

Title	Weakly regular modules
Author(s)	Mabuchi, Tsuguo
Citation	Osaka Journal of Mathematics. 1980, 17(1), p. 35-40
Version Type	VoR
URL	https://doi.org/10.18910/11338
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

WEAKLY REGULAR MODULES

TSUGUO MABUCHI

(Received December 21, 1978)

(Revised February 8, 1979)

Let R be a ring with an identity. Following Ramamurthi [2], we call R a *left weakly regular ring* if R satisfies one of the following equivalent conditions: 1) $a \in RaRa$ for every $a \in R$; 2) R/\mathfrak{a} is right R -flat for any two-sided ideal \mathfrak{a} of R ; 3) $\mathfrak{a}^2 = \mathfrak{a}$ for any left ideal \mathfrak{a} of R . In this paper, we shall introduce the notion of a weakly regular (right) module: A right R -module M is called a *weakly regular module* if $m \in \text{Hom}_R(M, M)(m) \text{Hom}_R(M, R)(m) = \{\sum_i s_i(m)f_i(m) \mid s_i \in \text{Hom}_R(M, M), f_i \in \text{Hom}_R(M, R)\}$ for every $m \in M$. Needless to say, R is a left weakly regular ring if and only if R_R is weakly regular. We shall give a list of equivalent conditions for M_R to be weakly regular including the condition that M_R is locally projective and $T\mathfrak{a} = T\mathfrak{a}^2$ for any left ideal \mathfrak{a} of R , where T is the trace ideal of M_R (Theorem 7). We shall show also that if M_R is a finitely generated (abbr. f.g.) weakly regular module, then $\text{Hom}_R(M, M)$ is a left weakly regular ring (Theorem 8). The author would like to express his thanks to Prof. H. Tominaga for his helpful suggestion.

1. Preliminaries

Throughout this paper, R will represent an associative ring with 1, and M a unitary right R -module. Every (right or left) module is unitary and unadorned \otimes means \otimes_R , unless otherwise stated. We set $M^* = \text{Hom}_R(M, R)$ and $S = \text{Hom}_R(M, M)$. For any S - R -submodule N of M , we set $T_N = \sum_{f \in M^*} f(N) = \text{Hom}_R(M, R)(N)$. $T = T_M$ is the trace ideal of M_R . Given ${}_R A$, $U_{(S)}(N \otimes A)$ will denote the set of all S -submodules of $N \otimes A$. Further, $U_{T_N}({}_R A)$ will denote the set of all R -submodules A' of A with $T_N A' = A'$. Especially, $U_T({}_R R)$ is the set of all left ideals \mathfrak{a} of R such that $T\mathfrak{a} = \mathfrak{a}$. Finally, let $\Gamma_R(M, A) : M \otimes A \rightarrow \text{Hom}_R(M^*, {}_R A)$ be the unique map such that $\Gamma_R(M, A) \cdot (m \otimes a)(U) = U(m)a$ for $m \in M$, $a \in A$ and $U \in M^*$ (see [1]).

A right R -module M is called a *weakly regular module* (abbr. *w. regular module*) if $m \in S(m)M^*(m)$ for every $m \in M$. A submodule N_R of M_R is said to be *ideal pure* if $N \cap Ma = Na$ for every left ideal \mathfrak{a} of R , or equivalently, $i \otimes 1 : N \otimes R/\mathfrak{a} \rightarrow M \otimes R/\mathfrak{a}$ is monic for every left ideal \mathfrak{a} of R , where $i : N \rightarrow M$ is the inclusion (see [1]).

