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                        Abstract 

      The oxide superconductor BaPb1 -xBix03 (BPB) has attracted 

much attention because of its interesting properties of 

superconductivity. BPB becomes superconductor in the composition 

range 0<x<0.35 and the maximum transition temperature T 
c is about 

13 K (x=0.25). Recently Ba
xK1-xBi03 (BKB) has been found to have 

the highest T
c (ti 28 K at x=0.7) among oxide superconductors not 

containing Cu ions. Both BPB and BKB have perovskite-type 

structure and do not contain any transition-metal element. 

Hence, the magnetic mechanism may not be expected for the 

superconductivity in these compounds. Therefore, it is 

meaningful to investigate microscopically the superconductivity 

in BPB and BKB on the basis of the phonon mechanism. 

      The electron-lattice interaction is studied microscopically 

by using the realistic electronic bands of BaPb0
.7Bi0.303 and 

BaBiO3 obtained by Mattheiss and Hamann. The conduction band 

which acrosses the Fermi level is well reproduced by the 

tight-binding (TB) model, and is a hybridized band consisting of 

0 2p and Bi (or Pb) 6s and 6p orbitals. We have calculated the 

electron-lattice coupling coefficient ga(k,k') which represents 

the strength of the coupling between two conduction band states k 

and k' caused by displacement of the p-th atom along the a-

direction (a =x,y,z). It is found that ga(k;k') has strong wave-

vector and mode dependences and is especially large for the 

vibration of 0-atoms along the direction toward the nearest 

neighbouring Pb (or Bi) atoms. 

      The lattice dynamics of BPB and BKB is investigated by 
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diagonalizing the dynamical matrix in which the effective long 

range forces caused by the electron-lattice interaction are taken 

into account in addition to the short range forces. The electron-

 lattice interaction has turned out to lower the frequencies and 

to broaden the line-width of the longitudinal (L) 0-stretching 

and/or breathing mode vibration. The phonon frequency 

renormalization shows remarkable wave-vector and x dependences. 

      We discuss the superconductivity of BPB and BKB in the 

framework of the strong coupling theory of the phonon mechanism. 

First, the spectral function a2F(w) is calculated by making use 

of the calculated renormalized phonons. The frequency dependence 

of a2F(w) is entirely different from that of the phonon density 

of states F(w). It is noted that a2F(w) has some prominent 

structures in the frequency range where the 0-stretching/ 

breathing mode phonons lie. Therefore, the 0-stretching/ 

breathing mode is expected to contribute dominantly to the ,,. 

superconductivity in BPB and BKB. As x increases, some main 

peaks in a2F(w) shift to lower frequency side, reflecting the 

phonon frequency renormalization, and the magnitude of a2F(w) 

increases remarkably in the wide frequency range. Such 

considerable change in a2F(w) is expected to bring a remarkable x 

dependence of Tc. 

      The transition temperature T
c has been evaluated by solving 

the linearized Eliashberg equations. The calculated T 
c increases 

rapidly with increasing x, and reaches 28 K at x=0.7 in case of 

t'=4.05 eV/A and u =0.15, where t' denotes the derivative of the 

transfer integral, and p is the effective screened Coulomb 

replusion constant. In this case the dimensionless coupling 
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constant A is evaluated to be 1.09, which suggests the strong 

electron-lattice coupling in BKB. Our results for T 
c agree well 

with observed Tc in BKB, but disagree with those in BPB. One of 

reasons for this discrepancy may be that the rigid-band model is 

insufficient to describe BPB, because in BPB the Pb atom, which 

is one of constitutive elements of the conduction band, is 

substituted randomly by the Bi atom. 

      We-have evaluated the isotope shift of T 
c in BKB by 

calculating Tc when 160 is replaced with 170 and 180. A 

characteristic exponent a, defined as T
c- MO-a, is found to be 

a=0.35"O.45. Experimetally the value a is found to be 0.41 by 

Hinks et al and 0.35 by Kondoh et al. The principal reason why a 

differs from the value predicted by the BCS theory (a=0.5) is 

that the vibration of atoms .other than oxygens, such as Bi atoms, 

contribute appreciably to the superconductivity. 

     Further, the gap function A(E) at T=O K is calculated for 

BKB. The ratio 200/kBT
c (A0: superconducting energy gap) is 

found to have the value close to that predicted by the BCS weak 

couplin-g theory (200/kBT c=3.5). However, the tunneling 

differential conductance dI/dV shows a behavior which is 

characteristic to the strong coupling superconductor. 

      In conclusion, the observed superconducting properties in 

BKB can be understood by the phonon mechanism in the framework of 

the strong coupling theory. It is particularly emphasized that 

the significant renormalization of the L 0-stretching/breathing 

mode phonons plays an important role for the high T
c in BKB. 
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§1. Introduction 

      Since the discovery of a superconductor with a high 

transition temperature (T C", 30 K) in La-Ba-Cu-O system,1) much 

effort has been continuouslly made for investigating oxide 

superconductors. Oxide superconductor BaPb1 -xBix03 (BPB) with a 

perovskite-type structure is a prototype of a series of the high 

Tc oxides. BPB exhibits a metallic behavior in the composition 

range O!x<0.35 and becomes a superconductor with a relative high 

Tc.2) On the other hand, BPB shows semiconducting properties 

over the wide range 0.35<x<_1. The observed Tc shows a remarkable 

x dependence,3) as shown in Fig.1-1, and takes its maximum Tc=12 

K around x=0.25 which is extraordinarily high among 

superconductors not containing any transition elements. Such 

high Tc is a contrast to the experimental fact that BPB has a low 

carrier density, i.e. about 1021 cm-3 measured by the Hall 

effect,3) which is smaller by an order of magnitude than that of 

typical superconductors. The specific heat me asurement4) has 

also confirmed that the density of states at the Fermi level 

N(EF) is quite small, about 10-1 states/(e*V-unit cell-spin), in 

spite of its high Tc. Hence, it seems that the superconductivity 

in BPB may be attributed to strong electron-phonon interactions. 

The origin of such a strong electron-phonon coupling, however, 

has not been clarified yet theoretically. 

      As for the metal-semiconductor (M-S) transition in BPB with 

x=0.35, experimental studies have not been made so intensively 
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except for some electrical and optical measurements5)'6) Hence, 

the mechanism of the M-S transition has not been established so 

far. Various kinds of mechanism of the M-S transition, such as 

the local charge-density-waves (CDW),7) CDW with (Pb,Bi) ordering 

waves,8) have been proposed. It seems to be common that the 

substitution of Bi atoms with Pb atoms may be responsible for the 

M-S transition. Furthermore, the (Pb,Bi) substitution may 

stabilize the semiconducting phase and hence prevents the higher 

T in BPB. c 

      In this connection the substitution of the Ba site of 

BaBiO3, in place of the substitution of the Bi site, has been 

made to finding a possibility of high Tc. Such a possibility has 

been realized in Ba xK1-xBiO3 (BKB).9) (It should be noted that 

the 1notation of composition x differs from the usual one, i.e. 

Bat -XKXBiO3, for convenience in dealing with both BPB and BKB 

simultaneously.) The perovskite-type oxide BKB with cubic 

symmetry exhibits superconductivity in the composition range 

0.6<x<0.8 relatively closer to BaBiO3 as shown in Fig.1-1.10) 

Its maximum Tc of 28 K-is a record so far except for the high Tc 

Cu oxide superconductors. 

      An unsolved question is whether the origin or mechanism of 

superconductivity in high Tc oxides is usual phonon mechanism or 

not. In order to clarify the mechanism of the superconductivity 

in the oxides various experimental studies, such as the isotope 

effect on T..,11)-16) tunneling spectroscopy, 17)-19) have been 

carried out. Both BPB and BKBe are not exception of the
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experimental objects. Therefore, it is important and meaningful 

to study theoretically the mechanism of superconductivity in BPB 

and BKB. 

      For this purpose the electron-lattice interaction in BPB and 

BKB is studied microscopically in Section 2, on the basis of 

realistic electronic band structure. In Sec.3 the lattice 

dynamics of these compounds is investigated taking account of the 

effect of the electron-lattice interaction. By utilizing the 

results obtained in Sec.2 and Sec-3, the superconductivity is 

discussed in Sec-4, on the basis of the strong coupling theory of 

the phonon mechanism.
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§2. Electron-Lattice Interaction 

2-1. Electronic Band Structure 

      The crystal structure of BPB at high temperatures (T>800 K) 

is cubic as shown in Fig.2-1. At lower temperatures, however, it 

takes a crystal structure of lower symmetry depending on the Bi 

concentration x. Cox and Sleight 20) has reported that the 

structure at room temperature changes as x increases from 

orthorhombic (0<x<0.05) to tetragonal (0.05<x<0.35), to 

orthorhombic (0.35<x<0.9) and finally to monoclinic (0.9<xl). 

Another group,21) however, has shown that the structure at room 

temperature is orthorhombic in the whole range of 0<x<0.9. 

Tanaka's group 22) have made systematic measurements on this 

compound usin-g- various kinds of experimental techniques, which 

include transport, Hall effect, specific heat, optical reflection 

or absorption, Raman scattering, and so on. According to their 

results physical properties of this compound with 0<x<0.2 can be 

well understood within the rigid band model based on the band 

structure in the cubic phase calculated by Mattheiss and 

Hamann.23) 

      The electronic band structure of BPB has been originally 

calculated by Mattheiss and Hamann23) using the self-consistent 

scalar-relativistic linearized augumented plane wave (LAPW) 

method. They have carried out the LAPW band calculation for 

BaPbO3, BaPb0 .7Bi0.303, and BaBiO3 in the cubic structure.
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Calculation for BaPb0 .7Bi0.303 has been performed by using the 

virtual crystal approximation. According to their results the 

conduction band consists mainly of a a-bonding of 0-2p and Pb (or 

Bi)-6s orbitals. There is a small overlap between the Q band and 

the 0-2p non-bonding bands. Hence, BaPbO3 is a semimetal with 

small number of conduction electrons. It has been shown that 

these band structures can be well understood in terms of a simple 

orthogonal tight-binding (OTB) model. 

      In the TB approximation the basis functions consist of the 

Bloch functions constructed from atomic orbitls &
pa(r-RQu) as 

follows: 

           (DOa(k,r) _ eik•RQ ~ua(r-RQu) , (2-1)              Il 7-N Q 

where k, p and a specify unit cells, atomic sites in the unit 

cell and kinds of stomic orbitals, respectively. And the 

equilibrium position vector RQu is expressed as 

           RQu = RQ + Tu , (2-2) 

where RQ denotes the lattice vector of the Q-th unit cell, and T
u 

represents the position of the p-th site in the unit cell. 

Energy eigen-values are determined by solving the following 

secular determinant equation: 

          detjT(k,k') - E S(k,k')l = 0 , (2-3) 

where T(k,k') and S(k,k') represent the transfer matrix and
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orverlap matrix, respectively. Each matrix element of T(k,k') 

and S(k,k') is written as 

        T (k,k') = j1dr 00 (k)# H (k') (2-4a) 
             ua,vb ua el vb 

         Sua,vb(k'kt) = jdr 'DO (k)* Ovb(k') . (2-4b) 
Here Hel is the one-electron Hamiltonian which can be given by 

2 

           Hel - 2m + V(r-R9.11 (2-5)                    ku 

where p denotes the momentum operator, m is the mass of an 

electron, and V(r-RQ
u) represents the potential energy associated 

with the atom at the lattice site RQ
u in the crystal. 

      If the potential energy retains the translational symmetry 

in the crystal, T(k,k') and S(k,k') are block-diagonalized with 

respect to the wave-vector k: 

     Tu a,vb(k'kl) Sk,k'Tpa,vb(k) 

                      Sk,k' re-ik•(Rk-RV ) T2ua,2'vb (2-6a) 
                                     Q-k 

     Sua,vb(k'k') sk,k'SOa vb(k) 

                      Sk'k' 'e-ik•(Rk-Rk,) S2uab (2-6b)                                      2 -Q 
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with 

# 
      TO = dr ~O (r-R ) H (r-R        k

ua,k'vb ua ku el vb k'v) (2-7a) 

       0 0 # (
2-7b)      Skua,k'vb = j dr ~ua(r-Rku) ~vb(r-Rk,v) 

Then, the problem reduces to an eigen-value problem for each 

wave-vector k. The secular determinant equation (2-3) becomes 

         detITO(k) - E°k S0(k)j = 0 (2-8) 

Here each matrix element of TO (k) and SO (k) is given by 

eqs.(2-6a) and (2-6b), respectively. And E0k represents the 
eigen-energy of the Bloch state with band index n. Further, in 

the OTB approximation the basis functions are assumed to be 

orthogonal to each other. Hence, the overlap integral (2-7b) is 

given by 

            0 (
2-9)             Skua

,k'vb = Sk,k' du,v Sa,b , 

and the overlap matrix (2-6b) becomes a unit matrix 1. Then, the 

problem reduces to the usual eigen-value problem as follows: 

         detITO(k) - E°k 11 = 0 (2-10) 

      The dispersion of the conduction band of BPB is well 

reproduced with the use of six parameters, three orbitals 

energies, E(2p), E(6s) and E(6p), and three transfer integrals , 
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t(spa), t(ppo), and t(pp7) in the Slater-Koster notation.24) The 

values of _these parameters determined for each compound are 

listed in Table 2-1. The dispersion curves calculated for x=0.3 

are shown with the energy eigen-values utilized in determining 

the TB parameters (closed circles) in Fig.2-2. The Brillouin 

zone for cubic perovskite-type structure is given in Fig.2-3. 

      The-dispersion curves of the conduction bands of BaPbO3 and 

BaPb0 .7Bi0.303 are almost the same, and various physical 

propperties25) of BPB with small Bi concentration can be well 

understood within the rigid-band model based on the conduction 

band structure of BaPbO3 or BaPb0 .7Bi0.303. Recently Mattheiss 

and Hamann26) have calculated the band structure for ordered 

alloy Ba0 .5K0.5BiO3, and it is confirmed that the conduction band 

of BaBiO3 is little affected by substitution of K atoms for Ba 

atoms. In the following we discuss the electron-lattice 

interaction in BPB on the basis of the rigid-band model with the 

use of the conduction band of BaPb0 .7Bi0.303 whose dispersion is 

shown in Fig.2-4(a). To see the nature of wave functions we show 

in Fig.2-4(b) orbital components for the conduction band. It is 

clearly seen that both 0-2p0 and Pb(Bi)-6s components are large 

except near the F point. 

