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1. Introduction

Let {Hp\p^R} be a family of separable real Hubert spaces which are
modeled on the Sobolev spaces on a compact manifold without boundary.
Consider a stationary process L(ω, t) on a probability space (Ω, £?, P) with values
in a certain class of linear operators on H~°°=\JHP, which are modeled on

pseudo-differential operators. Denote by L the mean operator of L(ω, t). We
assume that the following abstract Cauchy problems are Veil-posed':

(1.1)

and

(1.2)

The aim of this paper is to investigate the fluctuation of u*(ω, t) around u°(t)
where we(ω, t) and uQ(t) are the solutions of (1.1) and (1.2) respectively. Precisely,
let C([0, T]-*Hq) be the space of all continuous functions on [0, T] with values
in Hq, for q^R. Under the assumption (A.I), (A.II), and (A.III) in Section 2,

we show that for any Γ>0, the stochastic process X\ω, t)=U^ω'^—U^ con-

verges weakly to a Gaussian process X°(ω, t) in the sense of distribution on
C([0, T]-*Hq) for any q<p—a, where a is determined by the assumptions.

A mathematical motivation of this paper was taken from Khas'minskii's
work [8]. We summarize his work here. Let F(ω, t, x) be a strongly mixing
process which is a twice differentiable vecter field on Rd for each ω and t. Let
F(x) be the vector field defined as the mean of the process ^(ω, t, x) in some sense.
He considered the following Cauchy problems

at
= Lu(t}
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(1.3)

and

(1.4) s

and proved the fluctuation of x*(t) around x\t) where x*(t) and x°(f) are the
solutions of (1.3) and (1.4) respectively. In other words, our result might be

regarded as an infinite dimensional but linear version of Khas'minskii's work.

In his case, the Cauchy problems (1.3) and (1.4) are always well-posed although

the random functions F(ω, ί, •) are non-linear in general. In particular the

energy estimate (2.4), which plays an imoprtant role in our case, is rather

trivial in virtue of the fundamental theory of ordinary differential equations.
On the contrary, in the infinite dimensional case, the Cauchy problems are
well-studied only for the linear operators. Therefore we shall restrict ourselves
to the linear case and consider the well-posed class J2 which will be defined

in Section 2. Our strongly mixing condition (A.I) is weaker than the assump-

tion (3.3) in [8] in virtue of the boundedness condition of the well-posed class
-C (see Remark 1 in [8, p. 222]). Khas'minskii assumed the existence of in-
finitesimal characteristics instead of the stationarity of the process jF(ω, ty x) but

the author do not know how to express those conditions reasonably in the

infinite dimensional case. This is the reason why we assume that the process

L(ω, t) is stationary in the sense of the assumption (A.Π).

Now we mention the example of the random process Z/(ω, t) which satisfies
our assumptions (A.I), (A.II), and (A.III). Let Td be a rf-dimensional torus
and {η(ω, t): t^R} be a T^-valued stationary process which satisfies the strong-

ly mixing condition (A.I). Consider the following random operator of elliptic

type

L(ω, t) =ajk(x+q(ω, t))dίk+ Σ*/*+ι?(ω, f))8£+φr+?Kω, t)) .

Under some regularity conditions on ajk(x), bj(x) and c(x), we can prove that

for each ω, L(ω, ) belongs to some well-posed class as a function on R with
values in operators on the Sobolev spaces Hp(Td) (p^R) and we can prove that

the random function Z/(ω, f) satisfies the assumptions (A.I), (A.II), and (A.
III). A similar result is valid for random partial differential operators of first

order. The proof of the above facts are given in Section 3. These examples

are essential in the sense that they suggest the formulation of our problem and
illustrate the image of the well-posed class.

It is natural to ask whether the same fluctuation theorem holds or not in
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the case when the process L(ω, t) takes values in partial differential operators

on a non-compact manifold or a manifold with boundary. In the former case,
we have obtained a similar result by use of the weighted Sobolev spaces in

[11] when the manifold is just the ^-dimensional Euclidean space Rd.
We notice that the same problem for the second order parabolic equations is

studied in [14] and related topics can be found in [1, p. 516-p. 533] and [7].
The main theorem is stated after the precise description of our problem in

Section 2. Two typical examples stated above are discussed in Section 3. The

other sections are devoted to the proof of the main theorem in Section 2.
The author would like to express his heartful thanks to Professors

T. Watanabe and N. Ikeda for their encouragements and suggestions.

2. Statement of Theorem

First of all we define a family of abstract Sobolev spaces Hp(p^R) which
are modeled on the Sobolev spaces on an orientable compact manifold without

boundary. Let jf/° be a real separable Hubert space endowed with an inner

product ( , )0 and let Λ be a positive definite self-adjoint operator with the inverse

Λ"1 which is assumed to be a Hubert-Schmidt operator. Let p>Q> put

HP=3)(KP}: the domain of Λ* and define a Hilbertian norm on Hp by IM|^

||Λ*tf||o for u^Hp. Foru(=H°, we define a Hilbertian norm by IMI-,= ||Λ~*n||0.
H"p is defined as the completion of IP by the norm ||| |l-/» Then it is easy to

see that Hp is continuously embedded into Hq for p>q and the inclusion is a

compact operator. Moreover, if p^q+l, the inclusion is a Hubert-Schmidt

operator. Writing H~= D Hp and H~°°= U Hp

y the operator Λ can be uni-
P^R PGR

quely extended to the operator on H~°° which is also denoted by the same letter

Λ. Then the Hubert space Hp is characterized as Hp={u<=H-~\ Λ^e/f0}

and IM|j=||Λfy||0. Such a family of abstract Sobolev spaces is called a scale of

Hubert spaces in Daletskii [3].
Next, we introduce a class of time dependent operators on H~°° which satisfy

some conditions for the Vell-posedness' of the equations (1.1) and (1.2). In

what follows, for topological spaces E1 and E2, C(E1-^E2) denotes the space of

all continuous mappings from Eλ into E2.