Proposition 1. *The following conditions are equivalent:*

- 1) $\Gamma_R(M, A)$ is monic for every $_R A$.
- 2) $m \in MM^*(m)$ for every $m \in M$.
- 3) If $\beta: G_R \rightarrow M_R$ is a map such that $\beta(G)$ is ideal pure in M , then for each x_1, x_2, \dots, x_n in G there exists some $\phi: M_R \rightarrow G_R$ such that $\beta\phi\beta(x_i) = \beta(x_i)$ for $i=1, 2, \dots, n$.
- 4) For each $m_1, m_2, \dots, m_k \in M$ there exist some $x_1, x_2, \dots, x_n \in M$ and $f_1, f_2, \dots, f_n \in M^*$ such that $m_i = \sum_j x_j f_j(m_i)$ for $i=1, 2, \dots, k$.
- 5) The lattice homomorphism $U_T(_R R) \rightarrow U_S(_S M); a \mapsto Ma$, is bijective.

Proof. See [1, Theorem 3.2] and [4, Theorems 2.1 and 3.1].

A right R -module M is said to be *locally projective* (abbr. 1. *projective*) if M satisfies any of the equivalent conditions in Proposition 1.

One may remember that every projective module is 1. projective and every 1. projective module is flat [1].

2. Weakly regular modules

We shall begin this section with the following.

Proposition 2. *If M_R is w. regular, then there hold the following:*

- (1) M_R is 1. projective.
- (2) If N is an S - R -submodule of M , then N_R is w. regular.
- (3) If R is a regular ring, then M_R is regular in the sense of Zelmanowitz [3].
- (4) If $S = S_1 \oplus S_2 \oplus \dots \oplus S_n$ with simple rings S_i , then $M = S_1(M) \oplus S_2(M) \oplus \dots \oplus S_n(M)$ and $S_i(M)$ is S - R -simple.

Proof. (1), (2) and (3) are immediate from Proposition 1 and [4].

(4) Obviously, M is the direct sum of S - R -submodules $S_i(M)$. Let m be an arbitrary non-zero element of $S_i(M)$. By the usual way, mM^* may be regarded as a subset of S . Since $S_j S(mM^*) = S_j(mM^*) = 0$ if $i \neq j$, $S(mM^*)$ is an ideal of S included in S_i . By hypothesis, $S m M^*(m)$ contains non-zero m . Hence the non-zero ideal $S(mM^*)$ coincides with S_i , and $S m R \supseteq S m M^*(m) = S_i(M)$, proving that $S_i(M)$ is S - R -simple.

EXAMPLE 1. Let R be a left w. regular ring. Then, by Proposition 2(2), every two-sided ideal of R is w. regular as a right R -module.

Proposition 3. (1) M_R is w. regular if and only if for any S -submodule $_S N$ of M there holds $N = NM^*(N)$.

(2) Let $M_i (i \in I)$ be right R -modules. Then $\sum_{i \in I} M_i$ is w. regular if and only if each M_i is w. regular.

Proof. (1) is evident from the definition.

(2) We assume $M = \sum_i M_i$ is w. regular. Let $p_i: M \rightarrow M_i$ be the projection, and take an arbitrary element $m_i \in M_i$. As is easily seen, $p_i S p_i = \text{Hom}_R(M_i, M_i)$ and $\text{Hom}_R(M, R)(m_i) = \text{Hom}_R(M_i, R)(m_i)$. Now, recalling that M is w. regular, we obtain $m_i = p_i m_i \in p_i S(m_i) \text{Hom}_R(M, R)(m_i) = p_i S(p_i m_i) \text{Hom}_R(M_i, R)(m_i) = \text{Hom}_R(M_i, M_i)(m_i) \text{Hom}_R(M_i, R)(m_i)$. The converse is almost evident.

Lemma 4. Let α be in the center of S . Then there exists an element β in the center of S with $\alpha\beta\alpha = \alpha$ if and only if $M = \alpha M \oplus \ker \alpha$.

Proof. See [3, Lemma 3.3].

Proposition 5. If M_R is w. regular, then there hold the following:

- (1) S is a semiprime ring.
- (2) The center of S is a regular ring.

