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Introduction

Let G be a finite group and k& be a field of characteristic p>>0. The purpose
of this paper is to study homological properties of the endomorphism ring A of
the k[G]-module M=@&k[G/H], summed over all subgroups H of G. Our
main results are the following.

Theorem A. If G is not a p’-group, then the finitistic dimension of the
ring A, that is, the supremum of finite projective dimensions of finitely generated
A-modules, is equal to

1+4-sup{rank H/®(H)}

where H runs over all p-subgroups of G and ®(H) denotes the Frattini subgroup
of H.

Theorem B. Let G be an elementary abelian p-group. For a subgroup H
of G, let Sy be a simple A-module corresponding to the summand k[G/H] of M.
Then, for subgroups H and H', the least integer i such ihat Ext}(Sg, Sy/)=0
1s equal to

rank (H+H')/H+-rank (H+H')/H' .

In Section 4 we compute Exti (F, F’) for certain A-modules F, F* when G
is an elementary abelian p-group. Theorem B is contained in Theorem 4.1
there. In Section 5 we deduce Theorem A from Theorem 4.1. We need
some results in Lusztig [5] on the homology of the partially ordered set of sub-
groups of an elementary abelian p-group, and simplified proofs of them are given
in Section 2.

The ring A arises in the theory of G-functors initiated by Green [3]. In
fact, A-modules and cohomological G-functors over k& are equivalent notions,
as was shown by Yoshida [6]. Since the language of G-functors is useful for
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our computations in Section 4, we review the correspondence between A-
modules and cohomological G-functors in Section 1.

All modules are assumed to be left and finitely generated. For a ring T'
the category of T"-modules is denoted by I'-#7ad.

1. Permutation modules and cohomological G-functors

Let G be a finite group and % a field. A G-set is a set on which G acts on
the left. A permutation module is a k[G]-module of the form k[S]= @ ks with

se8

S a finite G-set. Denote by P(G) the category formed by permutation modules

and &[G]-homomorphisms, and by P(G)" the category of k-linear functors P(G)°®

—>k-Mod. If F is a family of subgroups of G such that every subgroup is con-

jugate to a member of &, then P(G)" is equivalent to the category of A-modules,

where A=End, (H@gk[G/H])”. The category P(G) is self-dual. In fact the
e

functor X+—X" =Hom,(X, k) gives an equivalence P(G)*®*=P(G). Moreover,
since X" =X for any permutation module X, A is isomorphic to A°®>. We will
work with P(G)" rather than A-#fod.

We can also interpret P(G)" as the category of cohomological G-functors.
Let us recall Green’s definition in [3]. A cohomological G-functor F is a
family of k-modules F(H) for all subgroups H of G and k-linear maps p%:
F(K)—-F(H), v%: F(H)—>F(K), v,: F(H)—>F(H#*)=F (g *Hg) defined for all pairs
of subgroups H, K such that HCK and for all g€G, satisfying the following
axioms.

(i) If H is a subgroup of G, then pi(x)=7i(x)=1,(x)=x for x& F(H),
g€H. If H, K, L are subgroups of G such that H C K C L, then pfpk(x)=p#(x)
for xeF(L) and ri7i(y)=7#(y) for yeF(H). If H is a subgroup of G and
8 8'€G, then v,/ v, (x)=1,,(x) for x&€ F(H).

(i) If H, K are subgroups of G such that H C K and g& G, then v,pi(x)=
phey (¥)for x&F(K) and v, v5(y)=7ksv,(y) for ye F(H).

(iii) (Mackey axiom) If H, K, L are subgroups of G such that HC L,
K CL, then

pirh(x) = 3 THE 0 kPHE 0 kY (%)

for xe F(H), wherz g runs over representatives for (H, K)-cosets in L.
(iv) If H, K are subgroups of G such that H C K, then

hpi(x) = |K: H|x
for xe F(K).
The maps pf, 7k, 7, are called restriction maps, transfer maps, conjuga-
tion maps respectively. A morphism F—F’ of cohomological G-functors is a
family of k-linear maps F(H)— F’(H) which commute with the restriction,
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transfer and conjugation maps.

An object M of P(G)" determines a cohomological G-functor F in the
following way. For each subgroup H of G, set F(H)=M(k[G/H]). For sub-
groups H, K such that H C K, define G-homomorphisms 7: k([G/H]—k[G/K] and
t: k[G/K]—k[G/H] by r(xH)=xK for xG and #(yK)=3] xH, the sum of H-
cosets contained in yK, for yG. For g€G, define a G-isomorphism c,:
k[G/H]— k[G/H?] by c(xH)=xHg=xgH? for x&G. We set pf=M(r), Th=
M(), v,= M(c;"). Then one can verify that F(H), p%, %, v, form a coho-
mological G-functor F. Furthermore, Yoshida proved in [6] that the assignment
M+—F gives an equivalence from P(G)" to the category of cohomological G-
functors. For details about G-functors, see [3], [6]. But we do not use anything
other than this correspondence between objects of P(G)" and cohomological
G-functors.

2. Homology of Sub (V)

Throughout this section & is a finite field with ¢ elements. Let V be a k-
vector space of dimension n#. Denote by Sub (V) the set of subspaces of V.
Sub (V) is partially ordered by inclusion and so viewed as a category in the
usual way (see Gabriel and Zisman [2]). Denote by Sub (V)" the category of
functors Sub(V)°®—>k-#ad. An object of Sub (V)" is a family {F(U)(U &Sub(V)),
@y, (U, U'€Sub (V), UCU’)} of vector spaces F(U) and linear maps @y y-:
F(U")—F(U), satisfying the conditions that @y ;=id, @y yroPy’ y»=ey y»» when-
ever UCU'cU”. The maps @y are called restriction maps. Ext groups in
the abelian category Sub (V)" are written as Extéunyy(, ). For generalities about
functor categories we refer to Grothendieck and Verdier [4].

