

Title	Weakly regular modules
Author(s)	Mabuchi, Tsuguo
Citation	Osaka Journal of Mathematics. 1980, 17(1), p. 35-40
Version Type	VoR
URL	https://doi.org/10.18910/11338
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

WEAKLY REGULAR MODULES

Tsuguo MABUCHI

(Received December 21, 1978) (Revised February 8, 1979)

Let R be a ring with an identity. Following Ramamurthi [2], we call R a left weakly regular ring if R satisfies one of the following equivalent conditions: 1) $a \in RaRa$ for every $a \in R$; 2) R/α is right R-flat for any two-sided ideal α of R; 3) $\alpha^2 = \alpha$ for any left ideal α of R. In this paper, we shall introduce the notion of a weakly regular (right) module: A right R-module M is called a weakly regular module if $m \in Hom_R(M, M)(m) + Hom_R(M, R)(m) = \{\sum_i s_i(m) f_i(m) | s_i \in Hom_R(M, M), f_i \in Hom_R(M, R)\}$ for every $m \in M$. Needless to say, R is a left weakly regular ring if and only if R_R is weakly regular. We shall give a list of equivalent conditions for M_R to be weakly regular including the condition that M_R is locally projective and $T\alpha = T\alpha^2$ for any left ideal α of R, where T is the trace ideal of M_R (Theorem 7). We shall show also that if M_R is a finitely generated (abbr. f.g.) weakly regular module, then $Hom_R(M, M)$ is a left weakly regular ring (Theorem 8). The author would like to express his thanks to Prof. H. Tominaga for his helpful suggestion.

1. Preliminaries

Throughout this paper, R will represent an associative ring with 1, and M a unitary right R-module. Every (right or left) module is unitary and unadorned \otimes means \otimes_R , unless otherwise stated. We set $M^* = \operatorname{Hom}_R(M, R)$ and $S = \operatorname{Hom}_R(M, M)$. For any S - R-submodule N of M, we set $T_N = \sum_{f \in M^*} f(N) = \operatorname{Hom}_R(M, R)(N)$. $T = T_M$ is the trace ideal of M_R . Given $_RA$, $U_S(SN \otimes A)$ will denote the set of all S-submodules of $N \otimes A$. Further, $U_{T_N}(RA)$ will denote the set of all R-submodules R of R with R is the set of all left ideals R of R such that R is the set of all left ideals R of R such that R is R in R in

A right R-module M is called a weakly regular module (abbr. w. regular module) if $m \in S(m)M^*(m)$ for every $m \in M$. A submodule N_R of M_R is said to be ideal pure if $N \cap M\alpha = N\alpha$ for every left ideal α of R, or equivalently, $i \otimes 1 \colon N \otimes R/\alpha \to M \otimes R/\alpha$ is monic for every left ideal α of R, where $i \colon N \to M$ is the inclusion (see [1]).

Proposition 1. The following conditions are equivalent:

- 1) $\Gamma_R(M, A)$ is monic for every $_RA$.
- 2) $m \in MM^*(m)$ for every $m \in M$.
- 3) If $\beta: G_R \to M_R$ is a map such that $\beta(G)$ is ideal pure in M, then for each x_1, x_2, \dots, x_n in G there exists some $\phi: M_R \to G_R$ such that $\beta \phi \beta(x_i) = \beta(x_i)$ for $i=1, 2, \dots, n$.
- 4) For each $m_1, m_2, \dots, m_k \in M$ there exist some $x_1, x_2, \dots, x_n \in M$ and $f_1, f_2, \dots, f_n \in M^*$ such that $m_i = \sum_i x_i f_i(m_i)$ for $i = 1, 2, \dots, k$.
 - 5) The lattice homomorphism $U_T(R) \to U_S(M)$; $\alpha \to M\alpha$, is bijective.

Proof. See [1, Theorem 3.2] and [4, Theorems 2.1 and 3.1].

A right R-module M is said to be *locally projective* (abbr. 1. projective) if M satisfies any of the equivalent conditions in Proposition 1.