DEFINITION. Let Hp(p^R) be a family of abstract Sobolev spaces which
are defined above. Given a positive number m and families of positive numbers

{Cp}pf=R and {CTιp} T>QtpeR, we say that a function L( ) defined on R with
values in operators on H~°° belongs to the well-posed class ~C= ~C(m, {Cp}pξΞR,

{CT,P}T>O,P<=R} if it satisfies the following conditions:
(1) For each t^R, L(t) is a linear operator on H~°° and L(t)Hp+mdHp for

any p <Ξ R. Moreover, L( ) <Ξ C(R-+B(Hp+m-*Hp)) and
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(2.1) sup supJ|L(*)W||^C,,

where JB(Hp+m^>Hp) denotes the Banach space of all bounded linear operators
from Hp+m into Hp.

(2) For any Γ>0, and for any u0<=Hp+m

y the Cauchy problem

* = L(t)u(t)
(2-2)

has a solution in C([0, T]-»Hp+m) Π C\[Q, T]-^HP).
(3) (energy estimate). If v( ) e C([0, T] ->Hp+m) Π C^fO, T] ->Hp) satis-

fies

(2.3) = L(ίMί)+/(ί) in

for/(-)eC([0, Γ]̂ )̂, then we have

(2.4) llβ(ί)III^C'1..ί(||β

foral l ίefO, Γ].
(4) For any s>0, Ls( ) also satisfies the conditions (1), (2), and (3). Here

Ls( ) is the operator valued function defined by Ls(ί)=L(ίί).

REMARK. Let L( ) belong to X. Then for any uϋeHp+m and for any
), T]-*Hp+m), the Cauchy problem

u(0) - lib

has a unique solution in C([0, T]->Hp+m)Γ\ C\[Q, T]-*HP) in virtue of the
conditions (2) and (3).

We believe that if one looks at the formulation of Cauchy problems in
[9], [12], and [13] he can see that our assumpitons on X are reasonable.

Now we add the probabilistic assumptions. Let (Ω, £F, P) be a probability
space and {2 ;̂ — oo^^^ί^oo} be a family of sub-σ -algebras of £F with
37^372 for s2^sl and t^t2.

Our first assumption is the following:

(A.I) α(ί) = sup sup | E[ξη]-E[ξ\E[η] \
t ξ,*>

5 00
sa(s) ds < oo . Here sup is taken over all

o ξ. n



FLUCTUATION THEOREM FOR STATIONARY RANDOM OPERATORS 891

SΊoo-measurable ξ with |£|^S1 and all 9T+s-measurable η with l ^ l ^ l . As
usual E[ ] denotes the expectation with respect to the probability measure P.

A stochastic process {Φ(ω, ί); — oo<£<oo} is called a strongly mixing

process with mixing coefficient a(t) if it is 3\ -measurable for each- £ fixed. Let

-C=-C(m, {Cp}peR, {CTyp} T>Q,P<=R) be a well-posed class. Consider a random

function L(ω, •) on (Ω, £F, P) with values in J2. Our second assumption is:

(A.Π) For any u, v^H00, the real valued stochastic process {(L(ω, t)u, v\\

— oo<ί<oo} is a stationary and strongly mixing process with mixing coefficient

a(t).

Then we can define the mean operator L of L(ω, t) as follows: First we

have

(2.6) £|(L( , t)u, v)p\£E\\L( 9 t}u\\p\\v\\p^Cp\\u\\p+m\\v\\p

for any u, vξΞH00, from the condition (1) on JC. Thus, for any uGΞH00 we can

define Lu as an element of ίf° such that E(L( y t)uy v)0=(Luy v)Q for any v^H00

in virtue of Riesz' representation theorem. Obviously Lu is independent of t

since L(ω, t) is stationary. Using the estimate (2.6), L can be extended uniquely

to an operator on H~°° which is also denoted by L. Clearly, L satisfies the

condition (1) on Jβ as a constant operator valued function on R. But we do

not know whether L belongs to _£ or not. From this point of view, our last

assumption is:

(A.III) The operator L belongs to X.

Nwo we can state our result.

