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Introduction

Let G be a finite group and k be a field of characteristicp>0. The purpose
of this paper is to study homological properties of the endomorphism ring A of
the &[G]-module M=®k[G/H], summed over all subgroups H of G. Our
main results are the following.

Theorem A. If G is not a p'-group, then the finίtistic dimension of the
ring A, that is, the supremum of finite projective dimensions of finitely generated
Λ-modules, is equal to

l+sup{rank#/Φ(#)}

where H runs over all p-subgroups of G and Φ(H) denotes the Frattinί subgroup
ofH.

Theorem B. Let G be an elementary abelίan p-group. For a subgroup H
of G, let SH be a simple K-module corresponding to the summand k[G/H] of M.
Then, for subgroups H and H', the least integer i such that Ext^(S#, *??#/)Φθ
is equal to

rank (#+#')/#+r*nk (H+H')IH'.

In Section 4 we compute Ext^(F, F') for certain Λ-modules F, F' when G
is an elementary abelian p-group. Theorem B is contained in Theorem 4.1
there. In Section 5 we deduce Theorem A from Theorem 4.1. We need
some results in Lusztig [5] on the homology of the partially ordered set of sub-
groups of an elementary abelian ̂ -group, and simplified proofs of them are given
in Section 2.

The ring A arises in the theory of G-functors initiated by Green [3]. In
fact, Λ-modules and cohomological G-functors over k are equivalent notions,
as was shown by Yoshida [6]. Since the language of G-functors is useful for
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our computations in Section 4, we review the correspondence between Λ-

modules and cohomological G-functors in Section 1.
All modules are assumed to be left and finitely generated. For a ring Γ

the category of Γ-modules is denoted by T-Λfod.

1. Permutation modules and cohomological Cr-functors

Let G be a finite group and k a field. A G-set is a set on which G acts on

the left. A permutation module is a &[G]-module of the form k[S]= 0 ks with
seS

S a finite G-set. Denote by P(G) the category formed by permutation modules

and A[G]-homomorρhisms, and by P(G)A the category of ^-linear functors P(G)op

-^h-Mod. If 3 is a family of subgroups of G such that every subgroup is con-

jugate to a member of 2Γ, then P(G)Λ is equivalent to the category of Λ-modules,

where Λ=EndG( 0 k[G/H])op. The category P(G) is self-dual. In fact the
#<Ξ^

functor Xh+Xv = Homk(X, k) gives an equivalence P(G)op — P(G). Moreover,

since XV^X for any permutation module X, Λ is isomorphic to Λop. We will
work with P(G)Λ rather than K-M&1.

We can also interpret P(G)A as the category of cohomological G-functors.
Let us recall Green's definition in [3]. A cohomological G-functor F is a

family of ^-modules F(H) for all subgroups H of G and ^-linear maps ρ% :

F(K)-*F(H)y TKH\ F(H)-+F(K\ <γg:F(H)-*F(H*)=F(g-lHg) defined for all pairs
of subgroups H, K such that HdK and for all^eG, satisfying the following

axioms.

(i) If H is a subgroup of G, then pff(x)=Tff(x)=fγg(x)=x for x^F(H),
g^H. If H, Ky L are subgroups of G such that HdKdL, then PHPK(X)=PH(X)
for x^F(L) and τίτf(y)=τi(y) for y^F(H). If H is a subgroup of G and

g,g'GG, then oy Ύg(x)=7gg'(
x) for x^F(H).

(ii) If Jϊ, JξΓ are subgroups of G such that HdK and g^G, then 7^ρ§(̂ ) =

pf*y,G*)for *eΞF(ίΓ) and γ,τ£(y)=τSS7,00 for j>GΞF(#).
(iii) (Mackey axiom) If H, Ky L are subgroups of G such that HdL,

KdL, then

for x&F(H), where ^ runs over representatives for (H, ^Γ)-cosets in L.

(iv) If if, ̂  are subgroups of G such that HdK, then

The maps pf , τ§, γ^ are called restriction maps, transfer maps, conjuga-

tion maps respectively. A morphism F->F' of cohomological G-functors is a

family of A-linear maps F(H)->F'(H) which commute with the restriction,
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transfer and conjugation maps.
An object M of P(G)Λ determines a cohomological G-functor F in the

following way. For each subgroup H of G, set F(H)=M(k[GIH]). For sub-
groups Hy Ksuch that HdK, define G-homomorphisms r: k[G/H]-*k[G/K] and

ί: k[G/K]-*k[G/H] by r(xH)=xKiot x(=G and t(yK)=*Σ *H, the sum of #-
cosets contained in j>J£, for y^G. For g^G, define a G-isomorphism ^:
k[G/H]->k[G/H*] by cg(xH)=xHg=xgH* for *<ΞG. We set pf=M(r), τS =

M(ί), γ^ = Affcj1). Then one can verify that F(H)9 pπ, TH, Ύg form a coho-
mological G-functor F. Furthermore, Yoshida proved in [6] that the assignment
Mt-*F gives an equivalence from P(G)A to the category of cohomological G-
functors. For details about G-functors, see [3], [6]. But we do not use anything

other than this correspondence between objects of P(G)Λ and cohomological
G-functors.

2. Homology of Sub (V)

Throughout this section k is a finite field with q elements. Let V be a k-
vector space of dimension n. Denote by Sub(F) the set of subspaces of V.
Snb(V) is partially ordered by inclusion and so viewed as a category in the

usual way (see Gabriel and Zisman [2]). Denote by Sub(Fr)Λ the category of
functors Sub(V)op->k-M*t. An object of Sub(F)A is a family {F(U)(U(=Sub(V))>

Φu,u'(U, [/'eSub(F), £/Ct7')} of vector spaces F(U) and linear maps φUfu':

F(U')-*F(U), satisfying the conditions that φUtU= id, <pu,u/0(Pu',u"—<Pu,u" when-
ever UdU'd U". The maps φUtU' are called restriction maps. Ext groups in

the abelian category Sub(Pr)A are written as Ext4ut>(7)( , ). For generalities about
functor categories we refer to Grothendieck and Verdier [4].

