<table>
<thead>
<tr>
<th>Title</th>
<th>Arithmetic subgroups of the symplectic group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Chahal, Jasbir Singh</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 14(3) P.487–P.500</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1977</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/11337</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/11337</td>
</tr>
<tr>
<td>Note</td>
<td>Osaka University Knowledge Archive: OUKA</td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive: OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University
ARITHMETIC SUBGROUPS OF THE
SYMPLECTIC GROUP

JASBIR SINGH CHAHAL

(Received September 27, 1976)

1. Let \(k \) be a field and \(n \) a positive rational integer. The symplectic group \(\text{Sp}(n, k) \) of order \(n \) over \(k \) is the group of \(2n \times 2n \) matrices

\[
X = \begin{pmatrix} A & B \\ C & D \end{pmatrix}
\]

over \(k \), each \(A, B, C, D \) being an \(n \times n \) matrix, such that

\[
X'JX = J,
\]

where \(X' \) denotes the transpose of the matrix \(X \) and

\[
J = \begin{pmatrix} 0 & E \\ -E & 0 \end{pmatrix},
\]

\(E \) being \(n \times n \) unit matrix. Let \(f: k^{2n} \times k^{2n} \rightarrow k \) be the skew symmetric bilinear form associated with \(J \). Then \(\text{Sp}(n, k) \) can be identified with the group of automorphisms \(\sigma \) of \(2n \)-dimensional vector space \(k^{2n} \), such that \(\sigma \) leaves \(f \) invariant, i.e.,

\[
f(\sigma x, \sigma y) = f(x, y)
\]

for all \(x, y \) in \(k^{2n} \). It is easy to check that \(X \) is in \(\text{Sp}(n, k) \), if and only if

\[
\begin{align*}
A'C - C'A &= 0 = B'D - D'B \\
A'D - C'B &= E
\end{align*}
\]

and for \(X \) in \(\text{Sp}(n, k) \),

\[
X^{-1} = \begin{pmatrix} D' & -B' \\ -C' & A' \end{pmatrix}
\]

The group \(\text{Sp}(n, k) \) is generated by the matrices of the form

\[
\begin{pmatrix} E & T \\ 0 & E \end{pmatrix}, \begin{pmatrix} U & 0 \\ 0 & U^{-1} \end{pmatrix} \text{ and } \begin{pmatrix} 0 & E \\ -E & 0 \end{pmatrix}
\]

(6)
where T is an $n \times n$ symmetric matrix and U is in $GL(n, k)$.

For real symplectic group $Sp(n, R)$, the Siegel modular group $Sp(n, Z)$ is the subgroup of $Sp(n, R)$ consisting of integral matrices. $Sp(n, Z)$ is generated by integral matrices of the form (6).

Suppose $G \subseteq GL(n, C)$ is a matrix algebraic group defined over Q and let for a subring A of C, $G(A)$ denote the group of A-rational points of G. For a positive rational integer m, the principal congruence subgroup $G(Z, m)$ of level m is the kernel of the natural map

$$\pi: G(Z) \to G(Z/mZ).$$

Obviously, $G(Z, m)$ is a normal subgroup (of finite index) in $G(Z)$.

Definition 1.1. (i) Two subgroups G_1 and G_2 of a group G are said to be commensurable, if $G_1 \cap G_2$ is of finite index in both G_1 and G_2.

(ii) A subgroup Γ of $G(R)$ is said to be arithmetic, if it is commensurable with $G(Z)$.

(iii) An arithmetic subgroup of $G(R)$ containing the principal congruence subgroup of level m is called an arithmetic subgroup of level m.

Gutnik and Pjateckii-Šapiro determined (up to conjugacy) all the maximal arithmetic subgroups of $SL(n, R)$ of a given level. Our purpose here is to determine all the maximal arithmetic subgroups of $Sp(2, R)$ of a square free level. This is done in article 5. In article 2, we have proved that the denominators of the entries of the elements of such a group are bounded, in article 3, we prove that the prime divisors of the squares of these denominators are divisors of m. Article 4 is purely technical.

I am indebted to Professor K.G. Ramanathan for suggesting to me this problem and to Professor S. Raghavan for his valuable suggestions.

2. Arithmetic subgroups

Theorem 2.1. Suppose Γ is an arithmetic subgroup of $Sp(n, R)$ of level m. Then each $X=(x_{ij})$ in Γ can be written as

$$X = 1/(\sqrt{\lambda})X_1,$$

where X_1 is an integral matrix and λ is a positive integer. Further, m^2x_{ij} are algebraic integers and m^3X^2 is an integral matrix.

Proof. Proof is essentially due to [4]. Because Γ is arithmetic, $Sp_a(Z, m)$ is of finite index, say r in Γ. Let $t=\Gamma \cap \Gamma^{(t)}$ the subgroup generated by the t^{th} powers of elements of Γ. Then $\Gamma^{(t)}$ is a normal subgroup of Γ and is contained in $Sp_a(Z, m)$.

Let $X=\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ be in Γ. We can choose a rational integer x such that if
\[X^* = \begin{pmatrix} E & xmE \\ 0 & E \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} A^* & B^* \\ C^* & D^* \end{pmatrix}, \]

then \(\det(A^*) = \det(A + xmC) \neq 0 \). Because proving the first assertion for \(X \) is equivalent to proving it for \(X^* \), we can assume that \(\det(A) \neq 0 \).

