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1. Introduction. In this paper we shall give some results concerned with
the reduction modulo p of the minimal polynomials of “singular moduli”. Let

Op=2Z2 [—;7 (D4 _f):| be the imaginary quadratic order of discriminant —D

(D=0,3 mod 4). We denote by P,(X) the monic polynomial whose roots are
precisely the distinct j-invariants of elliptic curves over @ with complex multipli-
cation by O, (@ is the algebraic closure of the rationals @). It is well known
that P,(X) has its coeflicients in the ring of integers Z and the degree of P,(X)
is equal to the class number of Op. Let E be an elliptic curve defined over @
and J=j(E) be its j-invariant. As was observed by N. Elkies in [5], if a prime

factor p of the numerator of P,( J) satisfies (Q(\/ ))zl:l (i-e., p does not split
completely in @(/—D)), then (provided that E has good reduction at p) p is
supersingular for E. Conversely, every supersingular prime p for E appears as a
prime factor of the numerator of Pp(J) for some D with (g(\/_jl)_)>¢ 1. Elkies
pointed out that, for supersingular p, such D can always b’; found within the

bound D<2p*3. Furthermore he made an observation that such bound seemed
to be in no Way best possible. The first purpose of this paper is to give a better

bound D<-—~-+/ p, which is a consequence of the following

\/

Theorem 1. FEvery supersingular j-invaricmt contained in the prime field F,
UiV

Here we recall that supersingular j-invariants in characteristic p are all con-
tained in F (the field with p* elements) and some of them are in F, whose
cardinality is related to the class number of the field Q(v/—p). As our E is
defined over @, j(E) mod p is contained in F,.

is a root of some P,(X) mod p with D<-

1 This work was supported by Grant-in-Aid for Scientific Research, The Ministry of Educa-
tions, Science and Culture.
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Our next theorem concerns common roots of two polynomials P, (X) mod
p and P, (X) mod p.

Theorem 2. If two different discriminants —D, and — D, satisfy D, D,<4p
(in particular D, D,<<2+/'p), then two polynomials P, (X) mod p and Pp(X)
mod p in F,[X] have no roots in common. In other words, every prime factor p

of the resultant of P, (X) and P,,(X) satisfies pSD14 Dz.

Furthermore, if Q(\/ —D,)=@Q(\/—D,), the above inequality D, D,<4p (resp.
P—<—D_149“2) can be replaced by D, D,< p* (resp. p<~/D, D,)-

As our proof will show, each prime factor p of the resultant of Py (X) and
P,,(X) divides a positive integer of the form (D, D,—x*)/4. When D, and D,
are fundamental discriminants and relatively prime, this fact was given by B.
Gross and D. Zagier in [6] as a corollary of their explicit prime factorization
of the resultant of P, (X) and Pp,(X).

By Deuring’s theory of reduction of elliptic curves, Theorem 2 can be re-
formulated as the following Theorem 2’ which is a little more general than a
theorem of Eichler [3] but the proof is essentially the same. Let Q. , be the
definite quaternion algebra over @ which ramifies only at p. The order O, is
said to be optimally embedded in a maximal order R of Q.. , if @ (/ — D) embeds
into Q.. , and RNQ(\/—D)=0,,.

Theorem 2'. Suppose that two quadratic orders Oy, and Oy, are optimally
embedded in a maximal order of Q.., with different images, then the inequality
D, D,>4p holds. If Q(\/—D,)=Q(\/—D,), this inequality can be replaced by
D, D,> #.

In the appendix, we shall give an alternative proof of a proposition by
Elkies [5] which was crucial for his proof of the infinitude of supersingular
primes for elliptic curves over Q.

The author is very grateful to Professor T'. Ibukiyama for his helpful com-
munications. The constant of our Theorem 1 was improved to the present
form by his remark.

2. Proof of Theorem 1. Let E be an arbitrary supersingular elliptic
curve defined over F,(hence its j-invariant is contained in F,) and End E its
endomorphism ring over the algebraic closure of F,. To prove Theorem 1, it

suffices to show that End E contains an order O, with Dg\/;%\/ p. For,ifan

order O, is contained in End E, by Deuring’s Lifting Lemma ([2, p. 259]), there
exists an elliptic curve over @ with complex multiplication by some order O,
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containing O, whose reduction to characteristic p is isomorphic to E. Then the
j-invariant of E is a root of Pp/(X) mod p with D’SDS\/LT\/ p and Theorem

