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Abstract

Let ©(K; p/q) be the result ofp/g-surgery along a knoK in a homology
3-spherex. We investigate the Reidemeister torsionXfK ; p/q). Firstly, when the
Alexander polynomial oK is the same as that of a torus knot, we give a necessary
and sufficient condition for the Reidemeister torsionXfK; p/q) to be that of a
lens space. Secondly, when the Alexander polynomiak dé of degree2, we show
that if the Reidemeister torsion d£(K; p/q) is the same as that of a lens space,
then Ay (t) =t? —t+ 1.

1. Introduction

We investigate when the result of Dehn surgery along a knod imomology 3-
sphere is a lens space. In this paper, we call such a sufgasy surgerynot only
for hyperbolic knots but also for any knots in homology 3-@s. Many authors have
studied lens surgery by geometric method (see [1, 2, 5, 70911, 22, 23, 24, 29,
31]). We approach the problem by algebraic method (see [431%, 18, 19]).

K. Reidemeister [20] and W. Franz [8] classified lens spaaspietely by using
the Reidemeister torsion. Franz provided a useful lemmbeddranz’'s lemma(see
Theorem 3.1) which is deduced by a result loffunction (see [30]) from Number
Theory. We apply the lemma in the present paper. J. Milnor fdhted out that the
Reidemeister torsion was closely related to the Alexanagynomial. Our method is
based on the surgery formula for Reidemeister torsions dué®. Turaev (see [21,
25, 26, 27] and Section 2.2). Our results are mentioned imgeof the Alexander
polynomials.

We define that an oriented closed 3-manifdit is of lens type(or of (p, q)-lens
type if it has the same Reidemeister torsion as the lens spacas(b(p, q)) (for a
precise definition, see Section 2.3). By algebraic and nuntibeoric study, we ob-
tain necessary conditions for the Alexander polynomial dénat having a lens type
surgery. The multiplicative groupZ(nzZ)* plays important roles in our study because
it is the Galois group of then-th cyclotomic field, and the second termof a lens
spaceL(p, q) is an element of4/pZ)*.

2000 Mathematics Subject Classification. 57M25, 57M27, 57Q10.



824 T. KADOKAMI

We point out the following lemma which states a property af &klexander poly-
nomial of a knot having a lens type surgery. We prove it in BecB.2. Our two
main theorems are obtained by using this lemma. LE&C; p/q) be the result ofp/g-
surgery along a knoK in a homology 3-spher&. If X is the 3-spheres®, then we

denoteX(K; p/q) by (K; p/q).

Lemma 1.1. Let K be a knot in a homology-sphere ¥, and Ag(t) the
Alexander polynomial of KLet d (> 2) be a divisor of p and ¢ a primitive d-th
root of unity. If the p/g-surgery=(K; p/q) is of lens type for p= 2 and q # 0, then

d=2),
Nae={ 7 0T

where N) is the norm ofu in the d-th cyclotomic field)(¢) over Q.

For thenorm in a Galois extension, see Section 3.1. In [17], L. Moser firstiowed

that non-trivial knots can yield a lens space by Dehn surgeryfact, Moser deter-
mined all rational surgery along all torus knots, and protfeat every torus knot yields
a lens space as below.

Theorem 1.2 (Moser [17]). Let K be the (r,s)-torus knot in 8, and M=
(K; p/g) the result of gq-surgery along K where pr,|s| > 2 and q # 0. Then
there are three cases
(1) If |p—qrs| #0,1, then M is a Seifert fibered space with three singular fibers of
multiplicities r, |s| and |p — qrs|.
(2) If |p—qrs| =1, then M is the lens space(p, qr?).
(3) If [p—qrs|=0 (.e, p/qg=rs), then M is the connected sum of two lens spaces
L(r,s) g L(s,r).

Our first main theorem is an algebraic “translation” of thedtem. The following
is the first main theorem of this paper.

Main Theorem 1. Let K be a knot in a homolog$-sphere~ whose Alexander
polynomial is the same as thg, s)-torus knot and M= X(K; p/q), where pr,s> 2
and q# 0. Then M is of lens type if and only if the followirfj) and (2) hold.

(1) gcd(,r) =1 and gcd(p,s) =1,
(2) r =41 (modp) or s=+1 (modp) or grs = +1 (mod p).

We prove Main Theorem 1 by using Franz’s lemma (see [6, 8, 2Vection 3.