For an \(n \times n \) symmetric matrix \(T \in M(n, \mathbb{Z}) \), \(\begin{pmatrix} E & tmT \\ 0 & E \end{pmatrix} \) and \(\begin{pmatrix} E & 0 \\ tmT & E \end{pmatrix} \) are in \(\Gamma^{(i)} \). Therefore,

\[
X \begin{pmatrix} E & tmT \\ 0 & E \end{pmatrix} X^{-1} \begin{pmatrix} E & 0 \\ 0 & E \end{pmatrix} = \begin{pmatrix} tmATC' & tmATA' \\ * & * \end{pmatrix},
\]

\[
X^{-1} \begin{pmatrix} E & 0 \\ tmT & E \end{pmatrix} X \begin{pmatrix} E & 0 \\ 0 & E \end{pmatrix} = \begin{pmatrix} * & * \\ tmA'TA & * \end{pmatrix}
\]

are the integral matrices and hence

\[
\begin{align*}
tmA'TA' &= (y_{ij}) \quad (i) \\
tmA'TA &= (x_{ij}) \quad (ii)
\end{align*}
\]

are in \(M(n, \mathbb{Z}) \).

Because \(\det(A) \neq 0 \), for each \(j \), there exists \(i = i(j) \), such that \(a_{ij} \neq 0 \). We put \(\lambda_j = \frac{1}{a_{ij}} \). Choosing \(T = E_{ij} \), we see that

\[
a_{rj} a_{sj} = \frac{y_{rs}}{tm}
\]

is a rational number. From (9), \(a_{ij} = a_{ij}^{(i)} \). \(\lambda_j \) with \(\lambda_j \in \mathbb{Q} \) and \(a_{ij}^{(i)} \in \mathbb{Q} \). Therefore \(A = A_1 \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_n \end{pmatrix} \), where \(A_1 \in \text{GL}(n, \mathbb{Q}) \). Now choosing \(g \) in \(\mathbb{Z} \), such that \(T = gA_1^{-1}(E_{ij} + E_{ji})A_1^{-1} \) with \(i \neq j \), is integral, we can see from (8)–(ii) that \(\lambda_i \cdot \lambda_j \in \mathbb{Q} \). Therefore \(A = 1/(\sqrt{\lambda}) \cdot A_1 \) with \(\lambda \) in \(\mathbb{Q} \) and \(A_1 \) in \(\text{GL}(n, \mathbb{Q}) \). From (7) we see again that \(tmATC' \) is in \(M(n, \mathbb{Z}) \) and hence \(C = 1/(\sqrt{\lambda}) C_1 \) with \(C_1 \) in \(M(n, \mathbb{Q}) \).

By a similar argument

\[
X^{-1} \begin{pmatrix} E & 0 \\ tmT & E \end{pmatrix} X \begin{pmatrix} E & 0 \\ 0 & E \end{pmatrix} = \begin{pmatrix} -tmB'TA & * \\ * & * \end{pmatrix}
\]

is integral and hence we get \(B = 1/(\sqrt{\lambda}) B_1 \) with \(B_1 \in M(n, \mathbb{Q}) \). Using (4) we get \(D = 1/(\sqrt{\lambda}) D_1 \), \(D_1 \in M(n, \mathbb{Q}) \). Putting these together we get \(X = \frac{1}{\sqrt{\lambda}} \cdot X_1 \),

where

\[
X_1 = \begin{pmatrix} A_1 & B_1 \\ C_1 & D_1 \end{pmatrix}.
\]
It is obvious that we can assume that \(\lambda \) is a positive integer and this proves the first assertion.

Now because \(\text{Sp}_n(\mathbb{Z}, m) \) is of finite index in \(\Gamma \), the characteristic roots of any \(X \) in \(\Gamma \) are algebraic integers and hence \(\text{tr}(X) \) is an algebraic integer. If \(U \) is in \(\text{SL}_n(\mathbb{Z}, m) \), \(T \in M(n, \mathbb{Z}) \) is symmetric, then

\[
\text{tr}(mUTC) = \text{tr} \begin{pmatrix} U & 0 \\ 0 & U^{-1} \end{pmatrix} \begin{pmatrix} E & mT \\ 0 & E \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} - \text{tr} \begin{pmatrix} U & 0 \\ 0 & U^{-1} \end{pmatrix} \begin{pmatrix} A & C \\ B & D \end{pmatrix}
\]

is an algebraic integer.

Taking \(U=T=E \), it follows that \(\text{tr}(mC) \) is an algebraic integer. If \(C=(c_{ij}) \), then for \(i \neq j \), taking \(U=E+mE_{ij} \) and \(T=E \), we see that

\[
m^2c_{ij} = \text{tr}(m^2E_{ij}C) = \text{tr}(m(E_{ij}+mE)EC) - \text{tr}(mC)
\]

and taking \(U=E, T=E_{ii}, \)

\[
m^2c_{ii} = \text{tr}(mE_{ii}C)
\]

are algebraic integers. Hence \(m^2C \) is a matrix of algebraic integers. Considering \(J^{-1} \Gamma J \) instead of \(\Gamma \), it is immediate that \(m^2B \) is a matrix of algebraic integers. Considering

\[
\begin{pmatrix} E & 0 \\ mE & E \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} * & * \\ C+mA & * \end{pmatrix}
\]

and

\[
\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} E & 0 \\ mE & E \end{pmatrix} = \begin{pmatrix} * & * \\ C+mD & * \end{pmatrix}
\]

it follows that \(m^3A \) and \(m^3D \) are matrices of algebraic integers. Now \(m^6X^2 = \frac{m^6}{\lambda} X^2 \lambda \lambda \)

is in \(M(2n, \mathbb{Q}) \) and its entries are algebraic integers, hence because \(\mathbb{Z} \) is integrally closed, \(X^2 \) is integral.

