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1. Introduction

Let {H?; p =R} be a family of separable real Hilbert spaces which are
modeled on the Sobolev spaces on a compact manifold without boundary.
Consider a stationary process L(w, t) on a probability space (Q, &F, P) with values
in a certain class of linear operators on H == L‘JDH ? which are modeled on

pseudo-differential operators. Denote by L the mean operator of L(w, t). We
assume that the following abstract Cauchy problems are ‘well-posed’:

du(t) _ t
i Y — L(o ?)u(t)
w0) = ucH?,
and
GO _ Fayr)
(1.2) at

u(0) = u,cH?.

The aim of this paper is to investigate the fluctuation of #*(w, ) around u°(¢)
where #*(w, t) and #%(¢) are the solutions of (1.1) and (1.2) respectively. Precisely,
let C([0, T'1—>H?") be the space of all continuous functions on [0, 7'] with values
in H?, for g R. Under the assumption (A.I), (A.II), and (A.III) in Section 2,
1w, £)—u’(t)

Ve

we show that for any 7'>0, the stochastic process X*(o, #)= con-

verges weakly to a Gaussian process X%w, t) in the sense of distribution on
C([0, T]—>H?") for any ¢< p—a, where « is determined by the assumptions.

A mathematical motivation of this paper was taken from Khas’'minskii’s
work [8]. We summarize his work here. Let F(w,t, x) be a strongly mixing
process which is a twice differentiable vecter field on R? for each w and £. Let
F(x) be the vector field defined as the mean of the process F(w, ¢, x) in some sense.
He considered the following Cauchy problems
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&) _ p(a, L. x(0))

(1.3) dt

%(0) = x,ER?,
and

dx(t) _
w4 o | EO = Fe)

x(O) - onRd

and proved the fluctuation of () around x°(f) where x*(f) and x%(#) are the
solutions of (1.3) and (1.4) respectively. In other words, our result might be
regarded as an infinite dimensional but linear version of Khas’'minskii’s work.
In his case, the Cauchy problems (1.3) and (1.4) are always well-posed although
the random functions F(w, ¢, +) are non-linear in general. In particular the
energy estimate (2.4), which plays an imoprtant role in our case, is rather
trivial in virtue of the fundamental theory of ordinary differential equations.
On the contrary, in the infinite dimensional case, the Cauchy problems are
well-studied only for the linear operators. Therefore we shall restrict ourselves
to the linear case and consider the well-posed class £ which will be defined
in Section 2. Our strongly mixing condition (A.I) is weaker than the assump-
tion (3.3) in [8] in virtue of the boundedness condition of the well-posed class
L (see Remark 1 in [8, p. 222]). Khas'minskii assumed the existence of in-
finitesimal characteristics instead of the stationarity of the process F(w, ¢, x) but
the author do not know how to express those conditions reasonably in the
infinite dimensional case. This is the reason why we assume that the process
L(w, t) is stationary in the sense of the assumption (A.II).

Now we mention the example of the random process L(w, t) which satisfies
our assumptions (A.I), (A.II), and (A.III). Let 7¢ be a d-dimensional torus
and {n(w, t): tE R} be a T%-valued stationary process which satisfies the strong-
ly mixing condition (A.I). Consider the following random operator of elliptic

type
L(o, ?) ziélaﬂ,(x—{—w)(w, £))9i* - jZ:lbi(x—}—n(m, )8 +-c(x-n(w, 1)) -

Under some regularity conditions on a@;(x), ;(x) and ¢(x), we can prove that
for each w, L(w, +) belongs to some well-posed class as a function on R with
values in operators on the Sobolev spaces H?(T¢) (pE R) and we can prove that
the random function L(w,t) satisfies the assumptions (A.I), (A.II), and (A.
III). A similar result is valid for random partial differential operators of first
order. The proof of the above facts are given in Section 3. These examples
are essential in the sense that they suggest the formulation of our problem and
illustrate the image of the well-posed class.

It is natural to ask whether the same fluctuation theorem holds or not in
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the case when the process L(w,t) takes values in partial differential operators
on a non-compact manifold or a manifold with boundary. In the former case,
we have obtained a similar result by use of the weighted Sobolev spaces in
[11] when the manifold is just the d-dimensional Euclidean space R‘.

We notice that the same problem for the second order parabolic equations is
studied in [14] and related topics can be found in [1, p. 516—p. 533] and [7].

The main theorem is stated after the precise description of our problem in
Section 2. Two typical examples stated above are discussed in Section 3. The
other sections are devoted to the proof of the main theorem in Section 2.

The author would like to express his heartful thanks to Professors
T. Watanabe and N. Ikeda for their encouragements and suggestions.

2. Statement of Theorem

First of all we define a family of abstract Sobolev spaces H?(p & R) which
are modeled on the Sobolev spaces on an orientable compact manifold without
boundary. Let H® be a real separable Hilbert space endowed with an inner
product (-, «)oand let A be a positive definite self-adjoint operator with the inverse
A™! which is assumed to be a Hilbert-Schmidt operator. Let p>0, put
H?=4)(A?): the domain of A? and define a Hilbertian norm on H? by [lu||,=
|| A?ul|, for ue H?. For ues H®, we define a Hilbertian norm by |[u||_,=||A~?u]|,.
H~"? is defined as the completion of H® by the norm [||+]|-,. Then it is easy to
see that H? is continuously embedded into H? for p>>¢ and the inclusion is a
compact operator. Moreover, if p=¢+1, the inclusion is a Hilbert-Schmidt

operator. Writing H*= (N H? and H "= U H?, the operator A can be uni-
PER PER

quely extended to the operator on H~* which is also denoted by the same letter
A. Then the Hilbert space H? is characterized as H?={ucH >; A'ucH%
and |lu||,=||A?u|l,. Such a family of abstract Sobolev spaces is called a scale of
Hilbert spaces in Daletskii [3].

