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1. Let k be a field and n a positive rational integer. The symplectic group

Sp(ny k) of order n over k is the group of 2n X 2n matrices

over k, each A, B, C, D being an n X n matrix, such that

( 2 )

where Xf denotes the transpose of the matrix X and

'-(-*$,
E being nxn unit matrix. Let /: k2nxk2n-^k be the skew symmetric bilinear

form associated with /. Then Sp(n, k) can be identified with the group of auto-
morphisms σ of 2tt-dimensional vector space k2n, such that σ leaves/invariant,

i.e.,

f(σx,σy)=f(X,y) ( 3 )

for all x, y in k2n. It is easy to check that X is in Sp(n, K), if and only if

AC-CA=^Q = BD-DB ) ( 4 )

and for X in Sp(n, K),

( 5 )

The group Sp(n, k) is generated by the matrices of the form

E T\ (U 0 \ / 0 E\

o)
(E

(o
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where T is an nxn symmetric matrix and U is in GL(n, k).

For real symplectic group Sp(n, R), the Siegel modular group Sp(n, Z) is

the subgroup of Sp(n, K) consisting of integral matrices. Sp(ny Z) is generated

by integral matrices of the form (6).

Suppose G<^GL(n,C) is a matrix algebraic group defined over O and let

for a subring A of C, G(Λ) denote the group of /1-rational points of G. For a

positive rational integer m, the principal congruence subgroup G(Z, m) of level m

is the kernel of the natural map

TT: G(Z) -> G(ZlmZ) .

Obviously, G(Z, m) is a normal subgroup (of finite index) in G(Z).

DEFINITION 1.1. (i) Two subgroups Gx and G2 of a group G are said to

be commensurable, if Gγ Π G2 is of finite index in both Gλ and G2.

(ii) A subgroup Y of G(R) is said to be arithmetic, if it is commensurable

with G(Z).

(iii) An arithmetic subgroup of G(R) containing the principal congruence

subgroup of level m is called an arithmetic subgroup of level m.

Gutnik and Pjateckii-Sapiro determined (upto conjugacy) all the maximal

arithmetic subgroups of SL(n, R) of a given level. Our purpose here is to deter-

mine all the maximal arithmetic subgroups of Sp(2, R) of a square free level.

This is done in article 5. In article 2, we have proved that the denominators of

the entries of the elements of such a group are bounded, in article 3, we prove that

the prime divisors of the squares of these denominators are divisors of m. Article

4 is purely technical.

I am indebted to Professor K.G. Ramanathan for suggesting to me this

problem and to Professor S. Raghavan for his valuable suggestions.

2. Arithmetic subgroups

Theorem 2.1. Suppose Γ is an arithmetic subgroup of Sp(n, R} of level m.

Then each X=(xlj) in T can be written as

X = l

where Xλ is an integral matrix and λ is a positive integer. Further, nr'Xij are

algebraic integers and m6X2 is an integral matrix.

Proof. Proof is essentially due to [4]. Because T is arithmetic, Spn(Z, m)

is of finite index, say r in T. Let t=r\ and T(t) the subgroup generated by the

tth powers of elements of T. Then Γ(ί) is a normal subgroup of Γ and is con-

tained in Spn(Z, m}.

Let X=\ } be in Γ. We can choose a rational integer x such that if
\C D/



ARITHMETIC SUBGROUPS OF THE SYMPΓ.FCTIC GROUP 489

xmE\/A B\/A* B*\

E)\C DJ \C* D*),

then det(^t*)—det(-/4+#wC)Φθ. Because proving the first assertion for X is

equivalent to proving it for JΓ*, we can assume that det(^4)Φθ.

For an nxn symmetric matrix T in M(n, Z), (E tmT\ and ( E °
\0 E/ \tmT E

are in Γ(ί). Therefore,

/J? tmT\ (E 0\ ftmATC1 tmATA'\ \
x(v W lo W = V * * λ

(7)
u \ / * * \

£y "" \tmA'TA * J ;

are the integral matrices and hence

i) Ί

ii) J

(i)

(ii)

are in M(n, Z).

