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Introduction. Let /: S->B be a surjective holomorphic map between
a nonsingular projective surface S and a nonsingular projective curve B of genus
b. We always assume that it is relatively minimal, that is, there are no (—1)-
curves in fibers of/. If a general fiber of / is a non-hyperelliptic curve of genus
g> we call it a non-hyperelliptic fibration of genus g. The purpose of this paper

is to state some results on surfaces with non-hyperelliptic fibration of genus 3.
In § 1, we shall give the lower bound on K2 of such surfaces. More pre-

cisely, we have i£2>3%((35)+10(δ— 1). This was first obtained by Horikawa
[7] and, later, by Chen [4]. Our proof is different from them and rather simple.

In § 2, we construct surfaces with non-hyperelliptic fib rations of genus 3.
Though we restrict ourselves to regular surfaces here, our method can be ap-
plied to irregular ones as well (with some more effort). We remark that the
other examples of such srufaces can be found in [1].

To explain the background of the construction, let/: S->B be a non-hyperel-
liptic fibration of genus 3. Then, we have a canonical birational map of S into
a P2-bundle W on B (see, § 1 below). We let V be its image, and consider
the fibration / ' : V-+B induced by the projection map of W. The difference of
the invariants (X(Ov)—X(Os), ωγ —ω|) can be considered as the contribution
of singular fibers of / ' . Though we do not have a complete list of possible
singular fibers, we at least can expect that they are quite similar to those in [8].
However, a singular fiber arising from a simple elliptic singularity of type E7y

which Ashikaga has constructed in [1], seems to be a "special" one ([8, § 9]).
What this means may be guaranteed by the fact that the canonical bundle of S
cannot be ample in this case. Therefore, there sholud be a way to construct
"general" ones. This is the motivation of the present construction.

In § 3, we shall give examples of Type I degenerations, extending a result
in [3] and [5]. We hope that such mild degenerations can be used to attack
the Torelli problem via degenerate loci (see, [10] for such an approach).
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of general type. After sumbitting this paper, the author recieved a preprint [9]
in which our Theorem 1.2 is shown by essentially the same method.

1. The lower bound

Let /: S->B be a relatively minimal fibration of genus g. Recall that f*ωs/B

is a locally free sheaf of rank g and degree X—(g—l)(b—l), where ω s / 5 =ω s ®
/*ωi x is the relative dualizing sheaf and X—X{OS) is the holomorphic Euler-
Poincare characteristic of S.

Lemma 1.1. Let f: S-+B be a relatively minimal fibration of genus g, and
let Abe a sufficiently ample divisor on B.

(1) Put (V=Uωs/B®O{A) and let π: W=P{£V)->B be the associated
protective bundle. Then,

h\W, Θ(2T)) =

where T is a tautological divisor on W.

(2) h\S, O(2ωs/B+2f*A)) = K2+X-\2(g-ί)(b-l)+6(g-l) deg A .

Proof. Since A is sufficiently ample, we can assume that H\W, O(2T))~
H\B, S2CV)=0. Therefore, (1) follows from the Riemann-Roch theorem on
B. We next show (2). By the Riemann-Roch theorem we have

X(2ωs/B+2f*A) = K2+X-12(g-l)(b-ί)+6(g-l) deg A .

By the Serre duality, Hq{2ωs/B+2f*A))*c^H2-<1(-~ωs+2f*{ωB-A)). There-
fore, H2(2ωs/B+2f*A)=0 and we only have to show that H\-ωs+2f*(ωB-A))
vanishes. Put D=ωs+2f*(A—ωB). Since / is relatively minimal and A is
sufficiently ample, we can assume that D is a 1-connected divisor satisfying D 2 >
0. By Ramanujam's vanishing theorem, we have H\—D)=0. Q.E.D.

Theorem 1.2. Let f: S-*B be a non-hyper elliptic fibration of genus 3.
Then K2>3X+l0(b-l).

Proof. Let the notation be as in Lemma 1.1. The sheaf homomorphism
f*cV-+O(ωs/B+f*A) defines a rational map h: S-*W over B. We put V=h(S)
and n-\-l—h°(ωs/B-\-f*A). We remark that the rational map Φ: S->Pn associ-
ated with the linear system \ωs/B

Jcf*A\ factors through W, and we have Φ =
φoh if φ: W-+Pn denotes the holomorphic map defined by | T\. Since A is
sufficiently ample, we can assume that φ is a quadrically normal embedding.
Then we have

h\2ωs/B+2f*A)
(1.1) > dim Im {W{P\ 0(2))^H°(V, 0(2))}

= dim Im {H°(W, O(2T))—H%V, O(2T))}.
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We denote by 3V the ideal sheaf of V in W and consider the cohomology long
exact sequence for

Since / is a non-hyperelliptic fibration of genus 3, we have 3v=0w(—4Γ+
π*Ax) for some divisor Ax on B. From this, we get H°(3v(2T))=0. There-
fore, the assertion follows from (1.1) and Lemma 1.1. Q.E.D.