Next, we introduce a class of time dependent operators on H ~= which satisfy
some conditions for the ‘well-posedness’ of the equations (1.1) and (1.2). In
what follows, for topological spaces E, and E,, C(E,—E,) denotes the space of
all continuous mappings from E, into E,.

DrrINITION. Let H?(pER) be a family of abstract Sobolev spaces which
are defined above. Given a positive number 7 and families of positive numbers
{Cy} ser and {Cy ,} r50cr, We say that a function L(-) defined on R with
values in operators on H~> belongs to the well-posed class L=_L(m, {C,} e,
{Cr.5} >0, ser) if it satisfies the following conditions:

(1) Foreach teR, L(t) is a linear operator on H~= and L(¢)H***C H? for
any pER. Moreover, L(-)eC(R—B(H?**"—H?)) and
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(2.1) sup sup ||L(y|l,=C,,
teH ueﬂp+m
14T, =1

where B(H?*"—H?) denotes the Banach space of all bounded linear operators
from H?*™ into H?.
(2) For any T>0, and for any u,& H?*™, the Cauchy problem

dut) _
o2 O — L)

u(0) = u,

has a solution in C([0, T1—H?*")N CY([0, T]—H?).
(3) (energy estimate). If v(-) e C([0, 71— H?**")N CY([0, T]— H?) satis-
fies

(2.3) dijT(tt)zL(t)v(t)—}—f(t) in H?

for f(-)eC([0, T]—H?), then we have

24) lo@IESCr (o) 5+ ] 171540
for all t€[0, T1.

(4) For any s>0, L°(-) also satisfies the conditions (1), (2), and (3). Here
L‘(-) is the operator valued function defined by L’(t)=L(st).

RemMARk. Let L(-) belong to -£. Then for any u,H?*" and for any
f(+)eC([0, T1—H?*™), the Cauchy problem

W) — Lo+

u(0) = u,

(2.5)

has a unique solution in C([0, T]—=H?*")N CY([0, T]—>H?) in virtue of the
conditions (2) and (3).

We believe that if one looks at the formulation of Cauchy problems in
[9], [12], and [13] he can see that our assumpitons on - are reasonable.

Now we add the probabilistic assumptions. Let (Q, &, P) be a probability
space and {F!{; —co<s<t=<oo} be a family of sub-o-algebras of &F with
EF,‘IICQS’; for 5,<s, and £,<¢,.

Our first assumption is the following:

(ad) a(s) = sup sup | E[£7]—E[£]E[]|

decreases to 0 as s goes to oo and S sa(s) ds <oo. Here sup is taken over all
0 £
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! ..-measurable £ with [E| <1 and all &}, ,-measurable » with || <1. As
usual E[-] denotes the expectation with respect to the probability measure P.

A stochastic process {®P(w,t); —oo<<t<<oo} is called a strongly mixing
process with mixing coefficient a() if it is F{-measurable for each ¢ fixed. Let
L=_L(m, {Cy} ser, {Cr s} r>0cr) be a well-posed class. Consider a random
function L(w, +) on (Q, &, P) with values in L. Our second assumption is:

(A.ITI) For any u, vEH™, the real valued stochastic process {(L(w, )%, v)o;
—oo<t<oo} is a stationary and strongly mixing process with mixing coefficient
a(t).

Then we can define the mean operator L of L(w,t) as follows: First we
have

(2.6) E[(L(-, tyu, v),| SE|IL(-, tyull,|lv]l,= Cyllully+mllvll,

for any u, vE H>, from the condition (1) on L. Thus, for any uH~ we can
define Lu as an element of H° such that E(L(-, t)u, v),=(Lu, v), for any ve H>
in virtue of Riesz’ representation theorem. Obviously Lu is independent of #
since L(w, t) is stationary. Using the estimate (2.6), L can be extended uniquely
to an operator on H~> which is also denoted by L. Clearly, L satisfies the
condition (1) on L as a constant operator valued function on R. But we do
not know whether L belongs to . or not. From this point of view, our last
assumption is:

(A.III) The operator L belongs to _L.

Nwo we can state our result.

Theorem. Let L=_L(m, {C,} er, {Crs} r>0,pcr) be a well-posed class on
the abstract Sobolev spaces H*(p = R) and let L(w, t) be a random function satisfy-
ing the assumptions (A.I), (A.IL), and (A.IIL). For u,cH?**"*! and £>0, we
denote by u'(w, t) and u’(t) the solutions of the abstract Cauchy problems:

2.7) { = (t) ( )”(t)

u(O) == uo
and

dt
w(0) = u,

au(t) _
9 { Lu(t)

respectively. Then for any T>0, we have
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g\ 0 2
(2.9) sup Bl (t)—u(®)lls=Ce

where C is a constant which is independent of & Moreover, the distribution of
X'(o, t):"_'(“%@ converges weakly on C([0, T]—H?) as & goes to 0. The

limit distribution coincides with the distribution of an H?*™-valued continuous
stochastic process {X%(w, t); 0t T} which satisfies the equation

t
(2.10) X, 1) = Wie, £)+ s LX%w, \ds  in H?

0

where the integration in the right hand side means the Bochner integral of an H?-
valued function on [0, T]. {W%w,t); 0<t<T} is an H?***"-valued continuous
stochastic process with independent increments characterized by

(2.11) E(W'(t), ©)psm = 0
and
212) B, 0y WS), @] = [ <o D00

for v, we H*, where {v, w)(u) is given by

@13) <o, @) = | FELO L), 0)yran((LAO) Lty ©)prsm
H((L0)— L), ©)psom(L(t)— L)t ©)p0m]
Jor uc H*** gnd v, we H™.

