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Let R be a ring with an identity. Following Ramamurthi [2], we call R
a left weakly regular ring if R satisfies one of the following equivalent conditions:
1) acRaRa for every acR; 2) R/a is right R-flat for any two-sided ideal a
of R; 3) a’=a for any left ideal a of R. In this paper, we shall introduce
the notion of a weakly regular (right) module: A right R-module M is called a
weakly regular module if meHomg(M, M)(m) Homg (M, R)(m)= {Z;s(m)f,(m)|
s;€Homg(M, M), f,cHomg (M, R)} for every meM. Needless to say, R is
a left weakly regular ring if and only if Ry is weakly regular. We shall give a
list of equivalent conditions for M, to be weakly regular including the con-
dition that My is locally projective and T'a=Ta? for any left ideal a of R, where
T is the trace ideal of My (Theorem 7). We shall show also that if M, is a
finitely generated (abbr. f.g.) weakly regular module, then Homg(M, M) is a
left weakly regular ring (Theorem 8). The author would like to express his
thanks to Prof. H. Tominaga for his helpful suggestion.

1. Preliminaries

Throughout this paper, R will represent an associative ring with 1, and
M a unitary right R-module. Every (right or left) module is unitary and un-
adorned ® means @, unless otherwise stated. We set M*=Hom(M, R) and
S=Homg (M, M). For any S-R-submodule N of M, we set Ty=23 cp+f(N)
=Homg(M, R)(N). T=T, is the trace ideal of M. Given A4, Us(sNQ®A)
will denote the set of all S-submodules of N®A. Further, Ur(z4) will
denote the set of all R-submodules A’ of 4 with TyA'=A'. Especially,
U,(zR) is the set of all left ideals a of R such that Ta=a. Finally, let
TR(M, A): M Q A—Homg (R M*, zA) be the unique map such that T'z(M, A)-
(m®a)(U)=U(m)a for meM, ac A and U M* (see [1]).

A right R-module M is called a weakly regular module (abbr. w. regular
module) if me S(m)M*(m) for every meM. A submodule Ny of M is said
to be ideal pure if NN Ma=Na for every left ideal a of R, or equivalently,
i®1: NQRja—MQ®R/a is monic for every left ideal a of R, where i: N—>M
is the inclusion (see [1]).
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Proposition 1. The following conditions are equivalent:

1) Tx(M, A) is monic for every pA.

2) me MM *(m) for every m& M.

3) If B: Gg— My is a map such that B(G) is ideal pure in M, then for each
Xy, Xy, ++v, %, tn G there exists some ¢: Mp— Gy such that B¢B(x;)=B(x;) for
i=1,2, -, n.

4) For each my, my, ---,m,& M there exist some Xy, X, ++,%,E M and
Jo for s LEM* such that m;=3, x.f(m,) for i=1, 2, -, k.

5) The lattice homomorphism U (xR)— Us(sM); a—Ma, is bijective.

Proof. See [1, Theorem 3.2] and [4, Theorems 2.1 and 3.1].

A right R-module M is said to be locally projective (abbr. 1. projective) if
M satisfies any of the equivalent conditions in Proposition 1.

One may remember that every projective module is 1. projective and every
1. projective module is flat [1].

2. Weakly regular modules
We shall begin this section with the following.

Proposition 2. If My is w. regular, then there hold the following:

(1) My s 1. projective.

(2) If N is an S-R-submodule of M, then N, is w.regular.

(3) If R is a regular ring, then M is regular in the sense of Zelmanowitz [3].

4) If S=S:PS,D---PS, with simple rings S;, then M=S,(M)PDS,(M)D
DS, (M) and S(M) is S-R-simple.

Proof. (1), (2) and (3) are immediate from Proposition 1 and [4].

(4) Obviously, M is the direct sum of S-R-submodules S/(}). Let m be
an arbitrary non-zero element of S;(M). By the usual way, mM* may be
regarded as a subset of S. Since S;S(mM*)=S (mM*)=0 if i=j, S(mM*)
is an ideal of S included in S;. By hypothesis, SmM*(m) contains non-zero
m. Hence the non-zero ideal S(mM¥*) coincides with S;, and SmR2> SmM*(m)
=S5,(M), proving that S,(M) is S-R-simple.