3. Let \(\Gamma \) be an arithmetic subgroup of \(\text{Sp}(n, \mathbb{R}) \) of level \(m \). Then each \(X \) in \(\Gamma \) can be written as

\[
X = \frac{1}{\sqrt{\lambda(X)}} A(X),
\]

where \(\lambda(X) \) is a positive integer and \(A(X) \) is an integral matrix, such that the ideal generated by its entries is \(\mathbb{Z} \). Then the maps

\[
\begin{align*}
A: \Gamma & \to M(2n, \mathbb{Z}) \\
\lambda: \Gamma & \to \mathbb{Z}
\end{align*}
\]
are well defined. For a rational prime p, let $\alpha_p(X)=v_p(\lambda(X))$, i.e., the greatest integer l, such that p^l divides $\lambda(X)$. Let $\alpha_p(\Gamma)\equiv l.u.b.\{\alpha_p(X)|X\in\Gamma\}$. Since Γ is arithmetic, $\alpha_p(\Gamma)$ is a non-negative integer. In fact, by Th. 2.1, $\alpha_p(\Gamma)\leq v_p(m^p)$. In this section we prove that if $n=2$, then any prime divisor of $\lambda(X)$ for any X in Γ is a divisor of m.

Lemma 3.1. Suppose k is an arbitrary field and $M=\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ is in $M(4, k)$ with A, B, C, D two rowed square matrices, such that $A'C-C'A=0=B'D-D'B$ and $A'D-C'B=E$ with some $\beta \in k$. Then there exist M_1 and M_2 in $Sp(2, k)$, such that $M_1MM_2=\begin{pmatrix} * & * \\ 0 & * \end{pmatrix}$, each block being again a 2×2 matrix.

Proof. Choose P and Q in $SL(n, k)$ such that if

$$U=\begin{pmatrix} P & 0 \\ 0 & P^{-1} \end{pmatrix} \quad \text{and} \quad V=\begin{pmatrix} Q & 0 \\ 0 & Q^{-1} \end{pmatrix},$$

then

$$UMV=\begin{pmatrix} \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} & * \\ * & \end{pmatrix}.$$

If $a=b=0$, then we put $M_1=U, M_2=V$. Otherwise, if necessary, replacing U and V by R and VR respectively, where,

$$R=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

we can assume that $a \neq 0$. Multiplying on the left by

$$U_1=\begin{pmatrix} E \\ \begin{pmatrix} c_{11} & -c_{21} \\ a & \end{pmatrix} \\ \begin{pmatrix} c_{21} \\ a \end{pmatrix} \end{pmatrix}$$

we obtain

$$U_1UMV=\begin{pmatrix} (a & 0 \\ 0 & b) & * \\ * & \end{pmatrix}.$$
If \(b \neq 0 \), one can assume by multiplying on the left by

\[
\begin{pmatrix}
 E & 0 \\
 0 & 0 \\
 0 & -\frac{d}{b}
\end{pmatrix}
\]

that \(d = 0 \). The condition \(A'C - C'A = 0 \) then implies that \(c = 0 \). If \(b = 0 \), again the above condition implies that \(c = 0 \). Putting \(M_1 = U_2 U_1 U \) and \(M_2 = V \), where

\[
U_2 =
\begin{pmatrix}
 1 & 0 \\
 0 & 0 \\
 0 & 0
\end{pmatrix}
\]

the proof is complete.

Lemma 3.2. For a rational prime \(p \), let \(\phi_p : \mathbb{Z} \to F_p \) be the natural map and the map \(A = (a_{ij}) \to \bar{A} = (\phi_p(a_{ij})) \) induced by \(\phi_p \) from \(M(n, \mathbb{Z}) \to M(n, F_p) \) be again denoted by \(\phi_p \). If \(p \) does not divide \(m \), then

\[
\phi_p : SL_d(\mathbb{Z}, m) \to SL(n, F_p)
\]

is surjective. Hence if \(k = F_p \) in lemma 3.1, then there exist \(L_i \) in \(Sp_2(\mathbb{Z}, m) \), such that \(\phi_p(L_i) = M_i \), \(i = 1, 2 \).

Proof. It is enough to remark that \(SL(n, F_p) \) is generated by the matrices of the form \(E + xE_{ij}, i \neq j \) and \(x \in F_p \).

Theorem 3.3. Suppose \(\Gamma \) is an arithmetic subgroup of \(Sp(2, R) \) of level \(m \). If for a rational prime \(p \), \(\alpha_p(\Gamma) > 0 \), then \(p \) divides \(m \).

Proof. Suppose \(p \) does not divide \(m \). Let \(X \in \Gamma \), such that \(\alpha_p(X) > 0 \). By lemma 3.2, there exist \(L_1 \) and \(L_2 \) in \(Sp_2(\mathbb{Z}, m) \) such that \(\phi_p(L_1 A(X) L_2) = M_1 A(X) M_2 = \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} \). Because \(A(X) \neq 0 \), we can assume that \(A \neq 0 \). Let \(P, Q \in SL_2(\mathbb{Z}, m) \), such that \(P \bar{A} Q = \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix} \) with \(a_i \neq 0 \). If

\[
U = \begin{pmatrix} P & 0 \\ 0 & P^{-1} \end{pmatrix} \quad \text{and} \quad V = \begin{pmatrix} Q & 0 \\ 0 & Q^{-1} \end{pmatrix},
\]

we put \(L = U L_1 A(X) L_2 V \). Then

\[
L = \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix} \begin{pmatrix} * \\ * \end{pmatrix}
\]
with \(a_i \neq 0 \). If \(Y = 1 / (\sqrt{\lambda(X)})L \), we can see that \(Y \) is in \(\Gamma \). Hence \(\alpha_p(Y') > v_p(m^p) \), for a sufficiently large \(l \) and this is a contradiction.