In the statement of Theorem, we did not refer to the measurability of
u*(w, t) but it is guaranteed by the following:

Proposition 2.1. Assume that a random function L(w,t) with values in L
satisfies that (L{w, t)u, v), is F-measurable for any u, ve H*. Then for any
u, S H?, the solution of the evolution equation

du(t) _ ®
(2.14) g e )
u(0) = u,

is F | B(C([0, T]—H?))-measurable, where B(E) denotes the topological Borel o-
algebra of a topological space E.

Proof. Let 4 be the Hilbert space of all Hilbert-Schmidt operators from
H? into H? ™! endowed with Hilbert-Schmidt norm. We regard L as a
topological subspace of C([0, T]—4). For a sequence {L,} .o L we denote
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du()_

by #"(+), the solution of the equation L,(tyu(t), w(0)=1u, Assume that

L, converges to L, in C([0, T]—>4) as n—>co, n=1. Then we have
d n ”
2@ O—1(0) = Ly(0) @ (£)—(0) +(La(t) — Lo())#'(2)
in H?™™ and so in H?"*"!,  From the energy estimate (2.4), we have

108 O -1 S Cor s | (L) — L))
< CrpenniT, 599 L)~ Lol sup, IO}

Thus the function ®: L3 L(-)—u(-)eC([0, T]—H? ""') is continuous where
u(t) is the solution of @‘% =L(t)u(t), w(0)=u,. Next we show that the func-
tion L(+, *): 0€EQ—L(w, -)EL is F|PB(L)-measurable. In virtue of the

second countability of the topological space _£, it suffices to show that
{0EQ; sup ||L(w, £)—L(t)||zs<<8} €F for any L(-)=_L and any §>0. On the
0St<T

other hand, we have

{w€Q; sup || L(w, t)—L(t)||zs<3}
0St<T

=0 N Ao e, t)—L(t)nﬂsga——ln-}

n=1 t=Q nlo,T]
and

{03 |IL(w, )—L()|lzs< 8— %}

{03 S (Lo, 1)~ Litellf-n-15 (31}
= n

where {e,} -1 is a complete orthonormal system of H?. Since for any e H?,

”(L(“” t) L(t))e”p—m -1 sup l((L(w, t) L(t))e’ v)p—m 1[

Hvll

and since H?"™"! is separable, we conclude that [[(L(w, t)—L(t))elly-m-1 is F-
measurable. This implies that {w;osup IL(w, t)— L(t)||gs<<6} €F. Thus
stsT

the function L(-, *): o—L(w, ) is F|B(L)-measurable. Since #(w, *)=
D(L(w, *)), (o, *) is F|B(C([0, T]—=H?"™"1))-measurable. On the other hand
w(w, <) C([0, T1—H?) by the condition (2) on £ and C([0, T1—H?) is a Borel
subset of C([0, T]—=H?"™"!), we can see that w(w, t) is F|B(C([0, T]—=H?))-
measurable.
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3. Examples

In this section we shall give two typical examples of random functions
L(w, t) which satisfy the assumptions (A.I), (A.II), and (A.III) in the previous
section (see Proposition 3.2 below).

Let M be a d-dimensional torus R%/Z°. As usual we identify a point in
M with a point in [0, 1)¢ and a function on M with a function on R* which is
invariant under the action of Z%. Let H?(M) be the Sobolev space of order p

on M. If we put H*=H?(M) for some B> %, H(pe R) forma family of

abstract Sobolev spaces. In this case, H'=H°(M)=L* M) (=L*-space with
respect to the Haar measure on M) and A=Af§ where Ay=(1—A)"2 and A=
d 62

x‘2=1 ox?
numbers where a’s are multi-indices. Put

Let K be a positive constant and let {4,}, be a family of positive

A = {a(t, x); a(t, +) ia s continuous function from R into C=(M —R) and
sup |0za(t, x)| <A, for any multi-index o},
t,x

where 07=0"1""*%/0x{1.--x074. Consider the following classes of time depend-
ent differential operators:

L= {L(t) = kz"': by(t, x)0itc(t, x); bt, ¥)EA,

ct, x)ed j=1,2, .-, d}
and

L= L) = 33 ault, )0k + 31b,(t, 0L+l );
au(t, )€, bj(t, ), c(t, x) €A 1=j,k=d
and l,nzf jélla,-,-(t, )€ ;& =K ,5;‘1 £ for any (&, -+, £,)ER}.
First we show the following:

Lemma 3.1. There is a family of positive constants {K,} ,cg such that for
any us H=(M)

(3.1) sup (L(t)u, )= Kl

holds for any L(-)eL;UL,.

Proof. For L(-)E.[,, we have 2(A’L(tyu, A?u),=2([A?, L(t)]u, A?u),+
((L(&)+L(2)*) A?u, A’u), for each t€ R, where L(2)* is the formal adjoint of L(t)
and [A?, L(t)]=A’L(t)—L(t)A?. In the same way as Corollary 1° and Corollary
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2° of Theorem 1.7 in [9, p. 59-p. 60], we can show that L(#)+L(t)* and
[A?, L(t)] are pseudo-differential operators of order 0 and p+1—1=p respecti-
vely. In particular we can show that [|(L(2)+L(2)*)u||o= D||u||, and |[[A?, L(2)]ull,
<D,|[ull, for us H*(M) where D, and D, are positive constants depending only
on p and 4,’s. Thus we have |(L(t)u, u),| =(D,+2D,)|lu||;. This implies (3.1)
for L(-)e L.