For U&Sub (V), let Sy be the object of Sub (V)" such that Sy(X)=k if
X=U, Sy(X)=0 if X=+U. Results on Ext},, which we need later are the
following.

Proposition 2.1. Let F: k-Mod®— k-Mod be a (not necessarily additive)
Sfunctor and let V be a k-vector space. Denote by F(V|—) the functor Sub (V)°°—
k-#Mod taking X to F(V|X). Then we have Exté, ) (Sy, F(V|—))=0 for Ue
Sub (V), i+=dim U.

Proposition 2.2. Let V be a vector space and V' a subspace of V. Let
Cy,v’: Sub (V)*—k-Mod be the functor such that

CoX)=k if X+V' =V,
=0 if X+V' %V,

and the restriction maps from k to k are the identity. Then we have for U € Sub(V),
Exté o) (Su, Cy.y)F0 if and only if U+V'=V and i=dim (U NV").
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Proposition 2.3. Let V be a vector space and U, W subspaces of V. Then
Ext,uv) (Sys Sw)=0 if and only if W C U and i=dim U/W.

Proposition 2.3 is the well-known Solomon-Tits theorem (see [5; p. 12])
and Proposition 2.2 is [5, Theorem 1.11] and Proposition 2.1 is a generalization
of [5, Theorem 1.12] (see Corollary 2.6 below). In [5] these results are stated
in terms of simplicial complexes. A link between geometric language and ours
may be found in [2, Appendix]. We will prove these results here for the sake
of completeness. Our proofs are simpler than those in [5].

As preparation we define adjoint functors between categories of the form
Sub(V)". Let f: V'—V be a linear map. There are functors

Sub (V) :;: Sub (V)

defined by f(X")=AX"), f(X)=f"%X), and f, is a left adjoint of f° (in such a
case we write f,f*). 'Then we have four functors
/i
-
*
Sub (V)" == Sub ()"
-
f
defined by
(fF)X) = lim F(X')

(R X)=F(fX),  ie, f*F =Fef,
(+F)(X) = F(fXX),  ie, fuF'=Fof
(fF)(X) = lim F(X)

r~Y%xex’

for FeSub(V)", F'Sub(V’)", X &Sub(V), X'Sub(V”’), and these form
a sequence of adjoints fy—f*— fu—f' (see [4, n° 5]). Since f*, f, are exact,
there are natural isomorphisms

Ext{un (f*F, F')=Ext{, o) (F, f+F') .

When V' is a subspace of ¥V and f: V'—V is the inclusion map, then f, is
given by
HWF)(X)=F(X) if XcV’,
=0 if X¢v.

Hence f, is also exact and
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Ext{,vy (iF', F)=Exté, o (F', f*F).

When U is a subspace of V' and f: V'—V'|/U=V is the projection, then f' is
given by
(f'/AHXY=FX'|U) if UcX',
=0 if UdcX',
and hence

Extéuow (foF", F) = Extgun (F', f'F).

Proof of Proposition 2.1. Let j: U—V be the inclusion map and let

Ji
Sub (U)" = Sub(M)"
*
be the adjoint defined above. Define a functor Fy,: k-#ed®— k-Mod by
Fyy(X)=F(V|U®X). Taking a complement of U in ¥, we have an isomor-
phism V/—=V/U@ U/— as functors on Sub(U). Hence j*F(V|—)==
Fyy(UJ—). Also j;Sy=Sy. It then follows that

Ext,o) (Sy, F(V]—))=Extéw) (Sy, Fyw(U[—)).

Thus we are reduced to the case when U=V
In this case we proceed by induction on dim V. When V=0, the assertion
is trivial. Let V' =0 and write V=L@ H with dim L=1. We have four functors

¥
Sub (H)" —— Sub (V)"
fr

g
Sub (H)" = Sub (V)"
&1
defined by

(FPN)(X)=NX)  if XcH,
=0 if Xd¢H,
(AM)(Y) = M(Y)
(&'N)(X) = N((L+X) N H)
(&M)(Y) = M(L+Y)
for M &Sub (V)", NeSub(H)", X&Sub(V), Y &Sub(H), and these form

adjoints f*-f,, g+ g, The inclusion maps Y—L—+Y induce a morphism a:
aM—fiM. Since g is exact and g;S,= Sy, g3 induces a map

Exté iy (Sy, M) = Exté ) (Su, &aM),
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which is also written by g;. We claim that the composite

EXtéub(V) (Sy, M) — Exté um (S, &M) — EXtéub(H)(SH’ M)

of the map g; and the map induced by a is zero for any M Sub(V)" and any
i{€N. Indeed, by taking an injective resolution of M and using the fact that
f2 and g, preserve injective objects, we are reduced to the case when (=0. Then

the claim is clear because Hom (S, M)==Ker(M(V)— gVM(X))
X

Now let M=F(V|—). Then « is a split monomorphism, because a: goM =
F(H|—)—>F(LPH|—)=fM is induced by the projections LSH|Y —-H|Y for
Y eSub(H). By the above claim, it follows that the map

gv: Extéuw) (Sy, F(V]=)) = Extéu (Sm 8F(V/—))
is zero for any 7.  On the other hand, since
@Sy (X)=k if L+X=7,
=0 otherwise,

we have an exact sequence

(2.4) 0—>EBSK->g‘SH—'8>SV—>O

KeR

in Sub(V)", where R is the set of hyperplanes in ¥ which do not contain L,
and the morphism @B corresponds to the isomorphism Sy == g,S;; under the adjoint
situation. The map Exté,. ) (8, F(V/—)) is zero for any ¢ because it equals
the composite

i & i
Exthuncr) (Sy, F(V]—)) = Exthuiay (Su» g4F(V/—))
—:*EXtéub(v) (&8Su, FV]—)).
Then, by (2.4), we have an exact sequence
(2.5) 0 — Extginw) (&4Sy, F(V/-)) - D Extsion (Sx, F(V/]—))
— Ext&unw) (Sy, F(V[—))— 0

for any z. By the inductive hypothesis, Extizly)(Sk, F(V/—))=0 if i—1
dim V—1 and K€R. Hence Exts ) (Sy, F(V/—))=0if i=dim V. Q.E.D.