For C7<ΞSub(F), let Sv be the object of Sub(F)Λ such that Sσ(X)=k if
X=Uy Su(X)=Q if X3=U. Results on Extsub(V) which we need later are the
following.

Proposition 2.1. Let F: k-Mod°p-* k-Mod be a (not necessarily additive}
functor and let V be a k-vector space. Denote by F(V/—) the functor Sub (F)op->
k-Mod taking X to F(V/X). Then we have Ex4ubαo (SU9 F(F/-))=0 for
Sub(F), ί

Proposition 2.2. Let V be a vector space and V a subspace of V. Let
CVtVf\ Sub (V)op->k-M(κt be the functor such that

CVtV,(X) = h if X+ V = V ,

= 0 if X+V'*V,

and the restriction maps from ktok are the identity. Then we have for U e Sub (V),

ff, CV,V,)ΦO if and only if U+V'=V and i=dim(l7 Π V).
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Proposition 2.3. Let V be a vector space and U, W subspaces of V. Then
if and only if Wd U and ί=dim U/W.

Proposition 2.3 is the well-known Solomon-Tits theorem (see [5, p. 12])
and Proposition 2.2 is [5, Theorem 1.11] and Proposition 2.1 is a generalization
of [5, Theorem 1.12] (see Corollary 2.6 below). In [5] these results are stated
in terms of simplicial complexes. A link between geometric language and ours

may be found in [2, Appendix], We will prove these results here for the sake
of completeness. Our proofs are simpler than those in [5].

As preparation we define adjoint functors between categories of the form
Sub(F)A. Let/: V-+V be a linear map. There are functors

Sub(F')ϊI=±Sub(PO
f

defined by fs(X')=f(X'\ f(X)=f~\X), and/s is a left adjoint of f (in such a
case we write /SH/5). Then we have four functors

*
Sub (V'Y ±=; Sub (F)Λ

/*

defined by

(ftF')(X) = Inn F'(X')

(f*F)(X') = F(f(X')) , i.e., f*F = F*f,

(f*F')(X) = F'(f-\X)) , i.e., f*F' = F'of

(fF)(Xr) = lim F(X)
/-kχ3=x'

for FeSub(F)Λ, F'eSub(F')Λ, XeSub(F), Z'<=Sub(7'), and these form
a sequence of adjoints /H/*"!/*"!/1 (see [4, n° 5]). Since /*, /* are exact,
there are natural isomorphisms

When V is a subspace of V and /: V-+V is the inclusion map, then /j is

given by

(/,F') (X) = F'(X) if XcV,

= 0 if X<tV .

Hence /, is also exact and
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(/,*", ί̂ Extl̂ o (F', f*F) .

When U is a subspace of V and/: V->V'IU—V is the projection, then fl is
given by

(flF)(Xf) = F(X'/U) if

= 0 if

and hence

Ext|ub(v) (f*F\ F) « ExtL^

Proof of Proposition 2.1. Let ;': U-+V be the inclusion map and let

Ji
Sub(C/)Λi=±Sub(Γ)Λ

/*

be the adjoint defined above. Define a functor Fv/u : k-Mod°v-^>k-Mod by
Fvju(X)—F(V/U(£)X). Taking a complement of U in F, we have an isomor-
phism V/~^V/U®U/~ as functors on Sub(CT). Hence j*F(V/—)^
FV/U(U/—). AlsojiS^Su. It then follows that

Ext^)^, F(F/-))^Ext4ub(£,)(^, Fv/σ(UI-)) .

Thus we are reduced to the case when £7= V.
In this case we proceed by induction on dim V. When F=0, the assertion

is trivial. Let V φ 0 and write V=LφH with dim L= 1 . We have four functors

Sub (ί/)Λ ϊ=± Sub (F)Λ

A
defined by

(fN)(X) = N(X) if

= 0 if

(ftM)(Y) =

for ΛfeSub(F)Λ, JVeSub(/ί)Λ, XeSub(F), yeSub(F), and these form
adjoints /*H/|, ^*H^j. The inclusion maps Y—>L+Y induce a morphismα:

. Since ,̂ is exact and gtSv=SH, gt induces a map

7) M) -
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which is also written by £t. We claim that the composite

Ext<ub(ΐ0 (Sv, M) -* Ext4ub(/ί) (Sa,

of the map £f and the map induced by α is zero for any M eSub(F)A and any
. Indeed, by taking an injective resolution of M and using the fact that

preserve injective objects, we are reduced to the case when z=0. Then

the claim is clear because Hom(Sy, M)^Ker(M(F)-^ Π M(X)).

Now let M=F(V/—). Then a is a split monomorphism, because a:
)-*F(L®HI-}^ftM is induced by the projections L&H/Y-+H/Y for

y EϊSub(.fiΓ). By the above claim, it follows that the map

A: Extiub(v) (5

is zero for any /. On the other hand, since

(£Sa)(X) = k if L+X=V,

= 0 otherwise,

we have an exact sequence

fi
(2.4) 0-+@Sκ-+f*Sa-+Sy-*Q

K(=R

in Sub(F)Λ, where R is the set of hyperplanes in V which do not contain L,
and the morphism β corresponds to the isomorphism SH^g^Sv under the adjoint

situation. The map Extsub(F) (/3, F(Vj— )) is zero for any i because it equals

the composite

W (Sa,

Then, by (2.4), we have an exact sequence

(2.5) 0 - Extfcb(r) (fSa, F(V/-)) - θ Ex4-b(r) (Sκ, F(F/-)

for any i. By the inductive hypothesis, Extguur) (5jf , F(Vj— ))==0 if *'— 1Φ

dim F-l and KeR. Hence Ext4ub(F) (SF, F(F/-))=0 if iΦdimΓ. Q.E.D.