Theorem. Let -C=-C(m, {Cp}pςΞR, {CTtp} τ>0fp^R) be a well-posed class on

the abstract Sobolev spaces Hp(p^K) and let L(ωy t) be a random function satisfy-

ing the assumptions (A.I), (A.II), and (A.III). For u0(=Hp+3m+1 and £>0, Me

denote by u*(ω, t) and u°(t) the solutions of the abstract Cauchy problems:

( du(t) Ύ( t \ ,.^
—^ = L(ω, —)U(f)

(2.7) \ dt \ β I

( κ(0) = u0

and

[
(2.8) \

I «(0) = «0

respectively. Then for any T>0} we have
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(2.9)

where C is a constant which is independent of 6. Moreover, the distribution of

jr (ω, i) =
 tf ( ^ ^ K V ) converges weakly on C([0, Γ]->/P) <w a £0^ to 0. Γfe

/iwώ distribution coincides with the distribution of an Hp+m-valued continuous
stochastic process {XQ(ω, £); O^ί^T} z0/m:/t satisfies the equation

(2.10) J\Γ°(ω, ί) - W\ω, t)+ (' LX\ω, s)ds in Hp

Jo

where the integration in the right hand side means the Bochner integral of an Hp-
valued function on [0, T]. {W\ω,t) 90^t^T} is an Hp+2m-valued continuous
stochastic process with independent increments characterized by

(2.11)

and

J tAs

for v, w&H00, where <(v, wy(u) is given by

(2.13) <*, Wχιι) = dtE[((L(t)-L}u, v)p+2m((L(Q)-L)u,

+((L(0)-ί>, v)p+2m(L(t)-L)u, w)p+2m]

for u^Hp+3m and v,

In the statement of Theorem, we did not refer to the measurability of
#ε(ω, t) but it is guaranteed by the following:

Proposition 2.1. Assume that a random function L(ω, t) with values in X
satisfies that (L(ω, t)u, v\ is 3'-measurable for any u, v^H00. Then for any

p, the solution of the evolution equation

= L(ω, t)u(t)
(2.14)

' u(0) = u0

, T]-+Hp))-measurable, where <B(E) denotes the topological Borel σ-
algebra of a topological space E.

Proof. Let <9l be the Hubert space of all Hubert-Schmidt operators from
H* into Hp~m~l endowed with Hubert-Schmidt norm. We regard X as a
topological subspace of C([0, T]-*M). For a sequence {Ln}Z-o<^ -C we denote
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by #"(•), the solution of the equation —^- = Ln(ϊ)u(t), u(Q) = uQ. Assume that
dt

Ln converges to LQ in C([0, T}-^M) as ra->oo, n*zl. Then we have

in Hp~m and so in Hp^m"1. From the energy estimate (2.4), we have

.-î c,,,.,,., Γ i
Jo

...,7 sup ||L.(*)-I^ί)||s. sup
O^ί^Γ O^^ί7

Thus the function Φ: .fa L( •)-»*/( )eC([0, T]-^ '̂̂ "1) is continuous where

u(t) is the solution of =L(t)u(t), U(^)=UQ. Next we show that the func-
dt

tion L( , •): ω^Ω,->L(ω, )e-^ is 9" I &(-£) -measurable. In virtue of the
second countability of the topological space .£*, it suffices to show that
{ωefl; sup ||L(ω, t)— L(t)\\ffS<8} e£F for any L( )e^and any δ>0. On the

o^/^r
other hand, we have

; sup ||L(ω, t)~L(t)\\HS<8}

and

= U
»=ι

where fe}Γ-ι is a complete orthonormal system of Hp. Since for any

Ip— i = sup |((L(ω, t)-L(t))e, v}p^\
HSβ*

l l»ll ί =ι

and since ίP w J is separable, we conclude that ||(Z/(α>, t)— £(£))^lb-iH-ι is 2**-
measurable. This implies that {ω; sup ||L(ω, ί) — L(ί)||̂ s<δ} e£F. Thus

the function L( , •): ω->L(ω, •) is £F|^ (^-measurable. Since #(α>, •)—
Φ(L(ω, •)), <ω, •) is -3*|̂ (C([0, T]->/ii-w-1))-measurable. On the other hand
u(ωy )^C([0, Γ]-> )̂ by the condition (2) on .£ and C([0, T\-+H*) is a Borel
subset of C([0, Γ]-̂ -̂-̂ -1), we can see that u(ω, t) is £F|^(C([0, T\-+H*))-
measurable.
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3. Examples

In this section we shall give two typical examples of random functions
L(ω, t) which satisfy the assumptions (A.I), (A.II), and (A.III) in the previous
section (see Proposition 3.2 below).

Let M be a ^-dimensional torus Rd\Zd. As usual we identify a point in
M with a point in [0, l)d and a function on M with a function on Rd which is
invariant under the action of Zd. Let HP(M) be the Sobolev space of order p

onM. If we put Hp=Hpβ(M) for some β>—, Hp(p^R) forma family of

abstract Sobolev spaces. In this case, HQ=H°(M)=L2(M) (=L2-space with
respect to the Haar measure on M) and Λ=Λξ where Λo=(l—Δ)1/2 and Δ=

d Q2

Σ —-. Let K be a positive constant and let {AΛ} Λ be a family of positive
« =ι Qxj
numbers where α's are multi-indices. Put

Jl = {a(ty x)\ a(t, •) ia s continuous function from R into C°°(M-*R) and
sup I d*a(t, x) I ̂ AΛ for any multi-index a},

t,x

where Q"=d"ι+'"*'*<>ldxΐι xd$<ι. Consider the following classes of time depend-
ent differential operators:

d
X, = {L(t) = Σ bj(t, x)dί+c(t, x); bj(t, x)

c(t, x)<=Jl j=l, 2, -, d}
and

J72 = {L(t) =^ajk(t, *)8ί, + Σ bj(t, x)d'x+c(t, x);

ajk(t,x)<=Jl,bj(t,x)^Jl,c(t,x)^Jl l^j, k^

and inf Σ βιX«, *)Sfr>K Σ β for any (f,, -,
*,x y»*=ι y=ι

First we show the following:

Lemma 3.1. Tfer^ ώ a family of positive constants {Kp}peR such that for

any

(3.1)

holds for any L( ) e J^ U -£2.

