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Abstract
We obtain the affirmative answer for a special case of the linearization

problem for algebraic embeddings ofC2 into C3. Indeed, we determine all the
compactifications(X, Y) of C2 such thatX are normal quartic hypersurfaces inP3

without triple points andY are hyperplane sections ofX. Moreover, for each(X, Y),
we construct a tame automorphism ofC3 which transforms the hypersurfaceX n Y
onto a coordinate hyperplane.

1. Introduction

A polynomial mapping f : Cn! Cm is called analgebraic embeddingof Cn into
Cm for m > n � 1 if f is injective and if the image off is a smooth algebraic sub-
variety of Cm. Let Aut(Cn) be the group of algebraic automorphisms ofCn. Here we
consider the following conjecture:

Conjecture. Let f: Cn ,! Cn+1 be an algebraic embedding. Then f is equivalent
to a linear embedding up toAut(Cn) and Aut(Cn+1), equivalently to say, there exists an
algebraic automorphism ofCn+1 which transforms the image f(Cn) onto a coordinate
hyperplane.

For the casen = 1, Abhyankar-Moh [1] and Suzuki [14] showed that the conjec-
ture is true. For the casesn � 2, the conjecture is still unsolved. In this paper, we
will consider the casen = 2 only. Our approach is geometric and our main tool is a
method of compactifications ofC2. Let f : C2 ,! C3 be an algebraic embedding. We
identify C3 with an affine part of the complex projective spaceP3 in the standard way.
We denote byX f the closure of the image off in P3 and putYf := X f n f (C2). By
construction, we see thatYf is a hyperplane section ofX f and that X f n Yf is bi-
regular toC2, that is (X f , Yf ) is a compactification ofC2. We call Yf the boundary
of the compactification. Our main purpose is to write down explicitly a defining equa-
tion of the image of f up to affine transformations ofC3 and to construct explicitly
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564 T. OHTA

an algebraic automorphism ofC3 linearizing the defining equation, when the image of
f is of low degree. This explicit way is very important for us not only to obtain ex-
amples but also to find geometric invariants and inductive methods. In this direction,
in Ohta [10], we showed that the conjecture is true when the degree of the image of
f is less than or equal to three. For the case of degree three, weneeded a so-called
Nagata automorphism(cf. [10]) to linearize some embedding.

Next we consider the case of degree four. Then we have the following three possi-
bilities: (1) X f is normal and it has at least a triple point; (2)X f is normal and it has
no triple points; (3)X f is non-normal. For the case (1), in Ohta [11], we showed that
the conjecture is true, and we needed a generalization and ananalogue of a Nagata
automorphism to linearize some embeddings. In this paper, we will treat the case (2)
only. The case (3) will be dealt with elsewhere. Thus it suffices to consider a com-
pactification (X, Y) of C2 such thatX is a normal quartic hypersurface inP3 without
triple points andY is a hyperplane section ofX. First we will determine the defining
equations of such compactifications (X, Y) by using the classification of minimal nor-
mal compactifications ofC2 due to Morrow [9] and the structure theorem of minimally
elliptic singularities due to Laufer [8]. Finally, for each(X, Y), we will construct a
tame automorphism ofC3 explicitly which linearizes the defining equation ofX n Y.

From now on to the end of this paper, we assume the following:

ASSUMPTION. Let X be a normal quartic hypersurface inP3 without triple points
andY a hyperplane section ofX such thatX nY is biholomorphic toC2. Denote byH
the hyperplane inP3 with Y = X \ H.

We define some notations as follows. LetY =
St

i =1 Yi be the irreducible decom-
position of Y. We putY := H jX. We note that SuppY = Y and OH (XjH ) �= OP2(4).
We put x := SingX = fx1, : : : , xmg. Let � : M ! X be the minimal resolution ofX
with exceptional setE =

Ss
i =1 Ei := ��1(x), where eachEi is irreducible. We denote

by Ĉ the proper transform of a curveC in X by � . In §2, we shall see thatX has a
unique minimally elliptic double point, which is denoted byx1, and thatZ2 = �1,�2
for the fundamental cycleZ of ��1(x1). Then our main results are the following:

Theorem 1. Let (X, Y) be a pair satisfyingAssumption.Then the weighted dual
graph of Ŷ [ E is one of Fig. 1, where the notations�, Æ, 4 mean smooth rational
curves with self-intersection numbers�1, �2, �3 respectively and allÆ, 4 are ir-
reducible components of E.

Theorem 2. For each weighted dual graph of̂Y [ E in Theorem 1,the defining
equation of(X, Y) is one of the following up toAut(P3):
(XV) X: (z2z3 + �z2

0 + �z0z1 + 
 z2
1)2 + z0z3

3 + z3
1z3 = 0, �2� 4�
 = 0,

(XVI) X: (z2z3 + �z2
0 + �z0z1 + 
 z2

1)2 + z0z3
3 + z3

1z3 = 0, �2� 4�
 6= 0,
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Fig. 1.

(XVII) X: (z2z3 + �z2
0 + �z0z1 + 
 z2

1)2� (z0z3 + z2
1)2 + z1z3

3 = 0, f�2� 4�(
 � 1)gf�2�
4�(
 + 1)g = 0,
(XVIII) X: (z2z3 +�z2

0 +�z0z1 + 
 z2
1)2� (z0z3 + z2

1)2 + z1z3
3 = 0, f�2� 4�(
 � 1)gf�2�

4�(
 + 1)g 6= 0,
(XIX) X: (z2z3 + �z2

0 + �z0z1 + 
 z2
1)2 � z4

1 + z0z3
3 + Æz2

1z2
3 = 0, f�2 � 4�(
 � 1)gf�2 �

4�(
 + 1)g = 0,
(XX) X: (z2z3 + �z2

0 + �z0z1 + 
 z2
1)2 � z4

1 + z0z3
3 + Æz2

1z2
3 = 0, f�2 � 4�(
 � 1)gf�2 �

4�(
 + 1)g 6= 0,
(XXI) X: z2

2z2
3 + (2z3

0 + 3z0z1z3)z2� z3
1z3� (3=4)z2

0z2
1 + z0z3

3 + Æ(z1z3 + z2
0)z2

3 = 0,
where z= (z0 : z1 : z2 : z3) is a homogeneous coordinate ofP3, H = fz3 = 0g, �,�,
 , Æ 2
C and � 6= 0.

REMARK . In Theorems 1 and 2, we continue to number the types of (X,Y) from
the previous paper [11] and we obtain some invariants as follows:
(XV) Z2 = �2, Y = 4Y1 (Y1: line), x = fx1g.
(XVI) Z2 = �2, Y = 2Y1 + 2Y2 (Yi : line), x = fx1g.
(XVII) Z2 = �2, Y = 2Y1 + Y2 + Y3 (Yi : line), x = fx1, x2g.
(XVIII) Z2 = �2, Y = Y1 + Y2 + Y3 + Y4 (Yi : line), x = fx1g.
(XIX) Z2 = �2, Y = 2Y1 + Y2 + Y3 (Yi : line), x = fx1, x2g.
(XX) Z2 = �2, Y = Y1 + Y2 + Y3 + Y4 (Yi : line), x = fx1g.
(XXI) Z2 = �1, Y = 2Y1 + Y2 (Y1: line, Y2: conic), x = fx1g.
For each type,x1 = (0 : 0 : 1 : 0) is the unique minimally elliptic double point and x2
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is a rational double point of typeA1, where

x2 =

8>><
>>:

(� : �2� : � : 0) for the type (XVII) and �2� 4�(
 � 1) = 0.

(� : �2� : �� : 0) for the type (XVII) and �2� 4�(
 + 1) = 0.

(� : �2� : 0 : 0) for the type (XIX).

Moreover, every line inX throughx1 is an irreducible component ofY (see Lemma 3.2
(ii) and Lemma 4.1 (v)).

Here we recall some special subgroups of Aut(C3). Let A(3,C) and J(3,C) be the
subgroups of all affine transformations and de Jonquières automorphisms respectively.
Let us denote byT(3,C) the subgroup generated byA(3,C) and J(3,C). An algebraic
automorphism ofC3 is said to betame if it is an element ofT(3, C) (cf. [11]).

Theorem 3. For each defining equation of(X, Y) in Theorem 2,there exists a
tame automorphism ofC3 which transforms Xn Y onto a coordinate hyperplane.

As a consequence of Theorems 2 and 3, we obtain the following:

Theorem 4. Let f : C2 ,! C3 be an algebraic embedding. Assume that Xf is
a normal quartic hypersurface inP3 without triple points. Then f is equivalent to a
linear embedding up toAut(C2) and T(3, C).

Indeed, if one has such an algebraic embeddingf , then (X f , Yf ) has one of the
defining equations of the types (XV) through (XXI) up to Aut(P3) by Theorem 2 and
there exists a tame automorphism ofC3 transforming f (C2) = X f nYf onto a coordinate
hyperplane by Theorem 3. Thus we obtain Theorem 4.

NOTATION. bi (V) = dimR H i (V , R): i -th Betti number ofV.
Exc': exceptional set of birational morphism' : V ! W.
Pic(V): Picard group ofV.
KV : canonical divisor ofV.!V : dualizing sheaf ofV.
mV ,v: maximal ideal ofOV ,v.
multW V : multiplicity of V at general point ofW.
DjV : restriction of Cartier divisorD to V.
(D � C)V ,v: local intersection number ofD and C at v 2 V.
D1 � D2: D1 and D2 are linearly equivalent.
(V , v): normal two-dimensional singularity.
pg(v): geometric genus of (V , v).
pg(v1, : : : , vn) =

Pn
i =1 pg(vi ).
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N = f1, 2, 3,: : : g: set of all positive integers.
(�n)-curve: smooth rational curve with self-intersection number �n.�nÆ : (�n)-curve.�: 0-curve.�: (�1)-curve.Æ: (�2)-curve.4: (�3)-curve.

2. Preliminaries

In this section, we shall describe the fundamental properties of a pair (X, Y) sat-
isfying Assumption in§1. We use the same notation as that in§1. Let Y =

St
i =1 Yi be

the irreducible decomposition ofY. We denote by degYi the degree ofYi as a plane
curve of H �= P2. We setY := H jX =

Pt
i =1 ki Yi , whereki 2 N and

Pt
i =1 ki degYi = 4.

We put x := SingX = fx1, : : : , xmg. Let � : M! X be the minimal resolution ofX with
exceptional setE =

Ss
j =1 E j := ��1(x), where eachE j is irreducible. We may assume

that ��1(xi ) =
Ssi

j =si�1+1 E j for 1 � i � m, where 0 =:s0 � s1 � � � � � sm := s. Let

Z(i ) =
Psi

j =si�1+1 a j E j be the fundamental cycle of��1(xi ) with a j 2 N. We denote by

Ĉ the proper transform of a curveC in X by � . Let 0 be a general smooth hyperplane
section of X with 0 \ x = ;. We have the relations (0̂ � Ŷi )M = (0 � Yi )X = degYi and0̂ �Pt

i =1 ki Ŷi +
Ps

j =1 b j E j with b j 2 N. We note that!X = OX(KX) �= OX and x � Y

and thatM n (Ŷ [ E) is biholomorphic toC2. By Kodaira [6] and Ramanujam [12],
we see thatX n Y and M n (Ŷ [ E) are biregular toC2. In particular, X and M are
rational surfaces. Then we have the next proposition.

Proposition 2.1 (Ohta [10]). One obtains the following:
(i) H0(X, Z) �= H0(Y, Z) = Z.
(ii) H1(X, Z) �= H1(Y, Z) = 0.
(iii) H2(X, Z) �= H2(Y, Z) =

Lt
i =1 Z � Yi .

(iv) H3(X, Z) �= H3(Y, Z) = 0.
(v) H1(X, OX) = 0.
(vi) pg(x) = 1.
(vii) X is not a cone.
(viii) gcd(degY1, : : : , degYt ) = 1.
(ix) multp X �Pt

i =1 ki multp Yi (8p 2 Y = X \ H ).