For a vector space V of dimension w we define

where (F/-)v is the functor Sub(F)op-*&-^W taking X to the dual (F/J£)V of

VjX. The following is equivalent to Lusztig's result [5, Theorem 1.12].
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Corollary 2.6. Let V be a vector space and U a subspace of V. Then

Extέub(y) (SU9 (F/-)v) = 0 if i Φ dim U ,

a X(U) Φ 0 if i = dim U> 0 ,

β Fv if i= dim 17=0.

Proof. The isomorphism in the third case is clear and the equality in the
first case follows from Proposition 2.1 by taking F as the functor X\-+XV. Let
ί=dimϊ7>0. Using the notation in the preceding proof, we have that
j*(F/-)vβ(F/E7)vθ(f//-)v. Since the constant functor (F/f7)v is an in-
jective object of Sub(C/)Λ and z>0, we see that

Ext|ub(v) (Sσ, (F/-)v)«Ext|ub(t7) (Sut (*7/-)v) t*£(U) .

It remains to show that J7(F)Φθ-whenever FΦO. By (2.5) with i=dimV=n,
we have exact sequences

0 if

if »=1.

Setting /(re)=dimX(F), we see that /(w)==(#.R-l)/(w-l)=(?"-1-l)/(n— 1)
if »>1, and /(!)=!. Thus /(w)=(?--1-l)— (^-1)ΦO for n>.\. Q.E.D.

Proof of Proposition 2.2. We use the notation in the proof of Proposition
2.1. We have

(S0,j*Cv,v,)

and

j*CV>F, = Cσ.σnF, if C/+P=F,

= 0 otherwise.

So it is enough to show that Extsub(y) (SVy Cr>y/)=|=0 if and only if z'^dim F'.
We use induction on dim V . When F'— 0, this is clear. Let F'ΦO. Write
V=Lξ&H with LdV and dimL^l. Then the morphism a: gιCVtV'-*

f*CVtV'=CfffHf]V' is the identity. By the claim in the proof of Proposition 2.1,
it follows that the map

(SH,

is zero for any ί. Then we have by (2.4) an exact sequence

FJ» CF>F/) -> 0 .

If X"eΛ, then V'GK, so dim(X" Π V') = dim V'-l. If zφdimF, then the
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middle term of the above sequence is zero by the inductive hypothesis, hence
also is the right term. Set

S(V, V'} = Eχ<b(7) (Sy, Cv,v,)

and />(»,»') = dim 5»(F, V) with n = dimV, n' = dimV. Then p(n,n') =
(q*-1- \)p(n- !,«'— 1) for ra'>0 and />(»,0)= 1. Hence p(n,n') = (q"-1-l) —
(j - '-l)Φθ. Q.E.D.

Corollary 2.7. Let WdV'CLV. Let Cv,γ,tW: Sub(F)op-»fc-ΛW be the
junctor such that

CVιV,ιW(X) = k if WdX and X+V = V,

= 0 otherwise,

and the restriction maps from ktok are the identity. Then we have for U G Sub (V),

if WdU, U+V'=V and

= 0 otherwise.

Proof. Let/»: V—>V/Wbe. the projection and let

P*
Sub (V)A ^=± Sub (F/WOΛ

p
be the adjoint defined before the proof of Proposition 2.1. Then

,V'/W.V'.W — P Cv/W,

and

P^Su = Sϋ/w if

= 0 if W ΦC7.

Hence

if WdU ,

= 0 if

and so the corollary follows from Proposition 2.2. Q.E.D.

For a vector space V of dimension w we define the Steinberg module
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where 0={0}cF.

Proof of Proposition 2.3. As before we have that

Ext4ub(v)(Sp, Sw) * EχtIub(£W) (Sulw, S0) if WcU,

= 0 if Wφ U,

and so it is enough to consider the case when U=V, W=Q. We argue by
induction on dim V. When F=0, the assertion is clear. Let FΦO and write

with dimL= 1. Since gtS0=Q. we have by (2.4),

Extέub(y) (Sv> so) - θ Exf' έαo (Sκ, SQ)

^ φ Ext*~b(^) (SKί SQ)

for any i. If /Φdim F, then Ext^αo (Sκ, S0)-- 0 by the inductive hypothesis,
and hence Ext4ub(7) (Sv, S0) = 0. Set s(n)=dim&(V) with n=dimV. Then
s(ri)=q*~1s(n—1) for n>0 and ί(0) = l. Thus s(n)=qn(n~1^2ΦQ for any w>0.

Q.E.D.

REMARK 2.8. For C7eSub(F), let/^r Sub (F)op-*&-Λω be the functor

such that

Ju(X) = k if UdX,

= 0 if t /φX,

and the restriction maps from k to k are the identity. Then Jυ is an injective
hull of the simple object Sv. Proposition 2.3 says that if SW-*Γ is a minimal
injective resolution of Sw, then/^ is a direct summand of /' if and only if We: U
and i=dim U/W. Other results of this section are similarly restated.

3. Homology of 8(G)

Throughout this section k is a prime field of characteristic p>0 and G is
an elementary abelian p-group. Denote by S(G) the category of finite G-sets
and by 5(G)Λ the category of those functors 5(G)op->/j-^/^ which transform
disjoint sums into direct sums. Ext groups in the abelian categroy 5(G)Λ are
written as Ext'S(G)( , )• In this section we will compute Ext's(G) (F, F') for
certain F, F'eS(G)Λ.