Because det(^4)Φθ, for each j, there exists i=ί(j), such that α l ;φO. We put

χ.= — . Choosing T=^E.^ we see that

is a rational number. From (9), asj = asj

(l\ λy with λy^Q and asj

w^Q.

Therefore ^4 — ̂ ι(λl ), where A^GL(n, Q). Now choosing^ in Z, such
\ 0 \w/

that T=gAϊl(Eij-i-Ejl)A{~1 with iΦy, is integral, we can see from (8)-(ii) that

λf λ;.eQ. Therefore ^^l/ίv7^)-^! with λ inQ and Al in GL(ny Q). From

(7) we see again that tmATC' is in M(n, Z} and hence C=l/(v

/~λ~) Cj with Cx

in M(n, Q).
By a similar argument

E 0\ /2? 0\ ί~tmBrTA *

is integral and hence we get B=\l(\/\)Bl with B1^M(ny Q). Using (4) we

get D==l/(v/"λΓ)A» D^M(n, Q). Putting these together we get X=——^.χ^
v X

Y 4 R \

where X1 =
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It is obvious that we can assume that λ is a positive integer and this proves the
first assertion.

Now because Spn(Z, m) is of finite index in Γ, the characteristic roots of
any X in Γ are algebraic integers and hence tr(X) is an algebraic integer. If U

is in SLn(Z, m), T^M(n, Z) is symmetric, then

0 \(E mT\(A B\ (U 0

is an algebraic integer.

Taking U=T=E, it follows that ΐr(mC) is an algebraic integer. If C = (cu),
then for ίΦy, taking U=E+mE{j and T=E, we see that

nfcj i = tr(m2EijC) = tr(m(Eij+mE)EC)—tr(mC)

and taking U=E, T=EH,

mc{i -

are algebraic integers. Hence m2C is a matrix of algebraic integers. Con-

sidering /^Γ/ instead of Γ, it is immediate that m2B is a matrix of algebraic
integers . Considering

(A B}(E β)-\C Dj\mE E)

E 0 \/A B\ I * *

\mE E)\C D) ~ \C+mA *

and

' " " ' ' " " " ( * *

{C+mD *.

m6

it follows that m?A and m3Z) are matrices of algebraic integers. Now wfiX2— — X\
X

is in M(2n, Q) and its entries are algebraic integers, hence because 2Γis integrally

closed, X2 is integral.

3. Let Γ be an arithmetic subgroup of Sp(n, R) of level m. Then each X

in Γ can be written as

where X(^Q is a positive integer and A(X) is an integral matrix, such that the

ideal generated by its entries is Z. Then the maps

V '
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are well defined. For a rational prime py let ap(X)=vp(\(X))> i.e., the greatest
integer /, such that pl divides \(X). Let ap(Γ)=l.u.b. {ap(X) \ X e Γ} . Since
Γ is arithmetic, ap(T) is a non-negative integer. Infact, by Th. 2.1, ap(T)^
vp(m6). In this section we prove that if n=2, then any prime divisor of \(X)
for any X in Γ is a divisor of m.

Lemma 3.1. Suppose k is an arbitrary field and M=( } is in M(4, k)

with A, B, Cy D two rowed square matrices, such that A'C—CΆ=Q=B'D—D'B
and A'D—C'B^β E with some β^k. Then there exist Ml and M2 in Sp(2, k),

( ίk k \
), each block being again a 2x2 matrix.

0 */

Proof. Choose P and O in SL(n, k) such that if

IP o \ /ρ o \
=[ and V=(* )

Vo p'-y \o ex-1/
U

then

o

\Vϊi Cz

If a=b=ϋ, then we put M^=]U, M2=V. Otherwise, if necessary, replacing
U and V by RU and VR respectively, where,

/ / O Γ

1 0

0

0

0 1

1 0.

we can assume that αφO. Multiplying on the left by

1 E 0 \

\(a

0

ιG 1
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, one can assume by multiplying on the left by

I E 0 \

0 0 \

Λ E

\

thatrf=0. The condition ^4'C—C'^4=0 then implies that c=Q. If έ=0, again
the above condition implies that c=0. Putting Mϊ= U2UJJ and M2= F, where

f1

Vo o
J2 —

ί° °) ί1 Ί\\fl l) \0 OJI

the proof is complete.