One may remember that every projective module is 1. projective and every 1. projective module is flat [1].

2. Weakly regular modules

We shall begin this section with the following.

Proposition 2. If M_R is w. regular, then there hold the following:

- (1) M_R is 1. projective.
- (2) If N is an S-R-submodule of M, then N_R is w.regular.
- (3) If R is a regular ring, then M_R is regular in the sense of Zelmanowitz [3].
- (4) If $S = S_1 \oplus S_2 \oplus \cdots \oplus S_n$ with simple rings S_i , then $M = S_1(M) \oplus S_2(M) \oplus \cdots \oplus S_n(M)$ and $S_i(M)$ is S-R-simple.

Proof. (1), (2) and (3) are immediate from Proposition 1 and [4].

- (4) Obviously, M is the direct sum of S-R-submodules $S_i(M)$. Let m be an arbitrary non-zero element of $S_i(M)$. By the usual way, mM^* may be regarded as a subset of S. Since $S_jS(mM^*)=S_j(mM^*)=0$ if $i \neq j$, $S(mM^*)$ is an ideal of S included in S_i . By hypothesis, $SmM^*(m)$ contains non-zero m. Hence the non-zero ideal $S(mM^*)$ coincides with S_i , and $SmR \supseteq SmM^*(m) = S_i(M)$, proving that $S_i(M)$ is S-R-simple.
- EXAMPLE 1. Let R be a left w. regular ring. Then, by Proposition 2(2), every two-sided ideal of R is w. regular as a right R-module.

Proposition 3. (1) M_R is w. regular if and only if for any S-submodule $_SN$ of M there holds $N=NM^*(N)$.

- (2) Let $M_i(i \in I)$ be right R-modules. Then $\Sigma_{i \in I} \oplus M_i$ is w. regular if and only if each M_i is w. regular.
 - Proof. (1) is evident from the definition.

- (2) We assume $M = \Sigma_i \oplus M_i$ is w. regular. Let $p_i \colon M \to M_i$ be the projection, and take an arbitrary element $m_i \in M_i$. As is easily seen, $p_i S p_i = \operatorname{Hom}_R(M_i, M_i)$ and $\operatorname{Hom}_R(M, R)(m_i) = \operatorname{Hom}_R(M_i, R)(m_i)$. Now, recalling that M is w.regular, we obtain $m_i = p_i m_i \in p_i S(m_i) \operatorname{Hom}_R(M, R)(m_i) = p_i S(p_i m_i) \operatorname{Hom}_R(M_i, R)(m_i) = \operatorname{Hom}_R(M_i, M_i)(m_i) \operatorname{Hom}_R(M_i, R)(m_i)$. The converse is almost evident.
- **Lemma 4.** Let α be in the center of S. Then there exists an element β in the center of S with $\alpha\beta\alpha=\alpha$ if and only if $M=\alpha M\oplus\ker\alpha$.

Proof. See [3, Lemma 3.3].

Proposition 5. If M_R is w.regular, then there hold the following:

- (1) S is a semiprime ring.
- (2) The center of S is a regular ring.

Proof. The proofs of (1) and (2) are similar to those of [3, (3.2)] and [3, Theorem 3.4], respectively. Here, we shall prove (2) only. Let α be in the center of S. According to Lemma 4, it suffices to show that $M = \alpha M \oplus \ker \alpha$. For each $m \in M$, we have $\alpha m = \sum_i s_i(\alpha m) f_i(\alpha m)$ with some $s_i \in S$ and $f_i \in M^*$. Setting $t = \sum_i s_i(mf_i) \in S$, we obtain $\alpha m = \alpha^2 t m$, so that $m - \alpha t m \in \ker \alpha$. Since $m = \alpha t m + (m - \alpha t m)$, it follows $M = \alpha M + \ker \alpha$. If $\alpha m'$ ($m' \in M$) is in $\ker \alpha$ then, as we have seen above, there exists some $t' \in S$ such that $\alpha m' = \alpha^2 t' m' = t' \alpha^2 m' = 0$. Hence, $M = \alpha M \oplus \ker \alpha$.