H. Goda and M. Teragaito [9] showed that if a genus one kn@&®iyields a lens
space, then the knot is the trefoil. Our second main theorerimdluded by Goda-
Teragaito’'s theorem in the restricted caBe= S°, but extends theirs to the case of
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knots in any homology 3-spheres from the algebraic view tpdihen we say “the
degree ofAk(t),” we take a regularization that\k (t) is in Z[t] and Ak (0) # 0. We
prove Main Theorem 2 by using norm of an algebraic number (8ee(]) in Sec-
tion 4.

Main Theorem 2. Let K be a knot in a homolog$-sphereX whose Alexander
polynomial Ak (t) is of degree2. If a Dehn surgeryx(K; p/q) is of lens type for p>
2 and q#0, then Ax(t) =t2 —t + 1.

Recently, P. Ozsath and Z. Szab [18] obtained a necessary condition on the
Alexander polynomial of a knot ir§® which yields a lens space by using the knot
Floer homology (see [13, 19], and Appendix). Note that Mairediem 2 extends a
special casenf = 1, s; = 1) of Ozswath-Szab’s result to a rational surgery along a
knot in a homology 3-sphere.

In Section 2, we recall Turaev’'s definition [26] of the Reidsster torsion, pre-
pare the surgery formula due to Turaev [25, 26] and Sakai, [2hH give a precise
definition of an oriented closed 3-manifotef lens type In Section 3, we prove Lem-
ma 1.1 and Main Theorem 1. In Section 4, we prove Main Theoremnm Appendix,
we show that the Alexander polynomial op,(q)-torus knot satisfies Ozath-Szab's
condition only by deformations of the polynomials from thellAknown expression.

Lemma 1.1 may have many applications. We applied it in theepll, 12]
which are joint works with Yuichi Yamada.

2. Surgery formula of Reidemeister torsion

2.1. Torsion of chain complex. We review thetorsion of a chain complex.

Let V be ann-dimensional vector space over a fidid andb = (b, ..., b,) and
c=(cy,...,Cy) two bases olV. Thenb; can be expressed by a linear combination of
Ci,...,Ch.

n
b=) ajc (=1....n)
j=1

The matrix A = (&;) is the transition matrix front to b. We denote the determinant
of A by

[b/d].

It is a non-zero element of. If n=0, then p/7] = 1.
Let C, be a finitely generated free chain complex over a fietd

Im—1 Om—2 0 0
C*:O—>Cmm—>Cm_1m—>---—1>Cl—°>Co—>0
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In the case tha€, is acyclic we define theorsion of C, as follows: Letc = (ci(l), e,
ci(p‘)) (i =0,...,m) be a basis ofC;. We denote the kernel of_; (resp. the image
of d) by Z; (resp.B;). ThenZ; = B; and

Ci=Z ®&B_1=B &B_.

We take bases oBj asb; = (bi(l), ...,bi(q‘)). A lift of bi_; in G is denoted byb;_;.
Then bjb;_; is a basis ofC;. The torsion of C, with respect toc = (cp,...,Cm) iS
defined by

m
7(Cy;0) = 1_[ [bi Bifl/ci](_l)lﬂ :
i=0
The torsionz(C,;c) is a non-zero element df, and does not depend on the choices
of b; andbi_;. Whenc is clear, we denote(C,;c) by (C.). In the other case, i.e., if
C. is not acyclic, then we define(C,) = 0 formally. WhenC, is a finitely generated
free chain complex over an integral domd®) we definer(C,) by

7(C,) = 7(C. ® Q(R)),
where Q(R) is the quotient field ofR.

2.2. Reidemeister torsion of CW-complex and surgery formwd. We define
the Reidemeister torsiof a CW-complex, and prepare a surgery formula, which is
a main tool of the present paper.

Let X be a connected finite CW-complek| the first homology grougHi(X; Z),
and Z[H] the group ring generated byl over Z. Let p: X — X be the maximal
abelian covering whose covering transformation groufHis Then X is also a con-
nected CW-complex whose CW-structure is naturally indugpdK. Let C.(X) be the
cellular chain complex ofX, where Ci(f<) is the set of formal linear combinations
of orientedi-cells of X with integer coefficients. Sincél acts onX as the cover-
ing transformation groupH also acts orC.(X). We may regardC,(X) as a module
over Z[H]. This module is free. Afundamental familyof cells is a family of cells in
X such that over each cell of lies exactly one cell of this family. We can observe
that each ordered fundamental family of ordered cells deters basis irC*(f() over
Z[H]. Let F be a field, andp: Z[H] — F a ring homomorphism. We define

CY(X) = C.(X) @z F,

and the Reidemeister torsiorof X, t%(X), associated to a ring homomorphism
¢: Z[H] — F.