Lemma 3.2. For a rational prime p, let φp: Z-*FP be the natural map and

the map A=(aij)\-*A=(φp(aij)) induced by φpfrom M(n, Z)->M(n, Fp) be again
denoted by φp. If p does not divide m, then

φp:SLΛ(Z, m)-*SL(n, Fp) (11)

is surjective. Hence if k—Fp in lemma 3.1, then there exist L{ in Sp2(Z, m), such
that φp(Lt)=Mh ί=l, 2.

Proof. It is enough to remark that SL(n, Fp) is generated by the matrices
of the form E+xE^^ i^pj and x

Theorem 3.3. Suppose Γ is an arithmetic subgroup of Sp(2, R) of level m.
If for a rational prime p, α/>(Γ)>0, then p divides m.

Proof. Suppose p does not divide m. Let X^T, such that ap(X)>Q.

By lemma 3.2, there exist Ll and L2 in Sp2(Z, m) such that φ p(L1A(X)L2)=

M1A(X)M2 = (A B\ Because A(X) Φ 0, we can assume that A Φ 0. Let

P, OeSL2(Z, m), such that PAQ^ί"1 °) with ^Φ If

u-(P °Vo P'-
we put L= ULlA(X)LίV. Then

and V (Q ° \
\0 Q'-1)'
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with αjφO. If F=l/(\/λ(T))L, we can see that Y is in Γ. Hence ap(Y')>
vp(nf), for a sufficiently large / and this is a contradiction.

4. Suppose p is a rational prime, such that ap(T)>0. We define

2, (Γ) = {A(X) \XmΓ and ap(X >0}

and

Σ?(Γ) = {A(X)\Xm Γ, «,(*) = α,(Γ)} .

Obviously, Σ*(Γ)£ΞΣj(F) We have written each X in Γ uniquely as

where \(X) is a positive integer and the ideal generated by the coefficients of

A(X) over Z is Z itself. Let A(X)eΈS(f) and Λ( Y)eΣ,(Γ). Then

Since

α,(Γ) = «,(*) = C

we have t;/((λ(-3L) λ(F))>α/>(Γ). In view of (*), p has to divide the ideal gene-

rated by the coefficients of A(X)A(Y), otherwise ap(XY)>ap(Γ). Therefore,

Φ^(Σ?(Γ)Σ*(Γ)) = Φ>(Σ>(r)Σf (r» - o . (12)

Consider the 4-dimensional vector space V=Fp

4. Let ^(Γ) be the subspace of

V generated by φXΣ*(Γ))F over Fp. Then ap(Γ)>Q implies that

0<dimF,(Γ)<4.

We need to get some more informations about Vp(T). For any field A, let us

denote by Sp(n, k)0 the subgroup of Sp(n, k) generated by the elements of the
form

° E\ and
-E OJ \0

where T is an w x w symmetric matrix over A and U ξΞSL(ny k).

Lemma 4.1. Suppose σ is in Sρ(2, Fp\ and (A

^

Then ~ « *to m σ-»

s in
C*' LJ *
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Proof. This lemma is a trivial consequence of (5). It is easy to check that

φp(Sp(2, Z)) contains Sp(2, Ft\. If F is in Sp(2, Z), such that φt(F)=σ, then

jy _ jjs'\

A] =

and A(X-1} is in Σ/,(Γ).