4. Suppose \(p \) is a rational prime, such that \(\alpha_p(\Gamma) > 0 \). We define

\[
\Sigma_p(\Gamma) = \{ A(X) | X \in \Gamma \text{ and } \alpha_p(X) > 0 \}
\]

and

\[
\Sigma_p^*(\Gamma) = \{ A(X) | X \in \Gamma, \alpha_p(X) = \alpha_p(\Gamma) \}.
\]

Obviously, \(\Sigma_p^*(\Gamma) \subseteq \Sigma_p(\Gamma) \). We have written each \(X \) in \(\Gamma \) uniquely as

\[
X = \frac{1}{\sqrt{\lambda(X)}} A(X),
\]

where \(\lambda(X) \) is a positive integer and the ideal generated by the coefficients of \(A(X) \) over \(\mathbb{Z} \) is \(\mathbb{Z} \) itself. Let \(A(X) \in \Sigma_p^*(\Gamma) \) and \(A(Y) \in \Sigma_p(\Gamma) \). Then

\[
XY = \frac{1}{\sqrt{\lambda(X) \cdot \lambda(Y)}} A(X) \cdot A(Y) \in \Gamma.
\]

Since

\[
\alpha_p(\Gamma) = \alpha_p(X) = v_p(\lambda(X)) \geq v_p(\lambda(Y)) = \alpha_p(Y) > 0,
\]

we have \(v_p(\lambda(X) \cdot \lambda(Y)) > \alpha_p(\Gamma) \). In view of (\(*\)), \(p \) has to divide the ideal generated by the coefficients of \(A(X)A(Y) \), otherwise \(\alpha_p(XY) > \alpha_p(\Gamma) \). Therefore,

\[
\phi_p(\Sigma_p^*(\Gamma)) = \phi_p(\Sigma_p(\Gamma)) = 0.
\]

Consider the 4-dimensional vector space \(V = F_p^4 \). Let \(V_p(\Gamma) \) be the subspace of \(V \) generated by \(\phi_p(\Sigma_p(\Gamma)) \) over \(F_p \). Then \(\alpha_p(\Gamma) > 0 \) implies that

\[
0 < \dim V_p(\Gamma) < 4.
\]

We need to get some more informations about \(V_p(\Gamma) \). For any field \(k \), let us denote by \(Sp(n, k)_0 \) the subgroup of \(Sp(n, k) \) generated by the elements of the form

\[
\begin{pmatrix} E & T \\ 0 & E \end{pmatrix}, \begin{pmatrix} 0 & E \\ -E & 0 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} U & 0 \\ 0 & U^{-1} \end{pmatrix},
\]

where \(T \) is an \(n \times n \) symmetric matrix over \(k \) and \(U \in SL(n, k) \).

Lemma 4.1. Suppose \(\sigma \) is in \(Sp(2, F_p)_0 \) and \(\begin{pmatrix} A & B \\ C & D \end{pmatrix} \) is in \(\sigma^{-1} \Sigma_p(\Gamma) \sigma \). Then \(\begin{pmatrix} D' & -B' \\ -C' & A' \end{pmatrix} \) is also in \(\sigma^{-1} \Sigma_p(\Gamma) \sigma \).
Proof. This lemma is a trivial consequence of (5). It is easy to check that
\(\phi_p(Sp(2, \mathbb{Z})) \) contains \(Sp(2, F_p) \). If \(F \) is in \(Sp(2, \mathbb{Z}) \), such that \(\phi_p(F)=\sigma \), then

\[
\begin{pmatrix} D' & -B' \\ -C' & A' \end{pmatrix} = F^{-1}A(X^{-1})F = \sigma^{-1}A(X^{-1})\sigma
\]
and \(A(X^{-1}) \) is in \(\Sigma_p(\Gamma) \).

Lemma 4.2. If \(\alpha_p(\Gamma)=1 \), then \(\dim V_p(\Gamma)=2 \). If \(\alpha_p(\Gamma)>1 \), then \(\dim V_p(\Gamma)\leq 2 \). If \(\dim V_p(\Gamma)=2 \), then \(V_p(\Gamma) \) is not a hyperbolic space (with respect to the skew symmetric bilinear form \(f \) associated with \(J \)). Hence there exists \(\sigma \) in \(Sp(2, F_p) \), such that if \(\alpha_j=\sigma(e_j) \), where

\[
e_j = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad e_4 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}
\]

is the standard basis for \(V \), then \(V_p(\Gamma)=\bigoplus_{j=1}^{\dim V_p(\Gamma)} F_p\alpha_j \).