T(CE(X) e F—{0} if H.(CI(X)=0,

T#(X) = { . ;
0cF it H.(CY(X)) 0.
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The invariantz?(X) is a simple-homotopy invariant determined up to a multgtion
of an element intp(H). A simple-homotopy invariant is a topological invariang b
A. Chapman [4]. For a finite CW-pairX, Y), we can also define?(X, Y) associated
to C{(X,Y) = C(X, p~(Y)).

The following theorems are fundamental to compute the Regilgter torsion. We
denote the first homology groud:(X;Z) of X over Z by Hy(X) for short.

Theorem 2.1 (Turaev [26]; the excision theorem)Let X; and X be sub-
complexes of X whose union is, And whose intersection is.YLet j: Z[Hi(Y)] —
Z[Hi(X)] and j: Z[Hi(Xi)] — Z[Hi(X)] (i = 1,2) be homomorphisms induced by
the natural inclusionslf t#°i(Y) # 0, then

T/ (X) = TR (Xa) T ()[4 (V)]

For example, ift is a generator oH(S!) = Z, thent(SY) = (t —1)~! and t(S* x
SY = 1. The following theorem is a special case of more genasililt [26].

Theorem 2.2 (Milnor [16], Turaev [26]). Let K be a knot in a homolog-
spherex, t a generator of H(E — N(K)) = Z where NK) is a tubular neighbor-
hood of K, and Ak(t) the Alexander polynomial of KThen

(T = N(K)) = Act)(t — 1)

Since any homology lens space is obtained bg/g-surgery along a knoK in a
homology 3-spherez, where p > 2 andq # 0, we can compute the Reidemeister tor-
sion of it by Theorem 2.1 and Theorem 2.2. B§/0Z)* we denote the multiplicative
group of invertible elements in the ring/nZ with respect to the multiplicity. For an
elementx of (Z/nZ)*, we denote the inverse element xfoy X.

Theorem 2.3 (Turaev [25, 26, 27]; Sakai [21]).Let K be a knot in a homology
3-sphereX, Ak (t) the Alexander polynomial of Kand M= Z(K; p/q), where p> 2
and g # 0. Let d (= 2) be a divisor of p ¢ = ¢4 a primitive d-th root of unity
and gq: Z[t,t71/(tP — 1) — Q(¢) a homomorphism such thaty(t) = ¢. Then the
Reidemeister torsion of Mr%(M), associated tapy is

T#(M) = Ac (€ — 1M -

Theorem 2.4 (Reidemeister [20]; Franz [8]).Let L(p,q) be the lens space of
type (p, ), t a generator of the first homology group:L(p, q)), d (= 2) a divisor
of p, ¢ =¢q a primitive d-th root of unityand ¢q: Z[t, t71]/(tP—1) = Q(¢) a homo-
morphism such thapy(t) = ¢. Then the Reidemeister torsion of(f, q), t#(L(p, q)),
associated tapq is

e (L(p.a) = (¢ - )T -1
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Lens spaces are completely classified by using Theorem 2i4Feanz’s lemma
(see [8] and Section 3). We apply Franz’s lemma to show Mainofidra 1 in Sec-
tion 3.

2.3. Closed 3-manifold of lens type. Let M be an oriented closed 3-manifold
whose first homology groupH;(M) is a finite cyclic group of ordemp (i.e., M is a
homology lens spageandt a generator ofH;(M). Let d (= 2) be a divisor ofp, ¢
a primitive d-th root of unity, andgq: Z[H1(M)] — Q(¢) a ring homomorphism such
that ¢q(t) = ¢. A homology lens spacéM is of lens typeif its Reidemeister torsion
7%4(M) has the form ¢ — 1)~1(¢} — 1)~! for everyd wherei and j are coprime to
p, and do not depend od. In particular, a homology lens spadé is of (p, q)-lens
typeif ij = =+q or +q (mod p).

It is clear that the lens spade(p, q) is of (p,q)-lens type. If a homology lens
space of p,q)-lens type is a lens space, then it is homeomorphid_{p, +q) or
L(p, =q). If a Dehn surgery along a knot in a homology 3-sphere yield&manifold
of lens type, then we call itens type surgerylt is clear that a lens surgery is a lens
type surgery.

3. Proof of Main Theorem 1

In this section we show Main Theorem 1, which states a negessat sufficient
condition for the Reidemeister torsion &f(K; p/q) to be of lens type in the case that
the Alexander polynomialk (t) of K is equal to that of ther(s)-torus knot.