      Density of states (DOS) of the conduction band is calculated 

by using the usual tetrahedron linear interpolation method.27.) 

In actual calculations the irreducible Brillouin zone, which has 

1/48 volume of the first Brillouin zone, was devided into 64 

small tetrahedra. The results are shown in Fig.2-5 with some
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partial DOS defined by 

         Nua(E) _ XIAn~ua(k)l2 6(E-E0k) (2-11)                         nk 

where An,ua(k) is the eigen-vector of the n-th conduction band 

and p and a specify the atomic site and orbital in the unit cell, 

respectively. Then, the total DOS is given by the summation of 

the partial DOS as 

       N(E) = N X 
                 nk 6(E-EOk) 

               _ X N
ua(E) (2-12) 

                 pa 

In Fig-2-5, 0(2pa) denotes the 2p-orbital of 0 atom which 

elongates along the direction connecting the relevant 0 atom and 

its nearest neighbouring (Pb,Bi) atoms. And 2p-orbitals of 0 

atoms other than O(2p6)'s are denoted by 0(2pir). It is found 

that the 0(2pa) and (Pb,Bi)(6s) components at EF increases 

simultaneously when the EF departs from the bottom of the 

conduction band with increasing the composition x. A share in 

percentage of each orbital component at the Fermi level for 

various composition x is listed in Table 2-2. It is found that 

(Pb,Bi) and 0 share their components by half with each other 

except for the vicinity of x=0. Further, tendency of saturation 

is seen in (Pb,Bi) 6s and 6p orbitals for x>0.4. 

      The Fermi surfaces have been drawn with changing x. Some of 

them are shown in Fig.2-6, i.e. for (a) x=0.1, (b) x=0.3, (c) 
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x=0.7 and (d) x=1.0 (BaBiO3). It is clearly seen from the Figure 

that the Fermi surface expands gradually with increasing x or 

carriers in the conduction band. For small x, the Fermi surface 

is almost completely spherical. However, it becomes somewhat 

round cubic shape for rather large x such as 0.3<x<0.7. The 

variation in the shape of the Fermi surface with changing x gives 

various nesting vectors Q for each x, e.g. for x=0.3 Q=(7T/a,0,0) 

which corresponds to the X point in the B.Z. However, the 

nesting feature of the Fermi surface is not so good because of 

the three dimensional character of the conduction band.

- 11 -



BaPbO3 BaPb 0.7Bi0.303 t BaBi03

E(2p) 

E(6s) 

E(6p) 

t(spa) 

t(ppa) 

t(ppi')

-0.5 

-1 . 8 

 5.0 

 2.2 

 2.6 

-1 . 0

-1 .9 

-4.1 

 3.5 

 2.2 

 2.7 

-0.9

-2.5 

-6.5 

 2.3 

 2.0 

 2.6 

-0.7

Table 2-1 . Tight-binding band 

t -is eV. t: Taken

parameters. The 

from Ref.23 .

unit of E and
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x 6s
(Pb, Bi)

6p 2p0

0

2pTr

0 

0 

0 

0 

0 

0 

0 

0 

0 

1

1 

2 

3 

4 

5 

6 

7 

8 

9 

0

26. 

32. 

33. 

34. 

34. 

35. 

35. 

35. 

35. 

35.

1 

0 

9 

5 

8 

0 

1 

1 

1 

1

 6.4 

10.1 

12.4 

14.1 

15.5 

16.2 

16.1 

16.1 

16.2 

16.2

29.7 % 

32.8 

34.7 

36.1 

37.1 

38.8 

40.5 

41 .7 

42.6 

43.4

37.8 

25.1 

19.0 

15.3 

12.6 

10.0 

 8.3 

 7.1 

 6.1 

 5.3

Table 2-2   Orbital 

 at the

 components 

Fermi level

of 

for

the conduction band 

 each composition x.

states
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Fig.2-1. Cubic perovskite-type crystal structure of BPB.
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2-2. Electron-lattice coupling coefficient 

     In the orthogonal tight-binding (OTB) approximation the 

electron-lattice coupling is described in terms of derivatives of 

transfer integrals with respect to the atomic distance.28) When 

the U-th atom in the Q-th unit cell is displaced by small amount 

dRQ
U from their equilibrium positions RQU, transfer integrals 

between orbitals of relevant atoms also change in propportion to 

the magnitude of atomic displacements: 

     TtCUa,Q'vb = Jdr ~a(r-RQU-6RQU) HeQ ~b(r-R,,,_ RQ,v) 
                 TQUa,Q,vb + DaTQUa,Q,vb•(BRQ1-BRQ,v) , (2-13) 

where VaTQUa,-QJ'vb is the gradient of'the transfer integral in the 
equilibrium atomic position: 

           VaTQ,Ua,klvb 3Ra (TYLia,9'vb) R=R -R (2-14)                                                    Q
U VV 

Here the transfer integral is assumed to be a function of the 

difference R between the position vectors of the two atoms. In 

other words, the crystal field terms and the three-center 

integrals are neglected in the transfer integral. 

      Then, the transfer (Hamiltonian) matrix T(k,k') may be' 

expressed as follows within the linear approximation in atomic 

displacements:
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     [T(k,k')]nn, = Enk Sk k' Sn n' 
                  + L X gu (nk,n'k') ua S (2-15) 

                         qua qu k',k-q 

with 

      ga(nk,n'k') _ [At(k)]          u 
p.l'av'b n,Ura 

                  x [TU(k,k')]u,a,vrb[A(k')]vrb n, , (2-16) 

where E°k represents the unperturbed band energy of wave vector 
k and band index n, uu(q) (a=x,y,z) denotes the Fourier transform 
of SRQu defined by 

          uu(Q) = e-iq•RQ SRQU , (2-17)                    2. 

[A(k)]u
a,n represent the transformation coefficients which 

diagonalize the unperturbed transfer matrix T0(k) , and 

[TU(k,k')]ura v'b is expressed in termes of derivatives of 
transfer integrals as 

   LT(k,k')] [ST (k') - STa (k)] U 11 a,v,b T lip, 11 a vrb PV u r a v r b 

, 

                                                                  (2-18) 

where Tura,v'b(k) is the Fourier transform of the gradient of the 
transfer integral defined by 

     T
a,a,vrb(k) Q Q 0 TQU'a,kIVIb (2-19) 

                             24 -



      If we express the atomic displacement u (q) in termes of 

phonon normal coordinates Qqy (Y specifying the mode of phonon), 

the second term of eq.(2-.4) is expressed as follows: 

           ~~ VY(nk,n'k') Qqy 6k' ,k-q (2-20) 
          qY 

where electron-phonon coupling coefficient VY(nk,n'k') is defined 

by 

      VY(nk,n'k') Y/M- EY~ucx(k-k') ga(nk,n'k') (2-21) 
                      ua u 

Here eY
Oua(q) denotes the phonon polarization vector and Mu is 

the mass of the u-th atom. 

      The typical wave-vector dependences of VY(k,k-q) have been 

calculated and the reslts are shown in Fig.2-7 for q=(Tr/a) 

X(1,1,1), the R-point in the Brillouin zone (BZ). Here only 

intra-band coupling of the conduction band has been indicated and 

the derivatives of transfer integrals have been taken as follows: 

           t'(spo) _ -3.05 eV/A (--t'), 

           t'(PP6) _ -3.15 eV/A, 

           t'(pprr) = 2.85 eV/A. 

An estimation of the derivatives will be given in detail in the 

next section. Normal modes of phonons at the R-point are listed 

in Table 2-3 and some of the normal modes are illustrated in 

Fig.2-8(a)'t'(f). Since the conduction band states consist of the 

0 2p and (Pb,Bi) 6s and 6p orbitals, the vibrations of the (Ba,K) 

atoms, which correspond to R25'(T2
g) modes, cannot affect the 
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conduction band. And the displacements of 0 atoms along the 

directions which are tangential to nearest neighbouring (Pb ,Bi)-0 

bonds have also no contribution to the electron-lattice 

interaction as long as we take into account only the first order 

coupling coefficients with respect to the displacements . Hence 

the coupling coefficients for the R
15'(T1g) mode, which is the 

rotational mode of (Pb,Bi)-06 octahedron, and R
25'(T2g) mode 

become zero definitely in the present case. 

      It is found from Fig.2-7 that R1 (A1
g) mode, i.e. the so-

called breathing mode, takes larger value than the other modes 

for wide region in the BZ. The strethcing-type deformation of 

(Pb,Bi)-06 octahedra corresponds to R12 (E
g) mode which turns out 

to have secondly strong electron-lattice coupling . The coupling 

coefficients for the vibration of (Pb,Bi) atoms , i.e. R15 (T1u) 

mode, are alino-st an order of magnitude smaller than those for the 

R1 and/or R12 modes, because the mass of (Pb,Bi) is greater about 

13 times than that of 0 atoms (see eq.(2-21)) . It is noted that 

the remarkable wave-vector and mode dependences of the coupling 

coefficient VY(k,k-q) may play an important role on the lattice 

dynamics and the superconductivity in BPB and BKB.
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R = R1 + R12 + R15 + R
151+ 8251

R1 (A1
g) : 

R12 (E
g) 

R15 (T1 U) 

R15''(T1
g) 

R251(T2
g)

Lu0 x (1) + 

x Lu0(1 ) + 

[u x   0(1) -

x 

 u (Pb
, Bi ) 

Y  u
(Pb,Bi) 

z 

 u(Pb
,Bi) 

Lu0(1) 

[uz  0(2) -

Lu x  0(3) 

°1 LuY    0(1 ) 

c1[u z    0(2) 

c1 Lu0(3)

u0(2) + u0(3)]/V3 

u0(2) 2'u0(3)]//6 

uo(2) ]/,/2 

u0(2)] /v'2 

u0(3) ]/,/2 

UO(1)]/v'2 

z + u0x (2)] + c2*uB
a 

+ u0(3)] + c2.uB
a 

y + uz 
0(1) ] + °2*uBa

Table 2-3. 

structure

 Phonon 

at the

 normal 

R-point.

modes of 
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I

 Fig.2-8. (c) Displacements illustrated for R
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2-3. Estimation of derivatives of transfer integrals 

      In order to evaluate the strength of the electron-lattice 

coupling it is necessary to determine the value of derivatives of 

transfer integrals t'(spa), t'(ppa) and t'(ppir). These 

derivatives may be evaluated by a fit to the electronic band 

calculated self-consistently for distorted crystal structures 

which correspond to particular phonon symmetry modes. For BPB 

Mattheiss and Hamann23) have carried out LAPW band calculation 

for some distorted crystal structures, suhc as a tetragonal phase 

for BaPb0 .7Bi0.30.3 and a monoclinic phase for BaBiO3. For 

example, the monoclinic structure of BaBiO3 is described as the 

frozen phonons which consist of a rigid-rotational mode of 

(Pb,Bi)06 octahedra about [1101 axes as well as the so-called'' 

breathing mode at R point in the Brillouin zone. On the basis 

of the structure observed by the neutron diffraction 

measurement, 20) Mattheiss and Hamann23) have obtained the 

electronic band structure of the monoclinic phase. However, it 

is pointed out that their results cannot reproduce the CDW energy 

gap observed by some experiments, such as electric resistivity 

measurement,2) infra-red absorption spectroscopy, 29) and so on. 

We have estimated the derivatives of transfer integrals so as to 

reproduce overall features of the band structure obtained by 

Mattheiss and Hamann. 

      In the OTB approximation the electronic band structure for 

the distorted structure can be calculated in the following way.
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When atomic displacements <SRQ
u> which are modulated by a wave-

vector Q: 

           <6Ra > = 1 <ua (Q)> e1Q-R9,              Q
u T u (2-22) 

are frozen, then the electronic states of wave-vector k couple 

with those of k-Q, and the k-Q states couple with the k-2Q 

states, and so on. When Q=G/2 (G represents a reciprocal lattice 

vector), which is just the present case, the series of coupling 

with the higher harmonics are decoupled so that the k states 

couple with only to the k-Q states exactly. Then, according to 

the results in Sec.2-2 the electronic band structure in distorted 

structure can be obtained by diagonalizing the following transfer 

matrix: 

          TD(k) _ (2-23) 
                     T'(k-Q,k) , TO (k-Q) , 

where T0(k) is the transfer matrix of the undistorted phase which 

has the diagonal form as 

         [T0(k)] I E0k 6nn, , (2-24) 

and T'(k,k-Q) is expressed as 

          [T'(k,k-Q)]n,n, _ gu(nk,n'k-Q) <uu(Q)> (2-25) 
                              ua 

Then, the energy eigenvalues are determined from the secular 
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determinant: 

          detl TD(k) - EDnk 1 1=0 , (2-26) 

where 1 represents the unit matrix. 

      For BaBiO3 the observed atomic displacement of 0 atoms from 

the equilibrium position of the undistorted structure is about 

0.08 A 20) which corresponds to a few percents of the lattice 

constant. By using this value for the displacement <6R>, the 

electronic band has been calculated. In order to reproduce the 

dispersion curves of the LAPW calculation, the derivatives of the 

transfer integrals should be taken as follows: 

           t'(sp(j) = -3.05 eV/A, 

            t'(ppo) = -3.15 eV/A,; 

          t' (ppTr) = 2.85 eV/A. 

The calculated dispersion curves of the conduction bands for the 

distorted phase are shown in Fig.2-9 with those for the 

undistorted structure, which are folded into the half-size B.Z. 

of the distorted phase (see Fig.2-10). Most apparent change in 

the conduction band dispersion is found along the W-L line in the 

B.Z. The width of the splitting of the conduction band in the 

W-L line is about 1 eV in the case of t'=3.05 eV/A (where t' 

stands for the magnitude of the derivatives of the transfer 

integrals and is defined by t'-It'(spc)I). However, it is found 

in this case that the splitted bands have an indirect overlap of 

about 0.4 eV to each other. 