REMARK . (1) By (i) and (ii), Y is a connected divisor without cycles. In par-
ticular, eachYi is a rational curve without nodes. IfY contains at least two lines, then
Y consists of lines which meet at only one point. Indeed, this follows sinceY has no
cycles and eachYi is a plane curve.

(2) By (vi), (vii) and Assumption in§1, we may assume thatx1 is a minimally
elliptic double point andxnfx1g consists of at most rational double points. For simplic-
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ity, we put Z := Z(1). By Artin [2] and Laufer [8], we see thatKM ��Z, Z2 =�1,�2
and Z(i )2 = �2 for 2� i � m.

(3) Since (M, Ŷ [ E) also satisfies the assertions (i) through (v),Ŷ [ E is a
connected divisor without cycles (cf. [10]). By Noether’s formula, we obtainb2(Ŷ) +
b2(E) = b2(M) = 10� Z2. Thus Ŷ [ E consists of 10� Z2 rational curves.

For the divisorY, we obtain the following classification. In the last part of this
section, we will make this classification to be detailed.

Lemma 2.2. There exist the following seven possibilities for the divisor Y:
(i) Y = 4Y1 (Y1: line) with x � Y1.
(ii) Y = 3Y1 + Y2 (Yi : line) with x � Y1.
(iii) Y = 2Y1 + 2Y2 (Yi : line) with x � Y.
(iv) Y = 2Y1 + Y2 + Y3 (Yi : line) with x � Y1 and Y1 \ Y2 \ Y3 = fone pointg.
(v) Y = Y1 + Y2 + Y3 + Y4 (Yi : line) with x = fx1g = Y1 \ Y2 \ Y3 \ Y4.
(vi) Y = 2Y1 + Y2 (Y1: line, Y2: conic) with x � Y1 and Y1 \ Y2 = fone pointg.
(vii) Y = Y1+Y2 (Y1: line, Y2: cuspidal cubic) with x� SingY and Y1\Y2 = fone pointg.

Proof. By Proposition 2.1 (ii), (viii) and (ix), we obtain the assertions.

For the fundamental cyclesZ and Z(i ), we shall prove some lemmas with strong
effect to the structure of (X, Y).

Lemma 2.3 ([8], [10]). One obtains the following:
(1) Assume that Z2 = �2. Then

��mX,x1
�= OM (�Z).

Moreover, the blowing-up morphism at x1 of X factors� and (Ĉ � Z) = multx1 C for
any curve C in X through x1.
(2) Assume that Z2 =�1. Denote by E1 a unique irreducible component Ei of Z with
(Ei � Z) = �1 and ai = 1. Then there exists a unique point p0 of E1 n Sing(SuppZ)
such that

(� Æ �0)�mX,x1
�= OM 0 (�Z0 � 2E0

0),

where�0 : M 0 ! M is a blowing-up at p0 with exceptional curve E00 and Z0 is the
proper transform of Z in M0. Moreover, the blowing-up morphism at x1 of X factors� Æ �0 and (Ĉ0 � Z0 + 2E0

0) = multx1 C for any curve C in X through x1, where Ĉ0 is
the proper transform of C in M0.

Proof. First we use Theorem 3.13 in [8] and the universal property of blowing-
up (cf. Proposition II.7.14 in [5]). By applying the same argument as in the proof of
Lemma 3 in [10], we obtain the assertions.
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REMARK . In (ii), we note that��0 Z = Z0+ E0
0, KM 0 � �Z0 and Z02 =�2 (cf. §4).

Lemma 2.4 ([2], [10]). Assume that x contains at least two points. Then

��mX,xi
�= OM (�Z(i ))

for 2� i �m. Moreover, the blowing-up morphism at xi of X factors� and (Ĉ �Z(i )) =
multxi C for any curve C in X through xi .

Proof. First we use Theorem 4 in [2] and the universal property of blowing-up
(cf. Proposition II.7.14 in [5]). By applying the same argument as in the proof of
Lemma 3 in [10], we obtain the assertions.

Lemma 2.5. One obtains the following:
(i) Assume that C is a line or a conic in X. Then Ĉ �= P1 and (Ĉ � Z(i )) = 1 when
xi 2 C (1 � i � m). If x1 2 C, then Ĉ is a (�1)-curve with (Ĉ � Z) = 1. If x1 =2 C,
then Ĉ is a (�2)-curve with (Ĉ � Z) = 0.
(ii) Assume that C is a plane cuspidal cubic in X andSingC = fx1g. Then Ĉ �= P1

and (Ĉ � Z(i )) = 1 when xi 2 C (2 � i � m). If Z2 = �2, then Ĉ is a 0-curve with
(Ĉ � Z) = 2. If Z2 = �1, then Ĉ is a 0-curve with (Ĉ � Z) = 2 or a (�1)-curve with
(Ĉ � Z) = 1.

Proof. By Lemma 2.3, we note that the blowing-up morphism atx1 of X factors� or � Æ �0 if Z2 = �2 or �1 respectively. By Lemmas 2.3, 2.4 and the adjunction
formula, we obtain the assertions.

REMARK . In (i) and (ii), we note thatĈ [ ��1((x n fx1g) \ C) is a simple nor-
mal crossing divisor of smooth rational curves. In (i), we see that Ĉ meets��1(x1)
transversally at only one point ifx1 2 C.

Lemma 2.6 (Reid [13]). One obtains the following:
(i) Z is a numerically2-connected divisor of M with!Z

�= OZ and pa(Z) = h0(OZ) =
h1(OZ) = 1. Here an effective divisor D of smooth projective surface is said to be
nummerically n-connected for n� 0 if it satisfies the condition(D1 � D2) � n for every
effective decomposition D= D1 + D2 with D1, D2 > 0.
(ii) There exists an exact sequence

0! C! Pic(Z)
deg�! Z�s1 ! 0

of abelian groups, where the homomorphismdeg is given forL 2 Pic(Z) by

degL =
�
degE1

LjE1, : : : , degEs1
LjEs1

�
.
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(iii) If L is a nef line bundle on Z withdegZ L :=
Ps1

i =1 ai degEi
LjEi = 1, then there

exists a unique smooth point P of Z such thatL �= OZ(P).
(iv) If P and Q are smooth points of Z, then P= Q if and only ifOZ(n(P�Q))�= OZ

for some integer n� 1.

Proof. (i) By the adjunction formula, Lemma 3.11 and Theorem4.21 in [13],
we obtain the assertions.

(ii) Note that H1(Z, Z) = 0 and H2(Z, Z) �= Z�s1 since Ŷ [ E has no cycles and
SuppZ consists ofs1 rational curves. Note thatH1(OZ) �= C and H2(OZ) = 0 by (i)
and dimC Z = 1. By applying the exponential cohomology sequence of sheaves on Z,
we obtain the assertion.

(iii) By Lemma 4.23 in [13], we obtain the assertion.
(iv) By noting (ii) and (iii), we obtain the assertion.

We shall prove some useful lemmas for smooth compactifications of C2. It is well-
known that the weighted dual graph of a boundary of minimal normal compactification
of C2 is a linear tree of smooth rational curves by Ramanujam [12] and these graphs
are classified by Morrow [9] (cf. Proposition 2 in [10]). Here asmooth compactifi-
cation (S, C) of C2 is said to beminimally normal if it satisfies the following two
conditions: (1)C is a simple normal crossing divisor; (2) any (�1)-curve inC meets
at least three other irreducible components ofC.

Lemma 2.7. There exists no boundary C of smooth compactification ofC2 satis-
fying the following conditions:
(i) C contains a smooth rational curve C0 with C2

0 � �1.

(ii) C n C0 consists of at least three connected components, which are denoted by C1,
C2, : : : , Cn with n� 3.
(iii) Ci meets C0 transversally at only one point for any1� i � n.
(iv) Ci is a simple normal crossing divisor of smooth rational curves whose self-
intersection numbers are less than or equal to�2 for any i = 1, 2.

Proof. Assume that there exists such a smooth compactification (S, C) of C2. By
applying some blowing-ups on (C3[� � �[Cn)nC0, we obtain a smooth compactification
(S0, C0) of C2 with simple normal crossing boundary, whereC0 is the total transform
of C in S0. Let C0

i be the total transform ofCi in S0 for 0� i � n. Then C0 satisfies
the following conditions:
(1) C0

0 is a smooth rational curve inC0 with (C0
0)2 � �1;

(2) C0 n C0
0 consists of then connected componentsC0

1, C0
2, : : : , C0

n with n � 3;
(3) C0

i meetsC0
0 transversally at only one point for any 1� i � n;

(4) C0
i is a simple normal crossing divisor of smooth rational curves whose self-

intersection numbers are less than or equal to�2 for any i = 1, 2;
(5) C0

i is a simple normal crossing divisor of smooth rational curves for any 3� i � n.
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Fig. 2.

Fig. 3.

By [12], we obtain a linear tree in Fig. 2 as a boundary of minimal normal compacti-
fication of C2 by applying some blowing-downs inC0, whereC00

0 , C00
1 and C00

2 are the
proper transforms ofC0

0, C0
1 andC0

2 respectively. However this dual graph is not found
in Morrow’s classification. This is a contradiction.

Lemma 2.8. Assume that C is a boundary of smooth compactification ofC2 sat-
isfying the following conditions:
(i) C contains a(�1)-curve C0.
(ii) C n C0 consists of exactly two connected components C1 and C2.
(iii) Ci meets C0 transversally at only one point for any i= 1, 2.
(iv) C1 is a simple normal crossing divisor of(�2)-curves.
Then the weighted dual graph of C0 [ C1 is a linear tree�—Æ—Æ– � � � –Æ.

Proof. Assume that the weighted dual graph ofC0 [C1 is not such a linear tree.
Then there exists an irreducible componentC1,1 of C1 such that(C0 [ C1) n C1,1 con-
sists of at least three connected components and such that the weighted dual graph
of the connected component of(C0 [ C1) n C1,1 containing C0 is a linear tree. By
contracting the connected component of(C0 [ C1) n C1,1 containingC0, we obtain a
boundary of smooth compactification ofC2 satisfying the conditions in Lemma 2.7.
This is a contradiction.

Lemma 2.9. Assume that C is a simple normal crossing boundary of smooth
compactification ofC2 which is a union of only one(�1)-curve and some(�2)-curves.
Then the weighted dual graph of C is a linear treeÆ—Æ—�—Æ or a tree as inFig. 3.

Proof. Let C0 be the unique (�1)-curve in C and C n C0 =
Sn

i =1 Ci the decom-
position into connected components withn � 1. By Lemma 2.7, we obtainn = 1, 2.
Then we consider the following cases (1) and (2).
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(1) Assume thatn = 2. By Lemma 2.8, the weighted dual graphs ofC0 [ C1

and C0 [ C2 are linear trees�—Æ—Æ– � � � –Æ. By using Morrow’s classification after
the contraction ofC0 [C1 or C0 [C2, we see that the weighted dual graph ofC is a
linear treeÆ—Æ—�—Æ.

(2) Assume thatn = 1. Note that the weighted dual graph ofC is not a lin-
ear tree by the assumption. Then there exists an irreduciblecomponentC1,1 of C1

such thatC n C1,1 consists of at least three connected components and such that the
weighted dual graph of the connected component ofC n C1,1 containingC0 is a linear
tree. By contracting the connected component ofC n C1,1 containingC0, we obtain a
simple normal crossing boundaryD of smooth compactification ofC2 which is a union
of only one (�1)-curve D0 and some (�2)-curves and such thatD n D0 consists of at
least two connected components. By Lemma 2.7,D n D0 consists of exactly two con-
nected components. By the same argument as that in (1), the weighted dual graph of
D is a linear treeÆ—Æ—�—Æ. Hence the weighted dual graph ofC is obtained as in
Fig. 3.

From now on to the end of this section, we shall show that some cases do not
occur for the classification of the divisorY in Lemma 2.2. In the proofs of the fol-
lowing lemmas, we mainly use Lemmas 2.5, 2.7 and 2.8. Especially, we always note
Remark of Lemma 2.5.

Lemma 2.10. It does not occur the case where

Y = 2Y1 + 2Y2 (Yi : line) with x1 =2 Y1 \ Y2.

