<table>
<thead>
<tr>
<th>Title</th>
<th>On symmetric sets of unimodular symmetric matrices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nobusawa, Nobuo; Ikeda, Yasuhiko</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 14(3) P.471–P.480</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1977</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/11362</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/11362</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
ON SYMMETRIC SETS OF UNIMODULAR SYMMETRIC MATRICES

YASUHIKO IKEDA AND NOBUO NOBUSAWA

(Received June 17, 1976)

1. Introduction

A binary system A is called a symmetric set if (1) $a\circ a = a$, (2) $(a\circ b)\circ b = a$ and (3) $(a\circ b)\circ c = (a\circ c)\circ (b\circ c)$ for elements a, b and c in A. Define a mapping S_a of A for an element a in A by $S_a(x) = x\circ a$. As in [2], [3] and [4], we denote $S_a(x)$ by xS_a. S_a is a homomorphism of A due to (3), and is an automorphism of A due to (2). Every group is a symmetric set by a definition: $a\circ b = ba^{-1}b$. A subset of a group which is closed under this operation is also a symmetric set.

In this paper, we consider a symmetric set which is a subset of the group $SL_n(K)$ consisting of all unimodular symmetric matrices. We denote it by $SM_n(K)$. For a symmetric set A, we consider a subgroup of the group of automorphisms of A generated by all S_aS_b (a and b in A), and call it the group of displacements of A. We can show that the group of displacements of $SM_n(K)$ is isomorphic to $SL_n(K)/\{\pm 1\}$ if $n \geq 3$ or $n \geq 2$ when $K = F_q$ (Theorem 5). Also we can show that $PSM_n(K)$, which is defined in a similar way that $PSL_n(K)$ is defined, has its group of displacements isomorphic to $PSL_n(K)$ under the above condition (Theorem 6). A symmetric set A is called transitive if $A = aH$, where a is an element of A and H is the group of displacements. A subset B of A is called an ideal if $BS_a \subseteq B$ for every element a in A. For an element a in A, aH is an ideal since $aHS_a = aS_aH = aS_aS_aH = aH$ for every element x in A. Therefore, A is transitive if and only if A has no ideal other than itself. Let F_q be a finite field of q elements ($q = p^n$). We can show that $SM_n(F_q)$ is transitive if $p = 2$ or if n is odd, and that $SM_n(F_q)$ consists of two disjoint ideals both of which are transitive if n is even and $p = 2$ (Theorem 7).

A symmetric subset B of A is called quasi-normal if $BT \cap B = B$ or ϕ for every element T of the group of displacements. When A has no proper quasi-normal symmetric subset, we say that A is simple. In [4], it was shown that if A is simple (in this case, A is transitive as noted above) then the group of displacements is either a simple group or a direct product of two isomorphic simple groups. In [4], we show some examples of $PSM_n(F_q)$. The first example is $PSM_3(F_2)$, which is shown to be a simple symmetric set of 28 elements.
The second example is PSM(F_7), which we show consists of 21 elements and is not simple. We analyze the structure of it and show that PSL(F_7) (which is isomorphic to PSL$_3(F_2)$ and is simple) is a subgroup of A_7. The third example is one of ideals of PSM(F_7) which consists of unimodular symmetric matrices with zero diagonal. It has 28 elements and we can show that it is isomorphic to a symmetric set of all transpositions in S_8. This reestablishes the well known theorem that PSL$_3(F_2)$ is isomorphic to A_8.

2. Unimodular symmetric matrices

Theorem 1. SL$_n(K)$ is generated by unimodular symmetric matrices if $n \geq 3$ or $n \geq 2$ when $K = F_3$.

Proof. Consider a subgroup of SL$_n(K)$ generated by all unimodular symmetric matrices. It is a normal subgroup because if s is a symmetric matrix and u is a non singular matrix then $u^{-1}su = (u'u)^{-1}(u'su)$ which is a product of symmetric matrices. The subgroup clearly contains the center of SL$_n(K)$ properly so that it must coincide with SL$_n(K)$ if $n \geq 3$ or $n \geq 2$ when $K = F_2$ or F_3, since PSL$_n(K)$ is simple. If $n = 2$ and $K = F_2$, Theorem 1 follows directly from $r_1 = r_0 r_\eta$ and $r_1 \mu r_\eta r_0$. If $n = 2$ and $K = F_3$, Theorem 1 does not hold since $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ is not expressed as a product of unimodular symmetric matrices.