For a vector space V of dimension # we define
L(V) = Extsunwy (Sy, (V/—)")

where (V/—)" is the functor Sub(V)®—k-#Med taking X to the dual (V/X)" of
V/X. The following is equivalent to Lusztig’s result [5, Theorem 1.12].
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Corollary 2.6. Let V be a vector space and U a subspace of V. Then

Extd,um (Sy, (V/—)") =0 if i#dimU,
= _L(U)=+0 if i=dimU>0,
=TV f t=dimU=0.

Proof. The isomorphism in the third case is clear and the equality in the
first case follows from Proposition 2.1 by taking F as the functor X—X". Let
i=dimU>0. Using the notation in the preceding proof, we have that
J*(V|—) = ((V/U)"®(U/—)". Since the constant functor (V/U)Y is an in-
jective object of Sub(U)" and >0, we see that

Extéuw) (Su, (V]—)") == Exté ) (Sy, (U[—)") = L(U).

It remains to show that L(V)==0.whenever V' 30. By (2.5) with i=dim V'=n,
we have exact sequences

0> L(H)— @ LK) LF)=0 if n>1,

0->0—->V—->LV)—0 if n=1.
Setting l(n)=dim L(V), we see that l(n)=($R—1)(n—1)=(¢""'—1){(n—1)
if n>1, and [(1)=1. Thus l(n)=(¢""'—1)-+-(¢q—1)=0 for n>1. Q.E.D.

Proof of Proposition 2.2. We use the notation in the proof of Proposition
2.1. We have

Ext&upw> (Sy, Cy,v/)== Exté ) (Sy, 7*Cy,v)
and
j*CV,V’ - CU,U{]V’ if U+ Vl — V )

=0 otherwise.

So it is enough to show that Ext{,.,)(Sy, Cyy/)=0 if and only if i=dim V".
We use induction on dim V’. When V'=0, this is clear. Let V'=0. Write
V=L®H with LCV’ and dimL=1. Then the morphism a: gCy , —
fiCvv»=Cy gay- is the identity. By the claim in the proof of Proposition 2.1,
it follows that the map

g1t Extéowy (Sy, Cy,yr) = Exté iy (Sk, £4Cv,v7)
is zero for any ¢. 'Then we have by (2.4) an exact sequence
0 — Extéiumn (Su, Camave) *x%e Extéooi) (Sk» Cr,xnv?)
— Extd ) (Sy, Cy ) = 0.

If KER, then V'¢ K, so dim(KNV')=dim V'—1. If i4dimV’, then the
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middle term of the above sequence is zero by the inductive hypothesis, hence
also is the right term. Set

PV, V') = Extl iy (Sv, Cy,v)

and p(n, n')=dim PV, V') with n=dimV, n'=dimV’'. Then p(n, n")=
(" *—1)p(n—1,n'—1) for n'>0 and p(n,0)=1. Hence p(n,n’)=(g""'—1)--
(g —1)=*0. Q.E.D.

Corollary 2.7. Let WCV'CV. Let Cyyry: Sub(V)*—>k-Mod be the
functor such that

CyvwX)=Fk if WcX and X+V' =V,
=0 otherwise,

and the restriction maps from k to k are the identity. Then we have for U €Sub(V),

ExtSo) (Su, Cyvr,w) = P(UIW, (UN V)W)
if WcU, U+V'=V and
i=dim U/W—dim V|V’

=0 otherwise.

Proof. Let p: V—V /W be the projection and let
D«

Sub (V)" — Sub (V/W)"
P!

be the adjoint defined before the proof of Proposition 2.1. Then

!
CV,V',W =p CV/W,V'/W

and
P+Sv = Surw if WcU,
=0 if WaU.
Hence
Extéuw (Svs Cv.v,w) == Extéawrmy (Svws Cvmw,viw) if wWcuU,
=0 if WauU,
and so the corollary follows from Proposition 2.2. Q.E.D.

For a vector space V' of dimension n we define the Steinberg module

SZ( V) = Ethub(V) (SV: SO)
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where 0={0} C V.
Proof of Proposition 2.3. As before we have that

Exté ey (Su, Sw) = Exté,owm (Sums So) if WcU,
=0 if WaqU,

and so it is enough to consider the case when U=V, W=0. We argue by
induction on dim V. When V=0, the assertion is clear. Let 7 30 and write
V=L@H with dimL=1. Since guS,=0. we have by (2.4),

Exté ) (Sy, So) gxg?z Ext’ 23 (Sk, So)
== @ Ext' 3 (Sk, So)
KeR

for any 7. If i==dim V, then Exti;} 4 (Sg, S;): 0 by the inductive hypothesis,
and hence Exti.. ) (Sy, So)=0. Set sin)=dim S4(V) with n=dim V. Then
s(n)=q""'s(n—1) for n>0 and s(0)=1. Thus s(n)=g¢"* Y2=%0 for any n>0.

Q.E.D.

Remark 2.8. For Ue&Sub(V), let J;: Sub (V)®— k-#Msd be the functor
such that

J(X)=k if UcX,
=0 if UcX,

and the restriction maps from & to k are the identity. Then Jy; is an injective
hull of the simple object Sy. Proposition 2.3 says that if Sp—I" is a minimal
injective resolution of Sy, then [y is a direct summand of /¢ if and only if WcC U
and i=dim U/W. Other results of this section are similarly restated.