Proof. The proofs of (1) and (2) are similar to those of [3, (3.2)] and [3, Theorem 3.4], respectively. Here, we shall prove (2) only. Let α be in the center of S . According to Lemma 4, it suffices to show that $M = \alpha M \oplus \ker \alpha$. For each $m \in M$, we have $\alpha m = \sum_i s_i(\alpha m) f_i(\alpha m)$ with some $s_i \in S$ and $f_i \in M^*$. Setting $t = \sum_i s_i(m f_i) \in S$, we obtain $\alpha m = \alpha^2 t m$, so that $m - \alpha t m \in \ker \alpha$. Since $m = \alpha t m + (m - \alpha t m)$, it follows $M = \alpha M + \ker \alpha$. If $\alpha m'$ ($m' \in M$) is in $\ker \alpha$ then, as we have seen above, there exists some $t' \in S$ such that $\alpha m' = \alpha^2 t' m' = t' \alpha^2 m' = 0$. Hence, $M = \alpha M \oplus \ker \alpha$.

Lemma 6. If M_R is 1-projective and N_R is an ideal pure submodule of M , then for each $n_1, \dots, n_k \in N$ there exist $x_1, \dots, x_n \in N$ and $f_1, \dots, f_n \in M^*$ such that $n_i = \sum_j x_j f_j(n_i)$ ($i = 1, \dots, k$).

Proof. As is well known, there exists an R -homomorphism of a free R -module G_R onto N_R . By Proposition 1 (3), there exists $\phi \in \text{Hom}_R(M, G)$ such that $\beta \phi(n_i) = n_i$ ($i = 1, \dots, k$). Choose a finitely generated free direct summand F of G_R including $\phi(n_i)$ ($i = 1, \dots, k$). Let y_1, \dots, y_n be a free R -basis of F , and $y = \sum_j y_j v_j(y)$ with coordinate functions v_j . Let $\pi: G_R \rightarrow F_R$ be the projection, $\theta = \pi \phi$ and $\alpha: F_R \rightarrow N_R$ the restriction of β . If we set $x_j = \alpha(y_j)$ and $f_j = v_j \theta$, then $\sum_j x_j f_j(n_i) = \alpha \sum_j y_j v_j \theta(n_i) = \alpha \theta(n_i) = \alpha \pi \phi(n_i) = \beta \phi(n_i) = n_i$.

Now, we are at a position to state our first principal theorem.

Theorem 7. The following conditions are equivalent:

- 1) M_R is a w. regular module.
- 2) M_R is 1-projective and every S - R -submodule of M is ideal pure.
- 3) M_R is 1-projective and SmR_R is ideal pure for each $m \in M$.
- 4) For any S - R -submodule N of M , N_R is flat and each left R -module A

the lattices $U_{T_N}({}_R A)$ and $U_s(sN \otimes A)$ are isomorphic via the inverse assignments $\psi: U_{T_N}({}_R A) \rightarrow U_s(sN \otimes A)$; $A' \mapsto N \otimes A'$ and $\Phi: U_s(sN \otimes A) \rightarrow U_{T_N}(A)$; ${}_s B \mapsto \{\sum_i f_i(n_i) a_i \mid f_i \in M^*, n_i \otimes a_i \in B\}$.

5) For any S - R -submodule N of M , the lattice isomorphism $U_{T_N}({}_R R) \rightarrow U_s(N_s)$; $a \mapsto Na$, is surjective.

6) M_R is 1. projective and $b = ab$ for each pair $a, b \in U_T({}_R R)$ such that $a \supseteq b$ and a is a two sided ideal of R .

7) M_R is 1. projective and $Ta = Ta^2$ for each left ideal a of R .