Proof. For L( )e-^ι» we have 2(KpL(t)u, Kpu\=2([Kp, L(t)]u,
((L(t)+L(t)*)Λpu, Apu\ for each f eΛ, where L(ί)* is the formal adjoint of L(t)
and [Λ*, L(t)]=Λ.pL(t)—L(t)Λ.p. In the same way as Corollary 1° and Corollary
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2° of Theorem 1.7 in [9, p. 59-p. 60], we can show that L(t)+L(t)* and
[Λp, L(t)] are pseudo-differential operators of order 0 and p-\-l — l=p respecti-

vely. In particular we can show that \\(L(t)+L(t)*)u\\0^ AIMIo and \\[A.p,L(t)]u\\Q

^D2\\u\\p for u^H°°(M) where Dλ and D2 are positive constants depending only
on p and 4,'s. Thus we have | (L(t)u, u)p \ ̂ (Z)1+2Z)2)||tt||J. This implies (3.1)
for £(•)€=_£.

For L( )e.Γ2, we consider the operator A.p(—L(i))A.~p. Then it is a
second order elliptic pseudo-differential operator on M. In the same way as
the proof of Garding's inequality for an elliptic operator on Rd, we can show
that

(3.2)

for any u^H°°(M) where Z)3 and D4 are positive constants depending only
K, and A0S. For the detailed proof see Kumano-go [9, p. 54-Oρ. 60, p. 79-p. 81
and p. 134] or Taylor [13 Chapter II p. 55]. In the inequality (3.2), substitut;
ing Λ*u for u we obtain (KpL(i)u, Λ.pu\D^\\A.pu\\l. This implies (3.1) for
L( •)€=_£•

Now we can show:

Proposition 3.1. There exist families of positive numbers {Cp}pξ=R and

{CTtp} τ>o,ρeR such that ~Ck is a subclass of the well-posed class -C(k, {Cp} ί€ΞΛ/
) far k=l,2.

Proof. To prove the proposition, we have to verify that every L
satisfies the conditions (1), (2), (3) and (4) in the definition of the well-posed
class. It is an immeadiate consequence of the Calderon-Vaillancourt theorem
(see 11, p. 224]) that there is a family of positive numbers {Cp}p€ΞR such that the
inequality (2.1) holds for any L( )eXA, &=1, 2. So (1) is valid for any L( )^
X, k=ly 2. (4) is clear from the definition of J2k. Next we prove the energy
estimate (2.4). Suppose that for L( ) e.£A, v( ) <Ξ C([0, T]-+Hp+k) ΓΊ C\[0, Γ]->

H*) and <W&=L(t)v(t)+f(t) for/( )eC([0, T\-+H*). Then we have —\\v(t)\\2

pat dt

IK<)ll!+ll/OOHί in virtue of Lemma 3.1. Applying GronwalΓs inequality ([13,
p. 73]) to ||»(ί)||Jwehave

for any ίe[0, T\. So we can take e(2Kp+^T for CTtp. Thus the condition (3) is
verified. From the energy estimate we can show the solvability condition (2)
by the standard manner in Taylor [13, Chapter IV].
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Next we construct the examples of random functions L(ω, ί) which satisfy

the assumptions (A.I), (A.II) and (A.III). Let fo(ω, £); — oo<z<oo} be an

./^-valued stationary and strongly mixing process with mixing coefficient a(t).

Furthermore we assume that all of its sample paths are continuous. For fixed

elements

and

LI = Σ &/*)

with coefficients which do not depend on ί, we define random functions Zq(ω, t)

and L2(ω, ί) taking values in JCλ and _£2 by

and

(ω, t) = Σ*/*+ι?(ω, t))di+c(x+η(ω, t))

L2(ω, t) = Σaj*(x+l(to, t))9ik+ £b(x+η(ω, t))d>x+c(x+η(ω, t))

respectively. Then we can prove:

Proposition 3.2. The random function Lk(ω, i) satisfies the assumptions (A.

I), (All) and (A.III) for fc=l, 2.

Proof. For any u, v^H°°(M) and y^Rd the map Φk: y->(Lk(y)u, v)Q is

continuous where

and

= Σ
y,*=ι y=ι

By the assumption on -η(ω, ί), (Lk(ω, t)uy v\=Φk(η(ω, t)) is also a stationary and

strongly mixing process with mixing coefficient a(f) for Λ=l, 2. Thus (A.I) and

(A.II) are satisfied. It remains to show (A.III). Denote by Lk the mean

operator of Lk(ω> i). For each x^M fixed, put ajk(x)=E[aίk(x-\-η( , £))], &y(Λ?)=

jE"[δy(Λ?+97( , t))] and ?(Λ?) = -B[c(Λ?+i7( , ί))] for l^j, k^d. We can easily see

that
d
^ 7) (<y\ti — 2-ι θj\x)(
j = l

and
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- d d - -

/,*=! 3 * j=ι 3

and Lk belongs to £k for Λ=l, 2. Hence (A.III) is satisfied. //

. « —. _β A
REMARKS. (1) Put Hp = Hpβ(M)-\ \-Hpβ(M) and Λ = (Λ0H hΛ0

2

Consider the following class of time dependent operators on H~°°.