3.1. Franz’'s lemma and norm of an algebraic number. We prepare Franz’s
lemma and some results about algebraic humbers.

Theorem 3.1 (Franz [8]). Let ¢ be a primitive n-th root of unityand {& (i €
(Z/nZ)*)} the set of integers satisfying the following conditions

1) ai=a,

) Yiczmz)- q = 0,

@) [liczmz-¢' =10 =1.
Then a=0for all i € (Z/nz)*.

Let F be a finite Galois extension ov€), anda an element ofF. We denote the
norm of oo over Q by Nr (), or simply N(«).

NF /() = H o ()

oeGal(F/Q)

The followings are fundamental facts in Number Theory (s&ep[89], [30]).
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Proposition 3.2. In the situation abovewe have the followings
(1) N(«) is a rational numberand N(«) =0 if and only if « = 0.
(2) If o is an algebraic integerthen N(«) is an integer
(3) An algebraic integerx is a unit in the ring of algebraic integers if and only if
N(x) = £1.

3.2. Proof of Lemma 1.1. If Z(K; p/q) is of lens type, then there are integers
i, ] andm such that

A@QC - —1) P - )N Y

wherei and j are coprime top.
By taking the norms of both sides, we have

N(Ak(¢)) = N(&=¢™),

because
N@Z —1)=N(%=1) =N(' = 1) =N(' - 1) #0.
Since
o [+1 @d=2)
N (£ =
() 1 (d=3)
we have the result. ]

3.3. Proof of Main Theorem 1. Let A, ¢(t) be the Alexander polynomial of
the {, s)-torus knot

t"-1t-1)

Ars(t) = © —DE-1)

d (= 2) a divisor of p, ¢ a primitive d-th root of unity, andpq: Z[t]/(tP—1) — Q(¢)
a ring homomorphism such tha(t) = ¢. SinceM = Z(K; p/q) is the p/g-surgery
along a knotK whose Alexander polynomial ig\, s(t), we have

(M) = A (@) — )T - 1)
by Theorem 2.3. Suppos®! is of lens type, then there are integersj and m

such that

1

Ars(@)C -1 -1) =M - - )

wherei and j are coprime top.
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Suppose gcdy,r) > 2, we take d=gcd(,r). Then gcdd,s)=1 because
gedf,s) =1. We setp = p'd andr =r’d. Then

"S-t —1) (@t -1)t 1)
T -DE-1) EI-1E-1)

- (t(s—l)r’d +t(s—2)r’d +... +t2r’d +tr’d + 1) .

Ars(t) =
t—1
ts—1’
and therefore

N(As(2)) = 7.

By Lemma 1.1,M is not of lens type. Thus we have the conclusion (1).
We assume gcg;r) = 1 and gecdp,s) = 1, and take any divisod (> 2) of

p. Then
G -DE -1
Al ey

If M is of lens type, then

€ -1E -1DE -1 =+ - 1) - DE - D).
Multipling the complex conjugates to both sides, we have

C-1E -1DE - -1 - DET - 1)
=T - - - T-)E T -1 -1

By the same argument as the proof of the classification of $gaces (see [6, 8, 20,
27], and Theorem 3.1),

{rs,i,j} ={q,r,s} in (Z/dZ)/{%1}.

There are two cases.
(i) rs=+q (modd).

This is equivalent taqrs = +1 (modd).
(i) rs=+s (modd) or rs = 4r (modd).

This is equivalent to = +1 (modd) or s = +1 (modd).

If qrs= %1 (resp.r = £1, s= £1) (mod p) holds, thenqrs = +1 (resp.r =
+1, s=+1) (modd) holds for anyd. So we state only the case df= p.

The converse is obvious. This completes the proof. ]

4. Proof of Main Theorem 2

In this section we show Main Theorem 2, which states a negessat sufficient
condition for the Reidemeister torsion &f(K; p/q) to be of lens type in the case that
the Alexander polynomialk (t) of K is of degree 2.
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We prepare some lemmas.
Let n be a positive integerp(n) the Euler function,; a primitive n-th root of
unity, and

e,)= [] (x—¢h
ie(z/nz)
the n-th cyclotomic polynomialThen ®,(x) is an irreducible monic symmetric poly-
nomial overZ with degreeg(n), and

0 (n=1),
®n(1)=1p (n=p', p: prime)
1 (otherwise)