Two matrices a and b are said to be congruent if $b = uau$ with a non singular matrix u. Suppose that a is congruent to 1 (the identity matrix) and that $\det a = 1$. Then $1 = u'au$, where we may assume that $\det u = 1$, because otherwise $\det u = -1$ and then we can replace u by uv with $v = \begin{bmatrix} -1 & 0 \\ 1 & \cdots \\ 0 & 1 \end{bmatrix}$.

Theorem 2. Suppose that $n \geq 2$ and $p \neq 2$. Then every unimodular symmetric matrix in SL$_n(F_q)$ is congruent to 1.

Theorem 2 is known. ([1], p. 16)

Theorem 3. Suppose that $n \geq 2$ and $q = 2^m$. If n is odd, every unimodular symmetric matrix in SL$_n(F_q)$ is congruent to 1. If n is even, every unimodular symmetric matrix in SL$_n(F_q)$ is congruent either to 1 or to $J \oplus J \oplus \cdots \oplus J$, where $J = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. The latter occurs if and only if every diagonal entry of the symmetric matrix is zero.

Proof. First, we show a lemma.
Lemma. Suppose that the characteristic of \(K \) is 2. If every diagonal entry of a symmetric matrix \(s \) over \(K \) is zero, then \(u'su \) has the same property where \(u \) is any matrix over \(K \).

Proof. Let \(s=(a_{ij}) \), \(u=(b_{ij}) \), and \(w=(c_{ij}) \). Then \(\Lambda, \cdot, \cdot =\#, \cdot, \cdot \) and \(c_{ii} = \sum_{k,j} b_{ik} a_{kj} b_{ji} = \sum_{k,j} b_{ik} (a_{kj} + a_{jk}) b_{ji} = 0 \) since \(a_{kj} + a_{jk} = 2a_{kj} = 0 \).

Now we return to the proof of Theorem 3. Let \(s=(a_{ij}) \) be a symmetric matrix in \(SL_n(F_q) \). Suppose that \(a_{ii}=0 \) for all \(i \). Then \(a_{1k} \neq 0 \) for some \(k \). Taking a product of elementary matrices for \(u \), we have that, in \(u'su=(b_{ij}) \), \(b_{1k} \neq 0 \) and \(b_{ij}=0 \) for all \(j \neq 2 \). Since \(b_{ij}=b_{ij} = 0 \), we can apply the same argument to the second row (and hence to the second column at the same time) to get a matrix \((c_{ij}) \) congruent to \(s \) such that \((c_{ij})=\begin{bmatrix} 0 & c \\ c & 0 \end{bmatrix} \oplus s' \), where \(s' \) is a symmetric matrix of \((n-2) \times (n-2) \). Then take an element \(d \) in \(F_q \) such that \(d^2 = c^{-1} \), and let \(u=\begin{bmatrix} d & 0 \\ 0 & d \end{bmatrix} \oplus I_{n-2} \), where \(I_{n-2} \) is the identity matrix of \((n-2) \times (n-2) \). Thusfar, we have seen that \(s \) is congruent to \(J \oplus s' \). By Lemma, \(s' \) has the zero diagonal. Proceeding inductively, we can get \(J \oplus J \oplus \cdots \oplus J \) which is congruent to \(s \), if \(s \) has the zero diagonal. In this case, \(n \) must be even. Next, suppose that \(a_{i1} \neq 0 \) for some \(i \). As in above, we can find \(u \) such that \(u'su=\begin{bmatrix} 1 \\ \oplus s' \end{bmatrix} \), where \(s' \) is of \((n-1) \times (n-1) \). By induction, \(s' \) is congruent either to \(I_{n-1} \) or to \(J \oplus J \oplus \cdots \oplus J \). In the former case, \(s \) is congruent to \(1=I \). In the latter case, we just observe that

\[
[1] \oplus J = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.
\]

So, we can reduce \(s \) to the identity matrix by congruence.

Theorem 4. Suppose that \(n \) is even and \(q=2^n \). Then \(SL_n(F_q) \) is generated by \(a^{-1}b \) where \(a \) and \(b \) are unimodular symmetric matrices with zero diagonal. Also, \(SL_n(F_q) \) is generated by \(c^{-1}d \) where \(c \) and \(d \) are unimodular symmetric matrices which have at least one non zero entry in diagonal.