We view G as a ^-vector space and use the notations Sub(G), Sub(G)Λ

in Section 2. We will give a spectral sequence which relates Ext groups in
Sub(G)Λ to those in 5(G)Λ. Let S(G)0 be the full subcategory of S(G) con-
sisting of the G-sets G/H with H subgroups of G. Clearly S(G)Λ is equivalent
to the category of functors S(G)^-*k-Mod. Since G is abelian, we have a func-
tor s: 5(G)0-»Sub(G) taking G/H to H. Composition with s yields a functor



816 D. TAMBARA

ί*: Sub(G)Λ-*S(G)Λ and s* has a right adjoint s*: S(G) ->Sub(G)Λ. Given
ΛfeSub(G)Λ, the functor Hom(s*M, -): S(G)*^k-M<xt is isomorphic to
the composite Hom(.M, — )°s%, therefore we have a spectral sequence

EIJ = Ex4ub(G) (M, Λ^F) =

for any F<=S(G)Λ, where Λ%: S(G)Λ-^Sub(G)Λ are right derived functors of
%. We need to kno\v Rjs*F. First note that for ί/eSub(G), the group

G/C/^HomG(G/C7, G/C7) acts on F(G/f7) and MW) is isomorphic to the
G/ [/-fixed subspace F(G/ C/)G/C/. If F is an injective object of 5(G)Λ, then F(G/ C7)
is an injective G/ [/-module, because .F is a direct sum of functors of the form
ΛΊ-* Map (Home (G/JΪ, -Y), Λ). Therefore, for any F(ΞS(G)Λ, we have that
(Rjs*F)(U)^Hj(G/U,F(G/U)) and the restriction maps of R'̂ F correspond
to the inflation maps of group cohomology.

In Section 2 we defined the simple objects Sκ and the injective object Jκ of
Sub(G)Λ for ^eSub(G) (Remark 2.8). The objects s*SK and s*JK of 5(G)A

are also denoted by Sκ and Jκ respectively.

Theorem 3.1. Let K, K' be subgroups of G. If KdK' and d=rznkK'/K,
then there are isomorphisms

(Sx,, Jκ)

Ext's(G) (Sκ,, Sκ)

for any i, where R'=K'/K, G=G/K, H'-'(G)=H'-'(G,k), and H^G/-) is
the functor Sub (G)op-+k-Md taking U to H'-^G/U), and Mt(K') is the Steinberg
module of the k-vector space K.' defined in Section 2. If K cj: K' , then

Ext^G) (Sjr/, Jκ) = Ext^c, (5r/, S )̂ - 0
for any /.

Proof. The case K(tK' is clear. Let KdK'. For the first isomorphism,
consider the spectral sequence

£!•'• = Ext|ub(G) (Sκ,, R^JK) -» Ext^έ) (Sjr/, Λ) .

For C7eSub(G), we have

= H'(GIU,k) if

= 0 if
The projection π: G— >G induces the adjoint

Sub (G)Λ ί=r± Sub (G)Λ
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as defined in Section 2, and we have that Rjs^Jκ^=πlHj(GI—} and π*Sκs =
SK', SO

Applying Proposition 2.1 to the functors Hj(—}\k-Mod°v-*k-M<χt, we see that

El

2'
J=ΰ for iΦra.ΏkK'=d, hence the spectral sequence yields the desired

isomorphism ^''"^Ext^G) (Sκs, Jκ) for any /.
Secondly, we have that Rjs*SK^SK®Hj(GIK) and so

« Ex4ub(G) (Sκ,, Sκ)®Hj(G/K)

^&(K'/K)®Hj(G/K) if i = d,

. = 0 if i Φ d ,

by Proposition 2.3. Thus £f '-^Ext^G) (Sκ,, Sκ) for any /. Q.E.D.

Corollary 3.2. Let K ^K' c G 0/zrf rf-rank ̂ 7 .̂

Ext'S(C) (5^/^ = 0 if i<d,

if i=

where -C(K'/K) is as defined in Section 2.

Proof. This follows from Theorem 3.1, Corollary 2.6 and the fact that

the constant functor H°(G/—) is an injective object of Sub(G)Λ and H\X)=
Horn (X, k) for elementary abelian /^-groups X.

4. Homology of P(G)

In the rest of this paper k is a prime field of characteristic />>0. For a
finite group G, let P(G) and P(G)Λ be as defined in Section 1. Ext groups in
P(G)Λ are written as Ext/>(G) ( , ). The purpose of this section is to compute
Extp(G) (Λf, M') for certain M,M'^P(G)A when G is an elementary abelian
p-group.

We first define adjoint functors between such categories as P(G)Λ. Let H
be a subgroup of G. There are functors

defined by

t( Y) = k[G] ®HY^ Homff (k[G], Y) , r(X) = X

and functors
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Res
P(#)Λ±=;P(G)Λ

Ind

defined by

Res (M) = Mot , Ind (N) =

Since t is a left and right adjoint of r, Res is a left and right adjoint of Ind. We
also write Res=Res#, Ind— Ind£.

Suppose next that H is a normal subgroup of G and set G=GIH. We have
functors

P(G)ί=±P(G)
r

defined by

t(Y) = k[G]®GY, r(X) = X

and functors

Inf

Def
defined by

Inf (M) = Mot , Def (N) = Nor .

Since t is a left adjoint of r, Inf is a left adjoint of Def.
We also note that the category P(G)Λ is self-dual. Indeed, for an object M

of P(G)Λ, let D(M) be the object of P(G)Λ defined by D(M)(X) = M(Xy)v

for XeP(G), where ( )y=Uomk( , k). Then the assignment Mt->D(M) gives
an equivalence P(G)Λop^P(G)Λ.