For L(-)e.[, we consider the operator A?(—L(t))A™*. Then it is a
second order elliptic pseudo-differential operator on M. In the same way as
the proof of Garding’s inequality for an elliptic operator on R? we can show
that

(3.2) —(APL(t)A"?u, w)o= Dy|lul|t—D,/lull§ ,

for any u H=(M) where D, and D, are positive constants depending only on p,
K, and 4,’s. For the detailed proof see Kumano-go [9, p. 54-0p. 60, p. 79-p. 81
and p. 134] or Taylor [13 Chapter II p. 55]. In the inequality (3.2), substitut;
ing A?u for u we obtain (A?L(t)u, A?u),D,<|[A?u||;. This implies (3.1) for
L(-)eLl,.

Now we can show:

Proposition 3.1. There exist families of positive numbers {C,},cp and
{Cr. s} r>0.pcr SUch that L, is a subclass of the well-posed class L(k, {C,} jer’
{Cr,p} T>o,peR) for k=1, 2.

Proof. 'To prove the proposition, we have to verify that every L(-)E_L,
satisfies the conditions (1), (2), (3) and (4) in the definition of the well-posed
class. Itis an immeadiate consequence of the Calderon-Vaillancourt theorem
(see 11, p. 224]) that there is a family of positive numbers {C,} ,cg such that the
inequality (2.1) holds for any L(-)e_L}, k=1,2. So (1) is valid for any L(:)e
L, k=1,2. (4)is clear from the definition of _£;,. Next we prove the energy
estimate (2.4). Suppose that for L(-)e_L,, v(+)eC([0, T]—=H?**) N CY[0, T—
H?) and d"’jTgt) — L(#yo(t)+f(¢) for f()€C([0, T]—H?). Then we have %Hw(i)llﬁ
=2(L(t)o(t), v(t)), + 2(f(2), v(2)), = 2K, lo@) 3+ /)15 + [lo@)]; = 2K,+1) X
o@I3+11f(#)Il; in virtue of Lemma 3.1. Applying Gronwall’s inequality ([13,
p. 73]) to |lo(?)||; we have

o=+ [ 1A

for any t€[0, T]. So we can take e®*»*D7 for C;,. Thus the condition (3) is
verified. From the energy estimate we can show the solvability condition (2)
by the standard manner in Taylor [13, Chapter IV].
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Next we construct the examples of random functions L(w, t) which satisfy
the assumptions (A.I), (A.II) and (A.III). Let {y(w,?); —co<<t<<oo} be an
R‘-valued stationary and strongly mixing process with mixing coefficient a(t).
Furthermore we assume that all of its sample paths are continuous. For fixed
elements

d .
and

L= 3 ap(x)oi'+ 3 bx)ol+c(x) €L

d
Jrk=1

with coefficients which do not depend on ¢, we define random functions L,(w, £)
and L,(w, t) taking values in .£; and £, by

Liw, ) = 33 b,(a-+n(0, 0)0}-+e(w+n(a, 2)

and

Liw, ) = 33 ap(w-+n(o, 0)08'+ 33 b(x-+a(o, 0)0i-+o(x-+n(w, 1)

respectively. Then we can prove:
P y P

Proposition 3.2. The random function L,(o, t) satisfies the assumptions (A.
I), (A.II) and (A.ILI) for k=1, 2.

Proof. For any u, veH=(M) and yER? the map D,: y—>(Ly(»)u, v), is
continuous where
d :
Ly(y) = 23 bi(x+y)0i+c(x+9)
and
d . Jj
L) = 3 au(a-+3)0l+ 31 by (s+9)0t+c(s+)
By the assumption on n(w, £), (Ly(w, t)u, v)y=2P4(n(o, t)) is also a stationary and
strongly mixing process with mixing coefficient at(¢) for k=1, 2. Thus (A.I) and
(A.II) are satisfied. It remains to show (A.III). Denote by L, the mean
operator of Ly(w, t). For each x&M fixed, put a;,(x)=E[a;(x+n(-,1))], bj(x)=
E[bj(x+n(+, t))] and ¢(x) = E[c(x+n(-, t))] for 1=<j, k=<d. We can easily see
that
d .
L= ,21 b;(x)0i+7e(x)

and
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L= ,-.211“:*<x)@i"+ 2 b(x)03+2(x),

and L, belongs to [, for k=1, 2. Hence (A.III) is satisfied. //

r

. + .
Remarks. (1) Put H?=H?(M)+---4+H?(M) and A=(AZ++ A
Consider the following class of time dependent operators on H ™.

0]

GH

>
d x

L= {L(t) = quB,-(t, x) [O }—}—C(t, x);

Bj(t, x) is an 7 X 7-symmetric matrix with entries in A

and C(#, x) is an 7 X r-matrix with entries in 4.}

Uy
For u,=| :
Uy

symmetric hyperbolic system. /[ is the special case (r=1) of L.
(2) For a positive integer m consider the class

Lo ={L(t) = [Ema,(t, x)0%; a (t, x)EA

}EH’, we can consider the Cauchy problem for the first order

and inf (— 1) 3 al(t, WE)ZK( E)"
for any E=(&, -, &) ERY

where E*=EE2---Efa for multi-index . The operator in _[,, is called the
2m-th order elliptic differential operator. In these cases of L7 and _£,,, we can
construct the same examples as in the cases of _£; and _£, respectively.