Proof. For \(a \) and \(b \) in Theorem 4, we have \(s^{-1}(a^{-1}b)s=(sas)^{-1}(sbs) \), where \(s \) is a symmetric matrix in \(SL_n(F_q) \). By Lemma, \(sas \) and \(sbs \) have zero diagonal. Since \(SL_n(F_q) \) is generated by symmetric matrices by Theorem 1, the above fact implies that the subgroup of \(SL_n(F_q) \) generated by all \(a^{-1}b \) is a normal subgroup. On the other hand, the center of \(SL_n(F_q) \) consists of \(zI \) where \(z \) is an element of \(F_q \) such that \(z^n=1 \). Since \(zI=a^{-1}(za) \), the center of \(SL_n(F_q) \) is contained in the subgroup generated by \(a^{-1}b \). It is also easy to see that the subgroup contains an element which is not contained in the center. Again, by the simplicity of \(PSL_n \).
(F_q), the subgroup must coincide with the total group. The second part of Theorem 4 is proved in the same way.

3. Symmetric sets of unimodular matrices

Theorem 5. The group of displacements of SM_n(K) is isomorphic to SL_n(K)/{±1} if \(n \geq 3 \) or \(n \geq 2 \) when \(K \neq F_3 \).

Proof. For \(w \in SL_n(K) \) and \(a \in SM_n(K) \), we define a mapping \(T_w \) of \(SM_n(K) \) by \(aT_w = w^t aw \). \(T_w \) is an automorphism of \(SM_n(K) \) since \(w^t (ba^{-1}b)w = (w^t bw)(w^t aw)^{-1} \). If especially \(w = s_1s_2 \) with \(s_1 \) and \(s_2 \) in \(SM_n(K) \), then \(aT_w = s_2(s_1^t a^{-1} s_1^{-1})^{-1}s_2 = a S_{s_1^{-1}} s_{s_2} \), and hence \(T_w = S_{s_1^{-1}} s_{s_2} \). By Theorem 1, \(w \) is a product (of even number) of \(s_i \) in \(SM_n(K) \). Thus \(w \to T_w \) gives a homomorphism of \(SL_n(K) \) onto the group of displacements of \(SM_n(K) \). \(w \) is in the kernel of the homomorphism if and only if \(w^t aw = a \) for every element \(a \) in \(SM_n(K) \). In this case, especially we have \(w^t w = 1 \) or \(w = w^{-1} \). Then \(w^{-1} aw = a \), or \(wa = aw \). Since \(SL_n(K) \) is generated by \(a \), the above implies that \(w \) must be in the center of \(SL_n(K) \). So, \(w = zI \) with \(z \) in \(K \). Then \(w^t w = 1 \) implies \(w^2 = 1 \), or \(z = \pm 1 \). This completes the proof of Theorem 4.

To define \(PSM_n(K) \), we identify elements \(a \) and \(za \) in \(SM_n(K) \) where \(z \) is an element in \(K \) such that \(z^n = 1 \). The set of all classes defined in this way is a symmetric set in a natural way, and we denote it by \(PSM_n(K) \).

Theorem 6. The group of displacements of \(PSM_n(K) \) is isomorphic to \(PSL_n(K) \) if \(n \geq 3 \) or \(n \geq 2 \) when \(K \neq F_3 \).

Proof. Denote by \(a \) an element of \(PSM_n(K) \) represented by \(a \) in \(SM_n(K) \). For \(w \) in \(SL_n(K) \), we define \(T_w : a \to w^t aw \). As before, \(w \to T_w \) gives a homomorphism of \(SL_n(K) \) onto the group of displacements of \(PSM_n(K) \). \(T_w = 1 \) if and only if \(w^t aw = a \) for every \(a \). If \(w \) is in the center of \(SL_n(K) \), then clearly \(T_w = 1 \). So, the kernel of the homomorphism contains the center. On the other hand, we have \[
\begin{bmatrix}
1 & 0 \\
1 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
= \begin{bmatrix}
1 & 1 \\
1 & 2
\end{bmatrix},
\]
which indicates that \(w = \begin{bmatrix}
1 & 1 \\
0 & 1
\end{bmatrix} \oplus I_{n-2} \) is not contained in the kernel. Therefore, the kernel must coincide with the center due to the simplicity of \(PSL_n(K) \). This completes the proof of Theorem 6.

Theorem 7. Suppose that \(n \geq 3 \) or \(n \geq 2 \) if \(K \neq F_3 \). If \(p \neq 2 \) or if \(n \) is odd, then \(SM_n(F_q) \) is transitive. If \(p = 2 \) and \(n \) is even, then \(SM_n(F_q) \) consists of two disjoint ideals, which are transitive.