Proof. Assume that this case occurs. We may assume thatx1 2 Y1 n Y2. By
Lemma 2.5,Ŷ1 is a (�1)-curve andŶ2 is a (�2)-curve in M. Note the linear equiva-
lence

0̂ � 2Ŷ1 + 2Ŷ2 +
X

i

bi Ei

with bi 2 N. Then we consider the following cases (1) and (2).
(1) Assume thatY1 \Y2 is a smooth point ofX. Note that (̂Y1 � Ŷ2) = 1 by com-

puting the intersection number of the above linear equivalence andŶ1. By Lemma 2.7,
x \ (Y1 n Y2) consists of only one pointx1. Since

�P
i bi Ei � Ŷ2

�
= 3> 0, x \ (Y2 n Y1)

contains at least one point. By Lemma 2.8,x\ (Y2 nY1) consists of exactly one point,
which is denoted byx2, and the weighted dual graph of̂Y1 [ Ŷ2 [ ��1(x2) is a linear
tree as in Fig. 4 (1), whereEs1+1, : : : , Es2 are the irreducible components of��1(x2)
(s2 � s1 � 1). By computing the intersection number of the above linearequivalence
and Ŷ2 + Z(2), we obtainbs2 = �1. This is a contradiction.

(2) Assume thatY1\Y2 is a singular point ofX, which is denoted byx2. By Lem-
ma 2.4, the blowing-up morphism atx2 of X factors� . Thus we obtain (̂Y1 � Ŷ2) = 0.
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Fig. 4.

By Lemma 2.7,x\ (Y1nY2) consists of only one pointx1. By Lemma 2.8,x\ (Y2nY1)
consists of no points or exactly one point, which is denoted by x3, and the weighted
dual graph ofŶ1[ Ŷ2[��1(x\Y2) is a linear tree as in Fig. 4 (2), whereEs1+1, : : : , Es2

are the irreducible components of��1(x2) and Es2+1, : : : , Es3 are the irreducible com-
ponents of��1(x3) (s2� s1 � 1, s3� s2 � 0). If x = fx1, x2g, then we havebs1+1 = �1
by computing the intersection number of the above linear equivalence andŶ2 + Z(2).
This is a contradiction. Ifx = fx1, x2, x3g, then we havebs1+1 + bs3 = 1 by computing
the intersection number of the above linear equivalence andŶ2 + Z(2) + Z(3). This is a
contradiction.

Lemma 2.11. It does not occur the case where

Y = 2Y1 + Y2 + Y3 (Yi : line) with x1 2 Y1 n (Y2 [ Y3).

Proof. Assume that this case occurs. Note thatx � Y1 and thatŶ1, Ŷ2, Ŷ3 are a
(�1)-curve and two (�2)-curves inM respectively by Lemma 2.5. IfY1\Y2\Y3 is a
smooth point ofX, then we have (̂Y1 � Ŷ2) = (Ŷ2 � Ŷ3) = (Ŷ3 � Ŷ1) = 1 by computing the
intersection number of eacĥYi and 0̂ � 2Ŷ1 + Ŷ2 + Ŷ3 +

P
i bi Ei (bi 2 N). By applying

the blowing-up onŶ1 \ Ŷ2 \ Ŷ3, we obtain a smooth compactification ofC2 with the
conditions in Lemma 2.7. This is a contradiction. ThusY1\Y2\Y3 is a singular point
of X, which is denoted byx2. By Lemma 2.4, the blowing-up morphism atx2 of
X factors� . Thus we have (̂Yi � Ŷj ) = 0 for i 6= j . Hence the weighted dual graph of
Ŷ1[ Ŷ2[ Ŷ3[��1(x2) is not a linear tree andx = fx1, x2g by Lemma 2.7. On the other
hand, the weighted dual graph ofŶ1[ Ŷ2[ Ŷ3[��1(x2) is a linear tree by Lemma 2.8.
This is a contradiction.

Lemma 2.12. It does not occur the case where

Y = 2Y1 + Y2 (Y1: line, Y2: conic) with x1 2 Y1 n Y2.
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Proof. Assume that this case occurs. Note thatx � Y1 and thatŶ1 and Ŷ2 are a
(�1)-curve and a (�2)-curve in M respectively by Lemma 2.5. Note the linear equiv-
alence

0̂ � 2Ŷ1 + Ŷ2 +
X

i

bi Ei

with bi 2 N. If Y1 \ Y2 is a smooth point ofX, then we have (̂Y1 � Ŷ2) = 2 by com-
puting the intersection number of the above linear equivalence andŶ2. By applying
the blowing-ups twice on̂Y1\ Ŷ2, we obtain a smooth compactification ofC2 with the
conditions in Lemma 2.7. This is a contradiction. ThusY1 \ Y2 is a singular point of
X, which is denoted byx2. By computing the intersection number of the above linear
equivalence and̂Y1, we have (̂Y1 � Ŷ2) = 0, 1. If (Ŷ1 � Ŷ2) = 1, then each pair of̂Y1,
Ŷ2 and ��1(x2) meets transversally at only one point since (Ŷ1 � Z(2)) = (Ŷ2 � Z(2)) = 1.
By applying the blowing-up onŶ1 \ Ŷ2 \ ��1(x2), we obtain a smooth compactifi-
cation of C2 with the conditions in Lemma 2.7. This is a contradiction. Thus we
have (Ŷ1 � Ŷ2) = 0. Hencex = fx1, x2g by Lemma 2.7 and the weighted dual graph of
Ŷ1 [ Ŷ2 [ ��1(x2) is a linear tree as in Fig. 5 by Lemma 2.8, whereEs1+1, � � � , Es2

are the irreducible components of��1(x2) (s2�s1 � 1). By computing the intersection
number of the above linear equivalence andŶ2 + Z(2), we obtainbs1+1 = �1. This is a
contradiction.

Lemma 2.13. It does not occur the case where

Y = Y1 + Y2 (Y1: line, Y2: cuspidal cubic) with Y1 \ Y2 = fx1g 6= SingY2.

Proof. Assume that this case occurs. InH �= P2, Y1 and Y2 meet tangentially to
the third order atx1 which is a smooth point ofY2. By Lemmas 2.3 and 2.5,̂Y1 is a
(�1)-curve in M and (Ŷ1 � Z) = (Ŷ2 � Z) = 1. Note that (̂Y1 � Ŷ2) = 0, 1 by computing the
intersection number of̂Y1 and 0̂ � Ŷ1 + Ŷ2 +

P
i bi Ei (bi 2 N). If SingY2 is a smooth

point of X, then we see that̂Y2
�= Y2 and Ŷ2

2 = 1 by the adjunction formula. By apply-
ing the blowing-ups three times on SingŶ2, we obtain a smooth compactification ofC2

with the conditions in Lemma 2.7. This is a contradiction. Thus SingY2 is a singular
point of X, which is denoted byx2, and in particularx = fx1, x2g. By Lemma 2.4, the
blowing-up morphism atx2 of X factors� . Thus Ŷ2 is a smooth curve and in partic-
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ular a (�1)-curve in M since (Ŷ2 � Z) = 1. Note that (̂Y2 � Z(2)) = 2 by Lemma 2.4 and
Z(2) =

Ps2
i =s1+1 ai Ei (ai 2 N). Then we consider the following cases (1), (2) and (3).

(1) Assume that there exists an irreducible componentEi1 of ��1(x2) such that
(Ŷ2 � Ei1) = 2 andai1 = 1. Note that (̂Y2 � Z(2)� Ei1) = 0. By applying the blowing-ups
twice on Ŷ2 \ Ei1, we obtain a smooth compactification ofC2 with the conditions in
Lemma 2.7. This is a contradiction.

(2) Assume that there exist two irreducible componentsEi1 and Ei2 of ��1(x2)
such (Ŷ2 � Ei1) = (Ŷ2 � Ei2) = 1 andai1 = ai2 = 1. Note that (̂Y2 � Z(2) � Ei1 � Ei2) = 0.
By applying the blowing-up on̂Y2\ Ei1 \ Ei2, we obtain a smooth compactification of
C2 with the conditions in Lemma 2.7. This is a contradiction.

(3) Assume that there exists an irreducible componentEi1 of ��1(x2) such that
(Ŷ2 � Ei1) = 1 and ai1 = 2. Note that (̂Y2 � Z(2) � 2Ei1) = 0. Note thatŶ2 [ ��1(x2)
is of simple normal crossing and thatx2 is a rational double point not of typeA. If
(Ŷ1 � Ŷ2) = 0, then x2 is a rational double point of typeA by Lemma 2.8. This is a
contradiction. Thus we have (Ŷ1 � Ŷ2) = 1. Since (̂Y1 � Ŷ2) = (Ŷ1 � Z) = (Ŷ2 � Z) = 1,
each pair ofŶ1, Ŷ2 and ��1(x1) meets transversally at only one point. By applying
the blowing-up onŶ1 \ Ŷ2 \ ��1(x1), we obtain a smooth compactification ofC2 with
the conditions in Lemma 2.7. This is a contradiction.

Lemma 2.14. It does not occur the case where

Y = Y1 + Y2 (Y1: line, Y2: cuspidal cubic) with Y1 \ Y2 6= fx1g = SingY2.

Proof. Assume that this case occurs. Note thatY1 and Y2 meet in H �= P2 tan-
gentially to the third order at a smooth point ofY2 and thatx n fx1g is contained in
Y1 \Y2 and fx1g = SingY2. By Lemma 2.5,Ŷ1 is a (�2)-curve in M with (Ŷ1 � Z) = 0
and Ŷ2 is a (�1)-curve with (Ŷ2 � Z) = 1 or a 0-curve with (̂Y2 � Z) = 2. Note the linear
equivalence

0̂ � Ŷ1 + Ŷ2 +
X

i

bi Ei

with bi 2 N. If Y1 \ Y2 is a smooth point ofX, then we have (̂Y1 � Ŷ2) = 3 by com-
puting the intersection number of the above linear equivalence andŶ1. By applying
the blowing-ups three times on̂Y1 \ Ŷ2, we obtain a smooth compactification ofC2

with the conditions in Lemma 2.7. This is a contradiction. Thus Y1 \ Y2 is a sin-
gular point of X, which is denoted byx2, and in particularx = fx1, x2g. Note that
(Ŷ1 � Z(2)) = (Ŷ2 � Z(2)) = 1 by Lemma 2.4. By computing the intersection number of the
above linear equivalence and̂Y1, we have (̂Y1 � Ŷ2) = 0, 1, 2. If (Ŷ1 � Ŷ2) = 1, 2, then
there exists a unique irreducible componentEi1 of ��1(x2) such thatŶ1, Ŷ2 and Ei1

meet at only one point since (Ŷ1 � Z(2)) = (Ŷ2 � Z(2)) = 1. By applying the blowing-ups
(Ŷ1 � Ŷ2) times onŶ1 \ Ŷ2 \ Ei1, we obtain a smooth compactification ofC2 with the
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conditions in Lemma 2.7. This is a contradiction. Hence we have (Ŷ1 � Ŷ2) = 0. Then
we consider the following cases (1) and (2).

(1) Assume thatŶ2 is a (�1)-curve in M with (Ŷ2 � Z) = 1. By Lemma 2.8,
the weighted dual graph of̂Y1 [ Ŷ2 [ ��1(x2) is a linear tree as in Fig. 6 (1), where
Es1+1,:::, Es2 are the irreducible components of��1(x2) (s2�s1 � 1). By computing the
intersection number of the above linear equivalence andŶ1 + Z(2), we havebs1+1 = �1.
This is a contradiction.

(2) Assume thatŶ2 is a 0-curve inM with (Ŷ2 � Z) = 2. Since (̂Y2 � Z) = 2, we
have multp Z = 1, 2, wherefpg := Ŷ2\SuppZ. If multp Z = 1, then we obtain a smooth
compactification ofC2 with the conditions in Lemma 2.7 by applying the blowing-ups
twice on p. This is a contradiction. If multp Z = 2, then after applying the blowing-
up on p, by Lemma 2.8, we have the weighted dual graph ofŶ1 [ Ŷ2 [ ��1(x2) as in
Fig. 6 (2), whereEs1+1, : : : , Es2 are the irreducible components of��1(x2) (s2�s1 � 1).
By computing the intersection number of the above linear equivalence andŶ1 + Z(2),
we obtainbs1+1 = �1. This is a contradiction.