3. Homology of S(G)

Throughout this section % is a prime field of characteristic p>0 and G is
an elementary abelian p-group. Denote by S(G) the category of finite G-sets
and by S(G)" the category of those functors S(G)°®— k-#sd which transform
disjoint sums into direct sums. Ext groups in the abelian categroy S(G)" are
written as Ext5e,(, ). In this section we will compute Extk g, (F, F’) for
certain F, F' S(G)".

We view G as a k-vector space and use the notations Sub (G), Sub (G)"
in Section 2. We will give a spectral sequence which relates Ext groups in
Sub (G)" to those in S(G)". Let S(G), be the full subcategory of S(G) con-
sisting of the G-sets G/H with H subgroups of G. Clearly S(G)" is equivalent
to the category of functors S(G)3P—k-#od. Since G is abelian, we have a func-
tor s: S(G)y—>Sub (G) taking G/H to H. Composition with s yields a functor
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s*: Sub (G)"—S(G)" and s* has a right adjoint sy: S(G) —Sub(G)". Given
M < Sub (G)", the functor Hom (s*M, —): S(G)" — k-#ed is isomorphic to
the composite Hom (M, —)osy, therefore we have a spectral sequence

B} = Extiuo (M, RisyF) = Extsid, (s*M, F)

for any F &S(G)", where Risy: S(G)"—Sub(G)" are right derived functors of
sx. We need to know R/s,F. First note that for U< Sub(G), the group
G/U=Hom, (G/U, G/U) acts on F(G/U) and (s4F)(U) is isomorphic to the
G| U-fixed subspace F(G/U)®”Y. If F is an injective object of S(G)", then F(G|U)
is an injective G/U-module, because F is a direct sum of functors of the form
X+ Map (Homg (G/H, X), k). Therefore, for any Fe& S(G)", we have that
(RisyF)(U)=H‘(G|U, F(G|U)) and the restriction maps of RisyF correspond
to the inflation maps of group cohomology.

In Section 2 we defined the simple objects Sk and the injective object Jx of
Sub (G)" for K €Sub(G) (Remark 2.8). The objects s*Sg and s* J of S(G)"
are also denoted by S and Ji respectively.

Theorem 3.1. Let K, K’ be subgroups of G. If KCK' and d=rank K'|K,
then there are isomorphisms

Eth(c) (Sgr, Jk) = Ethub((—;) (Sz-, Hi_d(é/‘))
Exts6) (Sx/, Sx) = SHK)QH"4G)
for any i, where R'=K'|K, G=G|K, Hi"{G)=H"4(G, k), and Hi"%G/|—) is

the functor Sub (G)°P—k-#sd taking U to H~%(G|U), and S{(K') is the Steinberg
module of the k-vector space K’ defined in Section 2. If K¢ K’, then

EXti?(G) (SK’: ]K) = EXtiS(G) (SK’: SK) =0

for any i.

Proof. The case K¢ K'is clear. Let KCK'. For the first isomorphism,
consider the spectral sequence

E3 = Extuye (Sxrs RisxJx) = Extisté) (Sgs, Jx) -
For U &Sub (G), we have
(Risy Jx) (U) = H/(G|U, Jx(G/U))
— Hi(G|U, k) if KcU,
=0 if Ka&U.
The projection z: G—G induces the adjoint

w
Sub (G :T Sub (G)"

T
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as defined in Section 2, and we have that Risy [y =7'H/(G/—) and 7S¢ =
Sg», so

£ o Exthucsy (Sz H/(G|—) .

Applying Proposition 2.1 to the functors H’(—): k-#ed°®— k-Masd, we see that
E{7’=0 for i#rank K'=d, hence the spectral sequence yields the desired
isomorphism E%*~?=Ext§ ¢, (Sg, Jx) for any i.

Secondly, we have that Ris,Sy=SQH/(G/K) and so

37 1= Extéune) (k7> RisySk)
= EXtéub(G) (SK’J SK)@-HJ(G/K)

~ S{K'|K)@H/(G/K) if i=d,
=0 if i+d,
by Proposition 2.3. Thus E§ ‘~?=Ext% ¢, (Sg+, Sg) for any i. Q.E.D.

Corollary 3.2. Let KSK'CG and d=rank K'|K. Then

Exth o) (Sxr, Jx) = 0 if i<d,
= LK'|K) if i=d+1,

where L(K'|K) is as defined in Section 2.

Proof. This follows from Theorem 3.1, Corollary 2.6 and the fact that
the constant functor H%(G/—) is an injective object of Sub(G)" and HY(X)=
Hom (X, &) for elementary abelian p-groups X.

4. Homology of P(G)

In the rest of this paper % is a prime field of characteristic p>0. For a
finite group G, let P(G) and P(G)" be as defined in Section 1. Ext groups in
P(G)" are written as Extp) (,). The purpose of this section is to compute
Exth ) (M, M') for certain M, M'eP(G)" when G is an elementary abelian
p-group.

We first define adjoint functors between such categories as P(G)". Let H
be a subgroup of G. There are functors

P(H) ::tz P(G)

r

defined by
HY) = k[G]1®y Y == Homy (k[G], V), r(X)=X

and functors



818 D. TamBARA

Res
PH)" == P(G)"
Ind
defined by

Res (M) = Mot , Ind(N)= Nor.

Since ¢ is a left and right adjoint of 7, Res is a left and right adjoint of Ind. We
also write Res=Res§, Ind=1Ind§.
Suppose next that H is a normal subgroup of G and set G=G/H. We have

functors

PG = P@

r
defined by
HY)=k[GIQ:;Y, rX)=X
and functors

Inf _
PG)) == P(G)"
Def

defined by
Inf (M) = Mot, Def(IN)= Nor.

Since ¢ is a left adjoint of 7, Inf is a left adjoint of Def.