3ί O
Γr

JL\ —
O £

t, x) is an r X r-symmetric matrix with entries in Jl
and C(t, x) is an rxr-matrix with entries in Jl}

, we can consider the Cauchy problem for the first order

symmetric hyperbolic system. _£i is the special case (r—1) of J2\.
(2) For a positive integer m consider the class

and inf ((-l)-^^^

for any f = (ft, -, frf)

where ξ*=ξι*ξ** ξdd for multi-index α. The operator in -Γ2ΛI is called the
2m-th order elliptic differential operator. In these cases of J2[ and ^7 ,̂ we can
construct the same examples as in the cases of ̂  and J22 respectively.

4. Auxiliary Lemmas

First of all, we give two lemmas, Lemma 4.1 and Lemma 4.2 which are
concerned with strongly mixing processes. Lemma 4.1 is the basic tool in our
argument and it can be proved in the same way as the proof of Lemma 2.1 in
[8]. Lemma 4.2 is used in Step 1 of the proof of Theorem in the next section,
and it is an immeadiate consequence of Theorem 18.2.1 and Theorem 18.3.1 in
[6].

Lemma 4.1. Let n be a positive integer. Let Φ, (ω, i), i=l, 2, •••, 2n be
real valued strongly mixing processes with mixing coefficient a(t) where expectations
are zeeo for rack t and Mt =suρ \ Φ, (ω, t) \ < oo. Then there is a positive constant

ttω

C(n) which depends only on n and a(t) such that
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t+τS t+τ ft+τ

J^
M2n for any t. //

Lemma 4.2. Let {Φ(ω>t)', — oo<£<oo} be a real valued stationary and
strongly mixing process with mixing coefficient a(t) whose expectation is zero and
M= sup I Φ(ω, t) I < oo . Then there is a positive constant C such that

(4.2) \

In what follows we drop the letter ω if there occurs no confusion and we
always assume the hypotheses of Theorem in Section 2. Recall that

(4.3)

where u"(i) and ιf(t) are the solutions of evolution equations (2.7) and (2.8) re-
spectively. Since the initial data «<, is in Hp+3m+1, we have J?e( )eC([0, T]->
H"+3m+1) Π C\[0, T]-+Hp+ΐm^) and X'(-) satisfies the equation

(4.4) X\t) =

as an ίίί+2m+1-valued function on [0, T\. Here W\t) is defined by

(4.5) W(t) =

Let Y *(t) be the solution of the equation

( Y*(t) =
(4.6)

Since-4=(ί,(— )-L)«f(ί)eC([0, Γ]-*^4*"*1), the equation (4.6) has a

uuiqne solution in C([0, T]-+Hi>+2m+1) Π (̂[0, Γ]-*ίP+'»+1) in virtue of the
assumptions on the class _£". Put

(4.7) Z\t} = JΪ8(0 - Y \t) e C([0,

Then Ze(ί) satisfies the equation

(4.8) ZV)
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as an Hp+m+1-valued function.
In the rest of this paper, unless otherwise stated, the letter C is commonly

used to denote those constants which are independent of £ , ω, and, £^[0, T].

In the following lemma we give the basic estimates for the above defined
processes which guarantee that the distributions of the associated processes are
tight on C([0, T]-*Hq) for properly chosen q.

Lemma 4.3. Let {£°}Γ=ι be a complete orthonormal system of H° which
consists of the eigenvectors of Λ. Then {β*=Λ~"^°}Γ-ι becomes a complete ortho-
normal system of Hp. Let πp

n: /P->[e?, £°, * ,£°]~L be the orthogonal projection
onto the orthogonal complement [e\, e\, •••,0i]J~ of the finite dimensional linear
subspace of Hp generated by e\,e\, •••, el. Under the same hypotheses of Theorem
in Section 2, we have, for any t, £+/ze[0, T]

(4.9) A _

(4.10) E\\πp

n

+mY\t+h)-πp+MY\t)\\^m^Ch2( f j
Ar = « +

(4.11) E\\X*(t+K)-X\t)\\l^Ch2 , and

(4.12)

Proof. Proof of (4.9). Write ef and π for ep

k

+2m+1 and πί+2m respectively.
Put Φk(s)=((L(s)— L)a°(j), ek)p+2m+1 k=l, 2, •••. Then it is easy to see that
W"(t) can be written as

(4.13) W(t) = V~ε Σ3 ( Γ Φk(*)ds)ek .
k = l JO

Using the fact that fe}Γ-ι is also a orthogonal system in Hp+2m we have from
(4.13)

(4.14) E\\πW'(t+h)-πW*(t)\\4

p+2m

«» °° ft+h/Z Γt+h/Z Λ/+A/8 rt+hf*

= ε2 Σ Σ 1^111+2.11^115+2.1 \
*!=» + ! *2 = « + ι Jί/β Jε/ε J/fε JtJt/t

From the assumptions on L(ω, ί) we have |ΦΛ(ί)| ^C sup ||^V)ilί+3ί«+ι Thus
from Lemma 4. 1 we obtain

E\\πW
i(t+K)~πW\(t}\\l,2m^Ch\ Σ lkJIJ+2.)1.

*=«+!