The Alexander polynomial of a knot in a homology sphere widgrde 2 has the
following form for some integen # O:

(4.1) An®)=nt? —@n—1Lt+n=t+n(t —172 (n#0)

Let ¢ be a primitive p-th root of unity, ande; and o, the roots ofAn(t) = 0. Then
we have

4.2) N(an(@) = [ n@" —e)@ —az) = n? P p(ar)® ()

ie(Z/pz)*

We regard the right-hand side of (4.2) as a polynomiahadver Z depending onp,
denote it by f,(n) (i.e., fp(n) € Z[n]), and call itthe p-th norm polynomiabr simply
the norm polynomial

Lemma 4.1. (1) If n < —1, then f(n) # £1.
(2) If In| =2 and p is a prime numbethen f,(n) # £1.

Main Theorem 2 is proved by Lemma 1.1 and Lemma 4.1: By the gstom
that X(K; p/q) is of lens type, by definitionN(Ak (¢)) = +1 holds not only in the
p-th cyclotomic field but also in thel-th cyclotomic field for any divisod of p. In
the case thah > 2 and p is not prime, we studyfq(n) for a prime divisord of p in
Lemma 4.1 (2).

In the case thap = 2, Lemma 4.1 holds becaudg(n) = 4n — 1. From now on,
we assumep > 3. To show Lemma 4.1, we study properties ©f(n).

Proposition 4.2. (1) The degree of f(n) is ¢(p).
(2) If p = 3, then there exists a polynomial of, @y(n), over Z with degreey(p)/2
such that §(n) = {gp(n)}2.
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Proof. (1) SinceAn(¢) =(1—¢)?n+¢, the degree offy(n) is ¢(p).
(2) Firstly we note

An(2) = 2 An(E Y.
From this equation,

An()
¢

8(¢) =

satisfiess(¢ 1) = §(¢), and 8(¢) is an element ofQ(¢ + ¢~ 1). Since¢ # ¢~ 1, we have
[Q(): QE +¢ Hl=2 and R +¢ ) : Q] = p(p)/2. If we set

9p(n) = No+c-1)0(8(2)),

thengp(n) is a polynomial ofn over Z with degreep(p)/2 such thatfp(n) = {gp(n)}?.
O

We write down fp(n) and gp(n) in the following form:

»(p) »(p)/2

fp(n):Zaini, gp(n) = Z bjn!.
i=0

j=0

Let F(n) = son™+s5,n™ 1 +5n™2+. . +55n™d (g5 # 0, sg # 0) be a polynomial of
noverR. If ) d=0or (i)d>1ands_15 <0 (@ =12,...,d), then we say that
F(n) is an alternating polynomial We note that if all roots of~(n) = 0 are positive
real numbers or 0, theR(n) is an alternating polynomial.

Lemma 4.3. (1) The polynomials §(n) and g,(n) are alternating polynomials
(2) ayp = {®p(1)}? and & = 1.
(3) by(py2 = (—1)*P/2@ (1) and by = 1.
(4) a1 = 2To()0(¢) — 2¢(p), where T),a(¢) is the trace of¢ in Q(¢)/Q. In partic-
ular, if p is an odd prime numbethen a = —2p and h = —p.

Proof. (1) Firstly we note

8(¢) = 1-{2— (@ +¢ Y

An(2) _
¢

Since 2— (¢ +¢~1) > 0, the polynomialsf,(n) and gp(n) are alternating polynomials.

(2) ay(p) = Noya((1 = £)?) = {@p(1))* and a = Nog)/(¢) = 1.

(3) Itis clear by (1) and (2).
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(4) By the definition,

a = Z (1_ Ci)Z . NQ(()/Q(C) — Z (§| +§.—i _ 2)

ie(Z/pz)* & ie(z/pzZ)*
=2 Y &' =2p(p) = 2Tqu)a(t) — 20(p).
ie(Z/pz)*

If pis a prime number, theig),0(¢) = —1 ande(p) = p — 1. Thereforea; =
—2p. This completes the proof. ]

Proof of Lemma 4.1 (1). Assume < —1. From Lemma 4.3 (1) and (2), we see
fp(n) = (®p(1))*+1> 2.
This completes the proof. ]

To prove Lemma 4.1 (2), we need the following lemma.

Lemma 4.4. (1) If p is a prime numberthen
fp(n) = nP(af — 1) (b — 1),

wherea; and o, are roots of A,(t) in (4.1).
(2) If pis an odd prime numbetthen h =0 (modp) for j =1,2,...,¢(p)/2.