Lemma 6. If M_R is 1-projective and N_R is an ideal pure submodule of M, then for each $n_1, \dots, n_k \in \mathbb{N}$ there exist $x_1, \dots, x_n \in \mathbb{N}$ and $f_1, \dots, f_n \in M^*$ such that $n_i = \sum_j x_j f_j(n_i)$ $(i=1, \dots, k)$.

Proof. As is well known, there exists an R-homomorphism of a free R-module G_R onto N_R . By Proposition 1 (3), there exists $\phi \in \operatorname{Hom}_R(M, G)$ such that $\beta \phi(n_i) = n_i$ $(i=1, \dots, k)$. Choose a finitely generated free direct summand F of G_R including $\phi(n_i)$ $(i=1, \dots, k)$. Let y_1, \dots, y_n be a free R-basis of F, and $y = \sum_j y_j v_j(y)$ with coordinate functions v_j . Let $\pi \colon G_R \to F_R$ be the projection, $\theta = \pi \phi$ and $\alpha \colon F_R \to N_R$ the restriction of β . If we set $x_j = \alpha(y_j)$ and $f_j = v_j \theta$, then $\sum_j x_j f_j(n_i) = \alpha \sum_j y_j v_j \theta(n_i) = \alpha \theta(n_i) = \alpha \pi \phi(n_i) = \beta \phi(n_i) = n_i$.

Now, we are at a position to state our first principal theorem.

Theorem 7. The following conditions are equivalent:

- 1) M_R is a w.regular module.
- 2) M_R is 1.projective and every S-R-submodule of M is ideal pure.
- 3) M_R is 1.projective and SmR_R is ideal pure for each $m \in M$.
- 4) For any S-R-submodule N of M, N_R is flat and each left R-module A

T. Mabuchi

the lattices $U_{T_N}(_RA)$ and $U_S(_SN\otimes A)$ are isomorphic via the inverse assignments $\psi\colon U_{T_N}(_RA)\to U_S(_SN\otimes A); A'\mapsto N\otimes A'$ and $\Phi\colon U_S(_SN\otimes A)\to U_{T_N}(A); _SB\mapsto \{\Sigma_if_i(n_i)a_i|f_i\in M^*, n_i\otimes a_i\in B\}.$

- 5) For any S-R-submodule N of M, the lattice isomorphism $U_{T_N}({}_{R}R) \rightarrow U_{S}(N_S)$; $\alpha \mapsto N\alpha$, is surjective.
- 6) M_R is 1. projective and b=ab for each pair a, $b \in U_T(R)$ such that $a \supseteq b$ and a is a two sided ideal of R.
 - 7) M_R is 1. projective and $Ta = Ta^2$ for each left ideal a of R.

Proof. 1) \Rightarrow 2). M_R is 1.projective by Proposition 2(1). Take an arbitrary S-R-submodule N of M. Let b be an arbitrary left ideal, and consider the diagram

$$(7.1) N \otimes R/b \xrightarrow{i \otimes 1} M \otimes R/b \xrightarrow{\Gamma_R(M, R/b)} \operatorname{Hom}_R({}_RM^*, {}_R(R/b)),$$

where $i: N \to M$ is the inclusion. If $(i \otimes 1)(n \otimes \overline{1}) = 0$ for some $n \otimes \overline{1} \in N \otimes R/b$, then $\Gamma_R(M, R/b)$ $(i \otimes 1)(n \otimes \overline{1})(M^*) = \overline{0}$, and hence $M^*(n) \subseteq b$. We note that $N \otimes R/b \cong N/Nb$ and $n \otimes \overline{1}$ corresponds to n + Nb under this isomorphism. Since M_R is w. regular, there holds $n \in SnM^*(n) = SnRM^*(n) \subseteq Nb$, which means that $n \otimes \overline{1} = 0$. Hence, $i \otimes 1$ is monic, and N is ideal pure.