Proof. 1) \Rightarrow 2). M_R is 1. projective by Proposition 2(1). Take an arbitrary S - R -submodule N of M . Let b be an arbitrary left ideal, and consider the diagram

$$(7.1) \quad N \otimes R/b \xrightarrow{i \otimes 1} M \otimes R/b \xrightarrow{\Gamma_R(M, R/b)} \text{Hom}_R({}_R M^*, {}_R(R/b)),$$

where $i: N \rightarrow M$ is the inclusion. If $(i \otimes 1)(n \otimes \bar{1}) = 0$ for some $n \otimes \bar{1} \in N \otimes R/b$, then $\Gamma_R(M, R/b)(i \otimes 1)(n \otimes \bar{1})(M^*) = \bar{0}$, and hence $M^*(n) \subseteq b$. We note that $N \otimes R/b \cong N/Nb$ and $n \otimes \bar{1}$ corresponds to $n + Nb$ under this isomorphism. Since M_R is w. regular, there holds $n \in SnM^*(n) = SnRM^*(n) \subseteq Nb$, which means that $n \otimes \bar{1} = 0$. Hence, $i \otimes 1$ is monic, and N is ideal pure.

2) \Rightarrow 3). Trivial.

3) \Rightarrow 1). Let n be an arbitrary element of M , and consider the following diagram

$$(7.2) \quad \begin{array}{ccc} SnR \otimes R/M^*(n) & \xrightarrow{i \otimes 1} & M \otimes R/M^*(n) \\ & & \xrightarrow{\Gamma_R(M, R/M^*(n))} \\ & & \text{Hom}_R({}_R M^*, {}_R(R/M^*(n))) \end{array}$$

Then $\Gamma_R(M, R/M^*(n))(i \otimes 1)(n \otimes \bar{1})(M^*) = M^*(n)\bar{1} = \bar{0}$. Since SnR is ideal pure and M_R is 1. projective, $\Gamma_R(M, R/M^*(n))(i \otimes 1)$ is monic by Proposition 1(1). Hence $n \otimes \bar{1} = 0$. Now, recalling that $n \otimes \bar{1}$ corresponds to $n + SnM^*(n)$ under the isomorphism $SnR \otimes R/M^*(n) \cong SnR/SnM^*(n)$, we see that $n \in SnM^*(n)$.

1) \Rightarrow 4) (cf. [4]). Let N be an arbitrary S - R -submodule of M . Then N_R is flat by Proposition 2(1), (2) and the remark at the end of § 1. Hence, for each $A' \in U_{T_N}(A)$, $N \otimes A'$ is included naturally in $N \otimes A$ as an S -module, and so ψ is well-defined. Next, we shall show that Φ is well-defined. Since M^* is a left R -module, $L = \{\sum_i f_i(n_i) a_i \mid f_i \in M^*, n_i \otimes a_i \in B\}$ is a left R -module. By 1), 2) and Lemma 6, for each $\sum_i f_i(n_i) a_i \in L$, we have $n_i = \sum_{p=1}^t x_p g_p(n_i)$ with some $x_p \in N$ and $g_p \in M^*$. Then $\sum_i f_i(n_i) a_i = \sum_i f_i(\sum_p x_p g_p(n_i)) a_i = \sum_{i,p} f_i(x_p) g_p(n_i) a_i \in T_N L$. Hence, $L = T_N L$ and L is in $U_{T_N}(A)$. We have therefore seen that Φ is well-defined. Now, we shall show that $\Phi\psi(A') = A'$ for each $A' \in U_{T_N}(A)$. Obviously, $\Phi\psi(A')$ is included in A' . On the other hand, $A' = T_N A' \subseteq \Phi\psi(A')$, and hence $\Phi\psi(A') = A'$. Finally, we shall show that $\psi\Phi(B) = B$ for each S -