1 follows. It is well known that, when E is defined over F,, End E is isomorphic
to a maximal order of Q.. , which contains an element with the minimal polynomial
X?+p (Frobenius element). On the other hand, such a maximal order has been
described explicitly by Ibukiyama in [7] as follows. Choose a prime g such that

¢=3 mod 8 and <_—P)=1. Here, (_—p) is the Legendre’s symbol. Then Q.. ,
q q
can be realized as

Qx,, = Q+Qu+QB+Qup,

where a?=—p, B*=—¢q, and aB@=—La. Choosing an integer r such that 7+
2=0mod ¢, put

0,1 = 2+214F 17 2U4B) | 7 (4B
2 g

When p=3 mod 4, we further choose an integer 7’ such that r?4p=0 mod
4q and put

0@, r')=z+zl+70£+zpe+z E;.;‘_)@ .

Then a part of Ibukiyama’s results says that both O(q,r) and O’(g,7") (their
isomorphism classes depend only on g not on 7 nor r’) are maximal orders of
Q.,, and any maximal order which contains an element with the minimal poly-
nomial X?+p is isomorphic to O(g,7) or O’(q, r’) with suitable choise of g¢.
Therefore our task is to show that for any g both O(q,7) and O’(g,r’) contain

an element %(D—i-\/ —D) (i.e., an element with the minimal polynomial X?—

DX+%—(D2—|—D)) with ng%.\/?.

We start with O(q, 7). Let
148 a(+), ,(+a)8
2 2 q

denote an element in O(q, ) (w, x, y, 2 Z) and consider the following diophan-
tine equations:

vy =w-+x

tr(y)=2w+x=2D

and

) = (w+-3)+2 y2+q(%+ﬁq’—)z+pq (3+2) =252
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where tr(y) (resp. #(7)) is the reduced trace (resp. norm) of v. These equations
are equivalent to

(2-1) 2wtx=D,
(2-2) py'+q <x+27z')z+pq (y+-2q5)2 =D.

Note that, by our choise of g and 7, for any x, y, 2 in Z the left hand side of (2-2)
always represent an integer congruent modulo 2 to x. So, if integers x, y and =
satisfies (2-2), we can always find an integer w which satisfies (2-1). There-

fore, the problem is to find such D not greater than \/;—%\/ 7 that the equation
(2-2) is soluble. Now, if we put y=0 in (2-2), we have
(2-3) (gu+2z2r)+4pz* _

q

and the left hand side of (2-3) is a positive definite binary quadratic form in x
and 2z with determinant 4p. Hence a classical theorem (cf. e.g. [1, p. 30]) as-
sures that there exists integers x and 2 so that the left hand side of (2-3) is less

than or equal to V 4 ><3 4p :—\)%\/ p. This proves our assertion.

As for O'(q, ') (when p=3 mod 4), the same calculations will do. Put
¥ =wtx —1_]2—0‘7+y/5'—|—z (r'+a)B _{_2(;) BEO’(q, r').

D*+D

From the conditions #r(y)=D and n(y)= 4 we have
(24) 2wt+x=D
r\2 2
(2-5) pPtg (2y+ﬁ’_> +2% _p,
q q

As before, for any x,y, 2 in Z the left hand side of (2-5) is an integer con-
gruent modulo 2 to x and hence the w determined by (24) is in Z. Again by
putting x=0 the left hand side of (2-5) is a positive definite binary quadratic
form of determinant 4p. 'Therefore there exists an element y&O’(g, 7") whose
minimal polynomial is X*— DX+ L (D*+D) with Dg—L\/ p. This concludes
our proof of Theorem 1. 4 V3

3. Proof of Theorem 2’. Suppose that O, and O,, are optimally em-
bedded in a maximal order R of Q.. , with different images. Let a; (i=1, 2) be

the images of %(D,-—{— vV —D;) by these embeddings (a;+a,). In R, consider

the Z-module L generated by 1, a, a,, and ay,. In general, a module Zyu,+
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Zy,+Zps+Zp, in Q. , has rank 4 if and only if its discriminant D(u,, pg, p3, f24)
=det (tr (u; p;)) is not euqal to O (cf. e.g. [3, Ch. 1 §2 Th. 1]). As for our L
we have by a direct calculation

2)2
D(1, @y, ety oty ) — — {Dl Dz-(z‘:—p1 D,) } ’

where s=tr(a,a,) (Z). Now consider the element ,6’=<oz1 —%) <a2 —~%> in
R. Tt does not belong to @ (the center of Q. ,) even when Q(v/—D,)=@Q
(vV/—=D,) because of our assumption that Op and O, are optimally embedded

with different images. Hence
DDy, DD,

tr(BF—n(8) = (s~ E

_ (2s—D, D,)*—D, D2<0 .
4

Therefore, we have D(1, ay, a;, a; a,)F=0. On the other hand, we can readily
show that L is a subring (a?, a, o, L etc.) of R. Hence we conclude that L is
an order of Q. ,. As the discriminant of an order in ., is divisible by p?
(the discriminant of maximal orders), we conclude that p divides the positive
integer %(Dl D,—(2s—D, D,)?), in particular psD—14D2.