As a consequence, we obtain the following refined classification of the divisorY.

Proposition 2.15. There exist the following seven possibilities for the divisor Y:
(i) Y = 4Y1 (Y1: line) with x � Y1.
(ii) Y = 3Y1 + Y2 (Yi : line) with x � Y1.
(iii) Y = 2Y1 + 2Y2 (Yi : line) with x � Y and Y1 \ Y2 = fx1g.
(iv) Y = 2Y1 + Y2 + Y3 (Yi : line) with x � Y1 and Y1 \ Y2 \ Y3 = fx1g.
(v) Y = Y1 + Y2 + Y3 + Y4 (Yi : line) with x = fx1g = Y1 \ Y2 \ Y3 \ Y4.
(vi) Y = 2Y1 + Y2 (Y1: line, Y2: conic) with x � Y1 and Y1 \ Y2 = fx1g.
(vii) Y = Y1 + Y2 (Y1: line, Y2: cuspidal cubic) with x = fx1g = Y1 \ Y2 = SingY2.
In particular, for each case, Y contains at least one line through x1.

3. Proof of Theorem 1 for Z2 = �2

In this section, we shall prove Theorem 1 for the caseZ2 = �2. Let (X, Y) be a
pair satisfying Assumption in§1 and Z2 = �2. We use the same notation as that in§1
and §2. We mainly consider a projection fromx1 and a blowing-up atx1 to investigate
the pair (X, Y). First we note thatŶ [ E is a connected divisor without cycles which



ALGEBRAIC EMBEDDINGS OF C2 INTO C3 577

consists of twelve rational curves. For each irreducible componentEi of Z, we may
assume that (Ei � Z) < 0 for 1 � i � s0,1 and (Ei � Z) = 0 for s0,1 < i � s1, where
s0,1 is an integer with 1� s0,1� s1. We put Z1 :=

Ps0,1

i =1 ai Ei and Z2 :=
Ps1

i =s0,1+1 ai Ei ,
where Z2 = 0 is allowed. Thus we obtain an effective decompositionZ = Z1 + Z2.

Since Z2 = �2, we note thats0,1 = 1, 2. Let� : P3! P3 be the blowing-up atx1 with
exceptional divisor1, which is isomorphic toP2. Let T be the proper transform of a

closed algebraic subsetT of P3 by � . We have that� j
P3n1 : P3 n 1 �= P3 n fx1g and

O
P3(1)j1 �= OP2(�1). We setE := X \ 1. We have that� jXnE : X n E �= X n fx1g

and that (X, Y [ E) is a compactification ofC2 with dualizing sheaf!X
�= OX . Let� : X

� ! X be the normalization ofX. Let C
�

be the proper transform of a curveC
in X by � jX Æ �. We have that�jX�n��1(E) : X

� n ��1(E) �= X n E and that (X
�
, Y

� [
��1(E)) is a compactification ofC2. Let  : P3 � � � ! P2 be the projection fromx1

and  : P3 ! P2 the resolution of indeterminacy of . We have that j1 : 1! P2

is an isomorphism and jX : X ! P2 is a generically finite morphism of degree two.
We note that0 � H jX +1jX, 0� � ��( H jX) +��(1jX) and 0̂ �Pt

i =1 ki Ŷi +
Ps

j =1 b j E j

with b j 2 N. Then we have some fundamental lemmas.

Lemma 3.1. One obtains the following:
(i) X is non-normal. Moreover, Xj1 = 2E = 2line and1 \ SingX = E.
(ii) Sing X

�
consists of at most rational double points.

(iii) There exists a birational morphism� : M ! X satisfying� jX Æ � = � . Then��(1jX) = Z and ��( jX)�OP2(1) �= OM (0̂ � Z). Moreover, deg(� jEi ) = �(Ei � Z)
for each irreducible component Ei of Z1 and �(SuppZ2) is a finite set. In particular,� jMnE : M n E �= X n (E [ (� jX)�1(x n fx1g)).
(iv) There exists a birational morphism� � : M ! X

�
satisfying � Æ � � = � . Then

deg(�� jEi ) = 1 and deg(�jEi
� ) = �(Ei � Z) with Ei

�
:= � �(Ei ) for each irreducible com-

ponent Ei of Z1, and � �(SuppZ2) is a finite set. Moreover, � � is a minimal resolution
of X

�
with Exc� � = SuppZ2[��1(x n fx1g). Here one puts the push-forward Weil di-

visor Z
�

:= (� �)�(Z) of X
�
.

(v) Let X
� g! V

h�! P2 be the Stein factorization of jX Æ �. Then V is normal, g
is a birational morphism and h is a finite morphism of degree two. In particular,
gjX�nExcg : X

� n Excg �= V n g(Excg) and Excg is the proper transform of the union
of all lines in X through x1 by � jX Æ �. Thus one obtains the commutative diagram as
in Fig. 7.
(vi) Assume that l is a line in X through x1. Then l

� \ SingX
�

consists of at most
one rational double point of type A and the weighted dual graph of (� �)�1(l

�
) = l̂ [

(� �)�1(l
� \ SingX

�
) is a linear tree� or �—Æ—Æ– � � � –Æ. In particular, g(l

�
) is a

smooth point of V and x\ l = fx1g, fx1, Ang for some n� 1.
(vii) Sing V consists of at most rational double points.
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Fig. 7.

Proof. (i), (ii) The assertions are the general properties of the minimally elliptic
singularity (X, x1) with Z2 = �2. Indeed, we can check the assertions by applying a
blowing-up of the local analytic defining equation of (X, x1) in Theorem 4.57 (2) of
[7] (cf. [8]).

(iii) There exists a birational morphism� : M ! X satisfying � jX Æ � = � by
Lemma 2.3 (i). In particular, we have (� )�1(E) = SuppZ. By the isomorphisms

��(O
P3(�1)jX) �= ��(� jX)�mX,x1

�= ��mX,x1
�= OM (�Z),

we obtain��(1jX) � Z. Since��(1jX) is an effective divisor ofM whose support
equals to SuppZ and the intersection matrix of SuppZ is negative definite, we obtain��(1jX) = Z. In particular, we have

��( jX)�OP2(1)�= ��OX( H jX) �= ��OX(0 �1jX) �= OM (0̂ � Z).

Let Ei be any irreducible component ofZ. Since� jEi is identified with jX Æ � jEi ,
we obtain deg(� jEi ) = �(Ei � Z). By noting that (� jX)�1(x) = E [ (� jX)�1(x n fx1g),
we have� jMnE : M n E �= X n (E [ (� jX)�1(x n fx1g)).

(iv) There exists a birational morphism� � : M ! X
�

satisfying � Æ � � = � by
the lifting property of normalization (cf. Proposition 8.4.3 in [4]). By noting (iii) and
that � is a finite morphism, we obtain the assertions.

(v) Note the general properties of Stein factorization (cf.Corollary III.11.5 in [5]).
(vi) First we note (ii) and that̂l is a (�1)-curve in M by Lemma 2.5 (i). By ap-

plying Lemma 4 in [10] for the morphisms� � : (M, (� �)�1(l
�
)) ! ( X

�
, l
�
) and

g : ( X
�
, l
�
)! (V , g(l

�
)), we obtain the assertions.

(vii) By using (ii), (v) and (vi), we obtain the assertion.

Lemma 3.2. One obtains the following:
(i) H \1 = E. In particular, Y is a union of lines through x1.
(ii) Every line in X through x1 is contained in Y.
(iii) Ŷi is a (�1)-curve in M with (0̂ � Ŷi ) = (Ŷi � Z) = 1 (1� i � t).
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(iv) Yi \ Yj = Yi
� \ Yj

�
= Ŷi \ Ŷj = ; (i 6= j ).

(v) x n fx1g consists of at most rational double points of type A.
(vi) Exc g = Y

�
and gjX�nY� : X

� n Y
� �= V n g(Y

�
).

(vii) (Sing X
�
) n Y

�
= g�1(SingV).

(viii) ( X
�
, Y

� [ SuppZ
�
) and (V , g(SuppZ

�
)) are compactifications ofC2.

Proof. (i) Assume thatH \1 6= E. Let l be any line inH such thatx1 2 l 6� X
and l \ E = ;. Since (X � l )

P3 = 2 and (l \1) \ X = ;, we have

X
p2lnfx1g

 
tX

i =1

ki Yi � l
!

H , p

=
X

p2lnfx1g(X � l )P3, p = 2.

On the other hand, by Proposition 2.15, we have
P

p2lnfx1g�Pt
i =1 ki Yi � l �H , p = 0, 1 for

a general linel in H throughx1. This is a contradiction. Thus we obtainH \1 = E.
Since E � SingX and (X � l )

P3 = 2 for a general linel in H through x1, we see that
Y is a union of lines throughx1.

(ii) Let l be any line inX throughx1. Then we havel \1 � X\1 = E = H \1.
Hence we obtainl � H and thusl � X \ H = Y.

(iii) Note that eachYi is a line in X through x1 by (i).
(iv) Since eachYi is the proper transform of a line throughx1 by the blowing-up

at x1, we see thatYi \ Yj = ; (i 6= j ). By noting this, we obtain the assertions.
(v) By using (i), (ii) and Lemma 3.1 (vi), we obtain the assertion.
(vi) By using (i), (ii) and Lemma 3.1 (v), we obtain the assertions.
(vii) Note (vi) and thatg(Y

�
) consists of smooth points ofV.

(viii) Note (vi) and that��1(E) = SuppZ
�
.

Lemma 3.3. One obtains the following:
(i) Z

�
is the Cartier divisor��(1jX) of X

�
. In particular, (� �)�(Z

�
) = Z.

(ii) g�(Z
�
) = h�( (E)), g�g�(Z

�
) = Z

�
+
Pt

i =1 ki Yi
�

= ��( H jX).

(iii) ki Yi
�

is a Cartier divisor of X
�

(1� i � t).
(iv) 0� �Pt

i =1 ki Yi
�

+ 2Z
�
, 0̂ �Pt

i =1(��)�(ki Yi
�
) + 2Z.

(v) g�(0�) is a smooth Cartier divisor of V with g�(0�) \ SingV = ;.
(vi) g�(0�) � 2g�(Z

�
), g�g�(0�) = 0� +

Pt
i =1 ki Yi

�
.

(vii) (g�(0�) � g�(0�))V = 8, (g�(0�) � g�(Z
�
))V = 4, (g�(Z

�
) � g�(Z

�
))V = 2.

(viii) ( g�(0�) � g�(Z
�
))V ,g(Yi

�
) = ( (0) �  (E))

P2, (Yi ) = ki (1� i � t).

(ix) KX
� � �Z

�
, KV � �g�(Z

�
) = �h�( (E)).

Proof. (i) By Lemma 3.1 (iii) and (iv), we have (� �)���(1jX) = Z. By pushing

this forward, we obtain��(1jX) = (� �)�(Z) = Z
�
.
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(ii) By noting that��(1jX) = Z
�

and jE: E �=  (E), we haveg�(Z
�
) = h�( (E)).

Thus we obtaing�g�(Z
�
) = ��( jX)�( (E)) = ��( H jX) = Z

�
+
Pt

i =1 ki Yi
�
.

(iii) By (i) and (ii), we see that
Pt

i =1 ki Yi
�

is a Cartier divisor ofX
�
. By Lem-

ma 3.2 (iv), we obtain the assertion.
(iv) Note (i), (ii), (iii) and that0� � ��( H jX) + ��(1jX).

(v) First we note that0� is a smooth Cartier divisor ofX
�

with 0� \SingX
�

= ;
which intersects eachYi

�
transversally at only one point by (0 � Yi )X = 1. Since each

g(Yi
�
) is a smooth point ofV , we obtain the assertion.