Proof of (4.10). Let {T(t)}Q^t^τ be the semi-group of linear operators on
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H— such that for each u<=Hp+m, Γ(ί>ιeC([0, T]-*Hp+m) Π Cl([0,
denotes the unique solution of the evolution equation

(4.15)

Write ek and π for ep

k

+m+1 and wj"1"1" respectively. Put

and

Then we can easily see that

(4.16) |Φt(ί)| ^Csup \\ι/(r)\\p+aa+1

and

(4.17) IΨ^I^CA for O^ί^—
o

since (L(— )-L)«°(r)eC([0, Γ]-* '̂*1--1-1) and

in Hp+m+1 for O^s^t^T. On the other hand we can write

= /!+/, -

Therefore in the same way as the proof of (4.9) we have

E\\πIl\\l+m^Ch\ \\et\\l+mγ and E\\πI^m^Ch\
k=n+l k=n+l

Hence we have

E\\πY\t+h)-πY\t)\\2

p+m £Ch\ £ \\ek\\2

p+m) .
k = n + ι

Proof of (4.11). First we show that

(4.18) \\
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In fact, since W*( )eC\[Q, T]-*Hp+*m} and X\ )eC(\p, Γ]-* Hf+3a) Π
C\[0, T]-+H*+2m), we have

X\t)-W\t) = (' L(X\s)~ W'(s))ds+\' LW\s)ds ,
Jo Jo

where the integration in the right hand side is the Bochner integral of an
Hp+m-vaίued function on [0, T]. Thus from the energy estimate (2.4), we have

Jo

This implies (4.18). Thus we have

(4.19) sup E\\X\t)\\i+m£C

Γ \\W\s}\\l+2mds .
Jo

by using the estimate (4.9) with £— 0, h=t, and #— 0. On the other hand

n

Therefore we have

S
t+h x 0 \

L(-^X\s)ds\\l .

In virtue of (4.9) it suffices to estimate the second term in the right hand side.

But we have

E\\
t+h fί+A fί+A Λ t+h

!

t+h fί+A fί+A Λ t+h 4 / c \

J
t
 J

f
 j

<
 ΛίΛ.Λ.̂ jÎ IÎ /̂ϊVί)!!,

5ί+A Λ/+Λ Λ/+A ΛH-λ 4

[ ds.ds.ds.ds, Π W(*/)IU.
/ J/ J/ J^ y=ι

from (4.19) and Holder's inequality.

Proof of (4.12). Put p1=p+2m+lf p2=ρ-\-m—l, ps=ρ+m—2, ek=efr and
fk~ek2 for convenience. In addition, put Φk(s, r)=(T(s—Br)(L(r)—L)iP(Br), ek)Pl

and Ψkl(s)=((L(s)— L)ek, //)/>2. Since we can write

n
k = l Jo

and
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(L(s)—L)ek = Σ Φki(ήfι in Hp*,

we can easily see that

Λ //ε Λ f/ε f s, fs

l l iΣΣ <M*2
kl k2 J° J° «J° J°

Λ'i, Ί)φί»(* ,
Therefore we have

(4.20)

S
ί/8 Λ//S / ί/ε ι»//ε

ds.
o Jo Jo Jo

On the other hand it is easy to see that

and

Thus applying Lemma 4.1 to (4.20) and recalling p1=p-\-2m-\-l, p2= p+m— 1,

pz=p+m—2, ek=ep

kι a.ndfk=ep

k? we conclude that

J ί / / o \ \
I 7" i i 7" l Vε/'c•^/7cll2 ^/^ X1 l l^ 1-"1-1!!2 /"V I U ^ + 2 w - f l l l \2

v^l'Γ/""^ jr wί"ll/'+»ί-2^(- 2j l l ^ / ll^»-2v2Lj I F A IU+2«-ιJ
o \ \ c / / ' *

<oo .

since the inclusion ffp+2m+1c:Hp+2nt^1 is a nuclear operator and the inclusion
p+m^ ig a Hubert-Schmidt operator.

5. Proof of Theorem

ion is to prove Theorem

, and z\t)=x9(t)-γ
The purpose of this section is to prove Theorem in Section 2. As before,

,
V 8 v 6" ^0

where Y*(ί) is the solution of the equation (4.6).

Now we prove Theorem. The averaging principle (2.9) follows immea-

diately from the estimate (4.11). The proof of the fluctuation property is

divided into following four steps: In Step 1, we show that the distribution of
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ϊP( ) converges weakly to the distribution of W°( ) on C([0, T]-»Hp+*m).
In Step 2, we prove that the distribution of Y*( ) converges weakly to the dis-
tribution of Jf°( ) on C(0, T]-»Hp+m). In Step 3, we prove the tightenss of
the distributions of -XΓ8( ) on C([0, T]-*HP). And in the last step we show

that the limit distribution of JY"β( ) coincides with the distribution of -X"°( )

Step 1. The estimate (4.9) of Lemma 4.3 implies the tightness of the
distributions of W'( ) on C([0, T]-*Hp+2m) in virtue of Proposition 4.1 in
[10]. We have to show that the distribution of W*( ) coincides with the distri-
bution of WΌ( ). For any finite sequence S1^t1<s2 ̂ t2< <sk^tk and any
finite sequence hly h2, •••, Ane72"°°, define n-dimensional random variables Δ*,

/=!, 2, .», * by ΔJ= Wy)~ W('i), AiV •"> (Wty-WM, hn\). Then for
any ξ^R?, we have

(5.1) |£exp(Σ*X£Δ5))-Π£«p(fXf ,ΔyO) | :gα-*0, as fi -* 0 ,
y=ι y=ι \ o /

where ( , •) denotes the Euclidean inner product on Rn and δ— min (tj+1—Sj).