When D, and D, are given as D,=f{ D and D,=f} D with positive integers
fis fa» D, we have

D, D,—(2s—D, D,)* — (fLfeD—(2s—D, D,)) (f,foD+(2s—D, Dy)) (>0).
4 4
As the inequality| f, f,D+(2s—D, D,)| <2f, f,D holds and both f, f,D—(2s—
D, D,) and f, f,D—(2s—D, D,) are even numbers (since they have same parity and
their product is divisible by 4), we must have p< f, f,D=+/D, D,. This com-
pletes our proof.

Appendix. An alternative proof of a proposition in [5]?. Let p be a
prime number. Recall that P,(X) denotes the minimal polynomial of a singular
modulus having O, as complex multiplication. In [5] the following proposition
played an essential role.

Proposition (Elkies). Assume p=3 (mod 4). We have

Py(X)=(X—12% (R(X))’ mod p
P,y(X) = (X—12°) (S(X))* mod p

2 N. Elkies informed the author that the following proof had also been discovered by D. Zagier.
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with some polynomials R(X), S(X)eZ [X].

We shall give a proof of this proposition by using two classical results due
to Kronecker. First we shall prove the following Proposition’. (Actually in
this form Elkies used the proposition.)

Proposition’. We have

P(X)=(T(X)y modp if p=1(4),
P(X)Py(X)=(U(X)modp if p=3(4)

with some polynomials T'(X), U(X)eZ[X].

Proof. Let @,(X, Y) denote the p-th modular polynomial. (cf. [8, Ch. 5 §2])
The following two properties on ®,(X, Y) are known as the “Kronecker’s
relations”:

(4-—1) q)p(X, Y) = (XP_ Y) (X—— Yp) modp ’
(42) X X)= __1]')[ Py(X)y®

:{_P wo(X) Iy 5 Po(X)? if p=1(4)
—Py(X) P,y(X) IL,» Po(X) if p=3(4),

where the product runs over such D that the order O, contains an element of
norm p and 7(D)=1 or 2 according as p|D or p ¥ D (cf. [8, Ch. 5 §2 and Ch. 10
App.]) By putting Y=X in (4-1) we get

(4-3) D, (X, X)=—(X?—X)’mod p .
Proposition’ follows immediately from this and (4-2).

Proof of Proposition. The above relations (4-2) and (4-3) shows that,
modulo p, the polynomial P,(X)P,,(X) is a square and divides (X?—X)>%.
Hence each of its roots has multiplicity 2. By Lemma 1 in [5], both P,(X)
mod p and P,,(X) mod p have 123 as one of their roots. On the other hand,
a lemma of Ibukiyama ([7, l.em. 1.8]) implies that there are no other common
roots of P,(X) mod p and P,,(X) mod p. Therefore the conclusion follows.

References

[1] J.W.S. Cassels: ‘“An Introduction to the Geometry of Numbers,” Springer,
1959.

[2] M. Deuring: Die Typen der Multiplikatorenringe elliptischer Funktionen Korper,
Abh. Math. Sem. Univ. Hamburg 14 (1941), 197-272.

[3] M. Eichler: “Lectures on Modular Correspondences,” Tata Inst. Fundamental



(4]
(3]
(6]
(7]
(8]

SUPERSINGULAR j-INVARIANTS 855

Res., Bombay, 1955/6.

M. Eichler: New formulas for the class number of imaginary quadratic fields, Acta
Arith. 49 (1987), 35-43.

N.D. Elkies: The existense of infinitely many supersingular primes for every elliptic
curve over @, Invent. Math. 89 (1987), 561-567.

B.H. Gross and D. Zagier: On singular moduli, J. Reine Angew. Math. 355
(1985), 191-220.

T. Ibukiyama: On maximal orders of division quaternion algebra over the rational
number field with certain optimal embeddings, Nagoya Math. J. 88 (1982), 181-195.
S. Lang: “Elliptic Functions, Second Edition,” Springer, 1987.

Department of Mathematics
Osaka University,
Toyonaka, Osaka 560

Japan