4. Auxiliary Lemmas

First of all, we give two lemmas, Lemma 4.1 and Lemma 4.2 which are
concerned with strongly mixing processes. Lemma 4.1 is the basic tool in our
argument and it can be proved in the same way as the proof of Lemma 2.1 in
[8]. Lemma 4.2 is used in Step 1 of the proof of Theorem in the next section,
and it is an immeadiate consequence of Theorem 18.2.1 and Theorem 18.3.1 in

(6]

Lemma 4.1. Let n be a positive integer. Let ®(w,t), i=1,2, -+, 2n be
real valued strongly mixing processes with mixing coefficient ct(t) where expectations
are zeeo for rach t and M;=sup | ®(w, t)| <oo. Then there is a positive constant

t,o

C(n) which depends only on n and a(t) such that
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t+T (1+T t+T
(4.1) (77 [ dsdsyedsnl BE(5) @) @t
=Cm)T"M\M,---M,,  forany t. //

Lemma 4.2. Let {®(w,t); —co<t<<oo} be a real valued stationary and
strongly mixing process with mixing coefficient ct(t) whose expectation is zero and
M=sup|®(w, t)| <oo. Then there is a positive constant C such that

t,0

CM?

er /1
In what follows we drop the letter  if there occurs no confusion and we

always assume the hypotheses of Theorem in Section 2. Recall that

4.2) |_1f E| g: (vt *—2 | Elo@eod = L

4 0
3 X*(t) = L(—¥(®)
(*3) (1 = £
where #°(¢) and %°(t) are the solutions of evolution equations (2.7) and (2.8) re-
spectively. Since the initial data %, is in H?***! we have X*(-)eC([0, T]—
H+3myn CY[0, T]—=H?**"+") and X*(-) satisfies the equation
e _ e t § 3
(4.4) X(t)=W (t)+S0L(?>X (5)ds
as an H?***1yalued function on [0, 7]. Here W*(¢) is defined by
e/ 1 ¢ Sy 1 —> JJp+2m+1
#5)  WO=_= So (L( : ) L>u°(s)dsec ([0, T]—>H?**m+ .
Let Y*(z) be the solution of the equation

V() = W’(t)—{-S: LY*(s)ds
Y'(0)=0.

(4.6)

Since V:(L (L> —L>u°(t)E C([0, T]— H?**m+1), the equation (4.6) has a
uuigne solution in C([0, T]—=H?*"*)N CY([0, T]— H?*"*') in virtue of the
assumptions on the class L. Put

4.7) Z5(t) = X ()= Y () ([0, T]—=H?*m+) .

Then Z*(t) satisfies the equation

4.8) Z(t) = S: L (_;_) Z"(s)ds—{—S: (L(-é—) —L) Y*(5)ds
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as an H?*"*'-yalued function.
In the rest of this paper, unless otherwise stated, the letter C is commonly
used to denote those constants which are independent of &, », and, tE[0, T'].

In the following lemma we give the basic estimates for the above defined
processes which guarantee that the distributions of the associated processes are
tight on C([0, T']—H?) for properly chosen g.

Lemma 4.3. Let {el} .1 be a complete orthonormal system of H® which
consists of the eigenvectors of A. Then {eﬁzA"eg} 7-1 becomes a complete ortho-
normal system of H?. Let ni: H?—[el, e3, -+, es]™ be the orthogonal projection
onto the orthogonal complement [ef, 3, ---, e,,]* of the finite dimensional linear
subspace of H? generated by i, €3, -+, e5. Under the same hypotheses of Theorem
in Section 2, we have, for any t, t+he[0, T]

(#9) Bl WX (t+-h) —ms " W (@)l on = CHY(, 2‘. llek**m |5 2m)”

(4.10)  E|zl Y (t+h)—zl*m Y (E)||sem= CHY( i;ﬂllei?*'"“llﬁm)z,

“11)  E|X‘(t-+h)—X @)= Ch, and
(4.12) OSS?ETEHS( <%>—L)Y‘(s)d8||§+m—z§C8.

Proof. Proof of (4.9). Write ¢; and = for e;™*! and #zi**" respectively.
Put @,(s)=((L(s)—L)s), €)p+am+1 B=1,2, ... Then it is easy to see that
W*(t) can be written as

) t/e
(4.13) We(t) = E(So Dy(5)ds)es -
Using the fact that {e,} ;.. is also a orthogonal system in H?*** we have from
(4.13)

(4.14)  E|lzW*(@t+h)—aW* @)|[}+2m
t+h/e t+h/e ;t+h/e (t+R[E
* 3, 3 lenlBaanllenlonn | [0

Iel—:H-l ky=n e/e Jte t/e

dsldszdsads4E[@k1(51)¢'kz(sz)q)kz(sa)cpkz(%)] .

From the assumptions on L(w, t) we have |®,(s)|<C sup (") +sm+1-  Thus
from Lemma 4.1 we obtain

EllaWH (1) —a W (£)ll5+2m = CH( héﬂ”ek”?ﬂ—ZM)z :

Proof of (4.10). Let {7(f)}<:<r be the semi-group of linear operators on
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H~= such that for each usH?*" T(t)ucsC([0, T]=H?**")nCY[0, T]=H?)
denotes the unique solution of the evolution equation

du(t — Lu(®)

(4.15)
u(0) =u .

Write e, and # for ef*™*! and z5*™ respectively. Put

Dy(s) = (T(t—Es+h)(L(s)—L)Es), e)psm+:1 and
Wu(s) = ((T(t—&s+h)— T (t—Es))(L(s)—L)u*(Es), €x)prm+1 -

Then we can easily see that

(4.16) | Du(s)| = Coz\g)q' ()] p2me1
and
(4.17) W) <Ch  for 0§s§—§ ,

since <L <%) ——L)u"(r) eC([0, T]— H?**»*1) and

(T(t—s+h)—T(—9)(L (%)—L)zﬂ(s) — S:“LT(r)(L (%)—L))zﬂ(s) dr
in H#*m»* for 0<s<t<T. On the other hand we can write
Y(t+h)—Y*(2)
-+ [ T(t—H—h)(L (5)-Lpeyas
e | @a—stm—T—)(L(S)—LYi(ods
— L+1,.