Proof. First suppose that \(p \neq 2 \) or \(n \) is odd. Then by Theorems 2 and 3, every unimodular symmetric matrix \(a \) is congruent to 1, i.e., \(a = u'u \) with a uni-
modular matrix \(u \). By Theorem 1, \(u \) is a product of even number of unimodular symmetric matrices: \(u = s_1 \cdots s_2 \). Then \(T_n = S_{s_1} S_{s_2} \cdots S_{s_1} \) as in Theorem 6. Then \(a = 1T_n \in 1H \), where \(H \) is the group of displacements. Thus \(SM_n(F_q) \) is transitive in this case. Next suppose that \(p = 2 \) and \(n \) is even. Let \(B_0 \) be the set of all unimodular symmetric matrices with zero diagonal. Elements of \(B_0 \) are congruent to \(j = J \oplus J \oplus \cdots \oplus J \). So, for an element \(a \) in \(B_0 \), there exists \(u \) such that \(u'au = j \). Here \(\det u = 1 \) since \(p = 2 \). By Theorem 4, \(u \) is a product of elements \(a \sim b \) where \(a \) and \(b \) are in \(B_0 \). For \(a \), \(b \) and \(c \) in \(B_0 \), we have \((b \sim c) a (b \sim c) = a S_{c} S_{c} \), from which we can conclude that \(aH(B_0) \), where \(H(B_0) \) is the group of displacements of \(B_0 \), contains \(j \), and hence \(a \in jH(B_0) \). Thus, \(B_0 \) is transitive. It is also clear that \(J_3 \) is an ideal of \(SM_n(F_q) \) by Theorems 4 and 5. In the same way, we can show that the complementary set of \(B_0 \) in \(SM_n(F_q) \) is an ideal of \(SM_n(F_q) \) and is transitive as a symmetric set.

4. Examples

First of all, we recall the definition of cycles in a finite symmetric set (see [3]). Let \(a \) and \(b \) be elements in a finite symmetric set such that \(a S_{1} S_{2} = a \). Then we call a symmetric subset generated by \(a \) and \(b \) a cycle. To indicate the structure of a cycle, we use an expression: \(a_1 - a_2 \cdots \), where \(a_1 = a \), \(a_2 = b \) and \(a_{i+1} = a_{i-1} S_{a} \) \((i \geq 2)\). If a symmetric set is effective (i.e. \(S_1 = S_2 \) whenever \(c \neq d \)), the above sequence is repetitions of some number of different elements (Theorem 2, [3]). For example, \(a_1 - a_2 \cdots - a_n - a_1 - a_2 \cdots \) where \(a_i \neq a_j \) \((1 \leq i \neq j \leq n)\). In this case, we denote the cycle by \(a_1 - a_2 \cdots - a_n \) and call \(n \) the length of the cycle.

Example 1. \(PSM_3(F_2) \) \((= SM_3(F_2))\).

\(SM_3(F_2) \) consists of the following 28 elements.

\[
\begin{align*}
a_1 & = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \\
a_2 & = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \\
a_3 & = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \\
a_4 & = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \\
a_5 & = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \\
a_6 & = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \\
a_7 & = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \\
a_8 & = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \\
a_9 & = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \\
a_{10} & = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \\
a_{11} & = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \\
a_{12} & = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \\
a_{13} & = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \\
a_{14} & = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \\
a_{15} & = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \\
a_{16} & = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \\
a_{17} & = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \\
a_{18} & = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \\
a_{19} & = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \\
a_{20} & = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \\
a_{21} & = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \\
a_{22} & = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \\
a_{23} & = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \\
a_{24} & = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \\
a_{25} & = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \\
a_{26} & = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \\
a_{27} & = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \\
a_{28} & = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix},
\end{align*}
\]
We denote S_{a_i} by S_i, and a transposition (a_i, a_j) by (i, j). Then each S_i is a product of 12 transpositions as follows.