ExampLE 1. Let R be a left w. regular ring. Then, by Proposition 2(2),

every two-sided ideal of R is w. regular as a right R-module.

Proposition 3. (1) My is w. regular if and only if for any S-submodule N
of M there holds N=NM*(N).

(2) Let M (i) be right R-modules. Then Z;c, DM, is w. regular if and
only if each M; is w. regular.

Proof. (1) is evident from the definition.



WEeAKLY REGULAR MoDUL:S 37

(2) We assume M=3,pM; is w. regular. Let p,: M— M, be the
projection, and take an arbitrary element m;& M, As is easily seen,
P:Sp;=Homg(M;, M;) and Homg(M, R)(m;)=Homg(M;, R)(m;). Now,
recalling that M is w.regular, we obtain m,=pm,E p,S(m;)Homg(M, R)(m,)=
p:S(pim;) Homy(M;, R)(m;) =Homg(M;, M;)(m;)Homg(M;, R)(m;). The con-

verse is almost evident.

Lemma 4. Let ¢ be in the center of S. Then there exists an element
B in the center of S with aBa=a if and only if M=aM@ker .

Proof. See [3, Lemma 3.3].

Proposition 5. If M is w.regular, then there hold the following:
(1) S is a semiprime ring.
(2) The center of S is a regular ring.

Proof. The proofs of (1) and (2) are similar to those of [3, (3.2)] and [3,
Theorem 3.4], respectively. Here, we shall prove (2) only. Let o be in the
center of S. According to Lemma 4, it suffices to show that M=aMker .
For each meM, we have am=3,; s,(am)f(am) with some s;&S and f,eM*.
Setting t=3;s(mf;)ES, we obtain am=qa’tm, so that m—atm&ker . Since
m=qitm-+(m—atm), it follows M=aM+ker a. If am’ (m'eM) is in ker
then, as we have seen above, there exists some t'&.S such that am’=a’%'m’'=
t'a’m’'=0. Hence, M=aMDker a.

Lemma 6. If Mj is 1.projective and Ny is an ideal pure submodule of M,
then for each ny, -+, n,EN there exist x,, -+, x,EN and f,, -+, f,eM* such that
n,=2,x,f(n;) (=1, -, k).

Proof. As is well known, there exists an R-homomorphism of a free R-
module G onto N;. By Proposition 1 (3), there exists ¢ €Homy(M, G) such
that B¢(n;)=n; (i=1, -, k). Choose a finitely generated free direct summand
F of Gy including ¢(n;) (i=1, -+, k). Let y,, ---, y, be a free R-basis of F, and
y=2X,y,9,(y) with coordinate functions v;. Let #: Gy— F} be the projection,
0=n¢ and a: Fr—>Nj the restriction of 8. If we set x;=a(y;) and f,=v,0,
then 3, x,f,(n,)=aX;y,0,0(n,)=ab(n,)=azd(n)=Bp(n;)=n;.

Now, we are at a position to state our first principal theorem.

Theorem 7. The following conditions are equivalent:

1) My is a w.regular module.

2) My is 1.projective and every S-R-submodule of M is ideal pure.

3) My is 1.projective and SmRy, is ideal pure for each me M.

4) For any S-R-submodule N of M, Ny is flat and each left R-module A
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the lattices Uy (zA) and Us(sN @A) are isomorphic via the inverse assignments
Yi Urg(zA)—> Us({N®A); A/ NQA' and ©: Ug(sN QA)— U, (4); sB—
{2:fi(n)a;| ,€ M*, n,Qa,EB}. :

5) For any S-R-submodule N of M, the lattice isomorphism Ur . (zR)—>
Us(Ns); a—Na, is surjective.

6) My is 1. projective and b=ab for each pair a, b€ Uy(xR) such that a2b
and a is a two sided ideal of R.