Proof. We have already seen that \(4>\dim V_p(\Gamma)>0 \). We first rule out the case \(\dim V_p(\Gamma)=3 \). If \(\dim V_p(\Gamma)=3 \), then \(V_p(\Gamma) \) contains a hyperbolic subspace, say \(\langle \alpha_1, \alpha_3 \rangle \), such that there exists another hyperbolic subspace \(\langle \alpha_2, \alpha_4 \rangle \) with

\[
V = \langle \alpha_1, \alpha_3 \rangle \perp \langle \alpha_2, \alpha_4 \rangle \tag{13}
\]
and \(V_p(\Gamma)=\bigoplus_{j=1}^{3} F_p\alpha_j \). Now \(V \) can also be written as

\[
V = \langle e_1, e_3 \rangle \perp \langle e_2, e_4 \rangle \tag{14}
\]
as an orthogonal sum of hyperbolic spaces; the linear transformation defined by

\[
\sigma(e_j) = \alpha_j \tag{15}
\]
leaves \(f \) invariant. Any \(\sigma \in Sp(2, k) \) for an arbitrary field \(k \) can be written as \(\sigma=\alpha_1 \cdot \sigma_2 \), where \(\sigma_1 \) is the product of the matrices of the form \(\begin{pmatrix} E & T \\ 0 & E \end{pmatrix} \) and

\[
\begin{pmatrix} 0 & E \\ -E & 0 \end{pmatrix}, \quad T \in M(2, k) \text{ is symmetric and } \sigma_2 = \begin{pmatrix} U & 0 \\ 0 & U^{-1} \end{pmatrix}, \quad \text{with } U \in GL(2, k).
\]
Hence there exists \(\sigma^* \in Sp(n, k)_0 \) and \(\beta \in k^* \), such that \(\sigma(e_j) = \beta_1 \cdot \sigma^*(e_i) \). Therefore, we can assume that \(\sigma \) appearing in (15) is in \(Sp(2, F_p)_0 \). From (12) it follows that for any \(A(X) \) in \(\Sigma_p(\Gamma) \), \(\sigma^{-1}(A(X)\sigma)(e_j)=0 \) for \(j=1, 2, 3 \). Hence
By lemma 4.1 for each $A(X)$ in $\Sigma_p(\Gamma)$,

$$\sigma^{-1}A(X)\sigma = \begin{pmatrix} 0 & 0 & 0 & * \\ 0 & 0 & 0 & * \\ 0 & 0 & 0 & * \\ 0 & 0 & 0 & * \end{pmatrix}. $$

Now dimension of F_p-subspace generated by $\sigma^{-1}\Sigma^*_p(\Gamma)\sigma$ is equal to $\dim V_p(\Gamma) = 3$ which is a contradiction.

Now we suppose that $\alpha_p(\Gamma) = 1$ and $\dim V_p(\Gamma) = 1$. For a suitable α_1 in $V_p(\Gamma)$, we write V as in (13) and define σ by (15). Then for each $A(X)$ in $\Sigma^*_p(\Gamma)$,

$$\sigma^{-1}A(X)\sigma = (0 \ C_2 \ C_3 \ C_4),$$

where $C_i:=\begin{pmatrix} c_{i1} \\ c_{i2} \\ c_{i3} \\ c_{i4} \end{pmatrix}$ and $C_i:=\gamma C_j$ for some γ in F_p. Choosing σ_0 suitably in $Sp(2, F_p)\sigma$ and replacing σ by $\sigma \cdot \sigma_0$, we can assume that

$$\sigma^{-1}A(X)\sigma = \begin{pmatrix} x & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad x \neq 0. \quad (16)$$

If X is in Γ, such that $\alpha_p(X) = 1$, it follows that $\det(X) = 1$ is divisible by p, a contradiction.

Finally, we prove that if $\dim V_p(\Gamma) = 2$, then it is not a hyperbolic space. Suppose it is. Then $V_p(\Gamma) = \langle \alpha_1, \alpha_3 \rangle$ and $V = \langle \alpha_1, \alpha_3 \rangle \perp \langle \alpha_2, \alpha_4 \rangle$ and σ defined by $\sigma(e_j) = \alpha_j$ leaves f invariant. Thus each element of $\sigma^{-1}\Sigma^*_p(\Gamma)\sigma$ is of the form

$$\begin{pmatrix} (0 \ 0) & (0 \ 0) \\ (0 \ *) & (0 \ *) \\ (0 \ 0) & (0 \ 0) \\ (0 \ *) & (0 \ *) \end{pmatrix}.$$

We choose σ in such a fashion that there exists $\sigma^{-1}A(X)\sigma$ in $\sigma^{-1}\Sigma^*_p(\Gamma)\sigma$ with 0 in the $(4, 4)^{th}$ entry. But this can be seen to contradict the fact
\[\sigma^{-1}(A(X)\sigma)^2 = 0. \]

and this proves the lemma.

Let \(\sigma \) be as in Lemma 4.2. Then for all \(A(X) \) in \(\Sigma_\phi(\Gamma) \),

\[\sigma^{-1}A(X)\sigma = \begin{pmatrix} 0 & * \\ 0 & 0 \end{pmatrix} \quad (17) \]
each block being \(2 \times 2 \) matrix.

Lemma 4.3. Suppose \(\alpha_\phi(\Gamma) > 2 \). Then there exists an \(F \) in \(Sp(2, \mathbb{Z}) \), such that if \(\Gamma \neq F^{-1}\Gamma F \), then

(i) For each \(X \) in \(\Gamma \) with \(\alpha_\phi(X) = \alpha_\phi(\Gamma) \),

\[A(X) = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \]

with \(C \equiv 0 \pmod{\phi} \) and \(A \equiv D \equiv 0 \pmod{\phi} \).

(ii) \(\Gamma \) contains \(Sp_2(\mathbb{Z}, m) \).

Proof. Let \(\sigma \) be given by lemma 4.2 and \(F \in Sp(2, \mathbb{Z}) \), such that \(\phi_\phi(F) = \sigma \).