REMARK 1.3. The inequality in Theorem 1.2 is stated in [7, § 3] without
proof. It seems that he obtained it as a consequence of the classification of
possible singular fibers of /. On the other hand, Chen [4] obtained it com-
paring ω | with ωγ. Our proof gives us a hope to get the lower bound on non-
hyperelliptic fibrations of higher genus. The difficulty is in giving the upper
bound on h\3v{2T)).

We collect below some applications of Theorem 1.2. Recall that we have
K2>(S/3)(X+4(b— 1)) for hyperelliptic fibration of genus 3 (see, [6, Theorem
2.1]). Therefore, we get the following which is also pointed out in [7, § 3].

Corollary 1.4. In the range 3%+10(£-l)>i£2>(8/3)(%+4(£-l)), surfaces
with a hyperelliptic fibration of genus 3 cannot be deformed to those with a non-

hyperelliptic fibration.

We call a minimal surface S a canonical surface, if the rational map in-
duced by the canonical system \K\ is a birational map of S onto its image. Note
that Castelnuovo's argument (see, e.g., [2, § 1]) tells us that K2>3pg-\-q—7
holds for canonical surfaces. On the other hand, we have Horikawa's inequality
K2>3X for irregular canonical surfaces ([6, Theorem 3.1]) since they cannot
admit any hyperelliptic fibrations. All of these in mind, it would be worth
stating here the following:

Corollary 1.5. Let S be an irregular canonical surface, and assume that the

image of the Albanese map is a curve. Then K2>3%+10(^—1).

Proof. Let /: S-*BaAlb(S) be the Albanese map. By the assumption,
B is a curve of genus q(S) and / is a non-hyperelliptic fibration of some genus
g>3. Then we get K2>3X+10(q-l) by Theorem 1.1 and a result of Xiao
[11, Theorem 2]. Q.E.D.

It is quite likely that the inequality in Corollary 1.5 holds without the as-
sumption on the Albanese map: If the image of the Albanese map is a surface,
then the cotangent sheaf Ω$ is generically generated by its global sections and,
therefore, it seems to satisfy a certain "ampleness" condition which forces K2

to be big. For example, we have the following:
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Lemma 1.6. Let S be a nonsίngular projective surface with nef cotangent sheaf.

ThenK2>6X.

Proof. We consider the P^bundle P(Ωι

s) on S, and let L denote the
tautological divisor. By the assumption, L is nef. Therefore, we have 0 ^
Z,3=ί:?(S)-<:2(S), i.e., K2>6X. Q.E.D.

2. Construction

We let W denote the total space of the P2-bundle

π: P{O{a)@O{b)®O{c))->P\

where #, b, c are integers satisfying 0<a<b<c. We let T and F denote a re-
latively ample tautological divisor and a fiber of zr, respectively. Then the
Picard group of W is a free abelian group generated by them. Furthermore,
we have T3=(a+b+c)T2F in the Chow ring of W. We put

(2.1) p=a+b+c+3

and assume that p>4 . Take an integer s, and let Q be a general member of
12T-{-sF I. We remark that Q is irreducible and has only rational double points
of type Ax if

(2.2) a+c+s>0, 2b+s>0.

Choose general k fibers Fl9 •••, Fk of π. We assume that Q intersects with
Ft transversally, and that Qi=QΓ\Fi is an irreducible conic (in Fj—P2) for
each i.

Let v\ W-+Wbe the blowing-up along U j2, , and put 6i=v~\Qi). Since
the normal sheaf of Q^P1 in W is isomorphic to (50(3(4), each 6{ is isomor-
phic to Σ4, the Hirzebruch surface of degree 4. We put

(2.3) L=v*(4T-(p-5-k)F)-2 Σ £,.
i = l

If we denote by Q and fij the proper transforms of Q and Fh respectively, then
we get

L ^
~2§+(k+5-p-2s)v*F,

where the symbol ~means the linear equivalence of divisors. Since QΠi, = 0 ,
we have

Lemma 2.1. Bs\L\=0ifthe following conditions are satisfied.
(1) k>2s+p-5.
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(2) Q does not meet Bs \ 4T-(p-5+k)F \.