submodule B of $N \otimes A$. Since $\psi\Phi(B) = N \otimes L$ with $L = \{\sum_i f_i(n_i) a_i \mid f_i \in M^*, n_i \otimes a_i \in B\}$, it suffices to prove that $N \otimes L = B$. Every element of $N \otimes L$ is a finite sum of $x \otimes (\sum_i f_i(n_i) a_i)$ with $x \in N$, $f_i \in M^*$ and $n_i \otimes a_i \in B$. Since $x \otimes (\sum_i f_i(n_i) a_i) = \sum_i x f_i(n_i) \otimes a_i = \sum_i (x f_i)(n_i \otimes a_i) \in B$ by $x f_i \in S$, we see that $N \otimes L \subset B$. Conversely, let $b = \sum_i n_i \otimes a_i$ be an arbitrary element of B . Then again by 1), 2) and Lemma 6, there exist $x_p \in N$ and $g_p \in M^*$ such that $n_i = \sum_p x_p g_p(n_i)$ for all i . It is immediate that $b = \sum_i \sum_p x_p g_p(n_i) \otimes a_i = \sum_p x_p \otimes (\sum_i g_p(n_i) a_i)$ and $x_p \otimes \sum_i g_p(n_i) a_i = (x_p g_p) b \in B$ by $x_p g_p \in S$. This means that we may assume from the beginning that every $n_i \otimes a_i$ is in B . Hence, $b = \sum_p x_p \otimes (\sum_i g_p(n_i) a_i) \in N \otimes L$, whence it follows $B \subseteq N \otimes L$.

4) \Rightarrow 5). Trivial.

5) \Rightarrow 1). Given $m \in M$, the map $U_{T_{SmR}}(R) \rightarrow U_S(SmR)$; $a \mapsto Sm a$, is surjective by assumption. There exists therefore some $a \in U_{T_{SmR}}(R)$ such that $Sm = Sm a = Sm(T_{SmR}a) = SmM^*(SmR)a = SmM^*(Sm a) = SmM^*(Sm) = SmM^*(m)$, which shows that M_R is w.regular.

1) \Rightarrow 6). By Proposition 2(1), M_R is 1.projective. Let $a, b \in U_T(R)$ be such that $a \supseteq b$ and a is a two-sided ideal of R , and let N be the S - R -submodule Ma of M . Since N is ideal pure by 2), there holds $Mb \cap N = Nb = Mab$. Combining this with $a \supseteq b$, we obtain $Mb = Mb \cap N = Mab$. Now, by Proposition 1 (5) we readily obtain $b = ab$.

6) \Rightarrow 5). If N is an S - R -submodule of M , then $N = Ma$ with some $a \in U_{T(R)}(R)$ by Proposition 1 (5). Since $a = Ta = M^*(M)a = M^*(N)$ and N is a right R -module, a is a two-sided ideal. It suffices therefore to show that each $L \in U_{S(N)}$ there exists some $b \in U_{T_N(R)}$ such that $L = Nb$. Again by Proposition 1 (5), $L = Mb$ with some $b \in U_{T(R)}(R)$. Then, $a = Ta = M^*(N) \supseteq M^*(L) = M^*(M)b = Tb = b$. Hence, $b = ab = T_N b$ by hypothesis, and so $L = Mb = Mab = Nb$ with $b \in U_{T_N(R)}$.

6) \Rightarrow 7). If a is a left ideal of R , then the two-sided ideal TaR includes Ta . As is easily seen, Ta and TaR are in $U_T(R)$. Hence, $Ta = (TaR)Ta \subseteq Ta^2$ by assumption, proving $Ta = Ta^2$.

7) \Rightarrow 6). Let $a, b \in U_{R(T)}(R)$ be such that $a \supseteq b$ and a is a two-sided ideal of R . Then, $b = Tb = Tb^2 \subseteq Tab = ab$, that is, $b = ab$.

EXAMPLE 2. If R is not left w.regular, then R_R is not w.regular but (locally) projective. Next, let R be the ring \mathbb{Z} of rational integers, and $M = \mathbb{Z}/(p)$, p a prime. Then $M^* = 0$. Hence, M_R is not w.regular but every S - R -submodule of M is trivially ideal pure. According to Theorem 7, above examples enable us to see that the local projectivity of M_R and the property that each S - R -submodule of M is ideal pure are independent.