From now on we assume that G is an elementary abelian p-group. For a
subgroup H of G, let SH be the object of P(G)Λ such that

Sff(k[G/U]) = k if U = H,

= 0 if C / Φ J Ϊ ,

and let/jy be the object of P(G)Λ such that

Jff(k[GIU]) = k if ffcE7,

-0 if Hφ t/,

and that for a G-linear map /: A[G/t/]->£[G/C/'],

/jy(/) = id if H C t/ and / is surjective,

— 0 otherwise.

Theorem 4.1. Let H, H' be subgroups of an elementary abelian p-group G
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and let H"=H+H', m=rzokH"lH, m'=ranktf"/H', d=m+m'. Then

(i) ErtKoOSa/.Λ)

= 0 if i<d or if i=d and H'

at &(HIH') if i=d and H'cH,

at &(H" IH')®-C(H" IH) if i=d+\ and H'φH .

(ii) Ertί,(G)(5ιr/,S,) = 0 if ί<d,

if i = d.

These isomorphisms preserve the action of the group {/e Aut(G);f(H) — H,
f(H')=H'}.

In the rest of this section we prove this theorem. Let G be an elementary
abelian p-group. Let <JC be the category of cohomological G-functors F such
that the transfer maps TH F(H)-*F(K) are zero whenever Hξ^KdG, and the
conjugation maps <γg\ F(H)-^>F(H8) are the identity maps for all if cG, £^G.
A cohomological G-functor F in JC is determined by its restriction maps, and it
can be verified that the category JC is isomorphic to Sub(G)A. By the cor-
respondence between cohomological G-functors and objects of P(G)Λ stated in
Section 1, we can view <JC as a full subcategory of P(G)Λ. Thus we get an
imbedding Sub(G)Λ-*P(G)Λ. By this imbedding the objects Sκ, Jκ of Sub (G)A

defined in Section 2 correspond respectively to the objects Sκ> Jκ of P(G)Λ

defined just before Theorem 4.1.

Lemma 4.2. Let Hy G' be subgroups of G such that H c G' and rank GίG'=

1. Put /^Resg' (Jff) eP(G')Λ. Then there are exact sequences

(4.3) O-+JH-+ Indg/ (J'H) -> Indg/ (J'a) -*L-*0

(4.4) O-^^-^L ->L0-^0

(4.5) O-LO-Λ-L.-O

mP(G)Λ

J> where L0, L^JC and L1=CGtG'tff as an object of Sub (G)" with the

notation in Corollary 2.7.

Proof. We regard objects of P(G)Λ as cohomological G-functors. Let L
be the cohomological G-functor such that

L(U) = k if

= 0 if HζU,

for C/eSub(G), and that the restriction maps p^: L(U')-*L(U) are given by

pjΓ = id if HcC/cC/'and C/ctG'or if #c C/C C/'cG' ,

= 0 otherwise,
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and the transfer maps 7$': L(U)-+L(U') with 17 5 £/' are given by

ruu =Ίά if HdU= t/ 'ΠG'and Z/'φG',

= 0 otherwise,

and all conjugation maps are identity maps. Let L0, Lλ be the cohomological G-

functors such that
LQ(U) = k if ίf

— 0 otherwise,

Ll(U) = k if tf
= 0 otherwise,

for t/eSub(G), and that the restriction maps from k to k are the identity, all
proper transfer maps are zero and all conjugation maps are identity maps. Then
LO, Lγ belong to <JC and ii=CG fg/ tjy/.

Existence of the last two exact sequences is easily shown. To make the
first exact sequence, we describe Indg/ (JΉ) as a cohomological G-functor. Since

for C7eSub(G) the G'-module k[G/U] is isomorphic to Θ ,*[<?'/ 1/] or
k[G'l(G' Π U)] according as U cG' or not, we have '

if

= k if

-0 if

Let β:k[G/G']-*k and ^: k-^k[GjGf] be the maps such that

and ί(l)=Σ^> where ^ runs over G/G'. The restriction maps p%' of Indg/ (/jy)
are as follows.

puu=Ίά if HdUdU' zndUctG' or if Hd U c Z7' cG' ,

= Λ ifHc:Uc:U', C/cG rand C/'

— 0 otherwise.

The transfer maps r^ of Indc/ (/ir) with U^U' are as follows.

τίΓ = £ if HdU= ί/'ΠG'and U'ΦG' ,

= 0 otherwise.

Then one can verify that there is an exact sequence

0 -* -> Indg/ £ - Indg/ ^ -> L -> 0

Λin P(G)Λ such that when evaluated at a subgroup C7, it becomes the exact se-
quence

0 -> k -t ftGG' -> y f e G G r -1 Λ -> 0



PERMUTATION MODULES 821

of G/G'-modules (note that G/G' is cyclic) or the exact sequence

0-*k-*k-+k->k-*Q,

according as C/cG' or not. Q.E.D.

Proposition 4.6. We write Extp(G)=Ext> simply. Under the same condi-
tions as in Theorem 4.1, we have

( i ) Ext'' (Sa,, JH) = 0 if ί<d or if i=d and H' φ H ,

« Ext* (Sa,, SH) if i=d and H'c:H,

« Erf" (SH>, SH,,)®Ext*»+l (Sa», JH)

ifi=d+landH'φH,

where the isomorphism in the second case is induced by the inclusion SH-*JH and
the one in the third case is induced by the Yoneda product.

(ii) Ext' (SH,, Sff) = Q if i < d ,

« Erf" (SH,, SH,,)®Extm (Sa», Sa) if i = dy

where the isomorphism in the latter case is induced by the Yoneda product.

Proof. For nonnegative integers k, k', let I(&, k') (resp. II(&, k')) denote
assertion (i) (resp. (ii)) for all triples (G, H, H'} such that rankG//f<&,
rankG//Γ <kr. To prove the proposition, it is enough to show the following
statements (a)-(d).