      In order to yield the complete energy gap in the conduction 
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band it is necessary that the derivatives of the transfer 

integrals are increased one and a half times larger than that of 

the previous value. As an example, the conduction band 

dispersion for t'=4.575 eV/A are shown in Fig.2-11. It is found 

that the indirect energy gap between an electron pocket at the L 

point and a hole pocket at the W point is about 0.05 eV. Sleight 

et a1.2) have found that BaBiO3 shows semiconducting behavior 

with an activation energy of about 0.2 eV. On the other hand, 

Kahn et al.29) reported that the optical absorption edge for 

BaBiO3 was about 0.1 eV. The reason for this discrepancy is 

still unclear. However, it is common sence that BaBiO3 is a 

semiconductor with a narrow energy gap. Thus, it is concluded 

that t' may be about 4.5 eV/A for BaBiO3. However, it is noted 

that the estimation of t' is still somewhat uncertain, because 

the observed value of atomic displacements, <6R>=0.08 A, is not 

always reliable. If <5R> includes the error of about 10 percent, 

then the estimated t' has also an uncertainty of 10 percent. 

Therefore, it can be only said that t' takes the value between 4 

and 5 eV/A for BaBiO3.
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§3. Lattice Dynamics 

3-1. Short-range force constant model 

      In this section we investigate lattice dynamics of BPB, 

which gives an important information to understanding the role of 

the electron-lattice interaction in this system. We first 

summarize the formalism to investigate lattice dynamics. The 

displacement of an atom at the u-th site in the 2-th unit cell 

from its equilibrium position RQ
u is denoted by SRQU hereafter. 

In the framework of the adiabatic (Born-Oppenheimer) 

approximation, the change in the potential energy caused by the 

atomic displacements V({6RQ
u}) can be expanded in a Taylor series 

of the displacements. The potential energy is assumed to be 

expressed within the harmonic approximation as follows:' 

        V({SRQU}) = 2 '~ FQlj,Q'v BRQu 6RQ,v (3-1)                         QQ u as 

where the second-order derivatives of the potential FaR I is                                                                91
,9V 

the interatomic force constant tensor between the Qu and k'v . 

atoms. Clearly, FQ~satisfies a condition 

          aR 0a 

and has a translational symmetry about the unit cell 

           (3 a~           F
Qa F(3-3) 
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           The Hamiltonian of the atomic vibrations is expressed in 

     the following form: 

         H 2M (pa,u)2 + FO' QS Q~v 6RQu 6RQ,V . (3-4) 
              Qua u 2QIPV as , 

     The equation of motion for 6RQu is given by 

            Mu 6RQu = -2~vs F2p,Qrv 6RQ,V (3-5) 

     with use of the relation (3-2). If we assume the time dependence 

     of 6R a 2
u as exp(-iwt), then the eqation of motion becomes 

            Muw2 6RQu FQS,Q,V 6RQ,V (3-6) 

s 

     We introduce _.he Fourier transform of 6RQu: 

             uqu = 1 e 1q-RQ 6RQu (3-7) 

Q 

     and rewrite eq.(3-6) as 

         Muw2 uqu R Dus(q) uqu ~                                                                   (3-7) 

     where 

               Da~(q) _ F" eiq•(RQ- R2,) , (3-8)                   WV Q
u'Qiv 

     which is the matrix element of the so-called dynamical matrix 
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D(q). Thus, the phonon freuency w
qY can be obtained by solving 

the secular determinant: 

          detl D(q) - M w
gy2I = 0 (3-9) 

or 

          detl M-1/2 D(q) M-1 /2 - W
gY2I = 0 (3-10) 

where M is the diagonal matrix defined by 

           aR _           M
uv MV suv ac 3 (3-11) 

and here M
u denotes the mass of the p-th atom. It is noted that 

the eigen-vector of the matrix M-1/2D(q)M-1/2 corresponds to the 

polarization vector EY 1ua(q). 
     Usually, D.(q) can be divided into two parts, X(q) and D0(q). 

Here, X(q) represents the generalized electronic susceptibility 

arising from the electron-lattice interaction and D0(q) denotes 

contributions other than X(q). Matrix elements of D0(q) can be 

written in the form of the Fourier transform of short range 

forces. Matrix elements of X(q) are given by 

      a~ a # f(Ek-q) - f(E0)      X
uv(q).= - 2 X g11 (k,k-q)gv(k,k-q) (3-12)                      k E 0 k - Ek 0 -q , 

where ga(k,k-q) is the electron-lattice coupling coefficient 

which represents the strength of the coupling between the two
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electronic states k and k-q caused by displacement uqp , Ek 
denotes the bare electronic energy and f(E0) is the Fermi 

distribution function. The Fourier transform of X Pas v(q) 

corresponds to the effective interatomic force: 

        FQR,1Z,v - N ~ Xua(q) e-iq•(RQ- RQ,) (3-12) 

q which may be of long range. 

      First we have calculated phonon frequencies t,0 with neglect 

of X(q). The phonon dispersion curves calculated along the 

[100], [110] and [111] directions are shown in Fig-3-1(a) and the 

phonon density of states is shown in Fig-3-1(b). In obtaining 

these dispersion curves we have assumed stretching force for six 

kinds of nearest neighbouring (n.n.) atomic pair and tangential 

force for one kind of n.n. atomic pair. The seven force 

constants in total have been determined so as to reproduce seven 

phonon frequencies observed by inelastic scattering 

measurements 30) (closed circles in Fig.3-1(a)). The short range 

force constants thus determined are shown in Table 3-1 (in unit 

of eV/A2) . 

      By analyzing the phonon polarization vectors we have found 

that the frequencies of 0-stretching vibration toward Pb or Bi 

atom lie near 60 meV and those of 0-bending modes around 25.meV. 

The frequencies of phonon modes arising mainly from Ba atoms lie 

near 15 meV. Vibrations of Pb or Bi atoms are mainly included in 

acoustical branches near the Brillouin zone boundary. It also 

can be clearly seen in Fig.3-1(b) which gives the partial phonon 
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density of states F
u (w) def ined by:

Fu (W) 1 

N LLL 
qYa

IE
YIIla

(q)I2 6(w   w 0 
  qY) (3-14)
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stretching bending

(Pb,Bi)-0 

        0-0 

 (Ba,K)-O 

 (Ba,K)-(Pb,Bi) 

 (Ba,K)-(Ba,K) 

(Pb,Bi)-(Pb,Bi)

4. 

1. 

0. 

1. 

0. 

0.

678 

1 04 

309 

426 

129 

968

-0.055

Table 3-1   Short range force 

  neutron scattering

constants determined 

 measurement in unit

from the 

of eV/A2.
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Phonon dispersion curves calculated with only short 
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mode and the broken curves the longitudinal mode. 

The closed circles represent the experimental data 

utilized in determining short-range force constants. 

                     - 48 -



    F(w) 

      1.0-

      0.5-

     0-

      0.5-

0 

      0.5-

     0-

      0.5-

     0-

      0.5-

0 

Fig.3-1.(b)

20 40 60 w

- Ba

Pb, Bi

O(stretch.)

0(bend.)

      20 40 60 W [mev) 

Calulated phonon density of states (DOS) F(w) 

 corresponding to the case in Fig-3-1.(a). Four 

 of partial phonon DOS's are also shown. Unit of 

and the partial one is (meV•unit cell)-1. 

                     - 49 -

kinds 

F(w)



3-2. Generalized electronic susceptibility 

      and phonon energy renormalization 

      We have calculated the phonon dispersion curves by including 

the generalized electronic susceptibility X(q) into the dynamical 

matrix D(q). The dispersion curves and the density of states 

F(w) calculated for x=0.3 are shown in Fig-3-2(a) and (b), 

respectively. In calculating X(q) we have used gu(k,k') 
evaluated in Sec.2-2. by using t'=4.05 eV/A (t' represents the 

derivative of transfer integral). By compairing Figs.3-1(a) and 

3-2(a) it is seen that the electron-lattice interaction causes a 

remarkable energy renormalization for only the longitudinal (L) 

mode of oxygen stretching and/or breathing vibrations whose bare 

frequencies lie near 60 meV.,: The phonon frequQ.ncy 

renormalizati:an shows remarkable wave-vector depend'ences. In 

this case large renormalization is found especially around the 

X-point in the Brillouin zone. It is originated from the nesting 

effect of the Fermi surface mentioned in Sec.2-1 as well as the 

remarkable wave-vector dependences of the electron-lattice 

coupling. If we neglect the wave-vector and mode dependences of 

the coupling coefficient gu(k,k-q), X(q) becomes proportional to 
the bare electronic susceptibility given by 

                   f(E0 ) - f(E0) 
          X0(q) = I k-q 0 k (3-15) 

                      k Ek - Ek -q 

The wave-vector dependence of X0(q) has been calculated in
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several cases of x (see Fig-3-3). It is found that X0(q) has a 

broad hump around the X-point for x=0.3, however, its q-

dependences are much calmer than that seen in the phonon 

frequency renormalization.      

,The magnitude of the renormalization of the L 0-

stretching/breathing mode increases with increasing the Bi 

concentration x and/or the strength'of the electron-lattice 

interaction (i.e. value of t'). For an example, the phonon 

dispersion curves and F(w) calculated for x=0.7 in case of the 

same value t'=4.05 eV/A are shown in Fig-3-4(a) and (b), 

respectively. It is clearly seen in this case that the L 0-

stretching/breathing phonon branch becomes soft around the M- and 

R-points besides the X-point. It is further noted that the 0-

breathing phonon at the R-point vanishes for x2_0.9 in case of 

t'=4.05 eV/A--and hence the lattice becomes unstable against 

formation of the distorted structure corresponding to that 

phonon. Experimentally the structure of BaBi03 at room 

temperatures has been confirmed to be described by a frozen state 

of the 0- breathing phonon just at the R-point. 20) 

      The phonon dispersion curves calculated above agree quite 

well with those observed by inelastic neutron scattering,30) 

except the L 0-stretching/breathing mode. Mysteriously the 

energies of the L.0-stretching/breathing mode have not been 

detected experimentally. Instead, rather broad peaks were 

observed near the B.Z. boundary in the energy region of 40"45 

meV. In connection with this point the linewidth or the lifetime 

of phonon will be calculated in the next section, Sec.3-3. 
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3-3. Phonon linewidth 

      As we have mentioned in previous sections the. longitudinal 

(L) 0-stretching and/or breathing mode vibrations which may be 

strongly renormalized by the electron-lattice interaction have 

not been observed by the inelastic neutron scattering 

measurement.30) A reason why the phonon mode can not be detected 

is considered as broadening of the phonon linewidth because of 

the strong electron-lattice interaction. Thus, in this section 

phonon linewidth or life-time caused by the electron-lattice 

interaction is calculated microscopically. 31) 

      In inelastic neutron scattering measurements the scattering 

intensity or the phonon spectral function S(q,w) is proportional 

                                                        32) to the imaginary part of the phonon Green's function D(q
,w). 

D(q,w) is obtained by solving the Dyson's equation: 

          D(q,w) = D0(q,w) + D0(q,w) l(q,w) D(q,w) , (3-16) 

where l(q,w) represents self-energy (or polarization function) 

for phonon Green's function and D0(q,w) the bare (or non-

interacting) phonon Green's function defined as 

                             2w0 
           D0 (q,w ) _ - gy (3-17) 

                       w2 - (w
0Y)2 ' 

where w0
gy denotes the bare phonon frequency of mode Y. Then 

D(q,w) is rewritten as follows:
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          D (q,w) = 1            Y DY(q,w)-1 - RY(q,w) 

0 

                       - 2wgY (3-18) 
                      W2 - (w0 )2 

qY + 2w gY 0 II Y (q,w) 

When -we neglect the w-dependence of fl (q,w), DY(q,w) becomes 

                                 2w0 
           ID (q,w) _ - gy (3-19) 

                       W 2 (w
gY)2 - 2iwgYF' ' 

where wqy is the phonon freuency renormalized by the electron-

lattice interaction and is defined by 

         (WgY)2 (w0Y)2 - 2wgY Re[fy(q,wgY)] , (3-20) 

and rqy represents the phonon linewidth which has relation with 

the imaginary part of I[1(q,w) as follows: 

0 

          r = - wqY Im[Ity(q,wgy) ] (3-21)            qy w
qY 

For w=w
qY , DY(q,w) is approximately given by 

0 

            DY(q,w) - wqY. w - w 1 - it ' (3-22) 
                     qY qY qY 

and then the scattering intensity or the imaginary part of 

DY(q,w) has a Lorentzian form: 
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0 r 

     S(q,w) - Im Dy(q,w) = - - qY• 2Y 2 (3-23) 
                             w

qy (w - wqy) + (rqy) 

with a half-width of half-maximum rqy . 

      In order to obtain the explicit expression for rqy , 11 (q,w) 

is evaluated within Migdal approximation (see Appendix.A).33) A 

diagram which is taken for IIy(q,w) in Migdal approximation is 

shown in Fig.3-5, where full curves denote the bare electronic 

Green's function. The diagram is evaluated as 

              2 Y 2 f(Ek-q) f(Ek)      ll (
q,w) = N I II (k,k-q)I 0 0 (3-24) 
                      k Ek - Ek -q - w - iS , 

                                                      (for w>O) 

where f(E0)-[exp((3Ek)+1]-1 represents the Fermi distribution 
function. And the electron-phonon coupling coefficient Iy(k,k-q) 

is related to V1(k,k-q) or ga(k,k-q), which appeared in previous 

sections, as follows: 

                  V'(k,k-q) (q) 
     Iy(k,k-q) = 

(2w0 ) 1/2 = l jot ) 1/2 ga(k.k-q) (3-25)                     qy u qY 

where Mu denotes the mass of the p-th atom, and E (q) is the                                                          Y ~ ua 

polarization vector. 

      Then, from eqs.(3-21) and (3-24), the phonon linewidth is 

expressed as
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0 

    rqy = 2Tr wqY X IIY(k,k-q) I2 [f(Ek)-f(Ek_q)] 6(Ek_q-Ek-wq) . 
               qY k 

                                                           (3-26) 

Since the summation for k in above equation is restricted to the 

electronic state near the Fermi level, we can replace 

approximately (f(E0)-f(Ek_q)] to Wgy6(Ek-EF), and neglect wg in 
the 8-function. Thus, the final expression is given by 

     rqy = 2Trw0 IIY(k,k-q) I2 6(Ek-EF) S(Ek_q-EF) (3-27) 

k or 

    rq1 = Tr X I VY(k,k-q) 12 8 (Ek-EF) S(Ek_q-EF) . (3-28) 

k It is noted that the relation (3-25) has been used to obtain the 

final expression (3-28). 