Lemma 4.2. If «ί(Γ) = l, then dimF/Γ) = 2. // ap(Γ)>l, then

dim ^(Γ) < 2. If dim Vp(Γ)=2, then VP(Γ) is not a hyperbolic space (with respect

to the skew symmetric bilinear form f associated with J). Hence there exists σ in

Sp(2, F/,),), such that if aj=σ(e}), where

e,=
0

0

\o/

is the standard basis for V, then VP(T)=

0

0

M/

Fpar

Proof. We have already seen that 4>d'ιmVp(T)>0. We first rule out the

case dimVp(T)=3. If dim F^Γ)—3, then VP(T) contains a hyperbolic sub-

space, say <#!, α3>, such that there exists another hyperbolic subspace <α2, α4>

with

V = <#!, α3> J_X#2> <x,> (13)

3

and Vp(T)= @Fpar Now V can also be written as

y __ ^e £3)>__L<(£2, e4y (14)

as an orthogonal sum of hyperbolic spaces the linear transformation defined by

σ(e\ = a. (15)

leaves / invariant. Any σ €Ξ Sp(2, ft) for an arbitrary field ft can be written as

( E T N

σ—β^ cΓg, where σλ is the product of the matrices of the form (
^0 E

and

0 E\ TeM(2, ft) is symmetric and σ2=(U °,\ with ί/e GL(2, ft).

Hence there exists σ*^Sp(n,k)0 and β zeft*, such that σ(ei) —βi σ^(ei).

Therefore, we can assume that σ appearing in (15) is in Sp(2, Fp)0. From (12)

it follows that for any A(X) in Σ^Γ), σ'l(A(X)σ)(e;.)==0 for j=l, 2, 3. Hence
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σ'lA(X)σ =

By lemma 4.1 for each A(X) in Σ,(Γ),

/O 0 0 0\

0 0 0 0

0 0 0 *

\0 0 0 O/

Now dimension of /^-subspace generated by σ 1Σ*(Γ)σ is equal to dim VP(T)
— 3 which is a contradiction.

Now we suppose that ap(Γ)=l and dim F^(Γ)=1. For a suitable α^ in
F/Γ), we write F as in (13) and define σ by (15). Then for each A(X) in

where C,=

- (0 C2 C3 C4) ,

and Cί=
rγCj for some 7 in Ff. Choosing σ0 suitably in

iS/>(2, /^)0 and replacing σ by <r cr0, we can assume that

-f U).
\ o o /

(16)

If ^Γ is in Γ, such that α/1(Jί)=l, it follows that det(JUQ=l is divisible by p, a
contradiction.
Finally, we prove that if dim VP(Γ)=2, then it is not a hyperbolic space. Sup-

pose it is. Then F/,(Γ)=<«1, α3> and F=<αι, α3>_L<αr2, «4> and σ defined by

σ(ej)—aj leaves/invariant. Thus each element of o ~1'Σp(Γ)σ is of the form

/ / O/o ovo o\ \
( )( )

ί° T °)J\vo »ΛO «//
We choose σ- in such a fashion that there exists σ ^(JiQσ in σ l*Σ$(T)σ with 0

in the (4, 4)th entry. But this can be seen to contradict the fact
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- 0 .

and this proves the lemma.
Let σ be as in Lemma 4.2. Then for all A(X) in Σ/Γ),

each block being 2x2 matrix.

Lemma 4.3. Suppose ap(Γ)>2. Then there exits an F in Sp(2, Z), such
that if Γ!=F -TjP, then

(i) For each X in Γj with ap(X)=ap(Γ),

with C = 0(modp2) andA~D=0 (mod p).
(ii) Γj contains Sp2(Z, m).

Proof. Let σ be given by lemma 4.2 and F<=Sp(2, Z), such that φp(F)=<r.

(i) Let dim Vp(Γ)=2. We fix ̂ ( 0̂)==(^0 ^ \ in Σ*OΛ); A> #o» Q,

A being integral matrices. We can find T<^SL(2, Z), such that if σ0=φp(T),

then σJΓ^Boβ'o—l,1 ), ί^ΦO. Therefore, if necessary, replacing F by
\σ12 02 /

(T O N , ((17) still holds and) we can assume that
0 T'-v

/ M)
^(j?o) = ^

^/^

with p not dividing of?. Because ap(Γl)>2, this implies that if A(X) is in

Σ*(Γι) with A(X)=(ί)A B \ and ̂ (jro).^(J?C)=(* * Y then G = 0 (mod/)2)

and hence first row of C is =0 (mod/)2). Because dim F^Γ)—2, we can choose
^(-SΓj) inΣ*(ΓΊ), such that all entries in its 4th column are not divisible by p.