We also note that the category P(G)" is self-dual. Indeed, for an object M
of P(G)", let D(M) be the object of P(G)" defined by D(M)(X)=M(X")¥
for X €P(G), where ( )"=Hom,(, k). Then the assignment M D(M) gives
an equivalence P(G)"*=P(G)".

From now on we assume that G is an elementary abelian p-group. For a

subgroup H of G, let Sy be the object of P(G)" such that

SHkG/U) =k if U=H,
=0 if U+H,

and let J,; be the object of P(G)" such that

JaR[GIU) =k if HCU,
-0 if HEU,

and that for a G-linear map f: R[G/U]—k[G/U’],

Ja(f)=1id if HC U and f is surjective,
=0 otherwise.

Theorem 4.1. Let H, H' be subgroups of an elementary abelian p-group G
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and let H'=H+H', m=rank H” [H, m'=rank H” |[H', d=m+m’. Then
() Extpe) (Sas Ja)

=0 if i<d or if i=d and H'¢ H
= S{(H|H") if i=d and H'cH
=~ S{H"|H)QLH"|H)  ifi=d+1and H'¢H.

(ii) Extbe) (Sgs, Su) =0 if i<d,

= S{H"|H)QS(H"|H) if i=d.

These isomorphisms preserve the action of the group {fe Aut(G); f(H)=H,
f(H"=H'}.

In the rest of this section we prove this theorem. Let G be an elementary
abelian p-group. Let K be the category of cohomological G-functors F such
that the transfer maps 7§: F(H)—F(K) are zero whenever H S K CG, and the
conjugation maps 7y, : F(H)—F(H?#) are the identity maps for all HCG, geG.
A cohomological G-functor F in K is determined by its restriction maps, and it
can be verified that the category K is isomorphic to Sub(G)". By the cor-
respondence between cohomological G-functors and objects of P(G)" stated in
Section 1, we can view K as a full subcategory of P(G)". Thus we get an
imbedding Sub(G)"—P(G)". By this imbedding the objects Sy, Jx of Sub(G)"
defined in Section 2 correspond respectively to the objects Sk, Jx of P(G)"
defined just before Theorem 4.1.

Lemma 4.2. Let H, G’ be subgroups of G such that H C G’ and rank G,G’'=
1. Put Jyz=Res¢ (Jg)EP(G')". Then there are exact sequences

(4.3) 0> Jz— Ind% (J4) — Ind% (Ji)— L— 0
(4.4) 0—>L,—>L —Ly—>0
(4.5) 0— Ly— Jg— L,— 0

in P(G)", where Ly, Ly X and L,=Cg ¢y as an object of Sub (G)" with the
notation in Corollary 2.7.

Proof. We regard objects of P(G)" as cohomological G-functors. Let L
be the cohomological G-functor such that

LU=k if HCU,
=0 if HGU,

for U Sub (G), and that the restriction maps pj : L(U")—L(U) are given by
p¥ =id f HCUCU and UGG orif HCUCU'CG’,

=0 otherwise,
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and the transfer maps 7§ : L(U)—L(U’) with U & U’ are given by

’

7 =id f HcU=UNG and UGG,
=0 otherwise,
and all conjugation maps are identity maps. Let L,, L, be the cohomological G-

functors such that
L(U)=k if HcUcG’,

=0 otherwise,
L(U)=k if HCcUCG',
=0 otherwise,

for U= Sub(G), and that the restriction maps from & to k are the identity, all
proper transfer maps are zero and all conjugation maps are identity maps. Then
Ly, L, belong to K and L,=Cj ¢ z.

Existence of the last two exact sequences is easily shown. To make the
first exact sequence, we describe Indg, (J%) as a cohomological G-functor. Since

for Ue& Sub (G) the G'-module k[G/U] is isomorphic to € k[G’|U] or
k[G'|/(G' N U)] according as U G’ or not, we have feele
Ind§, (J&)(U) = k[G|G'] if HcUcG',
=k if HcU&GG',
=0 if HtU.

Let &: k[G|/G']—k and ¢: k—k[G|G’] be the maps such that £&(3]a,8)=Xa,
and ((1)=3]g, where g runs over G/G’. The restriction maps p¥ of Indé (J%)
are as follows.

pY =id f HCUcCU and UGG’ orif HCcU U cG’,
= i HcUCU, UcG and UCG’,

=0  otherwise.
The transfer maps 79 of Indé, (J%) with U S U’ are as follows.
W =¢ f HcU=U'NG and U'¢ G,
=0 otherwise.
Then one can verify that there is an exact sequence

0— Jy— Indé (J&#) — Indé (J&) > L—0

in P(G)" such that when evaluated at a subgroup U, it becomes the exact se-
quence

&
0— k= K[G|G'] > K[GIG') > k— 0
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of G/G’-modules (note that G/G' is cyclic) or the exact sequence

1.0 1
0O>k—>k—>k—>k—>0,
according as U C G” or not. Q.E.D.

Proposition 4.6. We write Exthy=Ext’ simply. Under the same condi-
tions as in Theorem 4.1, we have

(1) Ext' (Sg, Jg) =0 ifi<dorifi=dand H<EH,
= Ext? (Sg+, Sg) ifi=dand H' CH,
= Ext" (SH” SH//)®Ext"‘“ (SH”’ JH)
if i=d+1and H'¢H ,

where the isomorphism in the second case is induced by the inclusion Sy— [y and
the one in the third case is induced by the Yoneda product.

(i) Ext’ (Sgs, Sy) =0 if i<d,
= Ext™ (Sg, Sg)QExt" (Sgr, Sg) if i=d,

where the isomorphism in the latter case is induced by the Yoneda product.

Proof. For nonnegative integers k, k', let I(k, ") (resp. II(k, k’)) denote
assertion (i) (resp. (it)) for all triples (G, H, H') such that rank G/H <k,
rank G/H' < k’. 'To prove the proposition, it is enough to show the following
statements (a)—(d).