      The calculated phonon linewidth for x=0.3 is shown in 

Fig-3-6. It is found that the L 0-stretching/breathing mode 

phonons broaden significantly because of the electron-lattice 

interaction. The L 0-stretching/breathing mode phonons have the 

linewidth several order of magnitude larger than that of the 

other modes. Especially near the X point, (7/a,0,0), in the 

Brillouin zone, where the phonon frequencies are renormalized 

most significantly, the full-width becomes at most about 3 meV.
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Fig-3-6. Phonon dispersion curves for x=0.3 in case of t'=4.05 

          eV/A. Calculated phonon line-width (full width of half 

          maximum) of the longitudinal 0-stretching/breathing mode 

           is indicated by the vertical bars. The line-width of 

          the other modes is invisible on this scale. 
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§4. Superconductivity 

     In this section the superconductivity in BPB and BKB is 

discussed on the basis of the strong coupling theory of phonon 

mechanism.34) Prior to details of calculations, developments of 

the microscopic theory of the superconductivity are reviewed in 

Sec.4-1. In Sec.4-2 the spectral function of electron-phonon 

coupling a2F(w) is calculated by using the phonon dispersion and 

the electron-lattice coupling which have been obtained in 

previous sections. The superconducting transition temperature 

Tc is calculated in Sec.4-3 by solving the Eliashberg 

equations.35),36) The calculated Tc shows the significant 

composition dependence and high Tc about 30 K in BKB is found to 

be possible in the framework Elf the phonon mechanism. Further, 

isotopic shift of Tc is evaluated by replacing 160 with 170 and 
180 . The apparent deviation from the BCS result,37) Tc« M-1/2, 

can be obtained in the present system. Finally, in Sec.4-4 the 

Eliashberg equation for T=0 K 35),38) is solved to evaluate the 

energy-dependent gap function A(w). The ratio 2A0/kBTc (where A0 

denotes the superconducting energy gap) is found to be about 3.5 

in the case of Tc of about 30 K. This result agrees with the BCS 

result37) in spite of the strong electron-lattice interaction in 

this system. The tunneling spectrum for BKB is also predicted 

based on the calculated AM.
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4-1. Strong coupling theory 

      The first microscopic theory for superconductivity has been 

proposed by Bardeen-Cooper-Schrieffer (BCS) in 1957. 37) The BCS 

theory succeeded in the understanding of many properties of the 

superconducting states, such as the transition temperature T 
c, 

energy gap A0, critical field Hc, specific heat Cs, and so on. 

The essential idea in the BCS theory is that two electrons are 

condensed into a pairwise state, so-called Cooper pair, which is 

responsible for the superconductivity. The Cooper pair may be 

originated from an attractive interaction which is mediated by 

phonons or lattice vibrations in the crystal. However, the BCS 

theory has been found later to be applicable only for simple 

metal superconductors. Hence, Eliashberg35) has extended the 

BCS theory to a rigorous form to deal with strong electron-phonon 

coupling systems with the aid of the Migdal theorem33) in 

describing the normal state. In this section the developments of 

microscopic theories for the superconductivity are reviewed.
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      4-1 -1 . BCS theory 

             The essential features of the system which consists of 

      electrons and phonons are described by Fr~hlich Hamiltonian:39) 

                  H = Hel + Hph + Hel-ph , (4-1) 

      where Hel and Hph represent the Hamiltonians of non-interacting 

       (or bare) electron and phonon systems, respectively. And Hel-ph 

      represents the electron-phonon interaction. 

            The electronic Hamiltonian Hel is described as 

                         __ t                   H
el nka E 0 nk cnkG cnka ' (4-2) 

      where c t k6 (or ck6) is the creation (or annihilation) operator of 

      a Bloch state-'with a wave-vector k and a spin a of the n-th band, 

      and E°k is the bare electronic band energy of the Bloch state. 
      Actually, E0k may be calculated on the basis of the band theory 

      which includes Coulomb interactions within the local-density-

     functional (LDF) approximation. 

            On the other hand H
ph is described as 

               H w (ata 
                ph qY qY + 2 ) (4-3)                      qY 

     where aqY (or aqY) is the creation (or annihilation) operator of 
      a phonon with a wave-vector q of the u-th branch, and Wqy is its 

      bare phonon energy with-h=l, which is extracted from some 

      experiments, such as Raman scattering, infrared absorption, 
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inelastic neutron scattering, and so on. On the other hand, w0Y 
can be calculated theoretically on the basis of the short range 

force constant model described in Sec-3-1. 

      Finally, the electron-phonon interaction is written as 

      Hel-ph nka IY (nk, n' k-q) °nka cn' k- q6 (aqY + a1-gy )                 qY 

                                                             (4-4) 

where IY(nk,n'k-q) denotes the matrix element of the electron 

scattering from a Bloch state n'k-q to a state nk, which is 

caused by creating (or annihilating) a phonon with a wave-vector 

-q (or q) of mode y. It is noted that IY(nk ,n'k-q) can be 

related to the electron-lattice coupling coefficient gu(nk,n'k-q) 
or VY(nk,n'k-q), which has appeared in Sec.2-2. 

     The BCS theory starts from the Fr.,ohlich Hamiltonian, but it 

does not treat them directly. Instead, an effective electronic 

Hamiltonian Heff is constructed by performing the second-order 

perturbation with respect to the electron-phonon coupling 

IY(nk,n'k-q) and Heff is given in the following form: 

           H of f __                    Hel + Hint ' (4-5) 

where 

     Hi nt 2 IY(k'-q,k') IY(k+q,k)                 kk'
oo'gY 

0                       2 w
qY t t               x 

(E0 - EO )2 - (w0 )2 ck'-qG' ck'G, ck+qo cka                 k k+q qY 

                                                             (4-6) 
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Here band indices are omitted for brevity, and Hi
nt indicates the 

effective electron-electron interaction which comes from virtual 

exchange of phonons (Bardeen-Pines interaction).40) The form of 

Hi nt indicates that it is attractive (or negative) for excitation 

energies IEk - Ek_gI<Wgy• 
      In order to obtain the ground state of the effective 

Hamiltonian Heff, BCS have produced a coherent state by 

introducing an idea of the Cooper pair. When the Bloch states 

are occupied in pairs, the matrix elements of the interaction 

Hamiltonian Hi nt are always negative between such electronic 

configrations. The best choice for pairing is found to be 

(k+,-k+), i.e. the Cooper pair. Thus, the problem is reduced to 

a subset of configrations in which.the states are occupied in 

Cooper pairs. Then, the Hamiltonian is also reduced to the form: 

which connects Cooper pairs: 

            Hr ed - Hel + Hint , (4-7) 

with 

           int kk' k'k(ctk,+ck,+) (ck+c-k+ , (4-8) 

where Vk,k is defined by 

                     2 Wk-k'YIIY(k,k')I2           V
k,k Y (W

k-k'Y)2 - (Ek - Ek )2 (4-9) 

Vk,k is time-independent attractive interaction for Cooper pairs 

in the vicinity of the Fermi surface. 
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      BCS have obtained the ground state and excited states of the 

reduced Hamiltonian Hred by means of the conventional variational 

method. After the BCS theory many theorists have tried to 

describe the BCS solution in more convenient ways, such as a 

canonical transformation which diagonalizes Hred proposed by 

Bogolyubov,41) a pseudo-spin representation by Anderson,42) and a 

Green's function method by Gor'kov.43) 

      Among these methods the Gor'kov's is reviewed hereafter, 

since the Green's functions are utilized also in the strong 

coupling theory. The thermal Green's function for electrons is 

defined in the range -S<T<S as 

          G6(k,T) _ - <TT cko(T) ckCj(0)> , (4-10) 

where TT denotes the Wick operator which reorders the operators 

in such a way that T increases from right to left. In case of 

interchanging two fermion operators a factor of -1 is introduced. 

Thus, 

    G~(k,T) _ - <cka(T) cka(0)> 0(T) + <cka(0) ck6(T)> 0(-T) , 

                                                               (4-11) 

where 0(T) is a step function defined by 

                     1 ; for T>0 
          e(T) = (4-12) 

                     0 ; for T<0 , 

And cka(T) is an annihilation operator for a Bloch state ka in 

the modified Heisenberg picture: 
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                             T -TH             cka(T) - e cka e , (4 -13) 

and thermodynamic averages are defined by 

               <...> _ tr(e-s ...)                                                            (4-14) 

                    tr(e-S) , 

where S=1/kBT and 

             F = H - u N
e , (4-15) 

with p being the chemical potential of electrons and N
e the total 

number operator of electrons: 

           Ne . cka ck6 (4-16) 
              ka 

Namely, <...> means actually an average for a grand canonical 

ensemble. 

      It is found that .the Green's function (4-10) has the anti-

periodicity property for -S<T<S: 

          GCF(k,T+S) _ - G
a(k,T) (4-17) 

By using this property the definition of G
~(k,T) is extended 

outside the range -S<T<~. Then, the Fourier expansion of Ga(k,T) 

is written in the form:
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                        CO 

           G6(k,T) = Q X e-'Wn" G0(k,iWn) , (4-18)                            n=-oo 

where 

                      Wn = (2n+1) 7rkBT , (4-19) 

with n being an integer, which is called as "Matsubara 

frequency". The Fourier coefficients Ga(k,iw
n) are inversely 

given by: 

          G6(k,iwn) = 2 dT elWnT G0(k,T) (4-20) 
                                  -R 

      For non-interacting electrons (where only Hamiltonian H
el 

should be taken) the Green's function (4-10) can be evaluated as 

0 
         G0(k,T) = e-EkT{f(Ek)6(-T) - [1-f(Ek)]Q(T)} , (4-21) 

where 

          f(Ek) _ <ct ck6>0 = [exp(RE0) + 1]-1 (4-22) 

is the Fermi distribution function, and <...>0 represents the 

thermodynamical average with the non-interacting Hamiltonian H
el• 

Then, the Fourier coefficients of G0(k,T) can be calculated 
readily and obtained as 

          G0(k,iw ) = 1 (4-23)            Q n iw
n - (Ek - u)
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It is proved that the analytic continuation of G
CF(k,iwn) to the 

complex plane, i.e. Ga(k,z), contains complete informations about 

quasi-particle excitations in the electronic system. The pole 

z0 of Ga(k,z) represents•the excitation energy e (= Re z0) and 

the life-time T (or the damping 1/2T = Im z
0) of the quasi-

particle. 

      In order to evaluate G
a(k,iwn) one must solve the equation 

of motions in the modified Heisenberg representation: 

          - a GQ(k,T) = [H red , GG(k,T)] (4-24) 

By carrying out the commutation relation in eq.(4-24) the 

equation of motions of G
a(k,T) is written in the explicit form: 

     - aT GQ(k,T) = S(T) + (E0 - u) GQ(k,T) 

                 ~Vkk,<TT ctk-Q(T) ck'6(T) c-k'-G(T) ck6(O)> 
                k, 

                                                           (4-25) 

The complicated thermal average on the right-hand side of 

eq.(4-25) is decoupled by using the extended Hartree-Fock 

approximation: 

    <TT ctk-6(T) ck'6(T) (T) cka(O)> 

          } <TT ck,o(T) c-k'-6(T)><TT ctk-a(T) ckG(0)> . (4-26) 

It is noted that the pair amplitude <ck+c_k+> remains in this 

procedure. Other Hartree-Fock terms remain only for k=k', which
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give unimportant contributions to GG(k,T), i.e. small shifts of 

excitation energies. 

      Now, the Gor'kov's "anormalous" Green's function is 

introduced: 

           F
a(k,T) = - <TT cka(T) c-k-a(0)> , (4-27) 

          Ft(k,T) = - <TT cfk-(j ck6(0)> (4-28) 

Then, eq.(4-26) becomes 

      aT G6(k,T) = 6(T) + (E0 - u) G0(k,T) 

                           ~Vkk, F~(k',0) Ft(k,T) , (4-29) 
                         kr 

which couple with Ft (k,T). Thus, an equation of motion for 

Ft(k,T) is next produced in a similar way: 

      as Ft(k,T) _ (E0 - p) Ft(k,T) 

                           X Vkk, Ft (k',0) GG(k,T) . (4-30) 

k It is noted that the coupled differential equations (4-29) and 

(4-30) are closed by themselves. 

      Next, these equations will be solved by defining first the 

BCS energy gap: 

          Ak X VkktF6(k',0) (4-31) 

r
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Furthermore, eqs.(4-29) and (4-30) are Fourier transformed by 

using eq.(4-20): 

       iwn - Ek + u pk G6(k,iwn) 1 

          ~k iwn + Ek - u FQ(k,iwn) 0 

                                                           (4-32) 

By solving the linear equations the results are obtained as 

                      iwn + Ek - u 
           G~(k,iw n) = - 2 2 (4-33) 

                              wn + k 

A 
           Ft(k,iw n) = 2 k 2 (4-34) 

                          W n + Ek , 

where 

         Ek _.(Ek - u)2 + IAkI2 (4-35) 

which denotes the quasi-particle energy in the BCS state, since 

the analytic continuation G
a(k,z) of eq.(4-33) has a pole at 

zO=±Ek. It is noted that the energy spectrum Ek has an energy 

gap Ak at the Fermi level (or the chemical potential). 