- 2) \Rightarrow 3). Trivial.
- 3) \Rightarrow 1). Let *n* be an arbitrary element of *M*, and consider the following diagram

(7.2)
$$SnR \otimes R/M^*(n) \xrightarrow{i \otimes 1} M \otimes R/M^*(n) \xrightarrow{\Gamma_R(M, R/M^*(n))} \\ \text{Hom}_R(_RM^*, _R(R/M^*(n))) .$$

Then $\Gamma_R(M, R/M^*(n))(i\otimes 1)(n\otimes \overline{1})(M^*)=M^*(n)\overline{1}=\overline{0}$. Since SnR_R is ideal pure and M_R is 1. projective, $\Gamma_R(M, R/M^*(n))$ $(i\otimes 1)$ is monic by Proposition 1 (1). Hence $n\otimes \overline{1}=0$. Now, recalling that $n\otimes \overline{1}$ corresponds to $n+SnM^*(n)$ under the isomorphism $SnR\otimes R/M^*(n)\cong SnR/SnM^*(n)$, we see that $n\in SnM^*(n)$.

1) \Rightarrow 4) (cf. [4]). Let N be an arbitrary S-R-submodule of M. Then N_R is flat by Proposition 2(1), (2) and the remark at the end of § 1. Hence, for each $A' \in U_{T_N}(A)$, $N \otimes A'$ is included naturally in $N \otimes A$ as an S-module, and so ψ is well-defined. Next, we shall show that Φ is well-defined. Since M^* is a left R-module, $L = \{ \sum_i f_i(n_i)a_i | f_i \in M^*, n_i \otimes a_i \in B \}$ is a left R-module. By 1), 2) and Lemma 6, for each $\sum_i f_i(n_i)a_i \in L$, we have $n_i = \sum_{p=1}^i x_p g_p(n_i)$ with some $x_p \in N$ and $g_p \in M^*$. Then $\sum_i f_i(n_i)a_i = \sum_i f_i(\sum_p x_p g_p(n_i))a_i = \sum_{i,p} f_i(x_p)g_p(n_i)a_i \in T_N L$. Hence, $L = T_N L$ and L is in $U_{T_N}(A)$. We have therefore seen that Φ is well-defined. Now, we shall show that $\Phi \psi(A') = A'$ for each $A' \in U_{T_N}(A)$. Obviously, $\Phi \psi(A')$ is included in A'. On the other hand, $A' = T_N A' \subseteq \Phi \psi(A')$, and hence $\Phi \psi(A') = A'$. Finally, we shall show that $\psi \Phi(B) = B$ for each S-

submodule B of $N\otimes A$. Since $\psi\Phi(B)=N\otimes L$ with $L=\{\Sigma_i f(n_i)a_i|f_i\in M^*, n_i\otimes a_i\in B\}$, it suffices to prove that $N\otimes L=B$. Every element of $N\otimes L$ is a finite sum of $x\otimes (\Sigma_i f_i(n_i)a_i)$ with $x\in N, f_i\in M^*$ and $n_i\otimes a_i\in B$. Since $x\otimes (\Sigma_i f_i(n_i)a)=\Sigma_i xf_i(n_i)\otimes a_i=\Sigma_i (xf_i)(n_i\otimes a_i)\in B$ by $xf_i\in S$, we see that $N\otimes L\subset B$. Conversely, let $b=\Sigma_i n_i\otimes a_i$ be an arbitrary element of B. Then again by 1), 2) and Lemma 6, there exist $x_p\in N$ and $g_p\in M^*$ such that $n_i=\Sigma_p x_pg_p(n_i)$ for all i. It is immediate that $b=\Sigma_i \Sigma_p x_pg_p(n_i)\otimes a_i=\Sigma_p x_p\otimes (\Sigma_i g_p(n_i)a_i)$ and $x_p\otimes \Sigma_i g_p(n_i)a_i=(x_pg_p)b\in B$ by $x_pg_p\in S$. This means that we may assume from the beginning that every $n_i\otimes a_i$ is in B. Hence, $b=\Sigma_p x_p\otimes (\Sigma_i g_p(n_i)a_i)\in N\otimes L$, whence it follows $B\subseteq N\otimes L$.