(S.I) guarantees that any limit process of W*( ) an has independent increments.
Therefore, as in the case of the finite dimensional continuous process with
independent increments, it suffices to show the following lemma to see that the
limit distribution coincides with the distribution of W°( ).

Lemma 5.1. For any v, w^H00 and any 0^^ t^ Ty we have

(5.2) E(W\t), υ)f+m = 0 ,

and

(5.3)

zΰhere <X wy(u) is the same quantity as the statement of Theorem in Section 2.

Proof. The proof is similar to that of Lemma 3.1 in [8]. (5.2) is obvious.
We prove the euqation (5.3). For the sake of simplicity, we assume that v= W,
Γ^l and t=s=l. Put Φ(r)=((L(r)-L)u\βr), v)p+2m and

ΦA(r)=((jχr)-L)tt°(A), V)p+2m for A=0, 1, -,/*-!,
N n I

where n is a positive integer which will be determined later. Then we have
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where Gl = ju'ffa, r,) A ̂  Γl, r, ̂ *±1 j , and G,=[θ, 1] X [θ, 1]̂ . Since

|Φ(r)| rgCsup ||«V)IUJWU» for 0£r£-J, we have
O^s^T £

»-l fk/»9 f*+l/«8

I Λ I ̂ 2 Σ £ Λ , I drJElΦ^WrJ] \
*=0 Jo Jk/nΐ

n-l fkf»t f *+!/»«

^2 Σ el ΛΊ \ ^2«(rt-r2) (sup | Φ(r) | )2

*=0 Jo Jk/nΐ t,«>

from the strong mixing property of Φ(r). Next we have

»-ι ΛΛ+l/»6 / fe+l/«ε

/ι = es ^
*=o Jk/nt Jk/m

k-i r*+l/»8 fjH-ι/»e

+£ Σ Λ ι«ίr,
*=0 J^/ne Jk/ns

= /.+/4

Put 8(«)= sup llM0^)-"0^)!)^™. Then we have |Φ(r)-φ»(r)| ̂
-

T
CS(n)\\v\\p+2m for O^r^ — ' Thus using Lemma 4.1, we can show that

c

On the other hand, from Lemma 4.2 we obtain

JA?+l/»β f jfe+l/»e ΛOO

dr^ElΦ^Φ^r^-Z £[ΦA(0)Φ,
Λ/«ε J A / W S Jo

Therefore we have

.-- Σ
^ *=o Jo

Hence we have

I/-- Σ
n *=° Jo

Taking n=n(£) so that ft(£)£->0 and w(£)->oo as £->0, and recalling the equation

(2.13) we conclude that

lim E[(W*(\), v)]2

p+2m = \l <v, v
8->0 J 0
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Step 2. In virtue of Proposit,on 4.1 in [10], the estimate (4.10) implies the
tightness of the distributions of F'( ) on C([0, T]-+Hp+m). Let {£Λ}Γ-ι be any
sequence with 6n-*Ό (w->oo) such that the distribution of Y*"( ) converges
weakly on C([0, T]-+Hp+m). In virtue of Skorohod's theorem (see Theorem 2.7
in [6, Chapter 1]), we may assume that C([0, Γ]-»j£P+ιn)-valued random vari-
ables yβ» converge in C([0, T]-»Hp+m) P-a.e. Thus the limit process Y°( )
satisfies the equation

LY°(s)ds in H*.
o

On the other hand for 20( )eC([0, T]-*Hp+2m) consider the equation

y(f) = «(*)+(' Ly(s)ds
v ' J o ^ }(5.4)

Let κ( )eC([0, T]-*H*+m)t\C\\Q, T]-+HP) be the unique solution of the
equation

(5.5) dt

«(0) = 0.

It is easy to see that j>(£)=w(£)— w(t) is the unique solution of the equation (5.4)
in C(fO, T]-+H*+*)Γ(C\[Q9 T]-+HP) and \\y(t)\\p^C\\w(t)\\p for any O^ί^Γ,
in virtue of the energy estimate (2.4). Therefore the correspondence C([0, T]-+
fjp+2m^w^_+y(.}<=c([ΰ, T]-*HP) is a continuous mapping. Hence the
equation (2.10) determines a unique probability distribution on C([0, T]-*HP).
The proof of the second step is now complete. //

Step 3. Different from the finite dimensional case, the tightness of the
distributions of X\ ) on C([0, T]-+HP) can not be shown directly from the
estimate (4.11), but in the present case, it can be shown by the following argu-
ment. For any δ>0, there is a positive constant C such that

(5.6) P{ωeΩ; X\ω, -JeΞΓJ >l_δ ,

where T1= {#( )eC([0, T]-»ff*); x( ) are equi-continuous and sup |
On the other hand we can show that

(5.7) sup |UΠί)|U,^Csup

from the estimate (4.18) in the proof of (4.11). From (5.7) and the tightness
of the distributions of W\ ] on C([0, T]-*Hp+2m) we can see that for any
δ>0, there is a positive constant C such that
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(5.8) P{ω<ΞΩ; X\ω,

where Tt = {x( )GC([Q, T]-»Hp+m), sup \\x(t)\\p+m^C}. Since any bounded
O^f^Γ

set in Hp+m is relatively compact in Hp, Γ\ Π Γ2 is a relatively compact set in
C([0, T]-*HP) in virtue of Ascoli-arzela theorem. Hence from (5.6) and (5.8)
the distributions of X\ ) are tight on C([0, T]-+H*). //

Step 4. This step is quite different from the finite dimensional case (see
Khas'minskii [8]). For q^mm(p, p+m—2) let Si be the Hubert space of all
Hubert-Schmidt operators from Hq into Hq~m~l endowed with an inner product

(5.9) (4,fi)« = 2(^,&l)f-.-i,

where {̂ }?.ι is a complete orthnormal system of Hq. Let L2([0, T-*M~\) be
the Hubert space of all ^-valued L2-functions functions defined on [0, T] endow-
ed with an inner product

(5.10) ((A(-), £(•))) = (A(t\ B(t))asdt .