     The BCS energy gap Ak must be determined in a self-

consistent manner. The Fourier expansion form given by 

                          CO 

          Fa(k,T=O) = S F(k,iwn) (4-36) 
                              n=-co 

is substituted into eq.(4-31). Then, by using eq.(4-34) the BCS
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gap equation is obtained as follows: 

                              00 V A 

        A k = 1 I 2k' k'2 (4-37) 
                       k'n=-- w

n + Ekl 

With the aid of the Poisson sum formula 

           00 

          1 212 2 2a tanh 2 (4-38) 
             n=-- (2n+1) Tr + a 

                                                    (a: real number) 

the familiar expression of the gap equations are finally 

achieved: 

          Ak = Vk2EAkt tanh 2kkT (4-39) 
                  k' k' B 

      If neglecting the wave-vector dependence of the Bardeen-

Pines interaction Vkk' and replacing it with a simple model given 

by 

          Vkk' -r V e(wD-JEk-u1) e(wD-JE01-uI) , (4-40) 

where wD being the Debye frequency, the BCS energy gap Ak also 

loses its k-dependences and becomes 

               ; A ; for u-wD<E0<u+w          Q D            k (4-41) 
                     0 ; otherwise 

Then, the BCS gap equation is written in the simple form: 
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E           1 = V kv21 tanh 2k k? T (4-42) 

with Ek2 = (Ek - u)2 + p2. Further, the summation of k is 
replaced by an energy integration by introducing the electronic 

density of states N(E) in the normal states as follows: 

       1 = N(EF)V wDdE 21 2 tanh (E22k2T1/2 (4-43) 
                    -w 2(E +D ) 1/2 B D 

Here, N(E) has been approximated to be a constant N(EF) in the 

region u- ,w D<E<u+WD. The transition temperature Tc can be derived 

easily from the gap equation (4-43). With temperatures 

approaching to Tc the gap 0 becomes to zero. Therefore, by 

setting T-*T c a-nd t-}0 in eq . (4'-43) , Tc is determined by the 

following condition: 

                        wD 

         1 = N(EF)V dE E tanh 2k ET (4-44) 
                     0 B c 

By performing the integration on the right-hand side of 

eq.(4-44), the explicit expression for T
c , which is famous as 

the BCS result, is obtained as follows: 

          Tc = 1.13 OD expl- N E V} (4-45) 
                               F ' 

where OD=wD/kB denotes the Debye temperature.
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4-1-2. Eliashberg theory 

     A failure of the BCS theory 37) which is discussed in the 

previous section may lie in the Bardeen-Pines interaction40) 

which does not contain time-dependences. Therefore, the BCS 

theory cannot account any retardation (or dynamical) effects of 

the pairwise interaction which is mediated by phonons. In order 

to take into account the dynamical effects of the electron-phonon 

interaction phonons as well as electrons should be treated by 

using the Green's function method. Especially, renormalizations 

of electrons and/or phonons in the normal state should be 

considered accurately, since the renormalizations provide many 

important physical phenomena such as mass enhancements of 

electrons, Kohn anormalies in the phonon dispersion, finite life-

time of quasi-particle states, and so on. 

      The theory of the superconductivity, which is also 

applicable to the strong electron-phonon coupled system, has been 

proposed first by Eliashberg in 1960.35) In this section the 

Eliashberg theory for finite temperatures is reviewed, since the 

theory for T=O K is derived essentially in a similar procedure 

which utilizes the causal Green's function for T=0 K in place of , 

the thermal Green's function. 

      Now, we shall start again from the Frohlich Hamiltonian,39) 

egs.(4-1)'\,(4-4). In addition to the thermal Green's function 

for electrons, eq.(4-10.), it is necessary to introduce that of 

phonons:
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          D
Y(q,T) _ - <TT ~qy(T) b-qY(0)> (4-46) 

with 

                   ~gY aqY + atgY ' (4-47) 

which is related to the Fourier transform of atomic displacements 

uu(q) (a=x,y,z) in the following way: 

                       1/2        ua (q) = Y [2NM1W} U gy qua 9Y(q) ~qY (4-48)              Ij l 
where M

u is the mass of the p-th atom, wqy and eua9Y(q) denote 

the phonon frequency and the polarization vector of the wave-

vector q and mode y, respectively. 

      It is found that D
Y(q,T.) has the periodic-property: 

         D
Y(g,T+R) = DY(q,T) (4-49) 

in the region -~<T<13. And the Fourier expansion form is given 

by 

           D
Y(Q,T) _ 1 CO X e-1wnT DY(q,iwn) (4-50)                            n=-CO 

with 

                       wn = 2nirkBT , (4-51) 

which is the Matsubara frequency for bosons (n: integer). The 

inverse relation is the same with that of electrons: 
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                             dT eiWnT DY(q,T)            DY(q,iwn) = 2          j _ a 
When the electron-phonon interaction is neglected, i.e. in 

of the "bare" phonon, the Green's function D0(q,T) can be 

evaluated as 

     D0(q,T) .= - exp(-wgYT) {[n(wgY)+1]e(T) + n(wgY)e(-T)} 

               - exp(w
gyT) {n(wgY)e(T) + [n(wgY)+1]e(-T)} 

Also, the Fourier transform of D0(q,T) is given by 

            D0 (q, iw ) = 1 - 1               Y n i w + () iw - w0                           n qY n qY 

0                           2w 

                         _ gy 
                      (iwn) 2 - (wgY)2 ' 

where w0 denotes the bare phonon energy. 

     Now, the equation of motion for Ga(k,T) is derived in 

analogy with that of previous section:

(4-52)

case

(4-53)

(4-54)

  aT Ga(k,T) [H , Ga(k,T)] 

6(T) + (Ek - u) G6(k,T) 

  IY(k-q,k)* <TT k (T) ck -q6(T) ck6 
qy

(0)> -

  (4-55)
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In order to evaluate the thermal average on the right-hand side 

of eq.(4-55) or the vertex function r6,0(gT;k'T';kO) which is 
defined by 

     I'6,G(gT;k'T';k0) - - <TT ~qY(T) ck,o,(T') ck6(0)> ' 

                                                            (4-56) 

the perturbation theory is usually employed for expanding the 

vertex function in a perturbation series (see Appendix.B).44),45) 

However, another procedure will be presented in the remaining 

part of this section. The equation of motion for the vertex 

function must be constructed. For this purpose the equation of 

motion for b
gy(T) is first derived as 

2 

    aT2 ~qY(T) (wgY)2 ~qy(T) 

                      + 2w0 IY(k-q,k) ck -q6(T) ckc5(T)                        qY k
6 

                                                           (4-57) 

Here, a prope.rty of phonon frequencies w0 =w0 has been used.                                                 qY -qY 

By utilizing eq.(4-57) the equation of motion for the vertex 

function r60.(gT;k-gT';k0) can be written as 

2 

     a 
2 r6~(gT;k-qT';k0) = (w° )2 r66(gT;k-qT';k0)     aT 

              2w IY(k'-q,k') 
                qY k' c5' 

                   x <TT ck,-q6,(T) ck,G,(T) ck-q6(T') cka(0)> 
                                                           (4-58) 
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On the other hand, the equation of motion for the "dressed" 

phonon Green's function DY(q,T) is expressed by 

2 

    a 2 DY(q,T) _ (w0Y)2 DY(q,T) + 2wgY 6(T) 
          + 2w

gY IY(k-q,k) <TT ck-q0(T) ckQ(T) -qY(0)>                 ka 

                                                           (4-59) 

By using eq.(4-59) with neglecting the third term on the right-

hand side, which contains another vertex function,'eq.(4-58) can 

be transformed to an integral representation: 

     Js      r 0(gT;k-gT';kO) _ - dT1 DY(q,T-T1) IY(k'-q,k') 

                             0 k or 

                x <TT ck,-g(j ,(T1) ck,6,(T1) ck_gG(T') cka(O)> 
                                                           (4-60) 

Substituting this expression into eq.(4-55), we obtain 

      2T G6(k,T) = 6(T) + (E0 - u) G6(k,T) 

               IY(k-q,k) dT1 D(q,T-T') IY(k'-q,k') 
             qy 0 k'Q' 

               x <TT ck,-qu'(T1) ck,6,(T1) ck-qG(T) 4(0)>                                                            6

(4-61) 

Following the principle of the generalized Hartree-Fock 

approximation, the thermal average on the right-hand side of 

eq.(4-61) is decoupled as 
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     <TT ck,_g0 (T1) ck,6,(T1) ck_go(T) ck~(o)> 
       -' <TT ck_gG(T) 4_q(Tl)><TT cka(T1) 4(O)> clSk' ,k S6 ',Q 

              <TT ck-qG(T) c-k+q_o(T1)><TT c_k-6(T1) ck6(0)> 

                                                              Xa 
                                                                     k,,-k+q s 6,,_6 

                                                              (4-62) 

It is noted that the second term on the right -hand side in 

eq.(4-62) has been reserved for the Cooper pairs condensation . 

Then, the equation of motion (4-61) can be rewritten as 

       aT G0(k,T) = S(T) + (E0 - u) GG(k,T) 

         JdTi I IIY(k-q,k)I2 DY(q,T-T1) G0(k-q,T-T1) Ga(k,T1)           0 qY 

 J s        + jdTi I IIY(k-q,k)I2 DY(q,T-T1) F0(k-q,T-T1) Ft(k,T1) , 
          0 qy 

(4-63) 

where F
0(k,T) and Ft(k,T) are the Gor'kov's anomalous Green's 

functions defined by eqs.(4-27) and (4-28) , respectively. In 

deriving eq.(4-63), the conditions IY(k ,k') = IY(-k,-k') _ 

IY(k',k) are used. 

      Now, the self-energies for the normal and anomalous Green's 

functions are defined by 

          EG(k,T) _ IIY(k-q,k)I2 D
Y(q,T) G6(k-q,T) , (4-64) 

                   qY 
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         EF(k,T) _ (IY(k-q,k)I2 DY(q,T) F0(k-q,T) (4-65) 
                   qY 

By using these self-energies, eq.(4-63) is rewritten as 

     - aT G6(k,T) = S(T) + (E0 - u) G6(k,T) 

      + JaT1[EG(k,T-T1) G6(k,T1) + EF(k,T-T1) Ft(k,T1)l 

0 

                                                           (4-66) 

Then, eq.(4-66) can be transformed to the Fourier component as 

     [icn - Ek + u - EG(k,iEn)] Ga(k,iEn) 

                           1 + EF(k,iEn) Ft(k,icn) , 
                                                           (4-67) 

where the Fourier coefficients of self-energies are defined by 

     EG(k,icn) = 2 dT e-icnT EG(k,T) 

            1 00 IIY(k`
,k)12 D (k-k',iEn-iEm) Ga(k',iEm)              = R 

                      M=-CO k' y Y 

                                                           (4-68) 

     E6(k,icn) - 2 dT e_icnT EF (k,T) 

          = 1 ~~ IIY(k' ,k)I2 DY(k-k',iEn-iEm) Fo(k',iEm) 
                       M=-CO klY 

                                                      (4-69) 
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     Similarly, the equation of motion for 

as follows: 

     - aT Ft(k,T) _ - (E0 - u) Ft(k,T) 

s 

        JdT1[E(kT_Tl)* G,Ft(k,T1) - EF(k,               -s

Fa

T -T

And its Fourier transform is given by 

     [iEn + Ek - u + EG(k,-iEn)] Ft(k,icn) 

                                 EF(k,iE n) Ga 

Egs.(4 6 )                  (4-71) can be written in the 

follows:

      and -

7 iEn - "E0 

     EF a

Thus, the 

equation

(k,

u 

lE

Green's 

(4-72) in

- E6

n)

(k,icn)

x

functions can 

 the following

iE
n 

G 

F

a 

t 
a

 EF(k, 

+ Ek -

(k,icn) 

(k, i€ )

be solved 

 form:

(k, -1 ) can be derived

1) Ga(k,T1)]

(k, iEn) 

matrix

iE 

u

n 

+ EG G

form

(k, 

1 

0

-iE

by inverting

n

as

the

(4-70)

(4-71)

(4-72) 

matrix
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     Ga(k,iEn) _ [ien + Ek - p + E6(k,-ien)l / ~~(k,icn) , 
                                                             (4-73) 

     Ft(k,iE n) = EF(k,icn) / ~~(k,iEn) , (4-74) 

where E6(k,iE n) denotes the determinant of the coefficient matrix 

of eq.(4-72) and is given by 

    ~a(k,iEn) = Lien - Ek + p - Ea(k,ien)l 

                 x [ien + Ek - p + EG(k,-ien)l - [EF(k,iEn)] 2 
                                                           (4-75) 

      It is noted that the excitation spectrum and its damping are 

determined from the pole of the analytic continuation of 

G .(k,ien) on to the real axis e+iS. In the normal limit, i.e. 

E6(k,E)->0, the excitation spectrum is determined by solving the 
equation 

          G0(k,E+i6)-1 = e - Ek + p - EG(k,e+i6) = 0 (4-76) 

When the self-energy EG(k,e+i6) can be expanded around e=0 in the 

form 

          EG(k,e+iS) = EG(k,0) - ak•e + iIm[EG(k,i6)] , (4-77) 

-
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with 

               a Re(EG(k,s)] 
           X k = 8

e (4-78)                                             e =0 , 

eq.(4-76) is solved in the following form: 

0                               - u 
                 N _ k k (

4-79)             e = Ek = 1 + X
k - iI k , 

with 

          uk = u - E~(k,O) , (4-80) 

         rk = - Im[E6(k,i6)]/(1 + Ak) , (4-81) 

where the~sma_ll change in the chemical potential Uk-p and the 

damping rk may be uninteresting quantities and negligible for 

usual metals. It is noted that the excitation energy Ek in the 
normal state is renormalized by a factor (1+Ak)-1, where ak is 

known as the mass enhancement factor. 

      On the other hand, in the superconducting state the 

excitation energy is determined by solving the equation 

     E0(k,E+iS) = Le - Ek + u - EG(k,E+i6)] 

            X Le + Ek - U + EG(k,-c-i8)] -'LE6(k,s+iS)]2 = 0 

                                                               (4-82) 

When the self-energiy EG(k,e) is devided into the odd &(k,e) and 
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even rl(k,e) parts relative for the . energy E, eq.(4-82) becomes 

   LE - ~(k,E+i6)l2 - [E0 - u + rl(k,E+i6)J2 - [EF(k,E+ib)]2 = 0 

                                                           (4-83) 

or 

                E0 - U + rl(k,E+i6) 
          E = k Z k

,E+i6) + L(k,E+i6) , (4-84) 

with 

          Z(k,z) E 1 - ~( Z,z) , (4-85) 

                   EF(k,z) 
          t(k,z) - Z k

,z , (4-86) 

where Z(k,z) is called as the renormalization function, and 

A(k,z) as the gap function, respectively. By using the similar 

expansion as eq.(4-77) for ~(k,E) and f(k,E), and neglecting the 

energy dependence of EFF(k,E), we get 

        E = Ek ± {(Ek)2 + A(k,0)211/2 , (4-87) 

which corresponds to the BCS result. 