- $4) \Rightarrow 5$). Trivial.
- 5) \Rightarrow 1). Given $m \in M$, the map $U_{T_{SmR}}(_RR) \rightarrow U_S(SmR)$; $\alpha \mapsto Sm\alpha$, is surjective by assumption. There exists therefore some $\alpha \in U_{T_{SmR}}(_RR)$ such that $Sm=Sm\alpha=Sm(T_{SmR}\alpha)=SmM^*(SmR)\alpha=SmM^*(Sm\alpha)=SmM^*(Sm)=SmM^*(m)$, which shows that M_R is w.regular.
- 1) \Rightarrow 6). By Proposition 2(1), M_R is 1.projective. Let \mathfrak{a} , $\mathfrak{b} \in U_T({}_RR)$ be such that $\mathfrak{a} \supseteq \mathfrak{b}$ and \mathfrak{a} is a two-sided ideal of R, and let N be the S-R-sub-module $M\mathfrak{a}$ of M. Since N is ideal pure by 2), there holds $M\mathfrak{b} \cap N = N\mathfrak{b} = M\mathfrak{a}\mathfrak{b}$. Combining this with $\mathfrak{a} \supseteq \mathfrak{b}$, we obtain $M\mathfrak{b} = M\mathfrak{b} \cap N = M\mathfrak{a}\mathfrak{b}$. Now, by Proposition 1 (5) we readily obtain $\mathfrak{b} = \mathfrak{a}\mathfrak{b}$.
- 6) \Rightarrow 5). If N is an S-R-submodule of M, then $N=M\mathfrak{a}$ with some $\mathfrak{a} \in U_T({}_RR)$ by Proposition 1 (5). Since $\mathfrak{a}=T\mathfrak{a}=M^*(M)\mathfrak{a}=M^*(N)$ and N is a right R-module, \mathfrak{a} is a two-sided ideal. It suffices therefore to show that each $L \in U_S({}_SN)$ there exists some $\mathfrak{b} \in U_{T_N}({}_RR)$ such that $L=N\mathfrak{b}$. Again by Proposition 1 (5), $L=M\mathfrak{b}$ with some $\mathfrak{b} \in U_T({}_RR)$. Then, $\mathfrak{a}=T\mathfrak{a}=M^*(N)\supseteq M^*(L)=M^*(M)\mathfrak{b}=T\mathfrak{b}=\mathfrak{b}$. Hence, $\mathfrak{b}=\mathfrak{a}\mathfrak{b}=T_N\mathfrak{b}$ by hypothesis, and so $L=M\mathfrak{b}=M\mathfrak{a}\mathfrak{b}=N\mathfrak{b}$ with $\mathfrak{b} \in U_{T_N}({}_RR)$.
- 6) \Rightarrow 7). If α is a left ideal of R, then the two-sided ideal $T\alpha R$ includes $T\alpha$. As is easily seen, $T\alpha$ and $T\alpha R$ are in $U_T(R)$. Hence, $T\alpha = (T\alpha R)T\alpha$ $\subseteq T\alpha^2$ by assumption, proving $T\alpha = T\alpha^2$.
- 7) \Rightarrow 6). Let \mathfrak{a} , $\mathfrak{b} \in U_R(TR)$ be such that $\mathfrak{a} \supseteq \mathfrak{b}$ and \mathfrak{a} is a two-sided ideal of R. Then, $\mathfrak{b} = T\mathfrak{b} = T\mathfrak{b}^2 \subseteq T\mathfrak{a}\mathfrak{b} = \mathfrak{a}\mathfrak{b}$, that is, $\mathfrak{b} = \mathfrak{a}\mathfrak{b}$.
- EXAMPLE 2. If R is not left w.regular, then R_R is not w.regular but (locally) projective. Next, let R be the ring Z of rational integers, and M=Z/(p), p a prime. Then $M^*=0$. Hence, M_R is not w.regular but every S-R-submodule of M is trivially ideal pure. According to Theorem 7, above examples enable us to see that the local projectivity of M_R and the property that each S-R-submodule of M is ideal pure are independent.