If A(Xί)-A(X)=Γf * Y then G^O (mod/)2) and it follows that second row

of C is also = 0 (mod p2).
(ii) dim F^(Γ)= 1. We can assume that for each element A(X] of Σ*(ΓO,

(1.6) is true. Because #/>(Γ)>2, using similar arguments as earlier, one can see

that for each A(X)m Σ*(ΓO, σ~lA(X)σ=
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γx) x ) \ (* x ) v \
V/>2( ) X )/ VX ) X )/
//() />*( )\ //,() (̂ )\

\\P2( ) X )/ \X ) X )/

Since m is square-free, for a suitable r, ί and t in Z and multiplying J£ on the
right or left by matrices of the form

£
o^

I r»ί ί»ί\ I or

\iffz 0 /

l( l °)V-ft« i)
0

/I

vo ι
one can see that there exist Xl and X2 in Γj with αί(A'1)=αί(^Γ2)=αί(Γ1), such
that

\ *

A(X2) =

\ /

with )̂ not dividing y, s and M. Now α/Γ,) > 2 implies that
i= 1,2. From /> | A(Xj)A(X) it follows that

) * X ) \

A(X) =

f p ( ) p(

P3( ) P(

) P3(
\P3( ) P(

whereas />31 ̂ 4(JQ^1(.Y) implies now that

pA B \

pϋ)
A(X) =

A, B9 C, ί> being integral matrices and this proves (i). (ii) is trivial.
Now suppose Γ is maximal. From lemma 4.3, it follows that if

then the group generated by Γ\ and the matrices of the form
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/B+mVu ^V

\mpV2l

where F,.yeM(2, Z), such that (E+mV" mV* } is in SpJZ, m), is an
^mV EmV/E+mV22

arithmetic subgroup of Sp(2, R) and because T1 is maximal, must coincide with

ΓV Now if P=(PEz ° Y U=FP, where F is given by lemma 4.3 and Γ2=
V 0 E2/

U~1TU, then Γ2 has the following properties:

(1) Γ2£Ξ*Sp(2, R) and is a maximal arithmetic subgroup of level m.

(2) If ap(Γ)>2, then α,(Γ2)<α,(Γ)-2

(3) α ff(Γ2) < aq(Γ) for all primes q Φ />.
Hence if we repeat this process sufficiently many times for each prime, we get
the following

Theorem 4.4. Suppose Γ is a maximal arithmetic subgroup of Sp(2, R) of

level m. Then there exists an arithmetic subgroup Γ* of Sp(2, R) of level my such
that there exists U(=Sp(2,Q), such that T= U~Ύ*U and 0<αχr*)<2/or all p.

5. Let Sl={p19 - " j p s } and S2={ps-u " >ps+t} be disjoint sets of rational
primes. For /?!= {q» ••-, qf} ^Sl and R2=- {?5+1, -••, qs+ g} c52, we put

Let

(A

C D 'azιxy a^xy)

where βfV, ilV, ̂ y, rfίyeZand A'C-C'A = Q=:B'D-

Let Γ(5j, 52) be the subgroup generated by U Γ(S19 R^ S29 R2). We put

=Γ(51, φ; *S2, φ).

Theorem 5.1. ΓίS^ S2) is a subgroup of Sρ(2, R) and T^S^ S2) is a

normal subgroup of Γ(S19 S2). Further, {T(S19 R^ S2, R2)\Ri^Siy ι=l, .2} are

generators of G=T(S19 52)/Γ0(51, S2) and each element of G is of order 2 and hence

G is Abelίan. Order of G is 2k, where s<£<2s+ί. Therefore, T(S19 S2) is

arithmetic.
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Proof. All statements are either trivial or can be easily checked.

