<table>
<thead>
<tr>
<th>Title</th>
<th>Supersingular j-invariants as singular moduli mod p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kaneko, Masanobu</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 26(4) P.849-P.855</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1989</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/11354</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/11354</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA
https://ir.library.osaka-u.ac.jp/repo/ouka/all/

Osaka University
1. Introduction. In this paper we shall give some results concerned with the reduction modulo \(p \) of the minimal polynomials of "singular moduli". Let
\[O_D = \mathbb{Z} \left[\frac{1}{2} (D + \sqrt{-D}) \right] \]
be the imaginary quadratic order of discriminant \(-D\) \((D \equiv \{0, 3\} \text{ mod } 4)\). We denote by \(P_D(X) \) the monic polynomial whose roots are precisely the distinct \(j \)-invariants of elliptic curves over \(\overline{\mathbb{Q}} \) with complex multiplication by \(O_D \) (\(\overline{\mathbb{Q}} \) is the algebraic closure of the rationals \(\mathbb{Q} \)). It is well known that \(P_D(X) \) has its coefficients in the ring of integers \(\mathbb{Z} \) and the degree of \(P_D(X) \) is equal to the class number of \(O_D \). Let \(E \) be an elliptic curve defined over \(\mathbb{Q} \) and \(J = j(E) \) be its \(j \)-invariant. As was observed by N. Elkies in [5], if a prime factor \(p \) of the numerator of \(P_D(J) \) satisfies \(\left(\frac{Q(\sqrt{-D})}{p} \right) = 1 \) (i.e., \(p \) does not split completely in \(\mathbb{Q}(\sqrt{-D}) \)), then (provided that \(E \) has good reduction at \(p \)) \(p \) is supersingular for \(E \). Conversely, every supersingular prime \(p \) for \(E \) appears as a prime factor of the numerator of \(P_D(J) \) for some \(D \) with \(\left(\frac{Q(\sqrt{-D})}{p} \right) = 1 \). Elkies pointed out that, for supersingular \(p \), such \(D \) can always be found within the bound \(D < 2p^{2/3} \). Furthermore he made an observation that such bound seemed to be in no way best possible. The first purpose of this paper is to give a better bound \(D \leq \frac{4}{\sqrt{3}} \sqrt{p} \), which is a consequence of the following

Theorem 1. Every supersingular \(j \)-invariant contained in the prime field \(F_p \) is a root of some \(P_D(X) \) mod \(p \) with \(D \leq \frac{4}{\sqrt{3}} \sqrt{p} \).

Here we recall that supersingular \(j \)-invariants in characteristic \(p \) are all contained in \(F_p^2 \) (the field with \(p^2 \) elements) and some of them are in \(F_p \), whose cardinality is related to the class number of the field \(Q(\sqrt{-p}) \). As our \(E \) is defined over \(Q \), \(j(E) \) mod \(p \) is contained in \(F_p \).

1 This work was supported by Grant-in-Aid for Scientific Research, The Ministry of Education, Science and Culture.
Our next theorem concerns common roots of two polynomials \(P_{D_1}(X) \mod p \) and \(P_{D_2}(X) \mod p \).

Theorem 2. If two different discriminants \(-D_1\) and \(-D_2\) satisfy \(D_1 D_2 < 4p \) (in particular \(D_1, D_2 < 2\sqrt{p} \)), then two polynomials \(P_{D_1}(X) \mod p \) and \(P_{D_2}(X) \mod p \) in \(F_p[X] \) have no roots in common. In other words, every prime factor \(p \) of the resultant of \(P_{D_1}(X) \) and \(P_{D_2}(X) \) satisfies

\[
p \leq \frac{D_1 D_2}{4}.
\]

Furthermore, if \(Q(\sqrt{-D_1}) = Q(\sqrt{-D_2}) \), the above inequality \(D_1 D_2 < 4p \) (resp. \(p \leq \frac{D_1 D_2}{4} \)) can be replaced by \(D_1 D_2 < p^2 \) (resp. \(p \leq \sqrt{D_1 D_2} \)).

As our proof will show, each prime factor \(p \) of the resultant of \(P_{D_1}(X) \) and \(P_{D_2}(X) \) divides a positive integer of the form \((D_1 D_2 - x^2)/4\). When \(D_1 \) and \(D_2 \) are fundamental discriminants and relatively prime, this fact was given by B. Gross and D. Zagier in [6] as a corollary of their explicit prime factorization of the resultant of \(P_{D_1}(X) \) and \(P_{D_2}(X) \).