(a) 1(0,0).
(b) II(Λ, 0) implies 1(0, k).
(c) Let &>0, k">0. I(k-l, k') and Π(A-1, k') imply I(ft, k').
(d) Let A, k'>0. I(k, k') and Π(A-1, k') imply II(Λ, k').

Proof of (a). Assertion (i) for (G, G, G) is clear because d=0 and/G=5G.

Proof of (b). By the duality of P(G)Λ defined at the beginning of this
section, ExV(SH^ SH)^Exti (Sff, SH'). Thus if (ii) is true for (G, H, G), then
(i) is true for (G, G, H).

Proof of (c). For subgroups U, Uf of G, set δ(C7, Z7/) = rank(f7+t7/)/t7
+rank ( t/+ U')f U'. This function δ( , ) satisfies the triangular innequality. Now
suppose given subgroups H, H' of G with £ΓΦG. Assuming I(rankG/if — 1,
rank G/H') and Π(rankG//ί-l, rankG/tf')> we will show that (i) for (G, H, H'}
is true. Take a maximal subgroup G' of G such that H cG'. In addition, if
#'ct£f, we take G' so that H'<tG'. Let L, L0, L: be the objects of P(G)Λ

associated with the subgroups ίZ", G' in Lemma 4.2, and set /ίr= Res £/(/#).
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If Tf'φTf, then Resg/(S^/)=0, so

ExtJ,(G) (SH', Indg, (/£)) « Extj,(GO (Resgx (SH,), JΉ} = 0

for any i. If 7Γ C/7, then

Extj,(G) (S*/, Indg/ (/i)) at Extj,(GO (SH,, JΉ) .

Since rank G'/7f<:rankG/7f, (i) for (G', #, ίΓ) is true. Therefore ExtJ>(G/) (SH*y

J'H)=Q for i<rankHIH'=d. From these facts and (4.3) it follows that

(4.7) Exf (S*, Jff) « Ext*-2 (S ,̂, L)

if TΓφTf or if TΓcTf and ί

Take a minimal injective resolution L1->/" in Sub (G)A. We regard this as a

resolution in JCcP(G)Λ. We claim that Ext'ΌS*/, 7')=0 if i<d—j—l or if
i=d—j—l andy+l</w. Indeed, by Corollary 2.7 (and Remark 2.8), V is a

direct sum of objects Jκ with HdK and rank K/H=j+ 1 . For such ./f e Sub(G),

(i) is true for (G, K, Hf). Since S(K, H')>δ(H, H')-8(H, K)=d-j-l, we

have ExV(SH,,JK) = Q for i<d-j-\. If H'c/sΓ, then H+H'dK, hence
m<j+l. Thus ifj+l<m, then Tί'ct^ and so Ext* (SH,,JK)=Q for i<d-j-l.

This proves the claim. Set Z'=Ker(7j->7J+1). By the claim we see that

(4.8) Ext'(SJΓ/,L1) = 0 if

(4.9) Ext^1 (5^/, L1)«Exer-« (5^/, Z^1"1) if m>0 .

Further, in the case when /w>0, i.e., when H'φH, the functor Zw"3 has supports

in the set {K eSub(G); HdK, rank KjH>m}, so there is an exact sequence

(4.10) 0-^S^-^Z^-1-^ Γ->0

in cX, where α<ΞN and T(H"}=$. Suppose that 7(^)4=0 for a subgroup K
Then rank G/^<rank G/7ί, so (ii) is true for (G, X", iP). Since 7f CJC and

JΪ^ΦX, we have that δ(X, H') = S(K, tf")+δ(tf", H'}>δ(H", H'} = d-m.

Thus Exf (S>, 5^=0 for i<d-m. Hence Exf (S*/, Γ)=0 for i<d-m. By

(4.10) and (4.9), it then follows that

(4.11) Ext*-1^,, L1)^Έxtd-m(SH,y S%?,) if

Now by (4.4), (4.5) and (4.8), we have injections

Exf (Sff,y L) -> Ext'OS*/, LO) for i<d-l ,

Exf (S^/, LO) -> Ext1' (5^/, /^) for ί<d .

Thus, by (4.7), if TΓφTf and z<J or if TΓcTf and i<d, then we have an
injection
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Exf (S*, Ja) -* Ext-2 (Sa>, /,) ,

hence Ext' (S^/, /#)— 0. This proves the equality in the first case of (i).
Suppose that H'(tH. We know that Ext* (SH'9 L0)=0 for i<d, hence by

(4.4), Ext^OV, LJβExt*-1^/, L). By this and (4.7) and (4.11), we get
an isomorphism α: Extd+1(SH'9 Jff)-+Extd~m (Sff'9 Sf//). Reasoning as above
with (G, jfif, H') replaced by (G, if, if"), we have a similar isomorphism
β: Extw+1(5^/, ΛHExt0^/, 5fί/). The diagram

(Sα,, S»® Ext«+1 OS>, Λ) -> Ext^1 (5 ,̂ Jtt)

" (S>, S»<g)Ext°(*S>, Sf/ /) -> Ext'-" (S*

is commutative, where the horizontal maps are given by the Yoneda product.
Since the lower horizontal map is an isomorphism, also is the upper one. This
proves the isomorphism in the third case of (i).

Finally suppose that H'dH. There is an exact sequence

If ^eSub(G) and M(J£)ΦO, then H^K. In particular, (ii) is true for
(G, Ky H'). Since δ(X", ff/)=rank K/H'>r*nk H/H'y we have that Ext1' (*V, Sκ)
=0 for i<d. Therefore Ext* (Sfft, M)=0 for i<d, hence we get the desired
isomorphism Extrf (SH'9 SH)^>Extd (SH'y JH). Thus (i) is proved.