Proof. (1) Fromg(p) = p—1 andtP—1=(—1)®,(t) if p is a prime, we have

nPlaf — 1)y —1) _ ) )
nw(p);p(al)qu(az) =n(or — D2 —1)=4,(1) =1

By (4.2), we have the equality.

(2) Let (p) be an ideal in the polynomial ring[n] generated byp, and @3 and a»
roots of the Alexander polynomial,(t) with degree 2 in (4.2). Sincé\,(t) is a poly-
nomial overZ and p is an odd prime number, we have

nP(ay — 1)P(ez — 1)P = nP(af — 1) () — 1) (mod (p)).
By (1),
fp(n) = nPlaz — 1)P(e2 — 1)° = (a1 — D)2 — 1}’ =1 (mod ()).
Sincez[n]/(p) = (Z/pz)[n] is a unique factorization domain,
gp(n) =bo =1 (mod ().

This meansb; =0 (modp) for j =1,2,...,¢(p)/2. ]
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Proof of Lemma 4.1 (2). Letp be an odd prime number, anily,(n) a poly-
nomial of n satisfying

gp(n) = pnhp(n) + 1.

Then hy(n) is a polynomial overZ by Lemma 4.4 (2), andfp(n) = 1 if and only if
hp(n) = 0. We write down

p(p)/2—-1

hp) = > an®.
k=0

By Lemma 4.3 (3) and (4)¢yp)/2—1 = £1 andcy = —1. From this, ifhp(n) = 0,
thenn = £1. Therefore ifin] > 2, thenhp(n) # 0. This completes the proof of
Lemma 4.1 (2). O

For examplehz(n) = —1, hs(n) =n—1, hy(n) = —(n—1)?, hya(n) = —(n—1)(n® —
4n?+3n —1).

Corollary 4.5. Let K be a knot in a homolog$-sphereX, Ak(t) the Alexander
polynomial of K and M= X(K; p/q) the p/g-surgery for p> 2 and q# 0. If Ag(t)
is divisible by nf —(2n— 1)t +n (ne Z;n #0, 1), then M is not of lens type

Appendix

We introduce a result in [18] due to Ozh and Szafs, which is a necessary con-
dition on the Alexander polynomial of a knot i8 which yields a lens space. They
show it by using knot Floer homology ([13, 18, 19]).

Theorem [Ozsvath-Szab [18]]. Let K be a knot in § and M = (K; p), where
p is an integer If M is a lens spacethen the Alexander polynomial of K is of the
following form

m
Ak() = (D) + Y (=DMt +t9),
j=1
where0 <s1 < < --- < Sy

By Moser’s theorem (Theorem 1.2), the Alexander polynomfah dorus knot sat-
isfies the condition above. We can check it easily as follows.

Proposition. The Alexander polynomial of a torus knot has the form in @usv
Szald’s theorem
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Proof. LetApq(t) be the Alexander polynomial ofp( g)-torus knot. We may as-
sume 2< q < p. There are integerx and d¢ (k=0,1,...,q—1) such that
pk = qa + dk (0 < d¢ < q — 1). The integersdy, ..., dq—1 are mutually distinct,
becausep and q are coprime integers. It is clear theg=dy = 0.

We list the following formulas which are proved easily.

(tPI— 1)t —1) _ (tp(qfl)+tp(qf2)+...+tp+ 1)(t -1

1 Apg(t) = =
2) tPK = (9% — 1) +t%
tPkt — 1) _ 4 t%(t — 1)
3 :tktQ(Ck—1)+tQ(Ck—2)+,,,+tQ+1 t—1)+——~~“¢
@) ta—1 ( )( ) ta—-1
@ q’ltdk(t_l)_ (tq—1+tq—2+..-+t+1)(t—1)_l
e t9-1 t9 -1
q—1c—1
(5) Apgt) =1 +Z Z(tq|+dk+l _ tq|+dk)
k=1 1=0

Equation (5) is obtained from equations (1), (2), (3) and (f)two pairs K,I)
and ', 1") are distinct, then two numbeigl + di and ql’ + d¢ are distinct. Therefore
Apq(t) has the form in Ozsath-Szab's theorem. ]

In [12], we characterized the Alexander polynomial of a kitotany homology
3-sphere having a lens type surgery. Infinitely many knotsSinhaving lens surgery
appear as certain families or sequences (see [1]), and nderexample is discovered.
The author thinks such a deformation of the Alexander patyiab above is related
to the structure of each family or sequence not onlySibut also in any homology
3-sphere.
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