We list the permutations as follows:

- $S_1 = (3, 4) (5, 8) (6, 7) (9, 28) (11, 12) (13, 16) (14, 15) (17, 27) (19, 20) (21, 24) (22, 23) (25, 26)$,
- $S_2 = (5, 7) (6, 8) (9, 28) (10, 18) (11, 20) (12, 19) (13, 24) (14, 23) (15, 22) (17, 26) (25, 27)$,
- $S_3 = (1, 4) (5, 7) (6, 28) (8, 9) (10, 22) (11, 24) (12, 17) (13, 20) (15, 18) (16, 25) (19, 26) (21, 27)$,
- $S_4 = (1, 3) (5, 8) (6, 7) (9, 10) (11, 27) (12, 21) (13, 26) (14, 18) (16, 19) (17, 24) (20, 25)$,
- $S_5 = (1, 14) (2, 3) (4, 23) (6, 11) (8, 24) (9, 13) (10, 25) (12, 26) (15, 21) (16, 18) (20, 28) (22, 27)$,
- $S_6 = (1, 22) (2, 4) (3, 15) (5, 19) (7, 16) (9, 21) (10, 24) (12, 28) (13, 23) (14, 26) (17, 18) (20, 27)$,
- $S_7 = (1, 23) (2, 3) (4, 14) (6, 13) (8, 20) (9, 11) (10, 21) (15, 25) (16, 22) (17, 19) (18, 27) (24, 28)$,
- $S_8 = (1, 15) (2, 4) (3, 22) (5, 21) (7, 12) (9, 19) (10, 26) (11, 25) (13, 18) (14, 24) (16, 28) (17, 23)$,
- $S_9 = (1, 2) (3, 10) (4, 18) (5, 17) (6, 25) (7, 27) (8, 26) (11, 14) (12, 23) (15, 20) (16, 24) (19, 22)$,
- $S_{10} = (1, 22) (2, 4) (3, 15) (5, 19) (7, 16) (9, 21) (10, 24) (12, 28) (13, 23) (14, 26) (17, 18) (20, 27)$,
- $S_{11} = (1, 22) (2, 21) (3, 23) (4, 9) (5, 19) (7, 16) (9, 21) (10, 24) (12, 28) (13, 15) (14, 27) (16, 17) (20, 26) (22, 28)$,
- $S_{12} = (1, 11) (2, 24) (3, 28) (4, 22) (5, 26) (6, 18) (8, 20) (9, 23) (13, 27) (14, 16) (15, 17) (19, 25)$,
- $S_{13} = (1, 6) (2, 25) (3, 14) (4, 26) (5, 17) (7, 22) (8, 18) (10, 11) (12, 24) (16, 23) (19, 27) (21, 28)$,
- $S_{14} = (1, 21) (2, 23) (4, 27) (5, 24) (6, 26) (7, 11) (8, 15) (9, 18) (10, 12) (13, 20) (17, 22) (19, 28)$,
- $S_{15} = (1, 24) (2, 22) (3, 17) (5, 14) (6, 12) (7, 25) (8, 21) (9, 20) (10, 11) (16, 19) (18, 28) (23, 27)$,
- $S_{16} = (1, 7) (2, 26) (3, 25) (4, 15) (5, 18) (6, 23) (8, 27) (9, 26) (13, 15) (14, 16) (17, 27) (25, 28)$,
- $S_{17} = (1, 12) (2, 21) (3, 23) (4, 9) (5, 19) (7, 16) (9, 21) (10, 24) (12, 28) (13, 15) (14, 27) (16, 17) (20, 26) (22, 28)$,
- $S_{18} = (1, 11) (2, 24) (3, 28) (4, 22) (5, 26) (6, 18) (8, 20) (9, 23) (13, 27) (14, 16) (15, 17) (19, 25)$,
- $S_{19} = (1, 6) (2, 25) (3, 14) (4, 26) (5, 17) (7, 22) (8, 18) (10, 11) (12, 24) (16, 23) (19, 27) (21, 28)$,
- $S_{20} = (1, 21) (2, 23) (4, 27) (5, 24) (6, 26) (7, 11) (8, 15) (9, 18) (10, 12) (13, 20) (17, 22) (19, 28)$,
- $S_{21} = (1, 24) (2, 22) (3, 17) (5, 14) (6, 12) (7, 25) (8, 21) (9, 20) (10, 11) (16, 19) (18, 28) (23, 27)$,
- $S_{22} = (1, 7) (2, 26) (3, 25) (4, 15) (5, 18) (6, 23) (8, 27) (9, 26) (13, 15) (14, 16) (17, 27) (25, 28)$,
- $S_{23} = (1, 12) (2, 21) (3, 23) (4, 9) (5, 19) (7, 16) (9, 21) (10, 24) (12, 28) (13, 15) (14, 27) (16, 17) (20, 26) (22, 28)$,
- $S_{24} = (1, 11) (2, 24) (3, 28) (4, 22) (5, 26) (6, 18) (8, 20) (9, 23) (13, 27) (14, 16) (15, 17) (19, 25)$,
From the above, we can find that for a fixed element there exist two cycles of length 7, three cycles of length 4 and three cycles of length 3 which contain the given element. Also we can find that there are exactly 8 cycles of length 7 in the set given by C_2:

$$C_1: 1 - 5 - 14 - 24 - 21 - 15 - 8, \quad C_2: 23 - 5 - 4 - 28 - 10 - 25 - 20, \quad C_3: 11 - 26 - 16 - 21 - 17 - 20, \quad C_4: 6 - 17 - 3 - 12 - 28 - 15 - 18$$

and C_5: 7 - 18 - 14 - 9 - 11 - 4 - 27. By observation we see that every element is contained in exactly two of C_j and that conversely any two of C_i have exactly one element in common. Clearly S_j induces a permutation of C_j, $j=1, 2, \cdots, 8$, and S_j is uniquely determined by its effect on C_j. Now we are going to show that $SM_3(F_2)$ is a simple symmetric set. First, we note that if $t \in C_i$, then there exists t' in C_i such that $t'S_t=t'$. Let B be a quasi-normal symmetric subset. We may assume that B contains 1 ($= a_1$). Suppose that B contains one of C_1 or C_2, say, C_1. For $C_i \neq C_1$, let $s_i = C_i \cap C_i$ and let t_i be such that $t_i \in C_i$ and $t_i \in C_i$. Since there exists t_i' in C_i such that $t_i'S_{t_i}=t_i'$, we have that $BS_{t_i}=B$ by the definition of quasi-normality of B. Then $s_iS_{t_i}$ is contained in B, which implies that two elements of C_i are contained in B. B is a symmetric subset and the length of C_i is 7 (prime), and hence all of the elements in C_i must be in B. Thus B must coincide with the total symmetric set. To discuss the general case, we consider all cycles of length 4 and 3 containing 1: $D_1: 1 - 9 - 2 - 28, \quad D_2: 1 - 26 - 18 - 25, \quad D_3: 1 - 27 - 10 - 17, \quad E_1: 1 - 3 - 4, \quad E_2: 1 - 11 - 12, \quad E_3: 1 - 19 - 20$. Clearly, S_2, S_{10} and S_{18} fix the element 1, and we see that $D_1S_{10}=D_2, \quad D_1S_{18}=D_3, \quad D_3S_{18}=D_2, \quad E_1S_{10}=E_2, \quad E_1S_{10}=E_3$ and $E_2S_{18}=E_3$. Therefore, if B contains one of D_i, it contains all of D_i, and similarly if B contains one of E_i, it contains all of E_i. In this case, we can verify that B contains one of C_i and hence B must coincide with the total set. Lastly suppose that B which contains 1 contains one of 2, 10 and 18, say, 2. Then $B=BS_{10}$ must contain $2S_{10}=18$, and similarly B contains 10. It is concluded that if B contains one of 2, 10 and 18 then B contains all of them. In this case, $2S_4=2$ implies that $BS_4=B$. So, B contains 1$S_4=3$. Thus B contains E_i, and then B coincides with the total set. We have completed the proof that $SM_3(F_2)$ is simple.

Example 2. $PSM_2(F_7)$ ($=SM_2(F_7)/\{\pm 1\}$).

This symmetric set consists of the following 21 elements (mod \{± 1\}).

$$a_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad a_2 = \begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix}, \quad a_3 = \begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix}, \quad a_4 = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix},$$

$$a_5 = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}, \quad a_6 = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}, \quad a_7 = \begin{bmatrix} -3 & 1 \\ 1 & -3 \end{bmatrix}, \quad a_8 = \begin{bmatrix} -1 & 1 \\ 1 & -2 \end{bmatrix},$$
As in Example 1, \(S_j \) stands for \(S_{a_j} \) and \((i, j)\) for \((a_i, a_j)\). Then we have