      It is convenient to solve the equation for the self-energies 

EG(k,iwn) and ZF(k,iwn) in the self-consistent manner. For this 
purpose eqs.(4-73) and (4-74) are substituted into the right-hand 

side of eqs.(4-68) and (4-69), respectively. . Then, we obtain
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     EQ(k,iE n) = S X X X IIY(k,k')I2 D (k-k',ic -ic ) 
                         m=-co k' y Y n m 

                                    ism + Ek,- u + EG(k',-iEm) 

x 

                                           ~~(k',iE m) , 

                                                              (4-88) 

        F 00        (k,lEn) = 1 X X X IIY(k,k,)12 D (k-k',iE iE )     E6                        S 
m=-oo k'y Y n- m 

                             E6(k',iEm) 

x 

                                    7a(k',iC m) 

                                                           (4-89) 

      Next, the spectral representation for the phonon Green's 

function DY(q,iw
n) is introduced as 

     DY(q,iw n) _ - 7T dS2 Im DY(q,S2+id) 22 2 (4-90) 
              . .... jC0 

                       0 (iwn) - S2 

According to eq.(3-22), the imaginary part of the phonon Green's 

function can be approximately expressed in the Lorentzian form. 

If the phonon line-width F
qy or the imaginary part of 

polarization function Ell Y(q) are assumed to be neglected, the 

spectral representation (4-90) becomes 

                              0 00          DY (q, iwn ) = wgY JdS2 6 (St-wqy) 220 2 C4-91)                          qY 0 wn + Q 

Substituting the spectral representation (4-91) into eqs.(4-88)
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and (4-89), the 
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(4-92)

                                                         (4-93) 

a2F(k,k';S2) in eqs.(4-92) and (4-93) is the spectral function 

defined by 

0 

     a2F(k,kt; ) = N(EF) Wk-kry IIY(k,k')I2 S(Q_wk_k,y) r 
                                 y k-k'y 

                                                           (4-94) 

and this function represents an intensity of the electron 

scattering between the Bloch states k and k' caused by phonons 

having an energy 0. 

      Next step is a simplification of the self-consistent 

equations for the self-energies E6(k,ien) and EF(k,ien) to ' 
isotropic forms. The wave-vector dependence of the self-energy 

is assumed to be neglected (or averaged appropriately over the 

Fermi surfaces). This assumption may be justified for dirty
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superconductors which lose the anisotropic character of 

crystallography. By using the eq.(4-92) and (4-93) the self-

consistent equations are reduced in the following forms: 

      G °° iEm + Ek - U + EG(-iEm)      EG (lEn) kBTm~_COa(En-Em) N(EF) k? "ZG(k',iEm) , 
                                                          (4-95) 

F 
                                      00                                           E iE )      EF(iEn) = kBTm=_00A(En_Em) N(EF) k'-a(kt'1Em) (4-96) 

with 

        I s          X(E E ) d2 a2F(S2) 2Q (4-97)                 n- m 
0 (En-Em) 2 + Q2 ' 

where a2F(Q)-denotes the spectral function averaged over the 

Fermi surface, which is expressed in terms of eq.(4-94) as 

    a2F(Q) = 1 2 ~~ a2F(k,k';c) S(Ek-EF) S(Ek,-EF) 
             N(EF) kk' 

0 w 

              N E ~~ k-k,Y I IY(k,k') 12 S (S2-cok-k' ) 
                    F kk'y k-kty Y 

                              x S(Ek-EF) 8(Ek,-EF) 

                                                             (4-98) 

Again, the self-energy E
iG(iEn) is devided into odd part C(icn) 

and even part q(ic n), and n(icn) is included in the small change 

of the chemical potential, i.e. u-p. Then, eq.(4-95) becomes
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                       00 
1 iEm - E(iEm)        (iEn) = kBTmI-00a(En-E m) N(EF) k' ~6(k',iEm) (4-99) 

with 

     ~a(k',icm) _ (icm - (icm)]2 - [Ek,- u]2 - ~EF(iEm)~2 

                                                             (4-100) 

With introducing the electronic density of states N(E) , the k'-

summation is replaced by the energy integration as follows: 

             -} dE N(E) = N(E
F) dE                    k' 

-CO COOO 

Then, the integration about E is performed by using the Cauchy's . 

formula for complex integration: 

                           CO iE - (ic ) 
     C(iEn) = TrikBT I A(En-E m) iE m sign[Im 0

a iEm)] , 
                        m=-oo 0 m 

                                                            (4-101) 

with 

          Q22(iEm) = (ic - (ic m)]2 - (EF(iEm)]2 (4-102) 

By analogy with eqs.(4-85) and (4-86) the renormalization 

function Z(iE n)-1-(iEn)/icn and the gap function 

0(ic n)-EF(i6n)/Z(ion) are introduced so that eq.(4-102) becomes
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         02(iEm) _ (iEm)2 Z(icm)2 - [E6(icm)]2 

                   Z(ic
m)2 [(iEm)2 - 0(iEm)2] (4-103) 

By taking this into account, eq.(4-101) becomes 

                              °O i E 

      (iCn) = 1rikBT X X (En-Em) 2 m 2 1/2 
             m=-C0 [(iE m) - A(icm) ] 

                                                          (4-104) 

It is readily found that eq.(4-96) can also be rewritten in the 

equation for the gap function 0(ic
n) as follows: 

     A(ic irikBT A ( E E A (icm)            ) _ ) 

. 

          n Z l n m=-C0 n- m [(iE m)2 - A(icm)2]1/2 

                                                          (4-105) 

In order to obtain complete informations in the superconducting 

state eqs.(4-104) and (4-105) should be solved in the self-

consistent manner with Z(ic n)=1-E(icn)/icn. The coupled equation 

is nothing but the "Eliashberg" equation in the Matsubara's 

imaginary frequency version. On the other hand, real frequency 

version of that is given in Appendix.C.
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4-2. Spectral function a2F(w) 

      To discuss the sperconductivity of BPB and BKB in the 

framework of the strong coupling theory based on the phonon 

mechanism we first calculate the spectral function a2F(w) and the 

dimensionless electron-phonon coupling constant A defined 

respectively by 

 a2F(w) = 1 ~~ IVY(k,k')~2 6(Ek-EF) S(Ek,-EF) S(w-wk,-k) ,             N EF kk'
Y 2Nwk' -k 

                                                          (4-106) 

         A = 2 jcO a2F(w) dw , (4-107) 

0 where 

          VY(k,k') 1 E
Y,ua(k-k')ga(k,k') , (4-108)                         ua u 

with E (k,k') being the phonon polarization vector of mode y.       Y 
, ua 

      We have calculated a2F(w) for several values of x in the 

case of t'=4.05 eV/A, and the results are shown by full curves in 

Fig-4-1 with the phonon density of states F(w) which is drawn by 

broken curves. It is found that a2F(w)'has a frequency 

dependence entirely different from that'of F(w). It should-'be 

noted that a2F(w) has some prominent structures in the frequency 

range where 0-stretching/breathing mode branches lie. Thus, this 

0-stretching/ breathing mode is expected to contribute dominantly 
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to the superconductivity. As x increases, some main peaks in 

a2F(w) shift to lower energy side, reflecting the phonon 

frequency renormalisation, and the magnitude of a2F(w) increases 

remamkably in the whole energy range up to 60 meV. This 

considerable change in a2F(w) is expected to bring a remarkable x 

dependence of Tc. 

      In order to get rough estimate of T
c we have calculated also 

A as a function of x. The results for t'=4.05 eV/A are shown in 

Fig-4-2. It is found that A is enhanced significantly due to the 

renormalization of the L 0-stretching/breathing mode, i.e. A 

increases rapidly around x=0.5 and it exceeds 1.0 for x>0.7. 

Then, we may expect a high superconducting transition temperature 

such as Tcn, 30 K. However, to discuss the magnitude of Tc 

quantitatively, it is necessary to solve the Eliashberg_ 

equation36) by using the calculated a2F(w). It will be given in 

the next section, Sec-4-3-
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shown by broken curves. Here, .a2F(w) is a dimensionless 
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Fig - 4-2. Dimensionless coupling constant A calculated 

function of x in case of t'=4.05 eV/A. The 

denotes the region where the lattice becomes
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 4-3. Transition temperature and isotope effect       

'Superconductin
g transition temperature Tc should be 

 determined by solving linearlized Eliashberg equations at finite 

 temperature. 35) It is much more convenient for numerical 

 calculations to solve the "imaginary-axis" version of the 

 Eliashberg equations which are defined on Matsubara imaginary 

 frequencies iEn=(2n+1)TrikBT (n:integer), i.e. eqs.(4-104) and 

 (4-105) in Sec.4-1-2. At any temperature T<Tc the Eliashberg 
 equations (4-104) and (4-105) are non-linear coupled equations. 

       When the temperature approaches to Tc, however, the coupled 
 equations can be decoupled and expanded with respect to the self-

 energy for superconducting state (or the gap function A(iE
n)):36) 

           t(ie n) = TrkBT n~~m~ A(icm) , (4-109) 

m where u# is the effective screened Coulomb repulsion constant,46) 

and 

           Em = Em + TrkBT X sgn(EQ) A(em-EQ) , (4-110) 

Q 

          A(E n) =                    dQ a2F(S2) 2 2Q 2 (4-111)       jW 0                         0 + En ' 

which is related to the dimensionless electron-phonon coupling 

constant A as A=A(0). 
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      The transition temperature T
c should be determined so that 

the linearlized gap equation (4-109) has any non-trivial solution 

at T=T 

c 

                           A(e -e ) - u# 
             det TrkBTc n ,gym - S = 0 (4-112)                       Ic mI mn 

There is an artificial method to reduce the above gap equation 

into a Hermitian form by introducing a pair-breaking 

parameter. 36) However, we need not such a method to calculate T 

c , because the merit for the computation in the Hermitian form 

becomes less important with recent developments of numerical 

clculations. Thus, we use eq.(4-112) to determine T 
c hereafter. 

      In calclating T
c we utilize the spectral function a2F(w) 

calculated with t'=4.05 eV/A in the previous section . The 

obtained x-dependences of T
c are shown in Fig.4-3. For each x we 

have calculated T
c with four different values of u , 0.0, 0.05, 

0.1 and 0.15. In most superconductors p# has been taken 

empirically to be between 0.1 and 0.15. The calculated T 

C increases rapidly with increasing x as long as the lattice 

instability dose not occur, and reaches 28 K at x=0.7 in case of 

A=1.09 and p =0.15. In the present case the lattice becomes 

unstable for x>0.9 (i.e. shaded region in Figs -4-2 and 4-3). 

Especially, it is confirmed that the frequency of the 0-breathing 

phonon at the R-point vanishes in case of BaBiO3 (x=1) and hence 

the lattice becomes unstable against formation of the distorted 

structure described by that phonon. 
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       It should be noted here that one must be careful in using 

 the McMillan's equation for Tc given by47) 

               __ ~D 1.04(1+A) (4-11 .3)             Tc 1.45 exp A - U (1+0.62X) 

 where OD denotes the Debye temperature. For BPB OD is estimated 

 to be ti 190 K.4) Then, if we use the above McMillan's equation 

 to estimate . Tc for A=1.09 (U is fixed at 0.15), we have Tc= 10.5 

 K. On the other hand, if we determine the value of A from this 

 McMillan's equation so as to get T 
c = 28 K, we obtain a very large 

 value of A such as 3.0. Therefore, it is not justified to 

 utilize the McMillan's equation with OD for the evaluation of Tc 

 in such a complex system as BPB or BKB. Our results for T 
c agree 

. well with observed Tc in BKB, but disagree with those in:BPB. 

 One of reason-s for this discrepancy may be that the rigid-band 

 model is insufficient to describe BPB, because in BPB the Pb 

 atom, which is one of constitutive elements of the conduction 

 band, is substituted randomly by the Bi atom. 

      Finally we have estimated the isotope shift of Tc by 

 calculating T
c when 160 is replaced with 170 and 180. A 

 characteristic exponent a, defined as Tc- M-a (M0: oxygen atomic 

 mass), is evaluated from the slope of the 2,n Tc vs. Qn MO plots. 

 A typical example for such plots is given in Fig.4-4 for t'=4.05 

 eV/A and x=0.7. The evaluated exponents a for x=0.5, 0.6 and 

 0.7 are listed in Table 4-1. It is found that a takes rather 

 smaller values than the so-called BCS value (a=0.5).37) 
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Experimentally the value of a is estimated to be 0.21 by Batlogg 

et al., 48) 0.35 by Kondoh et al. 49) and 0.41 by Hinks et a1.50) 

The principal reason why a differs from the BCS value is that 

the vibration of atoms other than oxygens, such as Bi atoms, 

contribute appreciably to the superconductivity, particularly in 

case large phonon frequency renormalisation is caused by the 

electron-lattice interaction. Recently Barbee et al. 51) have 

carried out calculations of a in compound superconductors by 

using simplified model spectral function. They also have pointed 

out the possibility that the value of a can be much smaller than 

the BCS value in case of specific isotopic substitutions in 

compound superconductors.
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.42 
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.36

0.43 

0.41 
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0.45 

0.44 

0.43 
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Table 4-1 . Calculated oxygen isotope effect 

The characteristic exponent a is 
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4-4. Energy gap at T=O K and tunneling experiment 

      Tunneling measurement is one of powerful methods which can 

observe directly the superconducting energy gap. An outline of 

the tunneling experiments is as follows. A superconducting 

specimen which is coverd by a thin (`-20 A) insulating oxide layer 

is attached to normal (or superconducting) metals. The tunneling 

current through the superconductor-insulator-normal (S-N) or 

superconductor-insulator-superconductor (S-S) junctions are 

measured as a function of applied voltage, I(V). Schrieffer-

Scalapino-Wilkins52) have shown that the differencial 

conductances dI/dV through the S-N junction is proportional to 

the electronic density of states Ns(e) in the superconducting 

state as 

          dI Ns(C) = Re I I (4-114)          dVIeV=c N(E ) LC2 - A(E)2~1/2 , 

F where N(EF) denotes the electronic density of states at the Fermi 

level EF in the normal state, and A(c) represents the energy 

dependent gap function at T=O K. Here, A(w) is determined by 

solving the Eliashberg equations for T=O K and it is given by 38)
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           [1 - Z(E)]E 

                                  Er 
            = Re         JA:61 [E r2 A(E1)211/2 

     JCO               x dw a2F(w) 
l E'+ E + W 6 + w - 1S 

0 

                                                            (4-115) 

                                      CO r 

1 

    A(c) = Z(E) JdCT Re [E 1 2 - A(c,)2]1/2 
                p0 

               CO 

             x dw a2F(w) ( E'+ E + W - iS + E'- 6 + w - 1S   J 0 
              # Ec E, 

           Z(E) dc' Re 2 ,I2 1/2 

0 

                                                          (4-116) 

where ~(E) is the electronic self-energy of the normal state, 

Z(c)=1-C(E)/E is called as the mass enhancement (or 

renormalization) function, and A0 is the ener-gy gap which appears 

in the electronic one-particle excitation spectrum or Ns(E). The 

gap A0 is defined by 

          A0 = A(A0) , (4-117) 

(see also Appendix.C). 