By Deuring’s theory of reduction of elliptic curves, Theorem 2 can be reformulated as the following Theorem 2’ which is a little more general than a theorem of Eichler [3] but the proof is essentially the same. Let \(Q_{m,p} \) be the definite quaternion algebra over \(Q \) which ramifies only at \(p \). The order \(O_B \) is said to be optimally embedded in a maximal order \(R \) of \(Q_{m,p} \) if \(Q(\sqrt{-D}) \) embeds into \(Q_{m,p} \) and \(R \cap Q(\sqrt{-D}) = O_B \).

Theorem 2’. Suppose that two quadratic orders \(O_{D_1} \) and \(O_{D_2} \) are optimally embedded in a maximal order of \(Q_{m,p} \) with different images, then the inequality \(D_1 D_2 \geq 4p \) holds. If \(Q(\sqrt{-D_1}) = Q(\sqrt{-D_2}) \), this inequality can be replaced by \(D_1 D_2 \geq p^2 \).

In the appendix, we shall give an alternative proof of a proposition by Elkies [5] which was crucial for his proof of the infinitude of supersingular primes for elliptic curves over \(Q \).

The author is very grateful to Professor T. Ibukiyama for his helpful communications. The constant of our Theorem 1 was improved to the present form by his remark.

2. **Proof of Theorem 1.** Let \(E \) be an arbitrary supersingular elliptic curve defined over \(F_p \) (hence its \(j \)-invariant is contained in \(F_p \)) and \(\text{End } E \) its endomorphism ring over the algebraic closure of \(F_p \). To prove Theorem 1, it suffices to show that \(\text{End } E \) contains an order \(O_B \) with \(D \leq \frac{4}{\sqrt{3}} \sqrt{p} \). For, if an order \(O_B \) is contained in \(\text{End } E \), by Deuring’s Lifting Lemma ([2, p. 259]), there exists an elliptic curve over \(\overline{Q} \) with complex multiplication by some order \(O_{B'} \).
containing O_p whose reduction to characteristic p is isomorphic to E. Then the j-invariant of E is a root of $P_{O}(X) \mod p$ with $D' \leq D \leq \frac{4}{3}\sqrt{p}$ and Theorem 1 follows. It is well known that, when E is defined over F_p, $\text{End} E$ is isomorphic to a maximal order of $Q_{w,p}$ which contains an element with the minimal polynomial $X^2 + p$ (Frobenius element). On the other hand, such a maximal order has been described explicitly by Ibukiyama in [7] as follows. Choose a prime q such that $q \equiv 3 \mod 8$ and $\left(\frac{-p}{q}\right) = 1$. Here, $\left(\frac{-p}{q}\right)$ is the Legendre's symbol. Then $Q_{w,p}$ can be realized as

$$Q_{w,p} = Q + Q \alpha + Q \beta + Q \alpha \beta,$$

where $\alpha^2 = -p$, $\beta^2 = -q$, and $\alpha \beta = -\beta \alpha$. Choosing an integer r such that $r^2 + p \equiv 0 \mod q$, put

$$O(q, r) = Z + Z \frac{1+\beta}{2} + Z \frac{\alpha(1+\beta)}{2} + Z \frac{(r+\alpha)\beta}{q}.$$

When $p \equiv 3 \mod 4$, we further choose an integer r' such that $r'^2 + p \equiv 0 \mod 4q$ and put

$$O'(q, r') = Z + Z \frac{1+\alpha}{2} + Z \beta + Z \frac{(r'+\alpha)\beta}{2q}.$$

Then a part of Ibukiyama's results says that both $O(q, r)$ and $O'(q, r')$ (their isomorphism classes depend only on q not on r nor r') are maximal orders of $Q_{w,p}$ and any maximal order which contains an element with the minimal polynomial $X^2 + p$ is isomorphic to $O(q, r)$ or $O'(q, r')$ with suitable choice of q. Therefore our task is to show that for any q both $O(q, r)$ and $O'(q, r')$ contain an element $\frac{1}{2}(D + \sqrt{-D})$ (i.e., an element with the minimal polynomial $X^2 - DX + \frac{1}{4}(D^2 + D)$ with $D \leq \frac{4}{3}\sqrt{p}$.