Therefore in the same way as the proof of (4.9) we have

EllzLli$m<CH( 33 llellim) and  EllzLllsm=<CR( 33 lleilan)?
Hence we have
Ell Y4B~z Y @llm < CH( Y Jlexllim) -

Proof of (4.11). First we show that

(+18) X Olen C [ §, 1Ol amds 1T (@) |
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In fact, since W*(-)e CY[0, T]—H?**") and X*(-) C([0, T]—=H?*")nN
CY([0, T]—H?**"), we have

XU (t)— W'(t) = S; L(X*(s)—W*(s)) ds+ S: LW*(s)ds ,

where the integration in the right hand side is the Bochner integral of an
H?**m_yalued function on [0, 7']. Thus from the energy estimate (2.4), we have

¢ t
X0~ Ol n= Crpom [, WO BendsS Crpam Coem | WO Eszmds.
This implies (4.18). Thus we have
(4.19) sup E|IX*(2)ll3wsC
ot<T
by using the estimate (4.9) with ¢=0, A=¢, and n=0. On the other hand
. t+h s .
X(t+h)—X*(t) = W’(t—i—h)—W’(t)—}—j L(?>X'(s)ds in Hpvom
t
Therefore we have
e e 4 e e 4 trh s e 4
EIX*(t4+-h)— X O S2EIW e +h)— W @li+2E0 | L(S )X @l

In virtue of (4.9) it suffices to estimate the second term in the right hand side.
But we have

Bl LS ) @il

a1 o,

¢ t t

t+h pt+h pt+h itk . ,
=0 st St St St dS;d&dS,d&EE”X M lp+m
<Chrt.

from (4.19) and Holder’s inequality.

Proof of (4.12). Put py=p-+2m—+1, p,=p-+m—1, p,=p+m—2, e,—eh and
fi=¢lz for convenience. In addition, put ®@(s, r)=(T(s—&r)(L(r)—L)u’(Er), ex)s,
and Wy,(s)=((L(s)—L)es, f1)s,. Since we can write

o - s/t
V() =3V E( S &y(s, Ndrje,  in H”
=1 0

and
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LO—Les= D Wu()f; in H?,
we can easily see that
— (! s e 2
EIVE {.a{L(L)-L) Ve
tle ptl/e sy (s
S IA17: 51 N T i NS
[ ky ky JO Jo 0 Jo

E [‘I)k,(sn 7))@y, (5 rz)‘yklz(sl)‘ykzt(sz)] .

Therefore we have

(4.20) EllVe S:(L (%)—L) Y*(s)dsl|3,

IE[(Dkl(sn ss)ékz(sza s4)\1'k1,(s3)‘1sz,(s4)]l

On the other hand it is easy to see that

[Du(s, )| = Csup 1) 5y

2 tle pife pt/e pife
§.52$]|f,||p3k2kxs So SO SO ds, ds,ds, ds,

and
l \I’kl(s) [= ”ek”ﬁ2+m .

Thus applying Lemma 4.1 to (4.20) and recalling p,=p+2m—+1, p,=p+m—1,
po=p+m—2, e,2=ejr and f,=e}? we conclude that

ot
EIVE [[(L(2) L)Y OdslrnsSC Sl ™1 mos(S ek ] sam-)
<oo.

since the inclusion H?*»+1cC [ #+2m~1 js a nuclear operator and the inclusion
Hrtm=lc {#*m~2 is a Hilbert-Schmidt operator.

5. Proof of Theorem
The purpose of this section is to prove Theorem in Section 2. As before,

x)=2 O, = L[ (1(£) L)), and 200 =X"()— V(¢
(=20 == [ (L(5) L), and 2:)=X"0)~ V')
where Y*() is the solution of the equation (4.6).

Now we prove Theorem. The averaging principle (2.9) follows immea-

diately from the estimate (4.11). The proof of the fluctuation property is
divided into following four steps: In Step 1, we show that the distribution of
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W*(+) converges weakly to the distribution of W) on C([0, T]—H?**").
In Step 2, we prove that the distribution of Y*(-) converges weakly to the dis-
tribution of X°(+) on C(0, T]—H?*"). In Step 3, we prove the tightenss of
the distributions of X*(+) on C([0, T]1—-H?). And in the last step we show
that the limit distribution of X*®(+) coincides with the distribution of X?°(-).

Step 1. The estimate (4.9) of Lemma 4.3 implies the tightness of the
distributions of W*(-) on C([0, T]— H?**") in virtue of Proposition 4.1 in
[10]. We have to show that the distribution of W*(+) coincides with the distri-
bution of W°(+). For any finite sequence s =<t,<<s,<f,<<---<<§,=%; and any
finite sequence hy, A,, -++, h,& H*, define n-dimensional random variables Aj,
j=1, 2, -, k by A=((W*(t)—W*(s,), o -+, (W*(t)—W¥(s,), hu)e). Then for
any £ R", we have

.1) |E exp(g i, Ai))—jl'[:l Eexp(i(g, A ga(%) -0, as &0,

where (-, +) denotes the Euclidean inner product on R" and §= min (£;4,—s;).
1Sjsk-1

(5.1) guarantees that any limit process of W*(-) an has independent increments.
Therefore, as in the case of the finite dimensional continuous process with
independent increments, it suffices to show the following lemma to see that the
limit distribution coincides with the distribution of W°(-).

Lemma 5.1. For any v, weH* and any 0=s, t<T, we have

(52) E(W!(t)’ 7))p+2m =0 )
and
(53)  lm B, 0)yran(W'(5), @)pran] = | <0, wda8())dr

where {v, w)(u) is the same quantity as the statement of Theorem in Section 2.