Theorem 5.2. Γ(φ, φ)=Sρ(2, Z) and if 5XΦ5{ or S2ΦS£, then T(S» S2)
is not conjugate to Γ(S{, S2).

Proof. If there exists ΓeGL(4, Λ), such that Γ'T^, S2)T=Γ(S'l9 S'2),
then we can assume that T^GL(4y Q).

(i) If p is in Sl= {pl9 - yps} but not in 5(, then it is enough to prove that

Γ(5Ί, S2) contains an element of the form X=—=X19 X^M(49 Z), because,
V p

then T~1XT cannot be in Γ(5(, Si). For this let u=p1 •••/>„ u.=—. Choose
Pi

af} and a(f} in Z, such that

Let

and

.aVE uΈΐ»E)
Then for each/, —γ= X. is in T(S19 S2).

(ii) If AΪgΦS's, let us assume that ̂ e fe, •••,$rj— Si, and 52= {̂ , ,9Λ}.
Again it is enough to prove that Γ(iSΊ, Sy contains an element of the from

=r Yλ with Y^M(49 Z). Let Xl be as in the case (i) above and we

simply put

/ /I 0V
Ml(o J

Theorem 5.3. Any maximal arithmetic subgroup Γ of Sp(2, R) of square-
free level m is conjugate to T(Sly S2) for some disjoint subsets S1 and S2 of prime
divisors of m.

Proof. By theorem 4.4, we can find a subgroup Γ* of 5p(2, R), such that
0<α/,(Γ*)<2 for all^ and Γ is conjugate to Γ*. If α,(Γ*)=0 for all/), then
Γ*^/)^, Z)=Γ(φ, φ) and since Γ is maximal, Γ*=Sp(2, Z). Let A, •-,/>, be
the primes for which α^Γ*)^! and/>5+1, " 9ps+w9 the one for which α^Γ*)—2.
Then by theorem 3.3, pj divides m for ally.
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For eachj, let σ. be the element of Sp(2, FPJ)0 given by lemma 4.2, with Γ
replaced by Γ*. Then for each X in Γ* with ap(X)=ap(Γ*),

j = ζ *)

and Ίfjtζs orj^s+t+l, where t is such that ps+t+i, •••,/>*+„, are supposed to be
all the prime divisors of m for which αί,.(Γ*)=2 and dim VP(T*)=2, then for
all X<=Γ*,

It can be checked that for each;, φp.ίsp2(z, Pι'"P +>n\ contains Sp(2, Fίy)0 and

for F, in Sp2(z, ίi^h+s} and ί Φ;, φp.(F ) = E. Let F, e S/>2(z, £ι̂ &±s),

such that φίy(ί\) = σ;. and for >>ί+ί, let G^F ̂ ^ ° ). If
U -̂

F=Fl—FΛ+tG3+t+1—Gs+w, then it is easy to check that F-T^CΓ^, 52),
where *SΊ = {/>!, , p,} and 52— {/>s+1, •••, ̂ >s+f}. Maximality implies that

Corollary 5.4. Suppose Γ w αw arithmetic subgroup of Sp (2, /?) of square-

free level m. Then [Γ/Γ Π Sp(2, Z^^S1/0^ ίow^ non-negative integer /.

Proof. 3*-[Γ/Γ Π Sp(2, Z)] [Γ Π Sj>(2, Z)jSp2(Zy m)].

Corollary 5.5. Let m=p1 ps, /> f=Φ=/>y, ^/ iφy. ΓA^w the number (up to
conjugacy) of maximal arithmetic subgroups of Γ c: 5p(2, R) of level m is 3s. // Γ
is such a subgroup and Γ^Sp(2y Q), then there exists T ^Sp(2, Q) such that Γ—

T~lSp(2, Z)T.

Proof. The numbers of tuples (S19 S2), such that 5X and S2 are disjoint
subsets of {/>!, •••, ps} is 3s.

JOHNS HOPKINS UNIVERSITY
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