(i) Let \(\dim V_\phi(\Gamma) = 2 \). We fix \(A(X_0) = \begin{pmatrix} pA_0 & B_0 \\ pC_0 & pD_0 \end{pmatrix} \) in \(\Sigma_\phi^*(\Gamma) \); \(A_0, B_0, C_0, D_0 \) being integral matrices. We can find \(T \in SL(2, \mathbb{Z}) \), such that if \(\sigma_0 = \phi_\phi(T) \), then \(\sigma_0^{-1}B_0 \sigma_0 = \begin{pmatrix} b_1 & 0 \\ b_2 & b_2 \end{pmatrix} \), \(b_1 \neq 0 \). Therefore, if necessary, replacing \(F \) by

\[FT^{-1} \]

(17) still holds and we can assume that

\[A(X_0) = \begin{pmatrix} pA_0 & \begin{pmatrix} b_1^{(2)} \\ b_2^{(2)} \end{pmatrix} \\ pC_0 & \begin{pmatrix} b_1^{(2)} \\ b_2^{(2)} \end{pmatrix} \end{pmatrix} \]

with \(p \) not dividing \(b_1^{(2)} \). Because \(\alpha_\phi(\Gamma) > 2 \), this implies that if \(A(X) \) is in \(\Sigma_\phi^*(\Gamma) \) with \(A(X) = \begin{pmatrix} pA & B \\ pC & pD \end{pmatrix} \) and \(A(X_0) \cdot A(X) = \begin{pmatrix} * & * \\ * & G \end{pmatrix} \), then \(G \equiv 0 \pmod{\phi} \) and hence first row of \(C \) is \(\equiv 0 \pmod{\phi} \). Because \(\dim V_\phi(\Gamma) = 2 \), we can choose \(A(X_1) \) in \(\Sigma_\phi^*(\Gamma) \), such that all entries in its 4th column are not divisible by \(p \). If \(A(X_1) \cdot A(X) = \begin{pmatrix} * & * \\ * & G_1 \end{pmatrix} \), then \(G_1 \equiv 0 \pmod{\phi^2} \) and it follows that second row of \(C \) is also \(\equiv 0 \pmod{\phi^2} \).

(ii) \(\dim V_\phi(\Gamma) = 1 \). We can assume that for each element \(A(X) \) of \(\Sigma_\phi^*(\Gamma) \), \((16) \) is true. Because \(\alpha_\phi(\Gamma) > 2 \), using similar arguments as earlier, one can see that for each \(A(X) \) in \(\Sigma_\phi^*(\Gamma) \), \(\sigma^{-1}A(X)\sigma = \)
ARITHMETIC SUBGROUPS OF THE SYMPLECTIC GROUP

\[
\left(\begin{array}{ccc}
\rho() & \rho() & x \\
\rho() & \rho() & \rho() \\
\rho^2() & \rho() & \rho^2() \\
\rho() & \rho() & \rho()
\end{array} \right), \quad p \neq x.
\]

Since \(m \) is square-free, for a suitable \(r, s \) and \(t \) in \(\mathbb{Z} \) and multiplying \(X \) on the right or left by matrices of the form

\[
\left(\begin{array}{cc}
E & 0 \\
rm & sm \\
sm & E
\end{array} \right)
\]

one can see that there exist \(X_1 \) and \(X_2 \) in \(\Gamma_1 \) with \(\alpha_p(X_1) = \alpha_p(X_2) = \alpha_p(\Gamma_1) \), such that

\[
A(X_1) = \left(\begin{array}{cccc}
\rho^2() & \rho() & y & \rho^2() \\
* & \cdots & * & \\
* & \cdots & * & \\
* & \cdots & * & \\
\end{array} \right)
\]

\[
A(X_2) = \left(\begin{array}{cccc}
\rho^2() & \rho() & * & u \cdot p \\
* & \cdots & * & \\
* & \cdots & * & \\
* & \cdots & * & \\
\end{array} \right)
\]

with \(p \) not dividing \(y, z \) and \(u \). Now \(\alpha_p(\Gamma_1) > 2 \) implies that \(p^3 | A(X_i)A(X) \), \(i = 1, 2 \). From \(p | A(X_i)A(X) \) it follows that

\[
A(X) = \left(\begin{array}{cccc}
\rho() & \rho() & x & \rho() \\
\rho^2() & \rho() & \rho() & \rho() \\
\rho^2() & \rho() & \rho() & \rho^2() \\
\rho() & \rho() & \rho() & \rho()
\end{array} \right),
\]

whereas \(p^3 | A(X_2)A(X) \) implies now that

\[
A(X) = \left(\begin{array}{cc}
pA & B \\
p^2C & pD
\end{array} \right),
\]

where \(A, B, C, D \) being integral matrices and this proves (i). (ii) is trivial.

Now suppose \(\Gamma \) is maximal. From lemma 4.3, it follows that if \(\alpha_p(\Gamma_1) > 2 \), then the group generated by \(\Gamma_1 \) and the matrices of the form
where \(V_{ij} \in M(2, \mathbb{Z}) \), such that \(\begin{pmatrix} E + mV_{11} & mV_{12} \\ mV_{21} & E + mV_{22} \end{pmatrix} \) is in \(Sp_2(\mathbb{Z}, m) \), is an arithmetic subgroup of \(Sp(2, \mathbb{R}) \) and because \(\Gamma_1 \) is maximal, must coincide with \(\Gamma \). Now if \(P = \begin{pmatrix} pE_2 & 0 \\ 0 & E_2 \end{pmatrix} \), \(U = FP \), where \(F \) is given by lemma 4.3 and \(\Gamma_2 = U^{-1}\Gamma U \), then \(\Gamma_2 \) has the following properties:

1. \(\Gamma_2 \subseteq Sp(2, \mathbb{R}) \) and is a maximal arithmetic subgroup of level \(m \).
2. If \(\alpha_s(\Gamma) > 2 \), then \(\alpha_s(\Gamma_2) \leq \alpha_s(\Gamma) - 2 \)
3. \(\alpha_s(\Gamma_2) \leq \alpha_s(\Gamma) \) for all primes \(q \neq p \).