\[
S_1 = (2, 3) (4, 9) (5, 8) (6, 7) (10, 13) (11, 12) (16, 19) (17, 18), \quad S_2 = (1, 3) (4, 8) (5, 6) (7, 9) (11, 14) (13, 15) (16, 20) (18, 21), \quad S_3 = (1, 2) (4, 6) (5, 9) (7, 8) (10, 15) (12, 14) (17, 21) (19, 20), \quad S_4 = (2, 10) (3, 18) (5, 10) (7, 12) (13, 17) (14, 19) (16, 21), \quad S_5 = (1, 21) (2, 19) (3, 15) (4, 11) (7, 13) (9, 15) (12, 16) (15, 18) (17, 20), \quad S_6 = (1, 7) (2, 19) (3, 8) (4, 14) (9, 15) (12, 20) (13, 21) (16, 17), \quad S_7 = (1, 6) (2, 17) (3, 16) (4, 15) (5, 14) (10, 21) (11, 20) (18, 19), \quad S_8 = (1, 21) (2, 4) (3, 16) (6, 10) (9, 12) (11, 19) (15, 17) (18, 20), \quad S_9 = (1, 20) (2, 17) (3, 5) (6, 11) (8, 13) (10, 18) (14, 16) (19, 21), \quad S_{10} = (1, 13) (3, 15) (4, 11) (7, 21) (8, 14) (9, 18) (12, 17) (16, 20), \quad S_{11} = (1, 12) (2, 14) (5, 10) (7, 20) (8, 19) (9, 15) (13, 16) (17, 21), \quad S_{12} = (1, 11) (3, 14) (4, 15) (5, 16) (6, 20) (8, 13) (10, 19) (18, 21), \quad S_{13} = (1, 10) (2, 15) (4, 17) (5, 14) (6, 21) (9, 12) (11, 18) (19, 20), \quad S_{14} = (2, 11) (3, 12) (4, 19) (6, 10) (7, 13) (9, 16) (15, 20) (17, 18), \quad S_{15} = (2, 13) (3, 10) (5, 18) (6, 11) (7, 12) (8, 17) (14, 21) (16, 19), \quad S_{16} = (1, 15) (2, 10) (4, 21) (5, 12) (6, 17) (7, 8) (9, 14) (11, 18), \quad S_{17} = (1, 14) (3, 11) (4, 13) (5, 20) (6, 16) (7, 9) (8, 15) (10, 19), \quad S_{18} = (1, 14) (2, 12) (4, 6) (5, 15) (7, 19) (8, 20) (9, 10) (13, 16), \quad S_{19} = (1, 15) (3, 13) (4, 14) (5, 6) (7, 18) (8, 11) (9, 21) (12, 17), \quad S_{20} = (2, 10) (3, 13) (4, 9) (5, 17) (6, 12) (7, 11) (8, 18) (14, 21), \quad S_{21} = (2, 12) (3, 11) (4, 16) (5, 8) (6, 13) (7, 10) (9, 19) (15, 20).
\]

It can be verified that we have the following quasi-normal symmetric subsets \(B_i \) which are mapped each other by \(S_{a_i} \) and \((i, j)\) for \((a_i, a_j)\). Then we have \(B_j = \{a_1, a_4, a_{12}\} \), \(B_2 = \{a_3, a_{11}, a_{13}\} \), \(B_3 = \{a_2, a_{12}, a_{17}\} \), \(B_4 = \{a_5, a_{16}, a_{15}\} \), \(B_5 = \{a_7, a_{10}, a_{16}\} \), \(B_6 = \{a_6, a_{13}, a_8\} \), and \(B_7 = \{a_{15}, a_9, a_6\} \). Then we have a homomorphism \(\phi \) of the group generated by all \(S_i \) to the symmetric group of 7 objects \(B_j \) \((j=1, 2, \ldots, 7)\). For example, since \(B_2 S_1 = B_3 \), \(B_2 S_1 = B_5 \) and \(B_4 S_1 = B_4 \) \((k=2, 3, 5, 6)\), we have \(\phi(S_1) = (B_2, B_3) (B_5, B_6) \). Moreover we can see that the homomorphism is into \(A_7 \) (the alternating group). Naturally the homomorphism induces a homomorphism of \(\text{PSL}_2(F_7) \) (= the group of displacements of \(\text{PSM}_2(F_7) \)) into \(A_7 \). Since the former is a simple group, it is an isomorphism onto a subgroup of \(A_7 \). Thus we have shown that \(\text{PSL}_2(F_7) \) is a subgroup of \(A_7 \).

Example 3. An ideal in \(\text{SM}_4(F_2) \).