(vi) By pushing the first relation of (iv) forward, we obtain the first assertion. By
noting (i), (ii), (iii) and (iv), we have (� �)�(g�g�(0�)) � 0̂ +

Pt
i =1(� �)�(ki Yi

�
). Since

Supp(� �)�(g�g�(0�)) = 0̂ [ (� �)�1(Y
�
) and the intersection matrix of (� �)�1(Y

�
) =

(gÆ��)�1(g(Y
�
)) is negative definite, we have (� �)�(g�g�(0�)) = 0̂+

Pt
i =1(� �)�(ki Yi

�
).

By pushing this forward, we obtain the second assertion.
(vii) Note (vi) and that degh = 2 andOV (g�(Z

�
)) �= h�OP2(1).

(viii) By noting that hjg�(0�
) : g�(0�) �=  (0), we obtain the first equality of the

assertion. By the same argument as in the proof of Proposition 2.2 (vi) in [11], we
obtain the second equality of the assertion.

(ix) Since both of SingX
�

and SingV consist of at most rational double points,
we see thatKX

� and KV are Cartier divisors. Since� � is the minimal resolution of

X
�
, we have (� �)�KX

� � KM � �Z. By pushing this forward, we also haveKX
� ��Z

�
. By noting Lemma 3.2 (vi), we obtainKV � �g�(Z

�
).

REMARK . The branch locusB of h is a reduced plane quartic curve. Indeed, this
is showed as follows. First we note that Pic(V) is torsion-free by Lemma 3.1 (vii), Lem-
ma 3.2 (viii), and Proposition 1 in [10]. Thus we obtain the injectivity of h� : Pic(P2) �=
Z ! Pic(V). Let R be the ramification divisor ofh. Since degh = 2, we haveKV �
h�KP2 + R andh�B = 2R. By noting (ix), we obtainh�(B � 4L) � 0 and henceB �
4L � 0, whereL is a line inP2. In the following, we omit the investigation of a detailed
structure ofB since there is no necessity in our arguments.

Lemma 3.4. One obtains the following:
(i) The weighted dual graph of(��)�1(Yi

�
) is given as inFig. 8(a), (b), (c), (d)for

ki = 1, 2, 3, 4respectively, where the integers adjacent to vertices are coefficients in the
divisor (� �)�(ki Yi

�
).

(ii) b2((� �)�1(Y
�
)) = 4. In particular, 8� b2(��1(x1)) � 11.

(iii) (Sing X
�
) n Y

� 6= ;. In particular, SingX
� 6= ; and SingV 6= ;.

(iv) If x\Yi contains more than one point for some i, then2� ki � 4 and (x\Yi )nfx1g
consists of only one rational double point of type Aki�1.
(v) Ŷ [ E is a simple normal crossing divisor of twelve smooth rational curves whose
weighted dual graph is not a linear tree. In particular, each irreducible component Ei

of E is a smooth rational curve with E2i = (Ei � Z)� 2.
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Proof. (i) By Lemma 3.3 (vi), we have (� �)�(g�g�(0�)) = 0̂+
Pt

i =1(� �)�(ki Yi
�
).

By noting that (g Æ � �)jMn(gÆ� � )�1(SingV) : M n (g Æ � �)�1(SingV) ! V n SingV is a

composite of blowing-ups whose exceptional set is (� �)�1(Y
�
) = (gÆ� �)�1(g(Y

�
)) and

that (� �)�(g�g�(0�)) is the total transform ofg�(0�) by gÆ� �, we obtain the assertion.
(ii) By noting (i) and thatŶ[E = (� �)�1(Y

�
)[��1(x1), we obtain the assertions.

(iii) Assume that SingX
� � Y

�
. Then we haveŶ [ E = (� �)�1(Y

�
) [ SuppZ1.

Thus we obtainb2(Ŷ [ E) � 4 + 2 = 6. This is a contradiction.
(iv) By noting (i) and thatX

� n ��1(E) �= X n fx1g, we obtain the assertion.
(v) By usingb2(��1(x1)) � 4 and Proposition 3.5 in [8], we have that��1(x1) is

a simple normal crossing divisor of smooth rational curves.By using pg(x1) 6= 0 and
Satz 2.10 in Brieskorn [3], we see that the weighted dual graph of ��1(x1) is not a
linear tree. By Lemma 3.1 (vi) and (Ŷi �Z) = 1 (1� i � t), we obtain the assertions.

Since Z2 = �2, there exist the following three possibilities for the divisor Z1 =Ps0,1

i =1 ai Ei . From now on, we shall consider these cases separately:
(1) Z1 = E1 with (E1 � Z) = �2.
(2) Z1 = 2E1 with (E1 � Z) = �1.
(3) Z1 = E1 + E2 with (E1 � Z) = (E2 � Z) = �1.

3.1. The caseZ1 = E1 with (E1 � Z) = �2.

Proposition 3.5. This case does not occur.

Proof. Assume that this case occurs. By Lemma 3.4 (v), we havethat E1 is a
(�4)-curve in M. By Lemma 3.3 (iv) and Lemma 3.4 (i), (v), we see that (Ŷi �E1) = 1
and ((� �)�(ki Yi

�
)�ki Ŷi �E1) = 0 (1� i � t). In particular,Y

� \E1
�

consists of smooth
points of X

�
. By contracting the curve (��)�1(Y

�
), we obtain a boundary of a minimal

normal compactification ofC2 which is a union of seven (�2)-curves and one 0-curve.
However its weighted dual graph cannot be found in Morrow’s classification. This is
a contradiction.

3.2. The caseZ1 = 2E1 with (E1 � Z) = �1. By Lemma 3.4 (v), we have that
E1 is a (�3)-curve in M. By Lemma 3.1 (iii) and the isomorphism jE, we obtain

E1
�= E1

� �= g(E1
�
) �=  (E) �= E �= P1. By Lemma 3.1 (iv) and Lemma 3.3 (ii), we

also obtainE1
�

= � �(SuppZ) and g(E1
�
) = h�1( (E)).
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Fig. 9.

Proposition 3.6. There exist the following two cases:
(i) Y = 4Y1 (Y1: line) with x = fx1g.
(ii) Y = 2Y1 + 2Y2 (Yi : line) with x = fx1g = Y1 \ Y2.
Moreover, for the cases(i) and (ii), the weighted dual graphs of̂Y [ E are of types
(XV) and (XVI) in Theorem 1respectively.

Proof. First we note that̂Y [ E is of simple normal crossing. Sincea1 = 2 and
(Ŷi � Z) = 1, we obtain (̂Yi � E1) = 0 (1 � i � t). In particular, Y

� \ E1
�

consists
of singular points ofX

�
. By Lemma 3.4 (i), we have thatx = fx1g and 2� ki � 4

(1� i � t). Thus we obtainY = 4Y1 or Y = 2Y1 + 2Y2 (Yi : line). By Lemma 3.3 (iv),
we obtain

�Pt
i =1(� �)�(ki Y

�
i ) � E1

�
= 2. By noting this, we see that the weighted dual

graphs of (� �)�1(Y
�
)[ E1 are given as in Fig. 9 (a) and (b) for the casesY = 4Y1 and

Y = 2Y1 + 2Y2 respectively. By contracting the curve (� �)�1(Y
�
), we have a boundary

of a smooth compactification ofC2 which is a simple normal crossing divisor of seven
(�2)-curves and one (�1)-curve. By Lemma 2.9, its weighted dual graph is given as
in Fig. 9 (c). Since the (�1)-curve in Fig. 9 (c) is the proper transform ofE1, we
obtain the assertions.

3.3. The caseZ1 = E1 +E2 with (E1 �Z) = (E2 �Z) = �1. By Lemma 3.4 (v), we
have thatE1 and E2 are (�3)-curves inM. By Lemma 3.1 (iv), (v) and Lemma 3.3
(ii), we also have thatE1

� 6= E2
�
, g(E1

�
) 6= g(E2

�
), E1

� [ E2
�

= � �(SuppZ) and
g(E1

�
) [ g(E2

�
) = h�1( (E)). Since SuppZ is connected, both ofE1

� [ E2
�

and
g(E1

�
) [ g(E2

�
) are also connected.

Lemma 3.7. One obtains the following:
(i) Ei

�= Ei
� �= g(Ei

�
) �=  (E) �= E �= P1 (i = 1, 2).

(ii) Both of E1
� \ E2

�
and g(E1

�
) \ g(E2

�
) consist of only one point.

(iii) Sing V = g(E1
�
) \ g(E2

�
), (SingX

�
) n Y

�
= E1

� \ E2
�
.

(iv) (Ŷi � E1 + E2) = 1, ((� �)�(ki Y
�
i )� ki Ŷi � E1 + E2) = 0 (1� i � t).

(v) (SingX
�
) \ (E1

� [ E2
�
) = E1

� \ E2
�
.

(vi) (� �)�1(E1
� \ E2

�
) = Supp(Z � E1� E2), b2(Supp(Z � E1 � E2)) = 6.



ALGEBRAIC EMBEDDINGS OF C2 INTO C3 583

Fig. 10.

(vii) There exist the following two cases:
(a) Y = 2Y1 + Y2 + Y3 (Yi : line), x = x \ Y1 = fx1, A1g, fx1g = Y1 \ Y2 \ Y3.
(b) Y = Y1 + Y2 + Y3 + Y4 (Yi : line), x = fx1g = Y1 \ Y2 \ Y3 \ Y4.

Moreover, for the cases(a) and (b), the weighted dual graphs of(� �)�1(Y
�
)[ E1[ E2

are given as inFig. 10 (a)and (b) respectively.
(viii) E1 \ E2 = ;. Moreover, there exists no irreducible component ofSupp(Z � E1�
E2) intersecting both of E1 and E2.

Proof. (i) By Lemma 3.1 (iii) and the isomorphism jE, we obtain the assertion.

(ii) First we note that (X
�
, Y

� [ E1
� [ E2

�
) and (V , g(E1

�
) [ g(E2

�
)) are com-

pactifications ofC2 and thatX
�

and V are normal. By Proposition 1 (ii) in [10], we
obtain the assertion.

(iii) By Lemma 3.4 (iii), we have that SingV 6= ;. Sinceh�( (E)) = g(E1
�
) +

g(E2
�
) and

P
q2h�1(p) multq V � degh = 2 for any point p of P2, we obtain the first

assertion. By Lemma 3.2 (vii), we also obtain the second assertion.
(iv) By noting (iii), Lemma 3.3 (iv) and Lemma 3.4 (i), (v), weobtain the as-

sertions.
(v) By using (iii) and (iv), we obtain the assertion.
(vi) By using (v) andb2((� �)�1(Y

�
)) = 4, we obtain the assertions.

(vii) By Lemma 3.3 (iv), we obtain
�Pt

i =1(� �)�(ki Yi
�
) � E j

�
= 2 ( j = 1, 2). By

noting this and (iv), we have thatY = 2Y1 + 2Y2, 2Y1 + Y2 + Y3 or Y1 + Y2 + Y3 + Y4

(Yi : line). Now we assume thatY = 2Y1 + 2Y2 (Yi : line). Then we may assume that
Ŷi and Ei n Sing(SuppZ) meet transversally at only one point, which is denoted by
pi , for each i = 1, 2. Let L be a line inP2 such that (h Æ g Æ � �)(p1) 2 L 6=  (E).
Since h�( (E)) = g(E1

�
) + g(E2

�
), we see that the divisor (� �)�g�h�L intersectsZ

transversally at only two pointsp1 and q2, whereq2 is a point of E2 n Sing(SuppZ).
By noting this and Lemma 3.1 (iii), we obtain

OZ(Z) �= OZ(�(0̂ � Z)) �= OZ(�(� �)�g�h�L) �= OZ(�p1 � q2).

By Lemma 3.3 (iv), we obtainOZ(2Z) �= OZ(�2p1�2p2). Thus we obtainOZ(2(q2�
p2)) �= OZ . By Lemma 2.6 (iv), we see thatq2 = p2. Hence we obtain

(h Æ g Æ � �)(p1) = (h Æ g Æ � �)(q2) = (h Æ g Æ � �)(p2).
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By noting that (hÆgÆ� �)(pi ) =  (Yi ) (i = 1, 2), we have (Y1) =  (Y2). On the other
hand, we have (Y1) 6=  (Y2) sinceY1 and Y2 are distinct two lines throughx1. This
is a contradiction. Thus we obtain the assertions.