Hence if we repeat this process sufficiently many times for each prime, we get the following

Theorem 4.4. Suppose \(\Gamma \) is a maximal arithmetic subgroup of \(Sp(2, \mathbb{R}) \) of level \(m \). Then there exists an arithmetic subgroup \(\Gamma^* \) of \(Sp(2, \mathbb{R}) \) of level \(m \), such that there exists \(U \in Sp(2, \mathbb{Q}) \), such that \(\Gamma = U^{-1}\Gamma^*U \) and \(0 \leq \alpha_s(\Gamma^*) \leq 2 \) for all \(p \).

5. Let \(S_1 = \{ p_1, \ldots, p_s \} \) and \(S_2 = \{ p_{s+1}, \ldots, p_{s+t} \} \) be disjoint sets of rational primes. For \(R_1 = \{ q_1, \ldots, q_s \} \subseteq S_1 \) and \(R_2 = \{ q_{s+1}, \ldots, q_{s+g} \} \subseteq S_2 \), we put

\[
\begin{aligned}
u &= p_1 \cdots p_s, \\
u &= p_{s+1} \cdots p_{s+t}, \\
x &= q_1 \cdots q_s, \\
y &= q_{s+1} \cdots q_{s+g}.
\end{aligned}
\]

Let

\[
\Gamma(S_1, R_1; S_2, R_2) = \left\{ \begin{pmatrix} A & B \\ C & D \end{pmatrix} \middle| A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}, C = \begin{pmatrix} c_{11} & a_{12} \\ c_{21} & a_{22} \end{pmatrix}, D = xy \begin{pmatrix} d_{11} & d_{12} \\ d_{21} & d_{22} \end{pmatrix} \right\},
\]

where \(a_{ij}, b_{ij}, c_{ij}, d_{ij} \in \mathbb{Z} \) and \(A'C - C'A = 0 \) if \(B'D - D'B = A'D - C'B = xyE \).

Let \(\Gamma(S_1, S_2) \) be the subgroup generated by \(\bigcup_{n_i \leq n_j} \Gamma(S_1, R_1; S_2, R_2) \). We put \(\Gamma_0(S_1, S_2) = \Gamma(S_1, \phi; S_2, \phi) \).

Theorem 5.1. \(\Gamma(S_1, S_2) \) is a subgroup of \(Sp(2, \mathbb{R}) \) and \(\Gamma_0(S_1, S_2) \) is a normal subgroup of \(\Gamma(S_1, S_2) \). Further, \(\{ \Gamma(S_1, R_1; S_2, R_2) \mid R_i \subseteq S_i, i = 1, 2 \} \) are generators of \(G = \Gamma(S_1, S_2) \) and each element of \(G \) is of order 2 and hence \(G \) is Abelian. Order of \(G \) is \(2^k \), where \(s \leq k \leq 2^{s+t} \). Therefore, \(\Gamma(S_1, S_2) \) is arithmetic.
Proof. All statements are either trivial or can be easily checked.

Theorem 5.2. \(\Gamma(\phi, \phi) = \text{Sp}(2, \mathbb{Z}) \) and if \(S_1 \neq S_2 \) or \(S_2 \neq S_2' \), then \(\Gamma(S_1, S_2) \) is not conjugate to \(\Gamma(S_1', S_2') \).

Proof. If there exists \(T \in \text{GL}(4, \mathbb{R}) \), such that \(T^{-1} \Gamma(S_1, S_2) T = \Gamma(S_1', S_2') \),

(i) If \(p \) is in \(S_1 = \{ p_1, \ldots, p_s \} \) but not in \(S_1' \), then it is enough to prove that \(\Gamma(S_1, S_2) \) contains an element of the form \(X = \frac{1}{\sqrt{p}} X_1, X_1 \in \text{M}(4, \mathbb{Z}) \), because, then \(T^{-1} X T \) cannot be in \(\Gamma(S_1', S_2') \). For this let \(u = p_1 \cdots p_s, u_j = \frac{u}{p_j} \). Choose \(a_j^{(1)} \) and \(a_j^{(2)} \) in \(\mathbb{Z} \), such that

\[
p_j a_j^{(1)} a_j^{(2)} \equiv 1 \pmod{u_j}; \quad j = 1, \ldots, s.
\]

Let

\[
b_j = \frac{b_j a_j^{(1)} a_j^{(2)} - 1}{u_j^2}
\]

and

\[
X_j = \begin{pmatrix} p_j a_j^{(1)} E & u_j E \\ p_j u_j p_j E & p_j a_j^{(2)} E \end{pmatrix}.
\]

Then for each \(j, \frac{1}{\sqrt{p_j}} \cdot X_j \) is in \(\Gamma(S_1, S_2) \).

(ii) If \(S_2 \neq S_2' \), let us assume that \(q_1 \in \{ q_1, \ldots, q_h \} \subseteq S_2' \), and \(S_2 = \{ q_1, \ldots, q_h \} \).