Proof of (d). Suppose given subgroups H, H' of G. Assuming
I(rank G/#, rank G/H') and ΓI(rank G/H-1, rank G/H'), we will show that (ii)
is true for (G, Hy H'}. Take a minimal injective resolution SH-*-Γ in Sub (G)Λ

and regard this as a resolution in JCcP(G)Λ. By Proposition 2.3, I3 is a direct
sum of objects Jκ with HtzK and rankK/H=j. As in the claim in the proof
of (c), we see that Έxt*(SH', IS) = Q if i<d—j or if i=d—j and j<m. It then
follows that

Ext1' (SV, Sff) = 0 for i<d,

Ext*(Sff,, Sff) « Ext'- OV, Zw) ,

where Z^^Ker^'11-^/'""1"1). There is an exact sequence

in JC, where α^N and T has supports in the set {K e Sub (G) /Z" C K,
rank ^Γ//ί > w, K Φ £Γ7/} . As in the proof of (c) , we deduce that Ext* (SH^ Γ) = 0
for ί<d-m, hence Ext^ (5^/, Sf/fl/)^ Ext1'"1" (S^/, Z"). Thus we get an
isomorphism Extd (Sff^ Sff)^Extd-m (Sff,, 5|/β/). Replacing (G, H, H') by
(G, #, #"), we have a similar isomorphism Exf (S^//, 5^)->Ext°(5f^//, 5|?/).
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By the same argument as before, we see that the Yoneda product

Exf*-* (Sff,, S»®Extw (Sff», SH) -* Ext* (Sff,, Sff)

is an isomorphism. This proves (ii), and completes the proof of Proposition
4.6.

Ext groups in question in Theorem 4.1 were almost computed in the proof
above, but to obtain equivariant isomorphisms, we need the following.

Proposition 4.12. Let HdH'dG and m=nikH'IH.
(i) Ifm>0, then there are natural isomorphisms

(SH,, JJaEsfSfo (Sa,,

(ii) There is a natural isomorphism

Proof, (i) The second isomorphism is that of Corollary 3.2. Let
/*: P(G)Λ-> S(G)Λ be the functor denned by (f*M)(X)=M(k[X]) for G-sets X.
This induces maps Ext^C) (Λf, Λ^)->ExU(G) (/*Af,/*JV) for M, ΛΓ<ΞP(G)Λ,

which are denoted by φ. We will show that the map φ\ Ext p^SV, JH)~*
Extsc

+

G) (SH',Jff) is an isomorphism. Let G', L, L0, ••• be as in (c) in the proof of

Proposition 4.6. There we constructed the isomorphism a: Extp^ (SH^ JH)~*
Extp(G) (SHt, 5f /). We will show that there is also an isomorphism γ which
makes the diagram

,̂ Ja) -^-* Ext°P(G) (S ,̂ Sff)

(S^/, Λ) - > Ext°5(G) (S ,̂ Sff)
7

commute. Then the left φ will be an isomorphism, because the right φ is
clearly an isomorphism.

First, there is an adjoint ResGΉ

Res

Indg7

Resg/(M)(y) = M(GXG/ Y)

lnd%,(N)(X) =N(X)

where X^S(G), y eS(G'), and Gx G / Y is a quotient of Gx Y obtained by
identifying (g, y) with (ggΊg'^y) for g'^G'. Clearly,/*oResG/^ ResG/o/*,

Therefore (4.7) holds with Extj>(G) replaced by Ext'S(G).
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Secondly, reasoning as in the previous proof but using Theorem 3.1 and Corol-
lary 3.2 instead of the inductive hypothesis, we see that (4.8), (4.9), (4.11)
hold also for Exts(G). Then the isomorphism γ is denned similarly to α, and
φocc—rγoφ. This proves (i).

(ϋ) With the notation in (d) in the proof of Proposition 4.6, we have

natural isomorphisms

b(G) (Sa,, Sff)^S*(H'IH) . Q.E.D.

Proof of Theorem 4.1. The theorem follows immediately from Proposi-
tions 4.6, 4.12 and the duality isomorphisms Ext*' (SH, S^/^Ext1' (£#/, SH).

5. The finitistic dimension of P(£)Λ

Let G be a finite group and set Λ— EndG(0&[G/ί/"])op, where H runs over
all subgroups of G. Then P(G)Λ and Δ.-Afod are equivalent and Λ^Λop.
Among homological dimensions of the ring Λ, the global dimension and the
injective dimension are rarely finite. Here we will determine the finitistic di-

mension of Λ (see Bass [1]). Write

f.dimP(G)Λ - sup{pdF; F<ΞP(G)Λ, pdjF<oo}

where pd F is the protective dimension of F.

Theorem 5.1. // G is not a p' -group, then

f.dim P(G)Λ - 1+sup {rank H/Φ(H)}

where H runs over all p-subgroups of G.

We need some notation. Fora &[G]-module Λf, let M~eP(G)Λ be the
functor taking J\ΓeP(G) to HomG(X, M). When G is a^>-grouρ and H is a

subgroup of G, we let 5#eP(G)A be a simple functor supported at the inde-

composable module &[G/JT|, and set PH= k[G/H]~, a projective cover of SH.
Ext groups in P(G)A are written simply as Ext1' ( , ).

Lemma 5.2. If G is a nontrivial p-group and w— rank G/Φ(G), then

Ext'(SG,A~) = 0 if i<ny

Φ O if i = n+l.

Proof. Set G=G/Φ(G). Consider the functors

Inf
P(G)Λ±=;P(G)Λ

Def
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defined in Section 4. For a subgroup K of G we have that k[G]®Gk[G/K]^k

if and only if K=G. Hence Inf (SG)=SG. Clearly Def (fc~)=Λ~=/{l}. Then

by Theorem 4.1 and Corollary 2.6,

Extj>(G) (SG, Λ~)«Extί,(B> (Sc, Jω)

= 0 if i < n ,

if i = n+l. Q.E.D.