     In deriving the gap equations (4-115) and (4-116) the 
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Coulomb interaction has been approximately replaced by the 

effective screened Coulomb repulsion constant U , which is 

defined by46) 

                  N(EF)V c           U = 1 
+ N(EF)V

cQn(EF/ c ) (4-118) 

where Vc is-the static screened Coulomb interaction which is 

averaged over the Fermi surface, and e
c is an appropriate cut-off 

energy. 

      In the week coupling limit (or the BCS result) N
s(e) can be 

written as 

           N
s(e) _ 6(Ek- e) k 

                         ~e' 
                 N(EF) Re 2 2 1/2 (4-118) 

                              [e - DO 1 , 

where Ek- [(Ek)2 + p0211/2 represents the one-particle excitation 
energy in the superconducting state, and Ek is the electronic 
band energy in the normal state. The BCS energy gap A0 is 

essentially the same quantity with that of the strong coupling 

theory, which is defined by eq.(4-117). 

     Once the spectral function a F(w) and U are given, ~(E) and 

A(c) are calculated by utilizing eqs.(4-115) and (4-116) in. a 

self-consistent manner. In actual calculation A(e) has 

sufficiently converged in iteration of several times. The 

obtained Z(e) and A(e) in case of x=0.7 and u =0.1 are shown in
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Figs-4-5 and 4-6, respectively. Here, a2F(w) obtained for 

t'=4.05 eV/A has been used in the present calculation. It is 

found that the real part of the renormalization function Z(e) has 

some little humps up to 60 meV, which indicates the electronic 

mass enhancement due to the strong coupling with relevalent 

phonons. The mass enhancement factor Z(0)=1+A is found to be 

2.09 in the present case. 

      On the other hand, A(e) has sharp and prominent structures 

reflecting the peaks in a2F(w), and the structures are extended 

to higher energy range above 60 meV. The superconducting energy 

gap A0 is found to be 4.8 meV. Since Tc has been evaluated to be 

31.3 K in case of x=0.7 and U =0.1 in the previous section, the 

ratio 2A0/kBT c is found to be about 3.6, which is accidentally 
close to that predicted by the BCS theory (2A0/kBTc=3.5). Direct 

observation of A0 has not been carried out for BKB yet, however, 

for BPB Akimitsu et al. 53) observed 2AO=1.69 meV (2A0/kBTc=3.45 

with Tc=11.2 K) from the tunneling measurement. In usual strong 
coupling superconductor the ratio 2A0/kBTc often deviates from 

the BCS value to larger side, 54) for example, 4.6 for Hg 55) and 

4.3 for Pb.56) It is still unresolved why the ratio agrees with 

the BCS one for BPB or BKB in spite of the strong electron-

lattice coupling in these systems. 

      Further, such a prominent structures in d(e) would be 

observed by the tunneling experiments.38) Hence, we have also 

calculated the differential conductance dI/dV by making use of 

eq.(4-114). The result is shown by the full curve in Fig-4-7 
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together with the BCS result calculated by (4-118) (broken 

curve). The apparent deviation from the BCS reult is clearly 

seen whereas the deviation is about a few percent of the 

conductance in the normal state. Tunneling measurements with 

high resolution are desired in order to obtain the experimental 

evidence for strong coupling superconductivity in BKB.
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Fig-4-7- Density of states (DOS) N
s(E) in the superconducting 

states. Here, Ns(E) is normalized by the DOS N(EF) 

at the Fermi level in the normal state. This quantity 

is identical with the tunneling differential conductance 

dI/dV through the normal(N)-superconducting(S) junction, 

which is measured in the unit of dI/dV through the N-N 

junction.
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§5. Summary 

      First, the electron-lattice interaction of BPB and BKB has 

been calculated microscopically by using the realistic electronic 

band structure obtained by the orthogonal tight-binding 

approximation. We have confirmed that the vibrations of 0 atoms 

along the direction toward the nearest neighbouring Pb or Bi 

atoms have strong coupling with the conduction band states. This 

property of the electron-lattice coupling arises from the nature 

of the conduction band states, i.e. the conduction band states 

consist mainly of the 6s and 6p orbitals of Pb or Bi atoms and 

the 2p orbitals of 0 atoms. 

      Next, we have investigated the lattice dynamics of BPB and 

BKB by taking account of the effect of the electron-lattice 

interaction.--It is found that the electron-lattice interaction 

causes the remarkable renormalization of the longitudinal (L) 

0-stretching and/or breathing mode phonons especially near the 

Brillouin zone boundary. The phonon frequencies of those modes 

become lower.and lower with increasing the number of the 

conduction electrons or the composition x. And finaly the 

lattice instability occurs accompanied with vanishing of those 

phonons. The broadening of the renormalized phonons is also 

found from the calculation, which might be related with the 

absence of those phonon modes in the neutron scattering 

measurement. 

     Further, the superconductivity of BPB and BKB has been 
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discussed in the framework of the strong coupling theory of the 

phonon mechanism. We have obtained the following results. 

(1) The spectral function a2F(w) takes large values in the 

     frequency range where the L O-stretching/breathing mode 

     phonons lie, which implies the importance of those phonons. 

(2) The transition temperature T
c has been calculated by solving 

     the Eliashberg equation. It is found that TT 
c increases 

     rapidly with increasing x, and reaches 30 K around x=0 .7. 

     The obtained x dependence of T 
c agrees well with that 

    observed in BKB. 

(3) The isotope effect on T
c has been investigated by calculating 

     T
c , when 160 is replacing with 170 and 180. The 

     characteristic exponent a defined by T
c« MO-a has rather 

     small value between 0.35 and 0.45 compaired with that 

     predicted-by the BCS theory (a=0.5). The results agree well 

    with the experimental data obtained by Kondoh et al .(0.35) 

    and/or by Hinks et al.(0.41). 

(4) The gap function A(E) has been calculated for T=O K. The 

    ratio 2A0/kBT
c (A0: superconducting energy gap) is found to 

    have the value close to that predicted by the BCS (week 

    coupling) theory (2A0/kBT
c=3.5). However, the tunneling 

    differential conductance dI/dV is turn out to show the 

     behavior which is characteristic to the strong coupling 

     superconductor. 

Our results suggest that the superconducting properties in BKB, 

such as the magnitude of T
c and the isotope effect on Tc, can be

- 112 -



understood within the phonon mechanism. It is particularly 

emphasized that the significant renormalization of the L 0-

stretching/breathing mode phonons plays an important role for the 

high Tc in BKB. On the other hand, it is a further problem 

whether the superconductivity in BPB can be explained within the 

phonon mechanism. It seems that effects of random substitution 

of Bi for Pb have to be taken into account.
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Appendix.A. Migdal theorem 

     A criterion of the applicability of perturbation theory to 

electron-phonon problems has been developed by Migdal in 1958. 

Based on quantum field theoretical methods Migdal has evaluated 

the vertex part of the electron-phonon interaction and found that 

the vertex part can be expanded in a perturbation series with a 

small parameter M-1/2, where M is the mass of an atom. The 

result enables one to apply the perturbation theory without 

assuming the weak electron-phonon coupling. The Eliashberg 

theory owes to this guiding principle in constructing the self-

energy equations for strong coupling superconductors. In this 

Appendix we will review the process of deriving the Migdal 

theorem and discuss the efficiency of the theorem. 

     Starting from the Frohlich Hamiltonian (4-1)'L(4-4), 

equations of motion for thermal Green's functions of electron 

G(k,T) and phonon D(q,T) can be constructed. Here, indeces for 

the electronic band and the phonon branch shall be omitted for 

brevity. Introducing self-energies E(k,T) for electrons and 

polarization functions lI(q,T) for phonons, the equations of 

motion can be transformed to that of the Fourier components 

defined on the Matsubara frequencies. That is the so-called 

Dyson's equation: 

     G(k, is n) =..GG (k, iEn) + GG (k, ien) E (k, iEn) G(k, ien) , 

                                                                    (A-1)
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     D(q,iw m) = D0(q,iwm) + D0(q,iwm) ll(q,iwm) D(q,iwm) 

                                                                  (A-2) 

where ic n=(2n+1)1rikBT and icon=2mrrikBT with n and m being 

integers, and G0(k,iC n) and D0(q,iwm) is the non-interacting 

Green's function for electrons and phonons, respectively: 

          G0(k,ie n) = 1 0 (A-3)                            i~ 
n - Ek , 

                                2w0 
           D0(q,iw ) = - q (A-4)               m (iwm)2 (Wq)2 

where the chemical potential has been set to zero for brevity. 

      By using the usual Feynman's diagramatic techniques, 

E(k,isn) and ll(q,iwn) is written in terms of the vertex function 

r(q,iw m;k,iEn) as follows:

The

E(k,

II(q,

in n) 1 1       _ -N~ 
q 

           CO 

            x X 
              M=_00

ie m) = 1    NS

vertex

x

function

II(k,k-q) I2

D(q,iw m)

X II(k.k-q) I2 

k c, 

 X G(k,icn) 
n=-oo 

 F(q,iwm;k,ie

G(k-q,ic

G(k-q,i€

n)

n-m

m-n

  F(q,iw m;k,iEn)

  F(q,iw m;k,ien)

, which is the Fourier

, 

(A-5)

(A-6)
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transform of eq.(4-56), should be evaluated diagramatically. The 

perturbation series of the vertex function, r=rG+r1+•••, is 

presented in Fig.A-1, where the full and wavy curves denote the 

non-interacting Green's function for electrons GG(k,iC n) and 

phonons D0(q,iwm), respectively. 

      The first-order correction to the vertex function, 

r .1(q,iwm;k,icn), is obtained by 

     r(q,iw m;k,iEn) _ - 1 II(k,k')12 
                           k' 

0 

) 

            X X DG(k-k',ie 
n-n ,) GG(k',icnr) GG(k'-q,ic n,-iw m 

                n =-CO 

                                                                  (A-7) 

It is difficult to evaluate eq.(A-7) accurately based on the 

realistic electron-phonon systems. However, it is easilly 

confirmed that the main contribution to eq.(A-7) arises in case 

of Ek = Ek1= EF. Then, eq.(A-7) has an order of II(k,k')12/wk-k' 
which proportional to M-1/2.
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Appendix.B. Nambu formalism 

     In order to derive the Eliashberg equation the equation of 

motion for the electronic Green's function has been constructed 

and decoupled in the Gor'kov's manner. However, it is also 

convenient to utilize the usual quantum field-theoretical method. 

In this context Nambu representation will be introduced to 

simplify the notation of the formalism. First, two-component 

field operator Y'k and its Hermite conjugate are defined as

                    ck+ 

         Tk 

                      c -k+ 

It is found from above 

only concerning itself 

.singlet) pairs. If on 

Eliashberg's four-comp 

of Nambu's operator. 

      The commutation r 

given by 

          {Tk ' Tk'}+ 

         {Y k ~kl}+ 

where TO denotes the u

S. ii one wants 

four-components 

erator. 

utation re

      4'k = L ckt , c-k+ ] . ( B 1 ) 

expressions that the Nambu formalism is 

with formation of the Cooper (i.e. 

 wants to deal with triplet pairs, the 

       field operator must be used instead 

lation of these operators are formally

 = S
k 

  {q, 

unit

,k' TO ' 

k ' k'}+ C ° 

matrix of dimension 2x2:

(B-2a) 

(B-2b)
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           0 1 0                  0 1 

In order to write down the Hamiltonian in terms of 

operators Pauli matrices Ti (i=1,2,3) shall be used 

matrices are defined by 

              0 1 0 -i 1 
     T1 

1 0 , T2 i 0 , T3 0 

By using these notations, it is readily found that 

         t t t             `Y
k T1 ~k = ck1- c-k+ + c- k+ ckt ' 

            k T2 Y'k = -i L ckt.-c k+ + c-k+ ckt ] ' 
         t t _             ~

k T3 'Yk = c t k+ ck+ + c-k+ c-k+- 1 

            Tk TO k ck+ ck+ - c -k+ c-k+ + 1 

Then, the FrFohlich Hamiltonian can be rewritted in 

        Hel = I Ek ( ̀Yk T3 ̀1'k) , 

k 

         Hel-ph k~ I(k,k-q) (`Yk T3 Wk) (bq + biq 

q 

      The thermal Green's function for electrons is 

generalized in the Nambu reperesentation, which is

these 

  The

0 

-1

the

(B-3)

Pauli

form

) 

also 

defined

(B-4)

(B-5a) 

(B-5b) 

(B-5c) 

(B-5d ) 

 as 

(B-6) 

(B-7)

by
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     G(k,T) = - <TT Y'k(T) Tt(0)> 

                 <TT ckt(T) ckt(0)> <TT ck'F(T) c-k+(0)> 

                <TT ctk+(T) ck (0)> <TT ctk+(T) c-k+(0)> 
                                                                    (B-8) 

and its Fourier expansion form is given by 

0 

           G(k,T) = k B T X e-1EnT G(k,ie n) (B-9) 
                                 n=-Oo 

The component G11(k,T) corresponds to the "normal" Green's 

function for spin-up electrons: 

          G11(k,T) = G+(k,T) , (B-10) 

and G22(k,T) can bethought as that for spin-down holes. On the 

other hand, the off-diagonal matrix elements of G(k,T) are 

nothing but the Gor'kov's "anormalous".Green's functions: 

           G12(k,T) = F+ (k,T ) , I (B-11a) 

         G21 (k,T) = Ft (k,T ) , (B-11b) 

As long as the system with the spin independent interaction iss 

under consideration, the diagonal matrix elements have the 

following relation each other: 

           G11(k,T) _ - G22(-k,-T) , (B-12a) 
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           G11 (k,i€n) _ - G22(-k,-ien) (B-12b) 

     The quantum-field theory will be applied to the 

superconductors from now on. However, it is noted that the 

superconducting (or pairing) state cannot be obtained from the 

normal state, which is the ground state of the non-interacting 

electron-phonon system, by applying the electron-phonon 

interaction adiabatically. Thus, the unperturbed Hamiltonian H0 

should be rearranged as 

          H0 = Hel + Hph + HHF , (B-13) 

where HHF is the reduced interaction Hamiltonian (4-8) in the 
generalized Hartree-Fock approximation, which is of the form: 

         Hunt k LAk ck+ c_k4, + Ak ck+ c-k+ l (B-14) 

Then the perturbed term of the Hamiltonian should be 

         H' = Hint HHF (B-15) 

The rearrangement of the Hamiltonian shall ensure one to apply 

the usual perturbation theory, since the symmetry breaking term 

is already included in the zero-th Hamiltonian H0. However, it 

is complicated that one performs actually the perturbation 

expansion based on the Hamiltonian (B-13), (B-14) and (B-15). 