We start with $O(q, r)$. Let

$$\gamma = wo + x \frac{1+\beta}{2} + y \frac{\alpha(1+\beta)}{2} + z \frac{(r+\alpha)\beta}{q}$$

denote an element in $O(q, r)$ ($w, x, y, z \in Z$) and consider the following diophantine equations:

$$\text{tr}(\gamma) = 2w + x = D$$

and

$$n(\gamma) = \left(\frac{w + x}{2}\right)^2 + \frac{p}{4} \left(y^2 + q\left(\frac{x}{2} + \frac{zr}{q}\right)^2 + pq\left(\frac{y}{2} + \frac{z}{q}\right)^2 = \frac{D^2 + D}{4}\right.$$
where \(tr(\gamma) \) (resp. \(n(\gamma) \)) is the reduced trace (resp. norm) of \(\gamma \). These equations are equivalent to

\[
\begin{align*}
2w + x &= D, \\
py^2 + q\left(x + \frac{2x^2}{q} \right)^2 + pq\left(y + \frac{2y}{q} \right)^2 &= D.
\end{align*}
\]

Note that, by our choice of \(q \) and \(r \), for any \(x, y, z \) in \(\mathbb{Z} \) the left hand side of (2-2) always represent an integer congruent modulo 2 to \(x \). So, if integers \(x, y, z \) satisfies (2-2), we can always find an integer \(w \) which satisfies (2-1). Therefore, the problem is to find such \(D \) not greater than \(\frac{4}{\sqrt{3}} \sqrt{p} \) that the equation (2-2) is soluble. Now, if we put \(y = 0 \) in (2-2), we have

\[
\frac{(qx + 2xr)^2 + 4px^2}{q} = D
\]
and the left hand side of (2-3) is a positive definite binary quadratic form in \(x \) and \(z \) with determinant \(4p \). Hence a classical theorem (cf. e.g. [1, p. 30]) assures that there exists integers \(x \) and \(z \) so that the left hand side of (2-3) is less than or equal to \(\sqrt{\frac{4 \times 4p}{3}} = \frac{4}{\sqrt{3}} \sqrt{p} \). This proves our assertion.

As for \(O'(q, r') \) (when \(p \equiv 3 \mod 4 \)), the same calculations will do. Put

\[
\gamma = w + x \frac{1 + \alpha}{2} + y\beta + z(x + \frac{r' + \alpha}{2q}),
\]

From the conditions \(tr(\gamma) = D \) and \(n(\gamma) = \frac{D^2 + D}{4} \) we have

\[
\begin{align*}
2w + x &= D, \\
px^2 + q\left(2y + \frac{x+ r'}{q} \right)^2 + p\beta^2/q &= D.
\end{align*}
\]

As before, for any \(x, y, z \) in \(\mathbb{Z} \) the left hand side of (2-5) is an integer congruent modulo 2 to \(x \) and hence the \(w \) determined by (2-4) is in \(\mathbb{Z} \). Again by putting \(x = 0 \) the left hand side of (2-5) is a positive definite binary quadratic form of determinant \(4p \). Therefore there exists an element \(\gamma \in O'(q, r') \) whose minimal polynomial is \(X^2 - DX + \frac{1}{4}(D^2 + D) \) with \(D \leq \frac{4}{\sqrt{3}} \sqrt{p} \). This concludes our proof of Theorem 1.

3. Proof of Theorem 2'. Suppose that \(O_{D_1} \) and \(O_{D_2} \) are optimally embedded in a maximal order \(R \) of \(\mathbb{Q}_{\alpha_1, \alpha_2} \) with different images. Let \(\alpha_i \) \((i = 1, 2)\) be the images of \(\frac{1}{2}(D_i + \sqrt{-D_i}) \) by these embeddings \((\alpha_1 \neq \alpha_2)\). In \(R \), consider the \(\mathbb{Z} \)-module \(L \) generated by \(1, \alpha_1, \alpha_2, \) and \(\alpha_i \alpha_j \). In general, a module \(\mathbb{Z} \mu_1 + \)}
$Z_{\mu_2} + Z_{\mu_3} + Z_{\mu_4}$ in $Q_{\omega,p}$ has rank 4 if and only if its discriminant $D(\mu_1, \mu_2, \mu_3, \mu_4) = \det(\text{tr}(\mu_1, \mu_2))$ is not equal to 0 (cf. e.g. [3, Ch. 1 §2 Th. 1]). As for our L we have by a direct calculation

$$D(1, \alpha_1, \alpha_2, \alpha_3, \alpha_4) = -\left\{ \frac{D_1 D_2 - (2s - D_1 D_2)^2}{4} \right\}^2,$$

where $s = \text{tr}(\alpha_1 \alpha_2) (\in \mathbb{Z})$. Now consider the element $\beta = (\alpha_1 - \frac{D_1}{2}) (\alpha_2 - \frac{D_2}{2})$ in R. It does not belong to Q (the center of $Q_{\omega,p}$) even when $Q(\sqrt{-D_1}) = Q(\sqrt{-D_2})$ because of our assumption that O_{D_1} and O_{D_2} are optimally embedded with different images. Hence

$$\text{tr}(\beta)^2 - 4n(\beta) = \left(s - \frac{D_1 D_2}{2} \right)^2 - 4 \times \frac{D_1 D_2}{16} = \frac{(2s - D_1 D_2)^2 - D_1 D_2}{4} < 0.$$