From the definition, the well-posed class J2 is contained in a closed ball
S0cL2([0, T]-*J{) centered at 0. Since S0 is a weakly compact set in
L2([0, r]->c#), it is a compact metric space with respect to the weak topology in
virtue of Theorem 3 in [4, p. 434], For example, the metric is given by

(5.11)

for A( ), JS( )eSo, where {Jff^ί )} Γ- 1 is a sequence of elements in L2([0, T]-*M)
such that their linear hull is dense in L2([0, Γ]-»cΛ) and ((£,(•), jBΛ( )))^l for
w=l, 2, •••. In particular the sequence {βn( )} J*. i can be chosen so that

(5.12) f
*=

In fact, let cX denote the linear subspace of all elements B( ) of C([0, Γ]-» J#)
such that B(t)el= 0 for all ίe[0, Γ] if k is sufficiently large. Then it is easy
to see that JC is dense in L2([0, T]-><41). Thus we can take a sequence

which is dense in L2([0, T]->^). Therefore we can choose

Consider the product space

(5.13) 5= C([0, T
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PutF'(t)=^(L9(s)--L)Y9(s)ds where Le(t)=L(~-\ Then the distribution of

F*( ) converges weakly to the distribution of the process Θ which is identically
zero. In fact, since q^ίp, and since we have already shown that the distributions
of yε( ) on C([0, T]-*Hp+m) are tight, it is easy to see that the distributions

of F*( ) on C([0, T]-*H9) are tight. On the other hand, sup E\\F*(t)\\a-*0 as
O^t^T

£->0, from the estimate (4.12). Hence we have the above fact. Next we have

E[d(L ( )9 L)]

n ((L\ί)-L)el

^ Σ n Σ E I (L\t}-L)el
Λ = l 2

^ ΣJ
n=l

On the other hand, we have from Lemma 4.1

E I \T ((L\f)-L)el, B.(ί)«ί)f...,Λ|*

S Γ/βΓ

0 v O

^ cε(osιφ

Therefore it follows that E[d(L*( ], L)]^Cβ in virtue of Schwartz' inequality.
Hence we have shown that for any sequence {βn}^ι with £n->0 as w-»oo, Lβ«( )
converges to L (non-random) in S0 in probability. In virtue of Theorem 12.3
in [2, p. 195], the distribution of (F*n, Un) converges weakly to the distribution
of (0, L) on C([0, T]-+H«-m-1) x 50. Suppose that the distribution of Zε»( ) on
C([0, T]-*Hq) converges weakly to the distribution of Z°( ). Using Theorem
12.3 in [2] again, we can see that the distribution of (Z8*, F*tt, Un) on S converges
weakly to the distribution of (Z°, 0, L). In virtue of Skorohod's theorem, we
may assume that (Z8«, F8*, Un) converges to (Z°, θ, L) in S. P-a.e.. For a while
we proceed our discussion with fixing an ω^Ω such that (Z8«(ω), F*»(ω\ L*»(ω))
converges to (Z°(ω), (9, L) in S. For any fixed *e[0, Γ] and h^Hq-m~l we have

, A)f-.-ι
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), *),-.-!*- Γ
Jo

Clearly, |(Z« (<), *)f-.-ι-(Λθ> A),-.-ιl-0, | (*"«(*), Λ).-.-ι|-»0, and

I (' (L8»(ί)Z'»(ί), A)t_._,Λ- (' (L*«(ί)Z°(s), A)t_.-ι«& I -*0 as w-»oo. Let <#' be
Jo Jo

the space of all Hubert- Schmidt operators from Hq~m~l into Hq. We note that
L2([0, T]-»c#) and L2([0, Γ]-*c#') are isometric and isomorphic by the corres-
pondence L2([0, Γ]-»cΛ) A( )->A'( )<=ΞL2([0, T]-*M') where for each f, -4X0=
^4(0': the dual operator of A(t). We define an element fiχ ) of L2([0, T]-><%')
as follows:

.f

0 for e{ch; '

0 if

Since L'»( ) converges to L in the weak topology of L2([0, Γ]-» «Λ) we have

= Γ (fi'(,)A, U*(
Jo

Thus we have seen that

(Z\t),
Jo

for any O^ί ̂  Γ and for any h&Hq~m~l. Therefore we have

Z°(t) = LZ°(s)ds for any O^ί^T P-a.e..

Hence we have seen that Z°( )=0. It follows that the distribution of Z*( )
on C([0, T]-+H*) converges weakly to θ. Therefore the limit distributions
of ^8( ) and yε( ) coincide on C([0, T]-+H<). Hence they coincide on
C([0, Γ]) -» H*). This completes the proof of Theorem. / /
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