(viii) Since E1
� \ E2

�
consists of only one point and SuppZ is of simple normal

crossing, we haveE1 \ E2 = ;. Next we assume that there exists an irreducible com-
ponent of Supp(Z� E1� E2) intersecting both ofE1 and E2. By contracting the curve
(��)�1(Y

�
) [ E1 [ E2, we obtain a boundary of a minimal normal compactification of

C2 which is a union of five (�2)-curves and one 0-curve. However its weighted dual
graph cannot be found in Morrow’s classification. This is a contradiction. Thus we
obtain the assertions.

Now we have thatE1
� \ E2

�
is a rational double point ofX

�
of type A6, D6

or E6 by Lemma 3.7 (vi). LetW be the fundamental cycle of (� �)�1(E1
� \ E2

�
).

Then we note that (��)�1(E1
� \ E2

�
) = Supp(Z � E1 � E2) = SuppW =

S8
i =3 Ei and

Z = E1 + E2 +
P8

i =3 ai Ei with a3, : : : , a8 2 N. By Lemmas 2 and 3 in [10], we also
note that (E1 �W) = (E2 �W) = 1. Since (Z � Ei ) = 0 (3� i � 8), we obtain (Z �W) = 0.

Proposition 3.8. Assume thatE1
� \ E2

�
is of type A6. Then the weighted dual

graph ofŶ[E is of type(XVII) or (XVIII) in Theorem 1,for the caseY = 2Y1+Y2+Y3

or Y = Y1 + Y2 + Y3 + Y4 (Yi : line) respectively.

Proof. Assume thatE1
� \ E2

�
is of type A6. Then the weighted dual graph

of SuppW is given as in Fig. 11 (a), where the integers adjacent to vertices are co-
efficients in W. We note that (E3 �W) = (E8 �W) = �1 and (Ei �W) = 0 (4� i � 7).
By computing the intersection number (Z �W), we have

0 = (Z �W) = (E1 �W) + (E2 �W) +
8X

i =3

ai (Ei �W) = 2� a3 � a8.

Thus we obtaina3 = a8 = 1. Moreover, by computing the intersection numbers (Z � E1)
and (Z � E2), we obtain

�P8
i =3 ai Ei � E1

�
=
�P8

i =3 ai Ei � E2
�

= 2. By noting that SuppZ
is of simple normal crossing, we see thatE1 \ (E3 [ E8) = E2 \ (E3 [ E8) = ;. Here
we note Lemma 3.7 (viii). By contracting the curve (� �)�1(Y

�
)[ E1[ E2 and suitable

curves in Ŷ [ E, we have a boundary of a minimal normal compactification ofC2.
Since its weighted dual graph must be found in Morrow’s classification, the weighted
dual graph of SuppZ is uniquely determined as in Fig. 11 (b). By Lemma 3.7 (vii),
we obtain the assertion.

Proposition 3.9. It does not occur the case whereE1
� \ E2

�
is of type D6.

Proof. Assume thatE1
� \ E2

�
is of type D6. Then the weighted dual graph

of SuppW is given as in Fig. 12 (a), where the integers adjacent to vertices are co-
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Fig. 12.

efficients in W. We note that (E1 � W) = (E2 � W) = 1. By contracting the curve
(� �)�1(Y

�
) [ E1 [ E2 and suitable curves in̂Y [ E, we have a boundary of a min-

imal normal compactification ofC2. Since its weighted dual graph must be found in
Morrow’s classification, the weighted dual graph of SuppZ is uniquely determined as
in Fig. 12 (b). We note that (E6 � W) = �1 and (Ei � W) = 0 (i = 3, 4, 5, 7, 8). By
computing the intersection numbers (Z �W) and (Z � E7), we have 0 = (Z �W) = 2�a6

and 0 = (Z � E7) = a6� 2a7 + 1. Thus we obtaina7 = 3=2 =2 N. This is a contradiction.

Proposition 3.10. Assume thatE1
� \ E2

�
is of type E6. Then the weighted dual

graph of Ŷ[ E is of type(XIX) or (XX) in Theorem 1,for the caseY = 2Y1 + Y2 + Y3

or Y = Y1 + Y2 + Y3 + Y4 (Yi : line) respectively.

Proof. Assume thatE1
� \ E2

�
is of type E6. Then the weighted dual graph of

SuppW is given as in Fig. 13 (a), where the integers adjacent to vertices are coefficients
in W. By Lemma 3.7 (viii) and (E1 � W) = (E2 � W) = 1, the weighted dual graph of
SuppZ is uniquely determined as in Fig. 13 (b). By Lemma 3.7 (vii), we obtain the
assertion.

Thus we complete the proof of Theorem 1 for the caseZ2 = �2.

4. Proof of Theorem 1 for Z2 = �1

In this section, we shall prove Theorem 1 for the caseZ2 = �1. Let (X, Y) be
a pair satisfying Assumption in§1 and Z2 = �1. We use the same notation as that
in §1 and §2. We mainly consider a projection fromx1 and a blowing-up atx1 to
investigate the pair (X, Y). First we note thatŶ [ E is a connected divisor without
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cycles which consists of eleven rational curves. SinceZ2 = �1, we may assume that
E1 is a unique irreducible component ofZ =

Ps1
i =1 ai Ei such that (E1 � Z) = �1 and

a1 = 1. Then we have that (Ei � Z) = 0 for any irreducible componentEi of Z �
E1. By Lemma 2.3 (ii), there exists a unique pointp0 of E1 nSing(SuppZ) such that
(� Æ �0)�mX,x1

�= OM 0 (�Z0 � 2E0
0), where�0 : M 0 ! M is a blowing-up atp0 with

exceptional curveE0
0 and Z0 is the proper transform ofZ by �0. We put� 0 := � Æ �0.

Let Ĉ0 be the proper transform of a curveC in X by � 0. Let E0
i and E0 be the proper

transforms ofEi and E by �0 respectively fori � 1. We note that��0 Z = Z0 + E0
0,

Supp��0 Z = (� 0)�1(x1), Exc� 0 = Z0 [ E0
0, KM 0 � �Z0 and Z02 = �2. Let � : P3 !

P3 be the blowing-up atx1 with exceptional divisor1, which is isomorphic toP2.
Let T be the proper transform of a closed algebraic subsetT of P3 by � . We have

that � j
P3n1 : P3 n 1 �= P3 n fx1g and O

P3(1)j1 �= OP2(�1). We setE := X \ 1. We

have that� jXnE : X n E �= X n fx1g and that (X, Y [ E) is a compactification ofC2

with dualizing sheaf!X
�= OX. Let  : P3 � � � ! P2 be the projection fromx1 and : P3! P2 the resolution of indeterminacy of . We have that j1 : 1! P2 is an

isomorphism and jX : X ! P2 is a generically finite morphism of degree two. We
note that0 � H jX +1jX and 0̂ �Pt

i =1 ki Ŷi +
Ps

j =1 b j E j with b j 2 N. Then we have
some fundamental lemmas.

Lemma 4.1. One obtains the following:
(i) X is normal. Moreover, Xj1 = 2E = 2line and E \ SingX consists of only one
point, which is denoted byx1.
(ii) Sing X consists of exactly one minimally elliptic singular pointx1 and at most ra-
tional double points.
(iii) There exists a birational morphism� 0 : M 0 ! X satisfying(� jX) Æ � 0 = � 0. Then
(� 0)�(1jX) = Z0 + 2E0

0, (� 0)�( jX)�OP2(1) �= OM 0 (0̂0 � Z0 � 2E0
0), � 0jE0

0
: E0

0
�= E and� 0(SuppZ0) = fx1g. Moreover, � 0 is a minimal resolution ofX with Exc� 0 = (� 0)�1(x1)[

(� 0)�1(x n fx1g).
(iv) Z0 is the fundamental cycle of(� 0)�1(x1) with Z02 =�2. Moreover, x1 is a minimal-
ly elliptic double point ofX and (� 0)�mX,x1

�= OM 0 (�Z0).
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(v) There exists exactly one line l1 in X through x1. Then x1 2 l1 � Y andx1 2 l1 � Y.
Moreover, ˆl 01 is a (�1)-curve in M0 with ( ˆl 01 � Z0) = 1 and ( ˆl 01 � E0

0) = 0 and l̂ 1 is a (�1)-
curve in M with (l̂ 1 � Z) = 1 and p0 =2 l̂ 1.

(vi) Let X
g�! V

h�! P2 be the Stein factorization of jX. Then V is normal, g is a
birational morphism and h is a finite morphism of degree two. In particular, gjXnl1: Xn
l1 �= V n g(l1) with Excg = l1 = g�1(g(x1)) and (V , g(Y [ E)) is a compactification of
C2. Thus one obtains the commutative diagram as inFig. 14.
(vii) V is a projective normal Gorenstein surface with dualizing sheaf!V

�= OV . More-
over, SingV consists of exactly one minimally elliptic double point g(x1) and at most
rational double points.

Proof. (i) The assertions are the general properties of the minimally elliptic sin-
gularity (X, x1) with Z2 = �1. Indeed, we can check the assertions by applying a
blowing-up of the local analytic defining equation of (X, x1) in Theorem 4.57 (3) of
[7] (cf. [8]).

(ii) By using KX � 0 and Proposition 1 (vi) in [10], we obtainpg(SingX) = 1.
Since� jXnE : X n E �= X n fx1g and E \ SingX = fx1g, we obtain the assertion.

(iii) There exists a birational morphism� 0 : M 0 ! X satisfying (� jX) Æ � 0 = � 0
by Lemma 2.3 (ii). In particular, we obtain (� 0)�1(E) = Supp(Z0 + 2E0

0). By the iso-
morphisms

(� 0)�(O
P3(�1)jX) �= (� 0)�(� jX)�mX,x1

�= OM 0 (�Z0 � 2E0
0),

we obtain (� 0)�(1jX) � Z0+2E0
0. Since (� 0)�(1jX) is an effective divisor ofM 0 whose

support equals to Supp(Z0 + 2E0
0) and the intersection matrix of Supp(Z0 + 2E0

0) is neg-
ative definite, we obtain (� 0)�(1jX) = Z0 + 2E0

0. In particular, we have

(� 0)�( jX)�OP2(1)�= (� 0)�OX( H jX)�= (� 0)�OX(0 �1jX) �= OM 0 (0̂0 � Z0 � 2E0
0).

Let E0
i be any irreducible component of (� 0)�1(x1) for i � 0. Since� 0jE0

i
is identi-

fied with ( jX) Æ (� 0jE0
i
), we obtain deg(� 0jE0

i
) = �(Z0 + 2E0

0 � E0
i )M 0 . Thus we see

that � 0jE0
0
: E0

0
�= E and � 0(SuppZ0) = fx1g. Here we note that Exc� 0 = (� 0)�1(x1) [

(� 0)�1(x n fx1g). Since SuppZ = ��1(x1) and p0 2 E1 n Sing(SuppZ), there exist no
(�1)-curves in SuppZ0 = (� 0)�1(x1). Thus� 0 is a minimal resolution ofX.
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(iv) Note that� 0 gives a minimal resolution of the minimally elliptic singularity
( X, x1) and KM 0 � �Z0. By using Theorem 3.4 in [8], we have thatZ0 is the funda-
mental cycle of (� 0)�1(x1). By using Z02 = �2 and Theorem 3.13 in [8], we see that
multx1 X = 2 and (� 0)�mX,x1

�= OM 0 (�Z0).
(v) There exists at least a linel in X through x1 by Proposition 2.15. By Lem-

ma 2.3 (ii), we obtain (̂l 0 �Z0+2E0
0) = 1. Hencel̂ 0 is a (�1)-curve inM 0 with (l̂ 0 �Z0) = 1

and (̂l 0 �E0
0) = 0. In particular,l̂ is a (�1)-curve in M with (l̂ � Z) = 1 and p0 =2 l̂ . Since

(l̂ 0 � Z0) = 1, we see thatl passes throughx1 necessarily. From this, the existence ofl
is unique. Thus we putl1 := l . By Proposition 2.15 again, we obtainl1 � Y and in
particular l1 � Y.