Proof. The proof is similar to that of Lemma 3.1 in [8]. (5.2) is obvious.
We prove the euqation (5.3). For the sake of simplicity, we assume that v=u,
T=1 and t=s=1. Put ®(r)=((L(r)—L)u"(Er), v)p+:m and

q:k(r):((L(r)—L)u"(ﬁ), Opsam for k=0, 1, v, m—1,
n
where 7 is a positive integer which will be determined later. Then we have
E[(W*(1), v)3+2m]
1/e 1/
=& | anar.B@m)00)]
0 0

— eSSG dr,dr,E[®(r)®(r)] € SSG dr,dr, E[®(r)®(r,)]
= Il+Iz )



904 T. MORITA

where G, =:L=]:{(r1, r); ;t’ie <r, 1< ;‘1} and G,— [0, %]x[o, %]\Gl. Since

|®(r)|=C ssuprllu"(s)Hl,ﬂml['vll,_m, for 0§r§»§—1, we have
0Ss<
n-1 k/ne k+1/ne
Lis2Ee| " an [ anl By
n-1 k[ne k+1/n2
0t 0

éCnEIIvH%”’” ,

IV\

from the strong mixing property of ®(r). Next we have

n-1 (k+i/ne p+1/ne
L=eS [ (" dnar B[@yr)@ir)]

=0 Jk/ne k/ne

k-1 (h+1/me pR+1/me
+e S (™ b, dr, BL@()0 () —@ur)@sr)]
=0 JEk/ne k/ne
= L+1,.
Put 8(n)— Slllg [160(s;) — 8 (sp)llprsm- Then we have |D(r)—@u(r)| =
Ogsl :2—51'

C3(n)||vllpom for 0=r= —g Thus using Lemma 4.1, we can show that

| L] <Cné nlea(n)nvu,%m — C8(m) 10|22 -

On the other hand, from Lemma 4.2 we obtain

Sk+1l’l! Skﬂmdrl dr, E[®4(r)®4(r,)]—2 S: E[@,(0)D,(t)dt| = C/enllvl|}+2m

k/ne k/ne

Therefore we have
2 an _
-5 S E[@(0)@y(2)ldt] <C/enllol[312m -

=0

B

Hence we have

b ;2; OS E[@4(0)@4(t)]dt| < C(nE+/ng+8(m))l[0ll3s2m -

k=

Taking n=n(€) so that n(€)é—0 and n(€)— oo as €—0, and recalling the equation
(2.13) we conclude that

tim E[W*(1), 0)3+2m = || <0, 0>@0))ar /1
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Step 2. In virtue of Proposit,on 4.1 in [10], the estimate (4.10) implies the
tightness of the distributions of Y*(+) on C([0, T']—=H?**"). Let {§,} -1 be any
sequence with &,—0 (n— o0) such that the distribution of Y*®s(-) converges
weakly on C([0, T']—H?*"). In virtue of Skorohod’s theorem (see Theorem 2.7
in [6, Chapter 1]), we may assume that C([0, T']—H?*™)-valued random vari-
ables Y* converge in C([0, T']>H?*™) P-a.e. Thus the limit process Y°(+)
satisfies the equation

Yo(t) = W°(t)+S:LY°(s)ds in H?.

On the other hand for w(-)& C([0, T']—H?**™) consider the equation

(5.4) { ¥(#) = w(e)+ [ Ly(s)ds

$(0)=0.

Let u(-)eC([0, T]—H?*™) N CY([0, T]—H?) be the unique solution of the
equation

BE) _ L)+ Loo(s)
(5.5) dt

u(0)=0.

It is easy to see that y(£)=u(f)—w(t) is the unique solution of the equation (5.4)
in C([0, T1—=H?**") N CY([0, T]—=H?) and ||y(¢)ll,=C|lw(?)||, for any 0=t < T,
in virtue of the energy estimate (2.4). 'T'herefore the correspondence C([0, T']—
Hmys59(-)—>y(-)€C([0, T]—H?) is a continuous mapping. Hence the
equation (2.10) determines a unique probability distribution on C([0, T'1—H?).
The proof of the second step is now complete. //

Step 3. Different from the finite dimensional case, the tightness of the
distributions of X*(+) on C([0, T]—=H?) can not be shown directly from the
estimate (4.11), but in the present case, it can be shown by the following argu-
ment. For any §>0, there is a positive constant C such that

(5.6) P{oEQ; X%, -)ETy} >1-38,

where I')= {x(+)€ C([0, T]—>H?); x(+) are equi-continuous and sup ||x(¢)|[,=C}.
On the other hand we can show that o=Ist

e < -4
(5.7) 24P (1X @)l pen = C 8P WD)l ram

from the estimate (4.18) in the proof of (4.11). From (5.7) and the tightness
of the distributions of W*(+) on C([0, T]— H?***) we can see that for any
6>0, there is a positive constant C such that
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(5.8) PloeQ; XY o, )T, >1-36,
where T,={x(-)eC([0, T]—H**™), Sup [|2(*)|l,+m=C}. Since any bounded
<t<T

set in H?*" is relatively compact in H?, T\NT, is a relatively compact set in
C([0, T]—H?) in virtue of Ascoli-arzela theorem. Hence from (5.6) and (5.8)
the distributions of X*(+) are tight on C([0, T']—H?). //

Step 4. This step is quite different from the finite dimensional case (see
Khas’minskii [8]). For ¢g=<min(p, p+m—2) let H be the Hilbert space of all
Hilbert-Schmidt operators from H? into H*""~! endowed with an inner product

(5.9) (4, Bygs = 33 (Ael, Bel)g-n-1

where {ef} -1 is a complete orthnormal system of H?. Let L*[0, T— 4(]) be
the Hilbert space of all 4{-valued L*-functions functions defined on [0, 7] endow-
ed with an inner product

(5.10) (AC), BOW) = | (4, B@))asds.