Thus, we make the added term HHnt go to zero, after applying the
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perturbation theory. Standing on the concepts described above, 

the complicated treatment can be avoided and the results may be 

identical with that based on the original Hamiltonian. 

     By making use of the usual perturbation theory, the true 

Green's function G(k,ie n) should be determined by the Dyson's 

equation: 

     G(k,ie n) = GO(k,ien) + GO(k,ien) E(k,ien) G(k,iEn) , 

                                                             (B-16) 

where the self-energy E(k,ie n) is also the matrix of the 

dimension 2X2, and G0(k,ien) denotes the non-interactiong Green's 

function for electrons, which is given by 

                     [ien - Ek] 1 0 
         GO(k,1e n) = 

                          0 [ien + Ek]-1 

                      Lien To - Ek T3]-1 

                           n O 0                          ieT+ E                                         T3                                                                (B -17) 
                   (ien)2 - (Ek)2 

The most general form of E(k,ien) can be written as 

     E(k,ie n) _ ~(k,1en) TO + n(k,ien) T3 

                             + ~1(k,ie
n) T1 + 42(k,ien) T2 , 

                                                               (B-18) 

where &(k,ie n), n(k,ien), ~1(k,ien) and 42(k,ien) are independent
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functions which may be arbitrary so far. Then, from eqs .(B-16), 

(B-17) and (B-18), the Green's function can be written as 

      G(k,ie n)-1 = G0(k,ien)-1 - E(k,ien) 

                 = Lie
n - E(k,1en)] To - [E0 + n(k,1c )] T3 

                           41(k,ien) T1 - ~2(k,ie n) T2 

                                                               (B-19) 

By inverting this equation, the Green's function G(k,ien) is 
expressed as 

     G(k,ie
n) _ [lien - E(k,ie )] TO + [E0 + n(k,ien)] T3 

                   + k1(k,ie
n) T1 + 42(k,ien) T2} / E(k,ien) , 

                                                               (B-20) 

with 

     E(k,ien) = detIG(k,ie n)-1I 

                lien - C(k,ien)]2 - [E0 + n(k,ie n)]2 

                     + ~1(k,ie
n)2 - b2(k,ien)2 (B-21) 

The above expression is nothing but egs.(4-73), (4-74) and 

(4-75) in the Nambu representation. To hold the property (B-12b) 

the following relation must be satisfied:
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     ~(k,1cn) _ - E(k,-ien) , (B-22) 

     rl(k,1c n) = rl(k,1cn) , (B-23) 

     ~1(k,ien)2 + ~2(k,icn)2 = ~1(k,-ien)2 + ~2(k,-ien)2 , 

                                                             (B-24) 

where the inversion symmetry of the system has been assumed so 

that any function is to be even -about the wave-vector k. 

      By using the usual Feynman's diagram method, it is found 

that the self-energy E(k,icn) can be expanded in the perturbation 

series. With use of the Migdal theorem only the lowest order 

diagram should be taken, which is given in Fig.B-1 and evaluated 

to be as 

0 

     E(k,iCn) = 1 IIY(k,k')I2 1 D1(k-k',ien-iem) 
                          k'Y M=_00 

X T3 G(k',ie
m) T3 , (B-25) 

which is nothing but the Eliashberg equation in the Nambu 

representation.

- A.11 -



k - k', En-Em

Fig. B-1. A Feynman diagram 

electronic Green's 

electronic Green's 

and the wavy line 

approximation.

k,Cm 

taken for the self-energy for the 

 function. The full line denotes the 

 function in the Nambu representation, 

that of phonon within the Migdal
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Appendix.C. Eliashberg equation on real-axis 

      In order to obtain a familiar expression for the Eliashberg 

equation an analytic continuation on to the real-axis shall be 

carried out in this Appendix. For this purpose we will start 

from the self-energies, eqs.(4-92) and (4-93), or their 

original form: 

                                CO 

                 k T 

     EG(kIii n) N EF)mI-CO k' dw .a2F(k,k',w).(~ -£2)2 + w2 
                                    0 n m 

                                         x G(k',ie ) , 

m 

                                                                  (C-1 ) 

which have been obtained by utilizing the spectral representation 

for DY(q,iw n), eq.(4-90). A similar expression for I (k,icn) is 

given by replacing G(k',iem) with F(k',iEm) on the right-hand 

side of eq.(C-1). Here, the spin index o in the self-energies 

as well as the electron Greeen's functions has been omitted since 

they are independent of a as far as the magnetic interaction has 

not been concerned, such as the effects of the paramagnetic 

impurities or the spin fluctuations. 

     By utilizing the Cauchy's theorem of complex integration the 

following equality can hold:
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      dz f(z) G(k',z) I 1 - 1 
                          1E - z _+W 1E - z - w 

     C~ n n 

                    CO 

            2TrikBT X G(k',iE m) 2w2 2 (C-2)                               M=_00 (E: n- F_ m) + w 

where the integration contour C1 is shown in Fig.C-1, and 

f(z)-[exp(Qz)+1]-1 is the Fermi distribution function which has 

poles at z=isn=(2n+1)TrikBT with the residue of kBT. Here, the 

chemical potential u has been set to zero for brevity. Next, 

the integration contour C1 is transformed to the contour C2 which 

is shown in Fig.C-2. Then,

 dz 

C1

-f
C

f(z) G(k'

dz 

2

where the 

originated 

z=iCn±w.

~z) ( 1        iE - z + w iE 
         n n

f(z) G(k'

-1z - w

'z) f icn -1z + w iEn

2rti[f(iE n+w)

second term on 

 from the poles 

Further, it is

-1z - w

G (k' , i c n+w) - f (i c n-w )

the right-hand side is 

 of the phonon Green's 

easily found that

G(k',icn-w)] , 

            (C-3) 

essentially 

function,
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                   +w 1           f(i 
n ) __ exp[ (2n+1 )Tri]• exp(±(3w) + 1 

                           n(w) ; for positive (+) sign 

                           n(w) + 1 ; for negative (-) sign , 

                                                               (C-4) 

where _n(w)E[exp(Sw)-1]_1 is the Bose distribution function. From 

eqs.(C-2), (C-3) and (C-4) the following equation can be 

obtained: 

             CO 

     2T.ikBT X G(k', iE m 2w                     ) 2 2 
                 m=-CO (En-Em) + w 

                                      l 1 - 1       = dE'f(E' ) G(k',E'+iS) iEn- E'+ w icn- E'- W 
              _CO 

                                       ( 1, - 1,             00
00 - ac'f(E') G(k',E'-i6) 

                                               iE
n- E + w iEn- - w 

             2Tri{n(w) G(k',iEn+w) + [n(w) + 1] G(k',iEn-w)} , 

                                                               (C-5) 

where the first term of the right-hand side has arised from the 

summation about the Matsubara frequencies for Em>0 (i.e. m_>_O )                                                              O) and 

the second term has arised from that for Em<0 (m<-1). 

     It is noted that the analytic continuation of the thermal 

Green's function G(k,iEn) just above and below the real-axis is 

identical with retarded GR(k,E) and advanced GA(k,E) Green's 

function, respectively. And they are complex conjugate of each 

other, i.e. GG(k,E)=GA(k,c) , for real c. Hence, the following 

                                  A.15 -



relation can be obtain: 

           G(k,e+i8) = G(k,c-i6 )# . (C -6) 

Further, the spectral representation for G(k ,z) is known to be 

given by: 

            G(k' Pz) _ - 1 de' Im G(k',c'+i6) (C-7)                       Tr J Coco z - e' 
for Im z'>0. By using the relations (C-6) and (C-7) , it is found 

that for e n>0 (i.e. n>0) eq.(C-5) becomes: 

     1rkBT X G(k',ie m) 2w2 2               M=-CO (e
n-em) + w 

                00 

        de IIm[G(k',e'+iS)]( n(w)-+ef+cw) + n(wie+-1e'-fwc') 1 . 
                                        n n 

             -00 

                                                                    (C-8) 

Using this expression, eq.(C-1) is rewritten as: 

     EG(k,ien) 

C 

       N EF k dw a2F(k,k';w)•,1-~ de'Im[G(k',c'+iS)] 
                    0 -CO 

                        X t n(w) + f(c') + n(w) - f(-e') }.                                              ic
n- e'+ w icn- e'- w , 

                                                                  (C-9) 

where a relation 1-f(c'')=f(-e') has been used. Finally, by 
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continuating analytically the self-energy EG(k,ien) onto the 

real-axis e+id, it follows that 

     EG(k,e+i6 ) 

                                  CO 00 

       N E dw a2F(k,k';w)-- dc'Im(G(k',e'+io)]              F k' 
0 -CO 

                    X n(w) + f(e') + n(w) + f(-e')                                          + w + id C - e' - w + iS 

                                                               ( C-1 0 ) 

The similar expression for EF(k,c+i6) is again given by replacing 

G(k',c'+i6) with F(k',c'+ib) on the right-hand side of 

eq.(C-10). 

     Essentially the same procedure with that developed in 

Sec.4-1-2 shall be employed hereafter to derive the final 

expression of the Eliashberg equation. First, in order to obtain 

the self-consistent equations for self-energies the explicit 

expression for the Green's function, eqs.(4-73) and (4-74), are 

substituted in eq.(C-10) and the similar equation for 

EF(k,c+i6). Then, neglecting (or averaging over the Fermi 

surface) the wave-vector dependence of the self-energies, the 

equations can been reduced to the isotropic form. Further, the 

self-energy for normal state EG(e+io) is devided into odd (e) 

and even n(c) part. Then,
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    CC) = dc'Rel Er- (E(C') }•sign(Im S2(E')1 

         X dw a2F(w) ( n(w) + f(E1) + n(w) + f(-e') 
                                          E - E'+ w + iS C - E'- w + 

0 

                                                               (C-11 ) 

where Q(c) has been defined by eq.(4-102) and written in terms 

of the renormalization function Z(E)=1- (E)/c and the gap 

function A(E)EEF(E)/Z(E) as 

         Q2 (c) _ (E - E(E)12 - [EF(c)]2 

                 Z(E)2 (E2 - A(E)21 (C-12) 

By using this the final expression can be derived as 

                                   E'     ~(E) = J00 dE'Re 
                    ((E,)2 - 0(E,)211/2 

                             00 

          x Jdw a2F(w) l n(w) + f(El) + n(w) + f(-E') ) .                                         C - CI + w + ib C - El- w + id 
0 

                                                             (C-13) 

Another party of the Eliashberg equation, i.e. the equation for 

gap function A(c)-can also be derived in the same way:
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By 

the 

be

           1 A (E' )   0( E) = Z(
E 7 CO 

-de Re [(E')2 - A(c') 1/2 

            Co 

         x dw a2F(w) n(w) + f(e') + n(w) + f(-c')                                       - E'+ w + iS E - E'- w + iS   J0 
                                                            (C-14) 

concerning the parity of (E) and A(c), i.e. 

       of-c) = A(E) 

 integration about E' for (-co,co) in eqs.(C-13) and (C-14) can 

folded into the semi-infinite interval (0,co): 

 C(E) = detRe 2 E' 1/2 dw a2F(w)        I JC     JO 0(E') ] JO 
 x {[n(w) + f(E')]•( E - E'+ w + iS + E + E'I w + iS 

   + [n(w) + f(-E')]•( E - E'1 w + iS + E + E1+ w + iS ~} 

9 

                                                            (C-15) 

                                                 00 

 A(c) = Z E dE'Re 2A(E') 1 2 dw a2F(w) 

             0 [(E') 0 

x {[n(w) + f(E1)l•( 1 1 } 
                             E - E' + w + iS E + E' - w + iS 

   + [n(w) + f(-E')]•( E - E'1 w _Ti S E + C'+ 
                                                          (C-16) 
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     In case of T=O K the Bose factor n(w) and the Fermi 

f(E') go to zero, while f(-E') goes to unity since E'>0. 

the Eliashberg equations for T=O K can be given by 

    (E) = {dcTReI E'                     ')2 T/-2      J 0 L (E 
            X dw a2F(w ) ( E - E , w + iS + E + E' + w +   J 0 

                                           .00 

    A(E) = Z E dE'Re 2~(E') 1/2 

                 0 L(E') 

             x dw a2F(w) 
E E'I w + id E + E'+ W +     jm0

factor 

 Hence

iS I 

(C-1 7 )

iS 1

(C-18)
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