Lemma 2.2. The condition (2) of Lemma 2.1 is satisfied if one of the follow-
ing conditions is satisfied:

(1) k£4a-p+5=3a-b-c+2.
(2) s=-2a, k<,4-b-p+5=3b-a-c+2.

Proof. If (1) holds, then Bs\4 T—(p—S+k)F\=0. We assume that (2)
holds. We let X09 Xλ and X2 be sections on W of [T—aF], [T—bF] and [T-
cF]y respectively, such that they form a system of homogeneous coordinates on
each fiber of π: W-+P1. If 4b>p-5+k, then \4T-(p-5+k)F\ has no base
point outside the rational curve G defined by X1=X2=0. On the other hand,
the equation of Q can be written as

where qtj is a homogeneous form on P1 of degree (2—i—j)a+ib+jc-{-s. If
s=—2ay then we can assume that q0Q is a nonzero constant. Then Q does not
meet G. Thus (2) is also sufficient to imply (2) of Lemma 2.1. Q.E.D.

Lemma 2.3. Suppose that \ L \ contains an irreducible nonsingular member
S. Then is a minimal surface satisfying:

(1) The canonical map of S is a birational morphism.
(2) pg(S)=p, q(S)=0 and K2=3pg-7+k.

Proof. By the adjunction formula, we have

K ~ (K*+S) I s ~ (v*T+±
1

Since Fh \<>i<K does not meet 5, we have O(K)=Os(v*T). We next con-
sider the cohomology exact sequences for

(2.4) 0

(2.5) 0-+O(v*T)-+O(v*T+Σ F^θtiO^i-l^O.

Since W is rational, we have H\W, O(Kfr)=0 for ? < 3 . Thus we get H\S,
O(K))^Hq(W, O(v*T+Σfi)) for q<2 from (2.4). Then, from (2.5), we get
H\K)—Hq(W, O(T)) for q<2. This shows the formulae for pq(S) and q(S).
We in particular have shown that |z/*7Ί is restricted to \K\ isomorphically.
Therefore, Bs \ K \ =Bs \ v* T \ = 0. This implies that S is minimal. Since p >
4, we at least have c>0 by (2.1). Then the holomorphic map induced by | T\
gives a birational map of W onto its image. Therefore, (1) follows from what
we have established above. Finally, we calculate K2 to get:
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K2 = (v*T)2L = T\AT-{p-5-k)F) = 3p-7+k .

Q.E.D.

Proposition 2.4. Let x and y be positive integers satisfying

\Ax— 8 if x is odd,

l4#—10 if x is even.

Then there exists a minimal, regular surface of general type S with the following
properties:

(1) p,{S)=x,K*=y.
(2) The canonical linear system of S has neither fixed components nor base

points, and the canonical map is a bίrational morphism onto its image.
(3) S has a pencil of non-hyperelliptic curves of genus three.
(4) The canonical image of S is contained in a threefold of minimal degree.

Sketch of Proof. Put (#, b, c)=(a> a, a), (a, a, #+1), (a, α + 1 , a-\-ϊ) accord-
ing to x=0,1,2 modulo 3, respectively. Then, by Lemma 2.1 and (1) of
Lemma 2.2, we can cover the region

10
(2.6) 3*-7^<;_,

6, Ίίx=0,

2 2 if,SJ

if x=2,

3 (mod. 3)

26

for a suitably chosen s satisfying (2.2).
We next put s=— 2a and consider (2) of Lemma 2.2. Putting α=0, b=c,

we can cover the region 4-x— H^yζAx—8 with x odd. Similarly, putting a
= 1, b=c, we can cover the region \x—16<^<;4#—10 with x even. In this
way, by increasing a and putting b=c> we can cover the region outside (2.6) as
well. The other statements follow from Lemma 2.3 and the construction.

Q.E.D.

REMARK 2.5. The inverse image of Q{ on S is a hyperellitpic curve of
genus 3 (see, [8, § 9]). Furthermore, it can be checked that most surfaces we
have constructed have ample canonical bundle.

