<table>
<thead>
<tr>
<th>Title</th>
<th>A remark on Mp-groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Hanaki, Akihide; Hida, Akihiko</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 1992, 29(1), p. 71-74</td>
</tr>
<tr>
<td>Version Type</td>
<td>VoR</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/11313</td>
</tr>
<tr>
<td>Note</td>
<td>Osaka University Knowledge Archive : OUKA</td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA
https://ir.library.osaka-u.ac.jp/
Osaka University
1. Introduction

Let FG be the group algebra of a finite group G over an algebraically closed field F of characteristic $p > 0$. We call an FG-module V monomial if V is induced from some 1-dimensional FH-module for some subgroup H of G. An ordinary character χ of G is called monomial if χ is induced from some linear character of some subgroup of G. We call G an M_p-group if every irreducible FG-module is monomial. We call G an M-group if every irreducible ordinary character of G is monomial. For details, see a paper of Bessenrodt [1] and a book of Isaacs [4]. It is well known that M-groups are solvable (15.7 in [2]). M_p-groups are also solvable (3.8 in [6]). By Fong-Swan’s theorem, M-groups are M_p-groups for any prime p. But M_p-groups need not be M-groups. For example, $SL(2, 3)$ is an M_p-group but not an M-group. So we investigate conditions for M_p-groups to be M-groups. Namely,

Theorem 3. Let G be a p-nilpotent group. Then G is an M-group if and only if G is an M_p-group.

Throughout this paper, groups are finite groups, F is an algebraically closed field of characteristic $p > 0$, FG-modules are finitely generated right FG-modules, and characters are ordinary characters. Let χ be a character of a group G. We write χ^* for the Brauer character corresponding to χ. Let H be a subgroup of G and φ be a character of H. We write χ_H^* for the restriction of χ to H and φ^G for the induced character from φ. We use the same notation for modules. When M and N are FG-modules, we write $N \mid M$ if N is a direct summand of M. We write $\text{Irr}(G)$ for the set of all irreducible characters of G. For the other notation and terminology we shall refer to books of Dornhoff [2] and Nagao and Tsushima [5].

We wish to thank S. Koshitani for many helpful conversations during the course of this work.
2. Consequences

Let \(H \) be a normal subgroup of \(G \) and \(\varphi \) be an irreducible character of \(H \). We denote the inertia group of \(\varphi \) in \(G \) by \(I_G(\varphi) \). When \(\varphi \) is irreducible, we put

\[
\text{Irr}(G \mid \varphi) = \{ \chi \in \text{Irr}(G) \mid (\chi_H, \varphi) \neq 0 \}.
\]

Next theorem will be a powerful tool if we consider conditions for \(M_p \)-groups to be \(M \)-groups.

Theorem 1. Let \(G \) be a finite group. Assume that \(G \) has a normal \(p' \)-subgroup \(N \) such that \(G \) and \(N \) satisfy the followings.

(a) \(G \) is an \(M_p \)-group.

(b) \(G/N \) is an \(M \)-group.

(c) Every proper subgroup of \(G \) containing \(N \) is an \(M \)-group.

(d) Every \(G \)-invariant irreducible character of \(N \) is extendible to \(G \).

Then \(G \) is an \(M \)-group.

Proof. Let \(\chi \in \text{Irr}(G \mid \varphi) \) where \(\varphi \in \text{Irr}(N) \). If \(I_G(\varphi) \) is a proper subgroup of \(G \) then there exists \(\xi^G \in \text{Irr}(I_G(\varphi) \mid \varphi) \) such that \(\xi^G = \chi \). From (c), \(\xi \) is monomial so is \(\chi \).

Assume \(I_G(\varphi) = G \). From (d), \(\varphi \) is extendible to \(G \). Let \(\chi_0 \) be an extension of \(\varphi \). Because \((\chi_0^G)^N = \varphi^\ast \) and \(N \) is a \(p' \)-group, \(\chi_0^G \) is an irreducible Brauer character of \(G \). Since \(G \) is an \(M_p \)-group, there exist a subgroup \(H \) of \(G \) and a linear character \(\lambda \) of \(H \) such that \((\lambda^G)^N = \chi_0^G \). Since \((\lambda^G)^N = \chi_0^G \) is irreducible, \(\lambda^G \) is irreducible and an extension of \(\varphi \). By 3.5.12 in [5],

\[
\text{Irr}(G \mid \varphi) = \{ \lambda^G \eta \mid \eta \in \text{Irr}(G/N) \}.
\]

Now every \(\eta \) is monomial, so is \(\lambda^G \eta \). So \(\chi \) is monomial. The proof is completed.

Generally, normal subgroups of \(M_p \)-groups need not be \(M_p \)-groups. But next theorem holds.

Theorem 2. Let \(G \) be an \(M_p \)-group and \(N \) be a normal subgroup of \(G \) such that \(|G : N| = p \). Then \(N \) is an \(M_p \)-group.

Proof. Let \(U \) be an irreducible \(FN \)-module. Since \(N \) is normal in \(G \), there exists an irreducible \(FG \)-module \(V \) such that \(U \mid V_N \). Since \(G \) is an \(M_p \)-group, there exist a subgroup \(H \) and a 1-dimensional \(FH \)-module \(W \) such that \(V = W^G \). If the inertia group of \(U \) in \(G \) is \(G \) then \(U \) is extendible to \(G \). Thus we may assume \(U = V_N \). By Mackey's decomposition,

\[
U = V_N = (W^G)_N = \bigoplus_{\lambda \in \text{Irr}(G/N)} (W_{H^\lambda \cap N})^N.
\]
But U is irreducible. So $G=HN$ and U is monomial. We may assume that the inertia group of U in G is N. Then by Clifford’s theorem, $V_N = \oplus_{U \in G/N} U^t$. If H is contained in N then by Mackey’s decomposition,

$$V_N = (W^G)_N = \oplus_{t \in H \cap N} (W^G_{H \cap N})^N = \oplus_{t \in G/N} (W^G_t)^N.$$

Since U is irreducible, $U \cong (W^G_t)^N$ for some $t \in G/N$. So U is monomial. We may assume that H is not contained in N. So $G=HN$. Let Q be a vertex of W. Since $\dim_p W = 1$, Q is a Sylow p-subgroup of H. Since $V=W^G$ and $V=U^G$, Q is in $H \cap N$. Now

$$p = |G:N| = |HN:N| = \left| H:H \cap N \right| |H:Q|.$$

But Q is a Sylow p-subgroup of H, a contradiction. Hence U is monomial. So N is an M_p-group.

Next theorem is our main result.

Theorem 3. Let G be a p-nilpotent group. Then G is an M-group if and only if G is an M_p-group.

Proof. We know that M-groups are M_p-groups. So we shall show that G is an M-group if G is an M_p-group by induction on $|G|$. Since G is p-nilpotent G has a normal p-complement N. We show that G and N satisfy the conditions in Theorem 1. Now (a) and (b) are satisfied. By 3.5.11 in [5], (d) is satisfied. Let H be a proper subgroup of G containing N. Since G/N is a p-group, H is an M-group by Theorem 2. Then H is an M-group by inductive hypothesis. So (c) is satisfied. Then G is an M-group.

Corollary 4. Let G be an M-group and p-nilpotent. Then a subgroup H of G such that $|G:H|$ is p-power is an M-group.

Proof. This is immediate from Theorem 2 and Theorem 3.

References

Akihide Hanaki
Akihiko Hida
Department of Mathematics,
Mathematics and Physical Science,
Graduate School of Science and Technology,
Chiba University, Yayoi-cho, Chiba-city,
260, Japan