We consider the set of all unimodular symmetric matrices of \(4 \times 4 \) over \(F_2 \) that
have zero diagonal. It is a symmetric set (an ideal of $SM_4(F_2)$) and consists of the following 28 elements. In the following, $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $J = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

$$a_1 = \begin{bmatrix} J & 0 \\ 0 & J \end{bmatrix}, \quad a_2 = \begin{bmatrix} J & 1 & 0 \\ 1 & 0 & J \end{bmatrix}, \quad a_3 = \begin{bmatrix} J & 0 & 0 \\ 0 & 0 & J \end{bmatrix}, \quad a_4 = \begin{bmatrix} J & 0 \\ 0 & J \end{bmatrix},$$

$$a_5 = \begin{bmatrix} J & 0 \\ 0 & J \end{bmatrix}, \quad a_6 = \begin{bmatrix} J & 1 \\ 1 & J \end{bmatrix}, \quad a_7 = \begin{bmatrix} J & 0 \\ 0 & J \end{bmatrix}, \quad a_8 = \begin{bmatrix} J & 1 \\ 1 & 0 \end{bmatrix},$$

$$a_9 = \begin{bmatrix} J & 1 \\ 1 & J \end{bmatrix}, \quad a_{10} = \begin{bmatrix} J & 1 \\ 1 & J \end{bmatrix}, \quad a_{11} = \begin{bmatrix} 0 & 1 \\ J & 0 \end{bmatrix}, \quad a_{12} = \begin{bmatrix} 0 & J \\ J & 0 \end{bmatrix},$$

$$a_{13} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad a_{14} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad a_{15} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad a_{16} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix},$$

$$a_{17} = \begin{bmatrix} 0 & I \\ I & J \end{bmatrix}, \quad a_{18} = \begin{bmatrix} 0 & J \\ J & 0 \end{bmatrix}, \quad a_{19} = \begin{bmatrix} 0 & 1 \\ 1 & J \end{bmatrix}, \quad a_{20} = \begin{bmatrix} 0 & 1 \\ 1 & J \end{bmatrix},$$

$$a_{21} = \begin{bmatrix} 0 & 1 \\ 1 & J \end{bmatrix}, \quad a_{22} = \begin{bmatrix} 0 & 1 \\ 1 & J \end{bmatrix}, \quad a_{23} = \begin{bmatrix} J & I \\ I & 0 \end{bmatrix}, \quad a_{24} = \begin{bmatrix} J & I \\ I & 0 \end{bmatrix},$$

$$a_{25} = \begin{bmatrix} J & 1 \\ 1 & 0 \end{bmatrix}, \quad a_{26} = \begin{bmatrix} J & 1 \\ 1 & 0 \end{bmatrix}, \quad a_{27} = \begin{bmatrix} J & 1 \\ 1 & 0 \end{bmatrix}, \quad a_{28} = \begin{bmatrix} J & 1 \\ 1 & 0 \end{bmatrix}.$$
We can verify that the length of all cycles is three and there exist six cycles which contain a given element. On the other hand, the symmetric set consisting of all transpositions in S_8 satisfies the same property. As a matter of fact, we can find an isomorphism ϕ of our symmetric set to the latter as follows.

$$
\begin{align*}
\phi(a_1) &= (1, 2), \\
\phi(a_2) &= (4, 7), \\
\phi(a_3) &= (4, 8), \\
\phi(a_4) &= (3, 5), \\
\phi(a_5) &= (3, 6), \\
\phi(a_6) &= (6, 8), \\
\phi(a_7) &= (5, 7), \\
\phi(a_8) &= (5, 8), \\
\phi(a_9) &= (6, 7), \\
\phi(a_{10}) &= (3, 4), \\
\phi(a_{11}) &= (7, 8), \\
\phi(a_{12}) &= (5, 6), \\
\phi(a_{13}) &= (4, 6), \\
\phi(a_{14}) &= (4, 5), \\
\phi(a_{15}) &= (3, 8), \\
\phi(a_{16}) &= (3, 7), \\
\phi(a_{17}) &= (1, 3), \\
\phi(a_{18}) &= (2, 4), \\
\phi(a_{19}) &= (2, 5), \\
\phi(a_{20}) &= (2, 6), \\
\phi(a_{21}) &= (1, 7), \\
\phi(a_{22}) &= (1, 8), \\
\phi(a_{23}) &= (2, 3), \\
\phi(a_{24}) &= (1, 4), \\
\phi(a_{25}) &= (1, 5), \\
\phi(a_{26}) &= (1, 6), \\
\phi(a_{27}) &= (2, 7), \\
\phi(a_{28}) &= (2, 8).
\end{align*}
$$

Since the group of displacements of the symmetric set of all transpositions in S_8 coincides with A_8, this reestablishes the well known theorem of Dickson that $PSL_4(F_2)$ is isomorphic to A_8.

References