Therefore, we have $D(1, \alpha_1, \alpha_2, \alpha_3, \alpha_4) \neq 0$. On the other hand, we can readily show that L is a subring $(\alpha_1, \alpha_2, \alpha_3, \alpha_4 \in L$ etc.) of R. Hence we conclude that L is an order of $Q_{\omega,p}$. As the discriminant of an order in $Q_{\omega,p}$ is divisible by p^2 (the discriminant of maximal orders), we conclude that p divides the positive integer $\frac{1}{4}(D_1 D_2 - (2s - D_1 D_2)^2)$, in particular $p \leq \frac{D_1 D_2}{4}$.

When D_1 and D_2 are given as $D_1 = f_1^2 D$ and $D_2 = f_2^2 D$ with positive integers f_1, f_2, D, we have

$$\frac{D_1 D_2 - (2s - D_1 D_2)^2}{4} = \left(f_1 f_2 D - (2s - D_1 D_2) \right) \left(f_1 f_2 D + (2s - D_1 D_2) \right) (> 0).$$

As the inequality $|f_1 f_2 D \pm (2s - D_1 D_2)| \leq 2f_1 f_2 D$ holds and both $f_1 f_2 D - (2s - D_1 D_2)$ and $f_1 f_2 D - (2s - D_1 D_2)$ are even numbers (since they have same parity and their product is divisible by 4), we must have $p \leq f_1 f_2 D = \sqrt{D_1 D_2}$. This completes our proof.

Appendix. An alternative proof of a proposition in [5]. Let p be a prime number. Recall that $P_o(X)$ denotes the minimal polynomial of a singular modulus having O_o as complex multiplication. In [5] the following proposition played an essential role.

Proposition (Elkies). Assume $p \equiv 3 \pmod{4}$. We have

$$P_o(X) \equiv (X - 12^3) (R(X))^2 \pmod{p}$$

$$P_{4o}(X) \equiv (X - 12^3) (S(X))^2 \pmod{p}$$

2 N. Elkies informed the author that the following proof had also been discovered by D. Zagier.
with some polynomials $R(X), S(X) \in \mathbb{Z}[X]$.

We shall give a proof of this proposition by using two classical results due to Kronecker. First we shall prove the following Proposition'. (Actually in this form Elkies used the proposition.)

Proposition'. We have

\[
P_p(X) \equiv (T(X))^2 \mod p \quad \text{if} \quad p \equiv 1 \pmod{4},
\]

\[
P_p(X) P_{4p}(X) \equiv (U(X))^2 \mod p \quad \text{if} \quad p \equiv 3 \pmod{4}
\]

with some polynomials $T(X), U(X) \in \mathbb{Z}[X]$.

Proof. Let $\Phi_p(X, Y)$ denote the p-th modular polynomial. (cf. [8, Ch. 5 §2]) The following two properties on $\Phi_p(X, Y)$ are known as the "Kronecker's relations":

\[
\begin{align*}
(4-1) \quad & \Phi_p(X, Y) \equiv (X^p - Y)(X - Y^p) \mod p, \\
(4-2) \quad & \Phi_p(X, X) = -\prod_{D} P_p(X)^{r(D)} \\
& = \begin{cases}
-P_{4p}(X) \prod_{p \nmid D} P_D(X)^2 & \text{if } p \equiv 1 \pmod{4} \\
-P_p(X) P_{4p}(X) \prod_{p \nmid D} P_D(X)^2 & \text{if } p \equiv 3 \pmod{4},
\end{cases}
\end{align*}
\]

where the product runs over such D that the order O_D contains an element of norm p and $r(D) = 1$ or 2 according as $p \mid D$ or $p \nmid D$ (cf. [8, Ch. 5 §2 and Ch. 10 App.]) By putting $Y = X$ in (4-1) we get

\[
(4-3) \quad \Phi_p(X, X) \equiv -(X^p - X)^2 \mod p.
\]

Proposition' follows immediately from this and (4-2).

Proof of Proposition. The above relations (4-2) and (4-3) shows that, modulo p, the polynomial $P_p(X) P_{4p}(X)$ is a square and divides $(X^p - X)^2$. Hence each of its roots has multiplicity 2. By Lemma 1 in [5], both $P_p(X)$ mod p and $P_{4p}(X)$ mod p have 12^3 as one of their roots. On the other hand, a lemma of Ibukiyama ([7, Lem. 1.8]) implies that there are no other common roots of $P_p(X)$ mod p and $P_{4p}(X)$ mod p. Therefore the conclusion follows.

References

Department of Mathematics
Osaka University,
Toyonaka, Osaka 560
Japan