7) My is 1. projective and Ta=Ta?® for each left ideal a of R.

Proof. 1)=2). M, is l.projective by Proposition 2(1). Take an arbitrary
S-R-submodule N of M. Let b be an arbitrary left ideal, and consider the
diagram

Q1 Tx(M, R/b
(7.1) NQR/b z_@;_) MQ@R/b JL(——/—Z Homy, (:M*, x(R/Y)),
where i: N— M is the inclusion. If ((®1)#®1)=0 for some QT NQR/b,
then T'x(M, R/b) ((Q1)(n@1)(M*)=0, and hence M*(n)Sb. We note that
NQ®R/b=N|Nb and n®1 corresponds to n-+ Nbunder this isomorphism.
Since M, is w. regular, there holds neSnM *(n)= SnRM *(n) = Nb, which
means that z®1=0. Hence, i®1 is monic, and N is ideal pure.

2)=3). Trivial.

3)=1). Let n be an arbitrary element of M, and consider the following
diagram
T'x(M, R|M*(n))

(7.2) SnRQR/M*(n) i@l M®R/M*(n)
Homg (eM*, x(R/M*(n))) .

Then T'x(M, RI/M*(n))(i@1)(nQ@1)(M*)=M*(n)1=0. Since SuR, is ideal pure
and My is 1. projective, T'x(M, R/M*(n)) ({®1) is monic by Proposition 1 (1).
Hence n®1=0. Now, recalling that 2®1 corresponds to n-4SnM *(n) under
the isomorphism SnR® R/M *(n)==SnR|SnM *(n), we see that n€ SnM *(n).
1)=4) (cf. [4]). Let N be an arbitrary S-R-submodule of M. Then N,
is flat by Proposition 2(1), (2) and the remark at the end of §1. Hence, for
each A'€U;,(4), NQA’ is included naturally in N®A as an S-module, and
so v is well-defined. Next, we shall show that @ is well-defined. Since M *
is a left R-module, L= {3, fy(n,)a;| ;€ M*, n,Qa;= B} is a left R-module. By
1), 2) and Lemma 6, for each 3, f(n,)a;E L, we have n,==;_,x,2,(n;) with some
x,€N and g,eM*. Then Z,f(n)a;=2,f(Z,%,8,(n))a;=3; ,f(x,)g,(n;)a;€
TyL. Hence, L=TyL and L is in U (A). We have therefore seen that @ is
well-defined. Now, we shall show that ®y,(A4")=A4" for each 4’'€ U, (4).
Obviously, ®yr(A4’) is included in A’.  On the other hand, 4'=Ty,A' CPy(4’),
and hence ®Y(4')=A’. Finally, we shall show that y~®(B)=B for each S-
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submodule B of N®A. Since P(B)=NQL with L={Z,f(n)a;| f,€ M*,
n,Qa;EB}, it suffices to prove that NQL=B. Every element of NQL is a
finite sum of x®(Z;fi(n,)a;) with xEN, f,eM* and n,Qa;EB. Since x®
(Zifi(m)a)=2,; xf,(n;)Q@a,=Z,; (xf;)(n;,Qa;)E B by xf;E S, we see that NQLCB.
Conversely, let b=3;7,®a; be an arbitrary element of B. Then again by 1), 2)
and Lemma 6, there exist x, €N and g,€ M* such that n,=3,x,g,(n,) for all .
It is immediate that b=Z3,; 3, x,8,(n,)®a, ==, x,Q(Z; g,(n,)a;) and x,Q%,g,(n;)a;
=(x,8,)bEB by x,g,€S. This means that we may assume from the beginning
that every #;Qaq; is in B. Hence, b=32,x,Q(Z;g,(n;)a;)€N ®L, whence it
follows BCN QL.

4)=5). 'Trivial.

5)=1). Given meM, the map U (xR)—>Us(SmR); ar> Sma, is sur-
jective by assumption. There exists therefore some a€ Uy (¢R) such that
Sm=Sma=_Sm(T,,za)=SmM*(SmR)a=SmM*(Sma)=SmM*(Sm)=SmM*(m),
which shows that M} is w.regular.