(a) I(0, 0).

(b) II(%, 0) implies I(0, &).

(c) Let k>0, k’>0. I(k—1,%’) and II(k—1, &’) imply I(%, &').

(d) Letk, B'>0. I(k, k') and II(k—1, k') imply II(%, k).

Proof of (a). Assertion (i) for (G, G, G) is clear because d=0 and J;=S.

Proof of (b). By the duality of P(G)" defined at the beginning of this
section, Ext? (Sy, Sy)=<Ext(Sy, Sys). Thus if (ii) is true for (G, H, G), then
(1) is true for (G, G, H).

Proof of (c). For subgroups U, U’ of G, set §(U, U')=rank (U4 U")|U
+rank (U+U")/U’. This function §( , ) satisfies the triangular innequality. Now
suppose given subgroups H, H' of G with H=+G. Assuming I(rank G/H—1,
rank G/H') and II(rank G/H—1, rank G/H’), we will show that (i) for (G, H, H')
is true. Take a maximal subgroup G’ of G such that HCG’. In addition, if
H'¢ H, we take G’ so that H'CG’. Let L, L, L, be the objects of P(G)"
associated with the subgroups H, G’ in Lemma 4.2, and set Jz=Res§ (Jy)-
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If H'¢ H, then Res/ (Sgz/)=0, so

Ext (o) (Sg» Ind3: (Ji)) == Exth (o (Res (Sg), Ji) = 0
for any :. If H'CH, then

Extb 6y (Sg, Indé: (J#)) = Extbary (Sur, Jh) -

Since rank G'|H<rank G/H, (i) for (G’, H, H') is true. 'Therefore Extj ) (Sy/,
J#)=0 for i<rank H/[H'=d. From these facts and (4.3) it follows that
4.7) Ext! (Sy/, Ju) = Exti™2 (Sy/, L)
if H'd¢ Hor if H'CH and i<d.

Take a minimal injective resolution L,—1I" in Sub (G)". We regard this as a
resolution in KCP(G)". We claim that Ext’(Sg., [/)=0 if i<d—j—1 or if
i=d—j—1 and j4+1<m. Indeed, by Corollary 2.7 (and Remark 2.8), I’ is a
direct sum of objects J, with H C K and rank K/H=j+1. For such K &Sub(G),
(i) is true for (G, K, H'). Since 8 (K, H')>8(H, H')—8(H, K)=d—j—1, we
have Ext!(Sg/, Jx)=0 for i<d—j—1. If H'CK, then H+H'C K, hence
m<j+1. Thus if j4+1<m, then H' ¢ K and so Ext’ (Sg/, J¢)=0 for i<d—j—1.
This proves the claim. Set Z'=Ker (I’—1/*'). By the claim we see that

(4.8) Ext (g, L) =0  if i<d—1,
(4.9) Ext'~! (S, L)=Exti"" (Sy, Z"Y)  if m>0.

Further, in the case when m>0, i.e., when H'd H, the functor Z”~’ has supports
in the set {K €Sub(G); H C K, rank K/H >m}, so there is an exact sequence

(4.10) 0S¥ —>2Z"'>T—->0

in X, where acN and T(H”)=0. Suppose that T(K)=0 for a subgroup K.
Then rank G/K<rank G/H, so (ii) is true for (G, K, H'). Since HC K and
H”+K, we have that §(K, H)=8§(K, H")+8(H",H')>8(H", H') = d—m.
Thus Ext! (S, Sg)=0 for : <d—m. Hence Ext’(Sy,, T)=0 for i <d—m. By
(4.10) and (4.9), it then follows that

(4.11) Ext® " (Sys, L)=Ext"" (Sg,, S%%) if H'¢H.
Now by (4.4), (4.5) and (4.8), we have injections
Ext! (Sgs, L) — Ext! (Sg/, L,) for i<d—1,
Ext! (Sgs, L)) = Ext' (Sg, Jx) for i<d.

Thus, by (4.7), if H'¢C H and :<d or if H'CH and i<d, then we have an
injection
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Ext! (Sgs, Ja) = Ext'"2(Sg, Ja)»

hence Ext?(Sys, J5)=0. This proves the equality in the first case of (i).

Suppose that H'¢H. We know that Ext’(Sy,, L,)=0 for i<d, hence by
(4.4), Ext?'(Sg, L,)=<Ext‘"!(Sg,, L). By this and (4.7) and (4.11), we get
an isomorphism a: Ext®*!(Sg/, Jz)— Ext? ™" (Sy., S$%). Reasoning as above
with (G, H, H') replaced by (G, H, H"'), we have a similar isomorphism
B: Ext™*(Sys, Ju)— Ext®(Sg, S$%). The diagram

Exté—m (SH/, SH;;)®EXt'”+1 (SH”) ]H) — Ext**! (SH” jH)
dQR @
Ext'™" (g, Sg)QExt’(Syrr, SF) — Ext'™"(Sp, SF)

is commutative, where the horizontal maps are given by the Yoneda product.
Since the lower horizontal map is an isomorphism, also is the upper one. This
proves the isomorphism in the third case of (i).

Finally suppose that H'CH. There is an exact sequence

0-Syg—=>J;>M—0.

If K&Sub(G) and M(K)=+0, then HSK. In particular, (ii) is true for
(G, K, H"). Since 8(K, H')=rank K/H'>rank H/H’, we have that Ext’ (Sy, Sk)
=0 for {<d. Therefore Ext’(S,, M)=0 for i <d, hence we get the desired
isomorphism Ext? (Sys, Sy)— Ext? (Sys, Jz). Thus (i) is proved.