The next corresponds to a theorem of Ware concerning regular modules (see [3, Corollary 4.2]).

40 T. Mabuchi

Theorem 8. If M_R is f.g. w.regular, then S is a left w.regular ring.

Proof. Let $M=m_1R+\cdots+m_pR$, and $a=a_1$ an arbitrary element of S. By hypothesis, $a_1m_1=\sum_{i=1}^lg_i(a_1m_1)f_i(a_1m_1)$ with some $g_i\in S$ and $f_i\in M^*$. Setting $b_1=\sum_ig_ia_1(m_1f_i)a_1\in Sa_1Sa_1$, we obtain $a_1(m_1)=b_1(m_1)$, and so $\ker(a_1-b_1)\supseteq m_1R$. Repeating the above argument for $a_2=a_1-b_1$ instead of a_1 , we find $b_2\in Sa_2Sa_2$ ($\subseteq Sa_1Sa_1$) such that $\ker(a_2-b_2)\supseteq m_2R$. Since $a_3=a_2-b_2\in Sa_2$, there holds further $\ker a_3\supseteq m_1R+m_2R$. Continuing the above procedure, we obtain eventually $a_1=a,\cdots,a_p,\ a_{p+1}\in Sa_1$ and $b_1,\cdots,b_p\in Sa_1Sa_1$ such that $a_{k+1}=a_k-b_k$ and $\ker a_{k+1}\supseteq m_1R+\cdots+m_kR$ ($k=1,2,\cdots,p$). Since $a_{p+1}=0$ by $\ker a_{p+1}\supseteq m_1R+\cdots+m_pR=M$, it follows $a=b_1+\cdots+b_p\in SaSa$, completing the proof.

Corollary 9. Let N be an S-R-submodule of M. If M_R is w.regular and $M|N_R$ is f.g., then $Hom_R(M|N, M|N)$ is a left w.regular ring.

Proof. By Proposition 2 (1) and Proposition 1 (5), $N=M\alpha$ with some $\alpha \in U_T(R)$. Since $\alpha = T\alpha = M^*(M)\alpha = M^*(N)$ and N is a right R-module, α is a two-sided ideal of R. It is easy to see that $M/M\alpha$ is a w.regular module as an f.g. right R/α -module. Then $\operatorname{Hom}_R(M/N, M/N) = \operatorname{Hom}_{R/\alpha}(M/M\alpha, M/M\alpha)$ is a left w.regular ring by Theorem 8.

EXAMPLE 3. Let R be a commutative regular ring with countably infinite set of orthogonal idempotents e_i . We consider $M = \sum_{i=1}^{\infty} \bigoplus R_i$; $R_i = R$. As usual, S can be regarded as the ring of column finite matrices over R with matrix units e_{ij} . If $a = \sum_{i=1}^{\infty} e_i e_{1i}$, then Sa consists of all elements of the form $\sum_{j=1}^{n} \sum_{i} a_j e_i e_{ji}$. Now, we can easily see that $a \notin SaSa$, which means that S is not left w.regular.

References

- [1] G.S. Garfinkel: Universally torsionless and trace modules, Trans. Amer. Math. Soc. 215 (1976), 119-144.
- [2] V.S. Ramamurthi: Weakly regular rings, Canad. Math. Bull. 16 (1973), 317-321.
- [3] J.M. Zelmanowitz: Regular modules, Trans. Amer. Math. Soc. 163 (1972), 341-355.
- [4] B. Zimmermann-Huisgen: Pure submodules of direct products of free modules, Math. Ann. 224 (1976), 233-245.

Department of Mathematics Osaka City University Sugimoto-cho, Sumiyoshi-ku Osaka 558, Japan