By

Corollary 5.4, we see that S1 is a pre-fiber surface. Then;

Claim 9.4. S1 is a type 1 pre-fiber surface.

Proof. By Claim 9.3, we see that 3D" is non separating in S^ Hence,

by Corollary 5.4, we see that S1 is of type 1.

By Claim 9.4, and the induction on <§
f, we see that M contains a pre-fiber
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surface of type 1 and of genus 1. Then, by Claim 9.2, we see that M admits
a Heegaard splitting of genus 1.

Proposition 9.1. A rational homology 3 -sphere M contains an unknotting

number I, genus 1 fiber ed knot if and only if M is a lens space of type Lm>1 for some

For the notation of the lens spaces, see [6].

Proof. Suppose that M contains an unknotting number 1, genus 1 fibered

knot K. Then, by Theorem 1, we see that there is a minimal genus Seifert

surface S for K such that S is a plumbing of a surface F in M and a Hopf band.
Since genus (S) — 1, F is an annulus, so that E(dF) is homeomorphic to T2X/,

where T2 is a 2-dimensional torus. Hence M is obtained from T2 X / and two

solid tori 7\, T2 by identifying their boundaries. Let A be the annulus in
E(QF) corresponding to the fiber F, and /0=^Γ!(Γ2X {0}), lλ=AΓ((T2X {!}).

Then meridian loop of Γ, intersects /,- in one point (/=!, 2). Hence it is easy
to see that M is a lens space of type LW f l.

Suppose that M is a lens space of type LmΛ. Then it is observed in [7]

that the knots Kl9 K2 of Figure 9.1 are fibered. It is easy to see that both K!

and K2 have unknotting number 1.

This completes the proof of Proposition 9.1.

where is a surgery description
_

of Lm

Fig. 9.1

Proposition 9.2. If M is a lens space, possibly dim flι(M; Q)>0, then, for
each g>l, there is an unknotting number 1 fibered knot of genus g in M.

REMARK. If M is a lens space with dimίf^M; 0>0, then M is homeo-

morphic to S2 X S1.

Proof. By Example 4.1, there is a genus 1 pre-fiber surface T in M such
that QT is a trivial knot. Let Z>+, D~ be a pair of canonical compressing disks

for Γ, 7"1", 7~ a pair of properly embedded arcs in T such that 7+ Γl dD+ consists

of one point, 7~ (Ί 3ΰ" consists of one point, and 37+ Π 97" consists of one
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point p. Let /"*"(/ resp.) be the arc obtained from 7+ (7~ resp.) by pushing
Int/+ (Int 7" resp.) slightly to the—side (+side resp.) of T. 1=1+\JΓ is an
embedded arc in M such that I Γ)T—dl\J p. Then deform / by an ambient

isotopy in a small neighborhood of p so that / Π T=dl. Clearly / satisfies the
conditions (1), (2) of Proposition 8.2. Hence there is a band b for T such that
the surface F obtained from T by attaching b is a fiber surface. Then, by a

plumbing of F and a Hopf band along έ, we have a genus 2, fiber surface which
bounds an unknotting number 1 fibered knot (Figure 9.2).

trivial knot

Fig. 9.2

Suppose that g>ϊ. Let Fn be the surface in S3 as in Figure 9.3. It is
observed in [9] that Fn is a fiber surface. In fact, FH is obtained from one Hopf

band and n copies of the fiber surface of Figure 9.4. Then, by a plumbing of

the above F and Fg.2 along b and E of Figure 9.3, we get a genus g fiber surface

Sg [4]. It is directly observed from Figure 9.3 that if we apply a crossing
change on QSg along the crossing disk D of Figure 9.3, then we get a trivial

knot. Hence u(d<Sβ)=1.

Fig. 9.4
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This completes the proof of Proposition 9.2.
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