Proof of (d). Suppose given subgroups H, H' of G. Assuming
I(rank G/H, rank G/H’) and II(rank G/H—1, rank G/H'), we will show that (ii)
is true for (G, H, H'). Take a minimal injective resolution Sy—I" in Sub (G)"
and regard this as a resolution in KXCP(G)". By Proposition 2.3, I/ is a direct
sum of objects J with HCK and rank K/H=j. As in the claim in the proof
of (c), we see that Ext! (S, I')=0 if i<d—j or if i=d—j and j<<m. It then
follows that

Ext! (Sgs, Sg) =0 for i<d,
Ext?(Sys, Sy) = Ext""(Sy, Z™),

where Z"=Ker (I™— I"*'). There is an exact sequence
0—-S%% —>2Z"->T—0

in K, where a€N and T has supports in the set {K&Sub(G); HC K,
rank K/H >m, K=H"}. Asin the proof of (c), we deduce that Ext (S, T)=0
for i< d—m, hence Ext*"(S,, S§4)==Ext’""(S,, Z"). Thus we get an
isomorphism Ext?(Sy/, Sy)— Ext?™"(Sy., S#). Replacing (G, H, H') by
(G, H, H"), we have a similar isomorphism Ext™ (Sy, Sg)— Ext®(Sy~, S$%).
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By the same argument as before, we see that the Yoneda product
Exté—= (Sg-, SH//)®EXT.M (Sgr, Sg)— Ext? (Sgss Su)

is an isomorphism. This proves (ii), and completes the proof of Proposition
4.6.

Ext groups in question in Theorem 4.1 were almost computed in the proof
above, but to obtain equivariant isomorphisms, we need the following.

Proposition 4.12. Let HCH'CG and m=rank H'[H.
(1) If m>0, then there are natural isomorphisms

Ext?{d) (Sgr, Ju)=Ext3id) (Syr, Ju)=-L(H'|H) .
(ii) There is a natural isomorphism
ExtFo) (Su» Su)a= SUH'|H).

Proof. (i) The second isomorphism is that of Corollary 3.2. Let
f*: P(G)"— S(G)" be the functor defined by (f*M)(X)=M(k[X]) for G-sets X.
This induces maps Exth, (M, N)— Extsq, (f*M, f*N) for M, N P(G)",
which are denoted by @. We will show that the map ¢@: Ext3{(Sy, Ju)—>
Ext%{4 (Sgs, Jx) is an isomorphism. Let G’, L, L, -+ be as in (c) in the proof of
Proposition 4.6. There we constructed the isomorphism a: Ext?{5) (Sg/, Ju)—>
Ext} ) (Sgs, S%). We will show that there is also an isomorphism ¢ which
makes the diagram

o
Ext2{) (Sw, Ju) —> Exth ) (Su, S¥)

P P
Ext3(6) (Sar, Jr) - Ext$(c) (S, S¥)

commute. Then the left » will be an isomorphism, because the right ¢ is
clearly an isomorphism.
First, there is an adjoint Res§, — Ind§:
Res&/
S(GY —— S(G"
Indg,
Res/ (M)(Y) = M(GxC'Y)
Ind§, (V)(X) = N(X)
where X €S(G), Y €S(G"), and Gx€'Y is a quotient of GX Y obtained by

identifying (g, ¥) with (gg’, g'~y) for g’€G’. Clearly, f*oRes&s = Res&/of*,
f*oInd$ = 1Indg,of*. Therefore (4.7) holds with Extp, replaced by Ext§ .
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Secondly, reasoning as in the previous proof but using Theorem 3.1 and Corol-
lary 3.2 instead of the inductive hypothesis, we see that (4.8), (4.9), (4.11)
hold also for Ext§). Then the isomorphism v is defined similarly to «, and
@oa=wvop. This proves (i).
(i) With the notation in (d) in the proof of Proposition 4.6, we have
natural isomorphisms
Ext}) (S, Sw)=Exth ) (Sp, S¥)
=Extdunio (Sar, ST)
=ExtZ ) (Sg, Sp)=S¢(H'|H) . Q.E.D.

Proof of Theorem 4.1. The theorem follows immediately from Proposi-
tions 4.6, 4.12 and the duality isomorphisms Ext’ (Sy, Sy/)=Ext!(Sy/, Sg).

5. The finitistic dimension of P(G)"

Let G be a finite group and set A=End;(@k[G/H])°?, where H runs over
all subgroups of G. Then P(G)" and A-#ed are equivalent and A=<A°".
Among homological dimensions of the ring A, the global dimension and the
injective dimension are rarely finite. Here we will determine the finitistic di-
mension of A (see Bass [1]). Write

f.dim P(G)" = sup{pd F; F € P(G)", pd F<oo}
where pd F is the projective dimension of F.
Theorem 5.1. If G is not a p’-group, then
f.dim P(G)" = 1+sup {rank H/D(H )}
where H runs over all p-subgroups of G.

We need some notation. For a k[G]-module M, let M~ <P(G)" be the
functor taking X €P(G) to Homg (X, M). When G is a p-group and H is a
subgroup of G, we let S;&P(G)" be a simple functor supported at the inde-
composable module 2[G/H], and set Py=k[G/H]"~, a projective cover of Sj.
Ext groups in P(G)" are written simply as Ext’(, ).

Lemma 5.2. If G is a nontrivial p-group and n=rank G|/®(G), then
Ext! (S, k7)) =0 if i<n,
=0 if i=n+l1.
Proof. Set G=G/®(G). Consider the functors
Inf

P(G)" = P(G)"
Def
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defined in Section 4. For a subgroup K of G we have that k[G]Q:k[G/K]=k
if and only if K=G. Hence Inf(Sz)=S;. Clearly Def(k~)=k~=];. Then
by Theorem 4.1 and Corollary 2.6,

Extb gy (Sg, B~)=Exth, (S5, Juw)
=0 if i<n,
~LG)+0 if i—ntl. QE.D.