(vi) Note the general properties of Stein factorization (cf. Corollary III.11.5 in [5]).
(vii) Since degg = 2, SingV consists of at most double points. Note that any

double point is a hypersurface singularity and in particular a Gorenstein singularity.
Thus V is Gorenstein. SincegjXnl1 : X n l1 �= V ng(l1) and KX � 0, we obtainKV � 0.
By applying Proposition 1 (vi) in [10], we obtainpg(SingV) = 1. Hence we obtain
the assertions.

REMARK . The branch locusB of h is a reduced plane sextic curve. Indeed, this
is showed as follows. First we note that Pic(V) is torsion-free by Lemma 4.1, and
Proposition 1 in [10]. Thus we obtain the injectivity ofh� : Pic(P2) �= Z ! Pic(V).
Let R be the ramification divisor ofh. Since degh = 2, we haveKV � h�KP2 + R and
h�B = 2R. By noting thatKV � 0, we obtainh�(B� 6L) � 0 and henceB� 6L � 0,
where L is a line in P2. In the following, we omit the investigation of a detailed
structure ofB since there is no necessity in our arguments.

Lemma 4.2. One obtains the following:
(i) x = fx1g, SingX = fx1g, 1� b2(Y) � 2, b2(E) = 11�b2(Y). In particular, SingV =fg(x1)g.
(ii) E is a simple normal crossing divisor of one(�3)-curve E1 and some(�2)-curves
whose weighted dual graph is not a linear tree.
(iii) l̂ 1 is a (�1)-curve in M with (l̂ 1 � E1) = 1, (̂l 1 � Z � E1) = 0 and p0 =2 l̂ 1.
(iv) l̂ 1 \ SuppZ is a smooth point of Z, which is denoted by p1. In particular, p0 6=
p1 2 E1 n Sing(SuppZ).
(v) OZ(Z) �= OZ(�p0).

Proof. (i) First we show that (l1\SingX)nfx1g = ;. Assume that (l1\SingX)nfx1g 6= ;. By Lemma 2.5 (i) and Lemma 4.1 (ii), there exists an irreducible component
E0

i of (� 0)�1((l1\SingX)nfx1g) which is a (�2)-curve inM 0 with ( ˆl 01�E0
i ) = 1. By using

Z02 =�2 and Lemma 4.1 (v), we obtain (Z0+E0
i +2ˆl 01)2 = 0 directly. On the other hand,

the intersection matrix of (g Æ � 0)�1(g(l1)) = ˆl 01 [ SuppZ0 [ (� 0)�1((l1 \ SingX) n fx1g)
is negative definite. This is a contradiction. Thus we have that l1 \ SingX = fx1g and
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in particular x \ l = fx1g. By noting Proposition 2.15 and Lemma 4.1 (v), we obtain
1� b2(Y) � 2 and x = fx1g. Immediately, we also obtain the other assertions.

(ii) By using b2(E) � 4 and Proposition 3.5 in [8], we have thatE is a simple
normal crossing divisor of smooth rational curves. By usingpg(x1) 6= 0 and Satz 2.10
in [3], we see that the weighted dual graph ofE is not a linear tree. By the adjunction
formula, we obtain the assertion.

(iii) Note that ˆl 01 is a (�1)-curve in M 0 with ( ˆl 01 � Z0) = 1 and (̂l 01 � E0
0) = 0 by

Lemma 4.1 (v). Since (̂l 01 � Z0) = 1, there exists a unique irreducible componentE0
i of

Z0 such that (̂l 01 � E0
i ) = 1 and (̂l 01 � Z0 � E0

i ) = 0. Since the intersection matrix of (g Æ� 0)�1(g(l1)) = ˆl 01[SuppZ0 is negative definite, we obtain 3(E0
i )

2+6 = (Z0+ E0
i +2ˆl 01)2 < 0

and thus (E0
i )

2 � �3. Since p0 2 E1 nSing(SuppZ), we haveE0
i = E0

1. By noting that

( ˆl 01 � E0
0) = 0, we obtain the assertion.

(iv) By noting (iii), we obtain the assertions.
(v) Let L be a line in P2 such that (h Æ g)(x1) =  (x1) =2 L. Then we have

Supp(h Æ g Æ � 0)�L \ SuppZ0 = ;. By the projection formula and (h Æ g Æ � 0)jE0
0
: E0

0
�= (E), we also have ((hÆgÆ� 0)�L � E0

0)M 0 = (L � (E))P2 = 1. Hence (�0)�(hÆgÆ� 0)�L
intersectsZ transversally at only one pointp0, which is a smooth point ofZ. By
Lemma 4.1 (iii), we obtain0̂� Z � (�0)�(h Æ g Æ � 0)�L. By restricting this relation to
Z, we obtain the assertion.

Lemma 4.3. There exists only the case where

Y = 2Y1 + Y2 (Y1: line, Y2: conic) with x = Y1 \ Y2 = fx1g.
In this case, one has that Y1 = l1,  ( H ) =  (E) and H jX = 2Y1 + Y2 + E. Moreover,
one has that g(Y2) 6= g(E), g(Y2)+g(E) = h�( (E)) and Y2

�= g(Y2) �=  (E) �= g(E) �=
E �= P1.

Proof. By Proposition 2.15, Lemma 4.1 (v) and Lemma 4.2 (i), there exist the
following four possibilities:
(1) Y = 4Y1 (Y1: line) with x = x \ Y1 = fx1g.
(2) Y = 3Y1 + Y2 (Y1, Y2: line) with x = x \ (Y1 n Y2) = fx1g.
(3) Y = 2Y1 + Y2 (Y1: line, Y2: conic) with x = Y1 \ Y2 = fx1g.
(4) Y = Y1 + Y2 (Y1: line, Y2: cuspidal cubic) withx = Y1 \ Y2 = SingY2 = fx1g.
For each case, we note thatY1 = l1, x1 2 Y1 and Yi

�= P1 for any i . By noting the
position of x1 in Y and that jX is a generically finite morphism of degree two, we
obtain ( H ) =  (E). First we consider the case (3). In this case, we obtainH jX =
2Y1 +Y2 + E since ( H ) =  (E). By noting Lemma 4.1 (vi) and that jE : E �=  (E),
we have thatg(Y2) 6= g(E), g(Y2)+g(E) = h�( (E)) andY2

�= g(Y2) �=  (E) �= g(E) �=
E �= P1. Next we show that the cases (1), (2) and (4) do not occur.

(1) Assume that the case (1) occurs. Since ( H ) = (E), we obtainH jX = 4Y1+
2E. By Lemma 4.1 (iii), there exists an effective divisorD of M such that SuppD =
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SuppZ and 0̂ � Z � 4Ŷ1 + D. From this, we obtain (D � Ei ) = (3Z � Ei ) for each
irreducible componentEi of Z. Since the intersection matrix of SuppZ = ��1(x1) is
negative definite, we haveD = 3Z and thus0̂ � 4Ŷ1 + 4Z. In particular, we have
OZ(4Z) �= OZ(�4p1). By Lemma 4.2 (v), we also haveOZ(4(p0 � p1)) �= OZ . By
Lemma 2.6 (iv), we obtainp0 = p1. This is a contradiction.

(2) Assume that the case (2) occurs. Since ( H ) =  (E), we obtain H jX =
3Y1 + Y2 + E. By Lemma 4.1 (iii), there exists an effective divisorD of M such that
SuppD = SuppZ and 0̂�Z � 3Ŷ1+Ŷ2+ D. From this, we obtain (D �Ei ) = (2Z �Ei ) for
each irreducible componentEi of Z. Since the intersection matrix of SuppZ = ��1(x1)
is negative definite, we haveD = 2Z and thus0̂ � 3Ŷ1 + Ŷ2 + 3Z. In particular, we
haveOZ(3Z) �= OZ(�3p1). By Lemma 4.2 (v), we haveOZ(3(p0 � p1)) �= OZ . By
Lemma 2.6 (iv), we obtainp0 = p1. This is a contradiction.

(4) Assume that the case (4) occurs. Note thatY1 and Y2 meet at only one point
x1 transversally. In particular,Y2 is smooth. By using (� 0)�mX,x1

�= OM 0 (�Z0) and

Lemma 3 in [10], we obtain (̂Y0
2 � Z0) = 1. On the other hand, we obtain (Ŷ0

2 � Z0) = 0, 2
by Lemma 2.3 (ii). This is a contradiction.

Lemma 4.4. One obtains the following:
(i) Ŷ2 is a (�1)-curve in M with (Ŷ2 � Z) = 1, (Ŷ1 � Ŷ2) = 0 and p0 =2 Ŷ2.
(ii) Ŷ2 \ SuppZ is a smooth point of Z, which is denoted by p2, and p2 6= p0, p1.
(iii) Ŷ [ E is a simple normal crossing divisor of two(�1)-curvesŶ1, Ŷ2, one (�3)-
curve E1 and eight(�2)-curves whose weighted dual graph is not a linear tree.
(iv) 0̂ � 2Ŷ1 + Ŷ2 + 3Z. In particular, OZ(3Z) �= OZ(�2p1 � p2).
(v) OZ(3p0 � 2p1 � p2) �= OZ . In particular, p2 2 E1 n Sing(SuppZ).

Proof. (i) Note that each pair ofY1, Y2 and E meet transversally at only one
point x1 and that the blowing-up morphism atx1 of X factors� 0 by Lemma 4.1 (iv)
and Proposition II.7.14 in [5]. From these, we have (Ŷ0

1 � Ŷ0
2) = (Ŷ0

1 � E0
0) = (Ŷ0

2 � E0
0) = 0.

Thus we obtain the assertion.
(ii) By using (i), we obtain the assertions.
(iii) By (i), (ii) and Lemma 4.2 (ii), (iii), we obtain the assertion.
(iv) Note that H jX = 2Y1 + Y2 + E. By Lemma 4.1 (iii), there exists an effective

divisor D of M such that SuppD = SuppZ and 0̂� Z � 2Ŷ1 + Ŷ2 + D. From this, we
have (D �Ei ) = (2Z �Ei ) for each irreducible componentEi of Z. Since the intersection
matrix of SuppZ = ��1(x1) is negative definite, we obtainD = 2Z and thus0̂ � 2Ŷ1 +
Ŷ2 + 3Z. In particular, we obtainOZ(3Z) �= OZ(�2p1 � p2).

(v) By (iv) and Lemma 4.2 (v), we haveOZ(3p0�2p1� p2) �= OZ and in partic-
ular degOZ(3p0�2p1� p2) = degOZ = (0,: : : , 0). By noting (ii) and thatp0, p1 2 E1,
we obtain p2 2 E1 n Sing(SuppZ).
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Fig. 15.

Proposition 4.5. There exists only the case where

Y = 2Y1 + Y2 (Y1: line, Y2: conic) with x = Y1 \ Y2 = fx1g.
Moreover, the weighted dual graph of̂Y [ E is of type(XXI) in Theorem 1.

Proof. We have already obtained the first assertion. Now we prove the second
assertion. LetŶ�

2 , E�
i and E� be the proper transforms of̂Y2, Ei and E by the con-

traction morphism ofŶ1 respectively. By Lemma 4.2 (iv) and Lemma 4.4 (ii), (iii),
Ŷ�

2 [ E� is a boundary of a smooth compactification ofC2 which is a simple nor-
mal crossing divisor of one (�1)-curve Ŷ�

2 and nine (�2)-curves. By Lemma 2.9 and
p2 2 E1 n Sing(SuppZ), the weighted dual graph of̂Y�

2 [ E� is given as in Fig. 15.
Since p1 2 E1 n Sing(SuppZ) and p1 6= p2, we obtain the assertion.

Thus we complete the proof of Theorem 1 for the caseZ2 = �1.