1)=>6). By Proposition 2(1), My is l.projective. Let a, be Uy(zR) be
such that a2b and a is a two-sided ideal of R, and let N be the S-R-sub-
module Ma of M. Since N isideal pure by 2), there holds MbN N=Nb=Mab.
Combining this with a2b, we obtain Mb=MbNN=DMab. Now, by Proposi-
tion 1 (5) we readily obtain b=ab.

6)=>5). If N is an S-R-submodule of M, then N=Ma with some aE
U (zxR) by Proposition 1 (5). Since a=Ta=M*(M)a=M*(N) and N is a
right R-module, a is a two-sided ideal. It suffices therefore to show that each
Le Ug(sN) there exists some be Uy (zR) such that L=Nb. Again by Pro-
position 1 (5), L=Mb with some b& U (zR). Then, a=Ta=M*(N)2M*(L)
=M*(M)b=Tb=>b. Hence, b=ab=T,b by hypothesis, and so L=Mb=
Mab=Nb with be U, . (xR).

6)=7). If a is a left ideal of R, then the two-sided ideal TaR includes
Ta. Asis easily seen, Ta and TaR are in U (zR). Hence, Ta=(TaR)Ta
C Ta? by assumption, proving Ta=Ta’

7)=>6). Let a, b= Ug(;R) be such that a2b and a is a two-sided ideal of
R. Then, b=Tb=TbC Tab=ab, that is, b=ab.

ExampLE 2. If R is not left w.regular, then Ry, is not w.regular but (locally)
projective. Next, let R be the ring Z of rational integers, and M=Z/(p), p a
prime. Then M*=0. Hence, My is not w.regular but every S-R-submodule
of M is trivially ideal pure. According to Theorem 7, above examples enable
us to see that the local projectivity of M, and the property that each S-R-sub-
module of M is ideal pure are independent.

The next corresponds to a theorem of Ware concerning regular modules
(see [3, Corollary 4.2]).
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Theorem 8. If My is f.g. w.regular, then S is a left w.regular ring.

Proof. Let M=m,R+--+m,R, and a=a, an arbitrary element of S.
By hypothesis, aym,=3!_,g;(am)f(aym;) with some g, €S and f,eM*.
Setting b, =3, g,a,(m, f;)a, = Sa,Sa,, we obtain a,(m,)=b,(m,), and so ker (a,—b,)
DmR. Repeating the above argument for a,=a,—b, instead of a,, we find
b,e Sa,Sa, (S Sa,Sa;) such that ker (a,—b,)2m,R. Since a;=a,—b,& Sa,, there
holds further ker @,2m;R+m,R. Continuing the above procedure, we obtain
eventually a,=a, -+, a,, a,.,ESa, and by, -+, b,€Sa,Sa, such that a,,,=a,—b,
and ker @, 2mR+ - 4+mR (k=1,2, -+, p). Since a,,,=0 by kera,,;2
mR—+---+m,R=M, it follows a=b,+---+4-b,E SaSa, completing the proof.

Corollary 9. Let N be an S-R-submodule of M. If My is w.regular and
M|Ny is f.g., then Homz(M|N, M|N) is a left w.regular ring.

Proof. By Proposition 2 (1) and Proposition 1 (5), N=Ma with some
acU,(zxR). Since a=Ta=M*(M)a=M*(N) and N is a right R-module, a
is a two-sided ideal of R. It is easy to see that M/Ma is a w.regular module as
an f.g. right R/a-module. Then Homg(M/N, M|N)=Homg,(M|Ma, M|Ma)
is a left w.regular ring by Theorem 8.

ExampLE 3. Let R be a commutative regular ring with countably in-
finite set of orthogonal idempotents e;, We consider M=37.,PR;; R,=R.
As usual, S can be regarded as the ring of column finite matrices over R with
matrix units e;;. If a=37., e;e;, then Sa consists of all elements of the form
%12 a6, Now, we can easily ‘see that ag=SaSa, which means that S is
not left w.regular.
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