Again it is enough to prove that \(\Gamma(S_1, S_2) \) contains an element of the form \(\frac{1}{\sqrt{p_j}} \cdot \frac{1}{q_i} Y_1 \) with \(Y_1 \in \text{M}(4, \mathbb{Z}) \). Let \(X_1 \) be as in the case (i) above and we simply put

\[
Y_1 = \begin{pmatrix} q_i p_i a_i^{(1)} E & u_i \begin{pmatrix} 1 & 0 \\ 0 & q_i \end{pmatrix} \\ p_i u_i b_i \begin{pmatrix} q_i^2 & 0 \\ 0 & q_i \end{pmatrix} & q_i p_i a_i^{(2)} E \end{pmatrix}.
\]

Theorem 5.3. Any maximal arithmetic subgroup \(\Gamma \) of \(\text{Sp}(2, \mathbb{R}) \) of square-free level \(m \) is conjugate to \(\Gamma(S_1, S_2) \) for some disjoint subsets \(S_1 \) and \(S_2 \) of prime divisors of \(m \).

Proof. By theorem 4.4, we can find a subgroup \(\Gamma^* \) of \(\text{Sp}(2, \mathbb{R}) \), such that \(0 \leq \alpha_p(\Gamma^*) \leq 2 \) for all \(p \) and \(\Gamma \) is conjugate to \(\Gamma^* \). If \(\alpha_p(\Gamma^*) = 0 \) for all \(p \), then \(\Gamma^* \subseteq \text{Sp}(2, \mathbb{Z}) = \Gamma(\phi, \phi) \) and since \(\Gamma \) is maximal, \(\Gamma^* = \text{Sp}(2, \mathbb{Z}) \). Let \(p_1, \ldots, p_s \) be the primes for which \(\alpha_p(\Gamma^*) = 1 \) and \(p_{s+1}, \ldots, p_{s+m} \), the one for which \(\alpha_p(\Gamma^*) = 2 \). Then by theorem 3.3, \(p_j \) divides \(m \) for all \(j \).
For each \(j \), let \(\sigma_j \) be the element of \(\text{Sp}(2, F_{P_j})_0 \) given by lemma 4.2, with \(\Gamma \) replaced by \(\Gamma^* \). Then for each \(X \) in \(\Gamma^* \) with \(\alpha_p(X) = \alpha_p(\Gamma^*) \),

\[
\sigma_j^{-1} \phi_p(A(X)) \sigma_j = \begin{pmatrix} 0 & * \\ 0 & 0 \end{pmatrix}
\]

and if \(j \leq s \) or \(j \geq s + t + 1 \), where \(t \) is such that \(p_{s+t+1}, \ldots, p_{s+w} \) are supposed to be all the prime divisors of \(m \) for which \(\alpha_p(\Gamma^*) = 2 \) and \(\dim V_p(\Gamma^*) = 2 \), then for all \(X \in \Gamma^* \),

\[
\sigma_j^{-1} \phi_p(A(X)) \sigma_j = \begin{pmatrix} * & * \\ 0 & * \end{pmatrix}.
\]

It can be checked that for each \(j \), \(\phi_{p_j}(\text{Sp}_2(\mathbb{Z}, p_1 \cdot \cdot \cdot p_{s+w})_{P_j}) \) contains \(\text{Sp}(2, F_{p_j})_0 \) and for \(F_j \) in \(\text{Sp}_2(\mathbb{Z}, p_1 \cdot \cdot \cdot p_{s+w})_{P_j} \) and \(i \neq j \), \(\phi_{p_j}(F_j) = E \). Let \(F_j \in \text{Sp}_2(\mathbb{Z}, p_1 \cdot \cdot \cdot p_{s+w})_{P_j} \), such that \(\phi_{p_j}(F_j) = \sigma_j \) and for \(j > s+t \), let \(G_j = F_j \begin{pmatrix} 1/p_j E_2 & 0 \\ 0 & E_2 \end{pmatrix} \). If \(F = F_1 \cdot \cdot \cdot F_{s+t+1} \cdot \cdot \cdot G_{s+w+1} \), then it is easy to check that \(F^{-1} \Gamma^* F \subseteq \Gamma(S_1, S_2) \), where \(S_1 = \{p_1, \ldots, p_s\} \) and \(S_2 = \{p_{s+1}, \ldots, p_{s+w}\} \). Maximality implies that \(F^{-1} \Gamma F = \Gamma^*(S_1, S_2) \).

Corollary 5.4. Suppose \(\Gamma \) is an arithmetic subgroup of \(\text{Sp}(2, \mathcal{R}) \) of square-free level \(m \). Then \([\Gamma/\Gamma \cap \text{Sp}(2, \mathbb{Z})] = 3^l \) for some non-negative integer \(l \).

Proof. \(3^l = [\Gamma/\Gamma \cap \text{Sp}(2, \mathbb{Z})][\Gamma \cap \text{Sp}(2, \mathbb{Z})/\text{Sp}_2(\mathbb{Z}, m)] \).

Corollary 5.5. Let \(m = p_1 \cdot \cdot \cdot p_s, p_i \neq p_j, \) if \(i \neq j \). Then the number (up to conjugacy) of maximal arithmetic subgroups of \(\Gamma \subseteq \text{Sp}(2, \mathcal{R}) \) of level \(m \) is \(3^s \). If \(\Gamma \) is such a subgroup and \(\Gamma \subseteq \text{Sp}(2, \mathcal{Q}) \), then there exists \(T \in \text{Sp}(2, \mathcal{Q}) \) such that \(\Gamma = T^{-1} \text{Sp}(2, \mathcal{Z}) T \).

Proof. The numbers of tuples \((S_1, S_2) \), such that \(S_1 \) and \(S_2 \) are disjoint subsets of \(\{p_1, \ldots, p_s\} \) is \(3^s \).

References