5. Proof of Theorems 2 and 3

In this section, we shall prove Theorems 2 and 3. We use the same notation as
that in the previous sections. For each weighted dual graph of Ŷ [ E of type (XV)
through (XXI) in Theorem 1, we know the shape of the divisor0̂ [ (Ŷ [ E) by noting
that (0̂ � Ŷi )M = (0 �Yi )X = degYi and (̂0 � E)M = 0. By contracting suitable (�1)-curves
in Ŷ [ E repeatedly, we can obtainP2 or P1 � P1 as a compactification ofC2. Let� = �1Æ� � �Æ�N: MN := M! � � � ! M0 be the composite of blowing-downs toM0 := P2

or P1�P1, where 10� N � 11. Conversely, we obtainM by applying blowing-ups of
M0 on � (Ŷ[E) repeatedly. We denote byPi�1 the center of the blowing-up�i and by
Fi the proper transform of Exc�i = ��1

i (Pi�1) in M for 1� i � N. The birational map� := � Æ ��1 : M0 � � � ! X, which has points of indeterminacy at� (Exc� ), gives an
isomorphismM0 n � (Ŷ[ E) �= X nY. The commutative diagram in Fig. 16 gives a reso-
lution of indeterminacy of�. The imageG := ��0̂ is an irreducible curve onM0 with
SingG = � (Exc� ). Since� is determined by the linear systemj0̂j on M, the map� is
determined by the linear system��j0̂j = jG�m0P0�m1P1� � � � �mN�1PN�1j on M0

with mi � 1. By chasing the process of the resolution of indeterminacyof �, we can
determine a basis of the four-dimensionalC-vector space associated with��j0̂j. Thus
we write down the map� and the pair (X, Y) as the image of� concretely. Finally
we construct a tame automorphism ofC3 explicitly which linearizes the hypersurface
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Fig. 16.

X n Y of P3 n H = C3. Let w = (w0 : w1 : w2) and z = (z0 : z1 : z2 : z3) be homo-
geneous coordinates ofP2 and P3 respectively. Let (x, y) = ((x0 : x1), (y0 : y1)) be a
bihomogeneous coordinate ofP1 � P1.

5.1. The types (XV) and (XVI). For each type, there exists a composite� =�1 Æ � � � Æ �11 : M11 = M ! � � � ! M0 = P2 of blowing-downs toP2 such that Exc� is
contained inŶ [ E. Let L be the image� (Ŷ [ E), which is a line inP2, and L the
proper transform ofL in M. We note that� (Exc� ) = fP0g and Ŷ[ E = L [ �S11

i =1 Fi
�
,

whose weighted dual graph is given as in Fig. 17(XV) or (XVI).By the shape of̂0 [
(Ŷ [ E) and 0̂2 = 4, we see thatG is a plane sextic curve with SingG = G\ L = fP0g
and that� is determined by the linear systemj6L � 2P0 � 2P1 � 2P2 � 2P3 � 2P4 �
2P5� 2P6� P7� P8� P9� P10j, whose base locus consists of only one pointP0. We
may assume thatL = fw2 = 0g and P0 = (0 : 1 : 0). Then we have the next proposition
by computing directly.

Proposition 5.1. One obtains the following:
(i) The map� is given, up to automorphisms ofP2 and P3, as follows:

� :

8>>>>><
>>>>>:

z0 = w0w5
2

z1 = f1(w)w3
2

z2 = w1w5
2 + f f1(w) + �1w0w2

2gf f1(w) + �2w0w2
2g

z3 = w6
2

with f1(w) = f1(w0, w1, w2) = w3
0 +w2

1w2 and �1, �2 2 C, where�1 = �2 for the type
(XV) and �1 6= �2 for the type(XVI).
(ii) The pair (X, Y) is given, up to automorphisms ofP3, as follows:

(
X : (z2z3 + �z2

0 + �z0z1 + 
 z2
1)2 + z0z3

3 + z3
1z3 = 0

Y : z3 = (�z2
0 + �z0z1 + 
 z2

1)2 = 0

with �, �, 
 2 C and � 6= 0, where�2� 4�
 = 0 for the type(XV) and �2� 4�
 6= 0
for the type(XVI).
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(iii) For each type, there exists a tame automorphism ofC3 which transforms the hyper-
surface Xn Y onto a coordinate hyperplane.

5.2. The types (XVII) and (XVIII). For each type, there exists a composite� = �1 Æ � � � Æ �10: M10 = M ! � � � ! M0 = P1� P1 of blowing-downs toP1� P1 such
that Exc� is contained inŶ[ E. Let C1[C2 be the image� (Ŷ[ E), which is a union
of fibers of the two standard projections ofP1� P1, andC1[C2 the proper transform
of C1 [C2 in M. We note that� (Exc� ) = fP0, P5g and Ŷ [ E = C1 [C2 [ �S10

i =1 Fi
�
,

whose weighted dual graph is given as in Fig. 17 (XVII) or (XVIII). By the shape
of 0̂ [ (Ŷ [ E) and 0̂2 = 4, we see thatG is an irreducible curve of bidegree (4, 4)
with SingG = G \ (C1 [ C2) = fP0, P5g and that� is determined by the linear systemj(4C1 +4C2)� (2P0 +2P1 +2P2 + P3 + P4)� (2P5 +2P6 +2P7 + P8 + P9)j, whose base locus
consists of two pointsP0 and P5. We may assume thatC1 = fy1 = 0g, C2 = fx1 = 0g,
P0 = ((0 : 1), (1 : 0)) andP5 = ((1 : 0), (0 : 1)). Then we have the next proposition by
computing directly.

Proposition 5.2. One obtains the following:
(i) The map� is given, up to automorphisms ofP1� P1 and P3, as follows:

� :

8>>>>><
>>>>>:

z0 = x0x3
1 y0y3

1

z1 = f2(x, y)x2
1 y2

1

z2 = �3x4
1 y0y3

1 + f f2(x, y) + �1x0x1y0y1gf f2(x, y) + �2x0x1y0y1g
z3 = x4

1 y4
1

with f2(x, y) = f2(x0, x1, y0, y1) = x2
0 y2

0 + x0x1y2
1 + x2

1 y0y1, �1, �2, �3 2 C and �3 6= 0,
where (�1� �2)2f(�1� �2)2 + 4�3g = 0 for the type(XVII) and (�1� �2)2f(�1� �2)2 +
4�3g 6= 0 for the type(XVIII).
(ii) The pair (X, Y) is given, up to automorphisms ofP3, as follows:

(
X : (z2z3 + �z2

0 + �z0z1 + 
 z2
1)2� (z0z3 + z2

1)2 + z1z3
3 = 0

Y : z3 = (�z2
0 + �z0z1 + 
 z2

1)2 � z4
1 = 0

with �, �, 
 2 C and � 6= 0, where f�2� 4�(
 � 1)gf�2 � 4�(
 + 1)g = 0 for the type
(XVII) and f�2 � 4�(
 � 1)gf�2 � 4�(
 + 1)g 6= 0 for the type(XVIII).
(iii) For each type, there exists a tame automorphism ofC3 which transforms the hyper-
surface Xn Y onto a coordinate hyperplane.

5.3. The types (XIX) and (XX). For each type, there exists a composite� =�1 Æ � � � Æ �11 : M11 = M ! � � � ! M0 = P2 of blowing-downs toP2 such that Exc�
is contained inŶ [ E. Let L be the image� (Ŷ [ E), which is a line inP2, and
L the proper transform ofL in M. We note that� (Exc� ) = fP0, P7g and Ŷ [ E =
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L [ �S11
i =1 Fi

�
, whose weighted dual graph is given as in Fig. 17 (XIX) or (XX). By

the shape of0̂ [ (Ŷ [ E) and 0̂2 = 4, we see thatG is a plane sextic curve with
SingG = G \ L = fP0, P7g and that� is determined by the linear systemj6L � (2P0 +
2P1 + 2P2 + 2P3 + 2P4 + P5 + P6) � (2P7 + 2P8 + P9 + P10)j, whose base locus consists
of two points P0 and P7. We may assume thatL = fw2 = 0g, P0 = (0 : 1 : 0) and
P7 = (1 : 0 : 0). Then we have the next proposition by computing directly.

Proposition 5.3. One obtains the following:
(i) The map� is given, up to automorphisms ofP2 and P3, as follows:

� :

8>>>>><
>>>>>:

z0 = w0w5
2

z1 = f3(w)w3
2

z2 = w2
0w4

2 +w1w5
2 + f f3(w) + �1w0w2

2gf f3(w) + �2w0w2
2g

z3 = w6
2

with f3(w) = f3(w0, w1, w2) = w2
0w1 +w2

1w2 +�3w1w2
2 and �1, �2, �3 2 C, where (�1��2)2f(�1 � �2)2 � 4g = 0 for the type(XIX) and (�1 � �2)2f(�1 � �2)2 � 4g 6= 0 for the

type (XX).
(ii) The pair (X, Y) is given, up to automorphisms ofP3, as follows:

(
X : (z2z3 + �z2

0 + �z0z1 + 
 z2
1)2 � z4

1 + z0z3
3 + Æz2

1z2
3 = 0

Y : z3 = (�z2
0 + �z0z1 + 
 z2

1)2� z4
1 = 0

with �, �, 
 , Æ 2 C and � 6= 0, wheref�2�4�(
 �1)gf�2�4�(
 + 1)g = 0 for the type
(XIX) and f�2 � 4�(
 � 1)gf�2 � 4�(
 + 1)g 6= 0 for the type(XX).
(iii) For each type, there exists a tame automorphism ofC3 which transforms the hyper-
surface Xn Y onto a coordinate hyperplane.

5.4. The type (XXI). For this type, there exists a composite� = �1 Æ � � � Æ�10 : M10 = M ! � � � ! M0 = P2 of blowing-downs toP2 such that Exc� is con-
tained in Ŷ [ E. Let L be the image� (Ŷ [ E), which is a line inP2, and L the
proper transform ofL in M. We note that� (Exc� ) = fP0g, F9 = Ŷ2, F10 = Ŷ1 and
Ŷ [ E = L [ �S11

i =1 Fi
�
, whose weighted dual graph is given as in Fig. 17 (XXI).

By the shape of0̂ [ (Ŷ [ E) and 0̂2 = 4, we see thatG is a plane curve of de-
gree nine with SingG = G \ L = fP0g and that� is determined by the linear systemj9L � 3P0� 3P1� 3P2� 3P3� 3P4� 3P5� 3P6� 3P7� 2P8� P9j, whose base locus
consists of only one pointP0. We may assume thatL = fw2 = 0g and P0 = (0 : 1 : 0).
Then we have the next proposition by computing directly.
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Proposition 5.4. One obtains the following:
(i) The map� is given, up to automorphisms ofP2 and P3, as follows:

� :

8>>>>>><
>>>>>>:

z0 = f4(w)w6
2

z1 = w0w8
2 + f4(w)2w3

2

z2 = w1w8
2 � f4(w)3 +

3

2
f4(w)fw0w5

2 + f4(w)2g
z3 = w9

2

with f4(w) = f4(w0, w1, w2) = w3
0 +w2

1w2 + �w0w2
2 and � 2 C.

(ii) The pair (X, Y) is given, up to automorphisms ofP3, as follows:

8>><
>>:

X : z2
2z2

3 + (2z3
0 + 3z0z1z3)z2� z3

1z3� 3

4
z2

0z2
1 + z0z3

3 + Æ(z1z3 + z2
0)z2

3 = 0

Y : z3 = z2
0

�
z0z2� 3

8
z2

1

�
= 0

with Æ 2 C.
(iii) There exists a tame automorphism ofC3 which transforms the hypersurface XnY
onto a coordinate hyperplane.

REMARK . In (ii), the hypersurfaceX n Y is expressed as follows:

0 = z2
2 + (2z3

0 + 3z0z1)z2� z3
1 � 3

4
z2

0z2
1 + z0 + Æ(z1 + z2

0)

=

�
z2 + z3

0 +
3

2
z0z1

�2� (z1 + z2
0)3 + z0 + Æ(z1 + z2

0)

where (z0, z1, z2) is a coordinate ofC3 = P3 n H .

Thus we complete the proof of Theorems 2 and 3 for the types (XV) through
(XXI) in Theorem 1.
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Fig. 17.
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