3. Examples of Type I degenerations

In this section, we construct some degenerating family of surfaces with
non-hyperelliptic fibrations of genus 3. The central fiber consists of a surface
2 and some P2

y intersecting along a conic. Such degenerations are Type I
degenerations in the sense that the local monodromy acts trivially on the second
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cohomology. For the properties, see [5].
We keep the notation of § 2. Moreover, we assume that the conditions in

Lemmas 2.1 and 2.2 are satisfied.

(A) Degenerations of Hyperelliptic Type.
Our first example is essentially the same as one in [3, § 2], Take two

integers a, β satisfying

(3.1) p-5-k = 2a-β9 β>0 .

We put MΛ=v*(2T— aF)—Σ*-i£ι " The following can be shown in the same
way as Lemmas 2.1 and 2.2.

Lemma 3.1. Bs \ MΛ \=0 if the following conditions are satisfied.
(1) s+cc^O.
(2) One of the following conditions is satisfied:

(i) 2a^a+k.
(ϋ) s=— 2a, 2b>a+k.

We assume that the conditions in Lemma 3.1 are satisfied. We choose qΛ^
H°(W9 O(MΛ)) which defines an irreducible nonsingular divisor QΛ. Let £ be a
sufficiently small positive number and put Δ 8 = { ^ e C ; | # | < £ } . We consider
a family {S,}/(ΞΔ, of subvarieties of the PMmndle X=P(O®O(Mc6))-+W de-
fined by

where (Zo, Zt) is a system of homogeneous coordinates on fibers of X-> W and

y O(jMΛ+βv*F)), 0 < ; < 2 . We assume that aj are general. If ί=t=
0, then St is biholomorphically equivalent to a surface in W defined by the
equation

(3.3) a^+taxq+fa2 = 0 .

By (3.1), we see that St is a surface constructed in § 2.

Lemma 3 2. For a generic choice of qΛ and ajy O^j'^2, So is a divisor
with simple normal crossings consisting of a minimal surface 2 with K2=Zpg—Ί-{-
k—β and β disjoint copies of P2. Furthermore, a double curve 2 Π P2 is a smooth
conic (in P2) andpg(X)=pg{St)y fφO.

Proof. Putting t=0 in the second equation of (3.2), we get Z1=0 or ̂ = 0 .
If Z1=09 then we get ao=O from the first equation. Since a0 can be identified
with a homogeneous form of degree β on P1

9 we may assume that its zeros
are mutually distinct and give β fibers Fl9 •••, Fβ on W. We may identify the
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Fj with its inverse image on W. Thus Zl=a0=0 defines a section Fj of the
P 1 - bundle X\Fj->Fj for each;, l<j:</3 and therefore Fj—P2. On the other
hand, if ^ = 0 , the first equation of (3.2) defines a double covering Σ of Q^.
As in [3, § 2], we can show that Σ is a regular minimal surface with K2=3pg(Σ)
—7-\-k—β whose geometric genus equals that of a general fiber St. Q.E.D.

In this way, we get Type I degenerations such that a general fiber is a surface
with a non-hyperelliptic fibration of genus 3 and the main component of the
central fiber is one with a hyperelliptic fibration of genus 3. Note that, putting
/S=0, we get a family of deformations of surfaces such that a general fiber is
canonical but the central fiber is non-canonical.

(B) Degenerations of Non-hyperelliptic type.
We consider the subsystem \L'\-\-Fk of |L | , where

V = z/*(4Γ-(/>-5-(&-l)F)2Σ

Since we have

L' ~ v*(4T-(p-5+k)F)+2 Σfcί
~ 2$+(k+4-ρ-2s)v*F+eh

we see that BS\L'\ = 0 if k>2s+ρ-4 and

OΠBs\v*(4T-(p-5+k)F)\ ΓίBs\v*(2T-(p-5+s)F)\ = 0 .

Therefore, as in § 2, we can show the following:

Lemma 3.3. Bs\L'\=0 provided that the following conditions are satisfied:
(1) k>2s+p-4.
(2) One of the conditions in Lemma 2.2 is satisfied.

We assume that the conditions in Lemma 3.3 are satisfied. Let Σ be a
general member of \L'\ which is defined by #'eiJ°(Tr, 0{L')). Furthermore,
we let fk define Fk. Take a sufficiently general section x^H°(W> O(L)) and
consider a degenerating family {St}9 ίGΔ 8, defined by St=(tx+x' fh). Note
that we have K^^^v*T\^. Therefore, the main component Σ of the central
fiber *S0 is a minimal regular surface with K2=3p—8+k, pg(X)=p. Further-
more, it intersects with Fk^P2 along a conic curve.
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