The next corresponds to a theorem of Ware concerning regular modules (see [3, Corollary 4.2]).

Theorem 8. *If M_R is f.g. w.regular, then S is a left w.regular ring.*

Proof. Let $M=m_1R+\cdots+m_pR$, and $a=a_1$ an arbitrary element of S . By hypothesis, $a_1m_1=\sum_{i=1}^p g_i(a_1m_1)f_i(a_1m_1)$ with some $g_i\in S$ and $f_i\in M^*$. Setting $b_1=\sum_i g_i a_1(m_1 f_i) a_1 \in Sa_1 S a_1$, we obtain $a_1(m_1)=b_1(m_1)$, and so $\ker(a_1-b_1) \supseteq m_1 R$. Repeating the above argument for $a_2=a_1-b_1$ instead of a_1 , we find $b_2 \in Sa_2 S a_2$ ($\subseteq Sa_1 S a_1$) such that $\ker(a_2-b_2) \supseteq m_2 R$. Since $a_3=a_2-b_2 \in Sa_2$, there holds further $\ker a_3 \supseteq m_1 R + m_2 R$. Continuing the above procedure, we obtain eventually $a_1=a, \dots, a_p, a_{p+1} \in Sa_1$ and $b_1, \dots, b_p \in Sa_1 S a_1$ such that $a_{k+1}=a_k-b_k$ and $\ker a_{k+1} \supseteq m_1 R + \cdots + m_k R$ ($k=1, 2, \dots, p$). Since $a_{p+1}=0$ by $\ker a_{p+1} \supseteq m_1 R + \cdots + m_p R = M$, it follows $a=b_1+\cdots+b_p \in Sa S a$, completing the proof.

Corollary 9. *Let N be an S - R -submodule of M . If M_R is w.regular and M/N_R is f.g., then $\text{Hom}_R(M/N, M/N)$ is a left w.regular ring.*

Proof. By Proposition 2 (1) and Proposition 1 (5), $N=M\alpha$ with some $\alpha \in U_{T(R)}R$. Since $\alpha=T\alpha=M^*(M)\alpha=M^*(N)$ and N is a right R -module, α is a two-sided ideal of R . It is easy to see that $M/M\alpha$ is a w.regular module as an f.g. right R/α -module. Then $\text{Hom}_R(M/N, M/N)=\text{Hom}_{R/\alpha}(M/M\alpha, M/M\alpha)$ is a left w.regular ring by Theorem 8.

EXAMPLE 3. Let R be a commutative regular ring with countably infinite set of orthogonal idempotents e_i . We consider $M=\sum_{i=1}^{\infty} \bigoplus R_i$; $R_i=R$. As usual, S can be regarded as the ring of column finite matrices over R with matrix units e_{ij} . If $a=\sum_{i=1}^{\infty} e_i e_{1i}$, then Sa consists of all elements of the form $\sum_{j=1}^{\infty} \sum_i a_j e_i e_{ji}$. Now, we can easily see that $a \notin Sa S a$, which means that S is not left w.regular.

References

- [1] G.S. Garfinkel: *Universally torsionless and trace modules*, Trans. Amer. Math. Soc. **215** (1976), 119–144.
- [2] V.S. Ramamurthi: *Weakly regular rings*, Canad. Math. Bull. **16** (1973), 317–321.
- [3] J.M. Zelmanowitz: *Regular modules*, Trans. Amer. Math. Soc. **163** (1972), 341–355.
- [4] B. Zimmermann-Huisgen: *Pure submodules of direct products of free modules*, Math. Ann. **224** (1976), 233–245.

Department of Mathematics
Osaka City University
Sugimoto-cho, Sumiyoshi-ku
Osaka 558, Japan