Lemma 5.3. For any k[G]-module M, Ext' (Sg, M~)=0.

Proof. We may assume that G'#1. The functor M M~ preserves
injectives because it has the exact left adjoint Fi— F(k[G]). Take an injective
resolution 0—M— I;— 1, in k[G]-#Mod. Then 0—-M~—I7—I7 is an injective
resolution in P(G)". Since Hom (S;, N~)=0 for any k[G]-module N, we have
Ext!' (Sg, M~)=0. Q.E.D.

Lemma 5.4. Let G be a p-group. Suppose that an exact sequence
E:0-Q—-P—->M—0

of k[G]-modules satisfies the following conditions.
(i) P, 0P(G).
(il) For any proper subgroup H of G, E splits in k[H]-Mod.
(iii) E does not have a split exact sequence as a direct summand.
Then G acts on Q trivially and P does not have a trivial module as a direct
summand.

Proof. We view Q as a submodule of P. Suppose that Q=k[G/H]B O’
with H=G. The inclusion map Q— P splits in k[H]-#ed and so the injection
Q/Q'—>P|Q’ does also. But Q/Q'=k[G/H] is H-relatively injective, hence the
map Q/Q’— P|Q’ splits in k[G]-#Med. Then the inclusion map k[G/H]— P
splits in k[G]-#ed, which contradicts (iii). Thus Q is a trivial G-module. Next
suppose that P=k@P’. By (iii), Q¢ P’. Then a complement of P'NQ in O
is also a complement of P’ in P, which contradicts (iii). This proves the lemma.

REMARK 5.5. It can be shown that the map Q— P in E is a direct sum
of copies of the map k— @ k[G/H] taking 1 to the sum of all cosets.
I Hl=p

The following lemma seems to be well-known.

Lemma 5.6. Let T be a ring and M a nonzero T'-module, nN. If
Exti(M, T)=0 for all i <n, then f.dim T*>n-1.

Proof. Take a projective resolution P,— M. By hypothesis, we have an
exact sequence
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0— P§f— .- = P¥— P},

of T°P-modules, where P¥=Homp(P;, I'). Set N= Cok(P¥— P¥,). Then
pd N<n-+1. If pd N<n+1, then the injection P§— P¥ splits, and so the map
P,— P, is surjective, which contradicts that M =40. Thus pd N=n+1<
f.dim T°» Q.E.D.

Proof of Theorem 5.1. The proof consists of the four parts (a)—(d).
(a) If G is a nontrivial p-group, then

f.dim P(G)"> 1+rank G/®(G) .

Proof. Let A be the ring defined at the beginning of this section. We
apply Lemma 5.6 to the ring A°® (=<A). Since projective objects of P(G)" are
direct sums of objects Py, it is enough to show that Ext? (S;, P5)=0 for any sub-
group H and any 7 <rank G/®(G). If H=G, this follows from Lemma 5.2
because P;=k~. If H=*G, then Py=Ind§(k~) and Res§(S;)=0, so
Ext? (Sg, Pg)=0 for any ¢. 'This proves (a).

(b) If G is a p-group, then

f.dim P(G)"<14-sup{rank H/®(H); HCG}.
Proof. We use induction on |G|. Set m=sup{rank H/®(H); HCG}.
The case when G=1 is clear. Let G==1. Then m>1. Assume that
f.dim P(G)">m+1. Then there exists an object F of P(G)" with pd F=m+-2.

Take a minimal projective resolution
0—=P,.;,—>—>P;y—>F—0

in P(G)" with P,P(G). Note that the functor (—)~: k[G]-#ed— P(G)" is
fully faithful. Set K;=Ker (P;— P,_,) fori>1. Then the sequences

0—-Kijuy—=»Piyi—»K;i—0

in P(G)" are exact for i>1. For any proper subgroup H of G, pd Res§(F)<
m-+2<oo, so pd Resf; (F)<m-1 by the inductive hypothesis. Therefore the
morphism Res§ (P,.2)— Res§(P,.1) in P(H)" splits, hence the injection P,,,—>
P, splits as a map of H-modules. Let E be the exact sequence

0_>Pm+2'_>Pm+1_)Km_>0

of G-modules. By Lemma 5.4 and the minimality of the resolution, E must
be a direct sum of exact sequences

0L —->L—->L"->0

0-0 - N->N -0



828 D. TamMBARA

where L’ is a nonzero trivial G-module and L is a direct sum of modules k[G/H]
with H+G, and NeP(G). Set n=rank G/®(G) (<m). As was shown in
(a), Ext’ (Sg, Py) =0 if H=+G or if H=G and i<n. It follows that

Extitr—m (SG) K;‘)zExt“‘"'"‘“ (SG) K7+1)
for 1<i<<m and
Ext" (Sg, Kn)=Ext"(Sg, L"~)=Ext*" (S, L'7).

Hence Ext"*' (S, L'~)=Ext!(S;, K;-n+1)=0 by Lemma 5.3. But this contra-
dicts that Ext"*!(S;, £7)=0 in Lemma 5.2. This proves (b).
(c) If H is a subgroup of G, then f.dim P(G)">f.dim P(H)".

Proof. For an H-module M, the map M—k[G]QzM: x—1Qx has a
retraction which is naturalin M. So for F € P(H)", the morphism of adjunction
Resf Ind§ (F)—F has a section. Hence pd F=pd Ind§(F). The assertion

follows from this immediately.
(d) If H is a p-Sylow subgroup of G, then f.dim P(G)"<f.dim P(H)".

Proof. For a G-module M, the map k[G]Q ;M— M: gQx+> gx has the

section x+— g®g'x. So for FEP(G)", the morphism of

1
|G: H| eug/ﬂ
adjunction F—Ind§ Res§ (F') has a retraction. Thus pd F=pd Resf (F), hence
the conclusion follows.
The theorem follows by combining (a)—(d).
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