Lemma 5.3. For <my k[G]-module M, Ext1 (SG, M~)= 0.

Proof. We may assume that GΦ1. The functor Mh->M~ preserves

injectives because it has the exact left adjoint Ft-*F(k[G]). Take an injective

resolution O-^M-^/o--*/! in k\G\-M&d. Then 0-»M~->/iΓ->/Γ is an injecΐive
resolution in P(G)A. Since Hom(SG, N~)=Q for any Λ[G]-module ΛΓ, we have

1^, M~)=0. Q.E.D.

Lemma 5.4. Let G be a p-group. Suppose that an exact sequence

of k\G\-modules satisfies the following conditions.

(i) P,ρeP(G).
(ii) For any proper subgroup H of Gy E splits in

(iii) E does not have a split exact sequence as a direct summand.

Then G acts on Q trivially and P does not have a trivial module as a direct

summand.

Proof. We view Q as a submodule of P. Suppose that Q=k[G/H]®Q'
with ίfφG. The inclusion map Q-+P splits in k\H\-M&d and so the injection

Q\Q'-*P\Q' does also. But QIQ'=k[G/H] is ff-relatively injective, hence the
maP QIQ'-+PIQ' sPlil:s in k\G\-M«l. Then the inclusion map k[G/H]-*P
splits in k[G]-Λfad, which contradicts (iii). Thus Q is a trivial G-module. Next

suppose that P=k®P'. By (iii), Q<tP'. Then a complement of P' Π Q in Q

is also a complement of P' in P, which contradicts (iii). This proves the lemma.

REMARK 5.5. It can be shown that the map Q-*P in E is a direct sum
of copies of the map k-* © k[G/H] taking 1 to the sum of all cosets.

\β' 3\=P

The following lemma seems to be well-known.

Lemma 5.6. Let Γ be a ring and M a nonzero T -module, weN. If

Ext£(M, T)=Qfor all i<n, then f.dim Γop>n+l.

Proof. Take a projective resolution P.-»Λf. By hypothesis, we have an

exact sequence
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of Γop-modules, where P? = HomΓ(Pf., Γ). Set ΛΓ=Cok(P*->P*+ι). Then
pd N<^n+l. If pd ΛΓ<n+l, then the injection Pjf- ̂ P? splits, and so the map
P!->PO is surjective, which contradicts that MΦO. Thus pdΛΓ— n+l<
f.dim Γop Q.E.D.

Proof of Theorem 5.1. The proof consists of the four parts (a)-(d).
(a) If G is a nontrivial p-group, then

f.dim P(G)A> 1+rank G/Φ(G) .

Proof. Let Λ be the ring defined at the beginning of this section. We
apply Lemma 5.6 to the ring Λop (=Λ). Since projective objects of P(G)Λ are
direct sums of objects PH, it is enough to show that Ext* (SGy P#)=0 for any sub-
group H and any /<rank G/Φ(G). If H=G, this follows from Lemma 5.2
because PG = k~. If #ΦG, then P^Ind^/Γ) and Res£(SG) = 0, so
Ext'' (SG, Pff)=Q for any i. This proves (a).

(b) If G is a />-group, then

f.dim P(G)Λ<l+sup{rankίί/Φ(ίί); #cG}.

Proof. We use induction on |G| . Set m= sup {rank HIΦ(H}\ ffcG}.
The case when G— 1 is clear. Let GΦ1. Then m>\. Assume that
f.dim P(G)Λ>m+l. Then there exists an object F of P(G)Λ with pd F=m+2.
Take a minimal projective resolution

in P(G)A with P, <ΞΞP(G). Note that the functor (— )~: ;fe[G]-^W->P(G)A is
fully faithful. Set K{ = Ker (P, -̂  P/βl) for i > 1 . Then the sequences

in P(G)Λ are exact for />!. For any proper subgroup H of G, pd Res£(F)<
τw+2<oo, so ρdRes£(F)<ra+l by the inductive hypothesis. Therefore the
morphism Res§(P«+2)->Res^(P^+ι) in P(H)Λ splits, hence the injection Pm+2-*
Pm+1 splits as a map of //-modules. Let E be the exact sequence

of G-modules. By Lemma 5.4 and the minimality of the resolution, E must
be a direct sum of exact sequences

0 -* L' -» L -* L" -* 0

0 ̂  0 -> ΛΓ^ Λ^ -* 0
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where L' is a nonzero trivial G-module and L is a direct sum of modules k[G/H]

with ίfφ£?, and N<=P(G). Set n=rankG/Φ(G) (<m). As was shown in

(a), Ext'(SG, P*) -0 if #ΦG or if ίf=G and i<n. It follows that

— (SG,

for !</<w and

Hence Extw+1(5G, L'-^Ext1^, .K;_M+1)^0 by Lemma 5.3. But this contra-

dicts that Extw+1 (SG, k~) Φ 0 in Lemma 5.2. This proves (b).
(c) If if is a subgroup of G, then f.dim P(G)Λ >f.dim P(H)Λ.

Proof. For an ίf-module M, the map M-*k[G]®HM\ x\-*l®x has a

retraction which is natural in M. So for F eP(/f)A, the morphism of adjunction

Res£ Ind£ (F)-*F has a section. Hence pd F=ρd Indf(F). The assertion

follows from this immediately.

(d) If H is a ί-Sylow subgroup of G, then f.dimP(G)Λ<f.dimP(ίf)A.

Proof. For a G-module M, the map k\G]®HM-^>M: gξ§xt-+gx has the

section x^-— - Σ g®g~l* So for FeP(G)Λ, the morphism of
I G: // 1 ga^G/tί

adjunction F-»Ind£ Res^ (ί1 ) has a retraction. Thus pd F=pd Res£ (F), hence
the conclusion follows.

The theorem follows by combining (a)-(d).
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