From the definition, the well-posed class £ is contained in a closed ball
SoC L*([0, T1—4) centered at 0. Since S, is a weakly compact set in
L¥[0, T]—H), it is a compact metric space with respect to the weak topology in
virtue of Theorem 3 in [4, p. 434]. For example, the metric is given by

(5.11) d(A(+), B(+)) = 3} 1

3 5 1((AC)=B(), B,

for A(-), B(+)E S,, where {B,(+)}»-1is a sequence of elements in L*[0, T']—>4)
such that their linear hull is dense in L*[0, T]—=) and ((B,(+), B,(+)))=1 for

n=1, 2, ... In particular the sequence {B,(+)} -1 can be chosen so that
(3.12) 23 (sup ||,B(t)ebllg-m-1)*=1.
k=1 0<t<T

In fact, let K denote the linear subspace of all elements B(-) of C([0, T']— H)
such that B(t)ef=0 for all t[0, T'] if k is sufficiently large. Then it is easy
to see that K is dense in L*[0, T']—#). Thus we can take a sequence
{B,(*)} -1 K which is dense in L*[0, T]—%). Therefore we can choose
B,(-)as

k=1 05

B(+) = (S (sup I1By(Bellly-n-)) M By(-) .

Consider the product space

(5.13) S = C([0, T] - HYx C([0, T] — H*" " )X S, .
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Put Fé(t)= s:(L'(s)—L) Y*(s)ds where L* (t)=L(%). Then the distribution of

F*(+) converges weakly to the distribution of the process @ which is identically
zero. In fact, since ¢= p, and since we have already shown that the distributions
of Y*(-) on C([0, T]—H?*™) are tight, it is easy to see that the distributions
of F*(-) on C([0, T]— H") are tight. On the other hand, OZ?SQ'EIIF'(t)Hq—a() as

&—0, from the estimate (4.12). Hence we have the above fact. Next we have
E[d(L¥(-), L)]
oo T oo
— B[ L1 2 (L0 —Lieh, But)eymardt] |

< 3 L BEI (LO-Le BOel)y-nt]

SN, (L0 —Lyel, Butel)y-n1 19
On the other hand, we have from Lemma 4.1
T
B | (@ ®—Det, BUOe)s-mort

= & (" ds, e, EU(L) — Dy, Bu(E)e)ymas(Ls)—Dlel, Bu(Esf)eonai]

< C&(sup 1B, (@)ell-m-Fllelli-n-s

Therefore it follows that E[d(L’(-), L)]=<CE in virtue of Schwartz’ inequality.
Hence we have shown that for any sequence {&,} ., with €,—0 as n—>o0, L(-)
converges to L (non-random) in .S, in probability. In virtue of Theorem 12.3
in [2, p. 195], the distribution of (F*®s, L*s) converges weakly to the distribution
of (6, L) on C([0, T]=H* " ') xS,. Suppose that the distribution of Z*(-) on
C([0, T]—H?") converges weakly to the distribution of Z°%-). Using Theorem
12.3 in [2] again, we can see that the distribution of (Z®, F*», L**) on S converges
weakly to the distribution of (Z° 6, L). In virtue of Skorohod’s theorem, we
may assume that (Z*+, F*», L*») converges to (Z° 6, L) in S. P-a.e.. For a while
we proceed our discussion with fixing an » € Q such that (Z*%(w), F*(0), L*(w))
converges to (Z°%w), 8, L) in S. For any fixed t<[0, 7] and A& H*"""! we have

2°0), h),,_,,,_l—S: (LZO(5), h)yn-1ds

= (Zo(t)’ h)q—m-l—(zeﬂ(t)’ h)q—m—l
+ @ Z6), Bymeads+ (F20), o= [ (LA 2, B)mad
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t t
+So (L*(5) Z°(s), h)q_,,,_lds—so (Z2(s), h)qum-idS .

Clearly, [(Z*(t), B)y-n-t—(Z°0), Fg-mos =0, |(F™(£), F)g—n—s]—0, and

t t
|S (L*(5)Z%(s), h)q_,,,_lds—s (L*(5)Z%(s), h)yom-1ds |0 as m—>co. Let S’ be

0 0
the space of all Hilbert-Schmidt operators from H¢ ™! into H’. We note that
L¥[0, T]—4) and L*([0, T]—4H') are isometric and isomorphic by the corres-
pondence L¥([0, T)—4L) A(+)—=A' () L¥[0, T]>H') where for each ¢, A'(#)=
A(t)': the dual operator of A(f). We define an element B’(+) of L¥[0, T'1— )
as follows:

Z° f =ch €R
’ { cZ%s) for g=ch (c )J‘ i 0<s<t
B'(s)g = 0 for g€ {ch; cER}
0 if t<s<T.

Since L*(+) converges to L in the weak topology of L*[0, T']—4() we have
S: (LE($)Z(s), By
= S: (B'($)h, L*»(s)h),ds — S: (B'(s)hk, L'h),ds
— g: (LZYS), H)gmerds ~ (n—>o).
Thus we have seen that
(Z°(t), B)gem—r = S: (LZ°(s), B)g-m—1ds
for any 0=<¢=<T and for any hc H? ™!, 'Therefore we have
Z%0) = j: LZ%s)ds  forany O=<t<T P-ae.
Hence we have seen that Z°(-)=@. It follows that the distribution of Z*(-)
on C([0, T]—=H?) converges weakly to 6. Therefore the limit distributions

of X*(+) and Y*®(-) coincide on C([0, T']—H?). Hence they coincide on
C([0, T])—H?). This completes the proof of Theorem. //
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