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Note on Locally Compact Groups

By Hidehiko YAMABE

§ 1. The purpose of this note is to study the problem proposed
by C. Chevalley: Is it true that a locally compact group which has
no arbitrarily small ¥’ subgroup is a Lie group?

Concerning the above problem two theorems will be proved in
this note. One of them is:

Theorem 1. A locally euclidean group G which has a neighbour-
hood of the identity containing mo non-trivial subgroup, has a neigh-
bourhood U of the identity, through any point of which there exists
one and only one one-parameter subgroup ?.

The other is: :

Theorem 2. If (U,)" is contained in U, then G is a Lie group,
where U, denotes the aggregate of the n-th roots of elements in a
neighbourhood U.

§ 2.. For an element «.of a neighbourhood U of the identity e we
.denote. by 8, (x) the smallest number » such that 22" € U. The group
G is said to have the property.-(S) if there exists a neighbourhood U
of e such that §,(2)< oo for every « in U—{e}. According to Kura-
nishi ® a locally euclidean group G which has the property (S), has a
neighbourhood of the identity e, through any point of which one can
draw one and only one one-parameter subgroup. Therefore we have
only to show that a locally compact group which has no arbitrarily
small subgroup has the property (S).

In order to prove this we shall need the following Lemma.

Lemma 1. Let W be a neighbourhood of the identity e which
contains no non-trivial subgroup in it. For an arbitrarily small neigh-

1) A small subgroup means a subgroup contained in a sufficiently small neighbour-
hood of the identity.

2) This theorem was proved with the co-operation of Dr. Gotd. Cf. the forthcoming
Nagoya Math. Journal.

3) See Kuranishi : Differentiatility of locally com pact groups, Nagoya Math. Journal
Vol. 1, 1950, 71-81.
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bourhood U of e there exists a neighbourhood U* of e such that if
xz, 2*cU* and o' e W for all i<k, then &' €U for all i<k.

Proof.

Put

X = {z*; 2*€U, a' €W for all i<k, a’EU for some j<k.}

If U—X does not contain any neighbourhood of e, then there
exists a sequence {a,} such that

a,,,k" — e
and

an]n : U
k, .

€
with ' =

We may suppose that e,’* converges to @< 7.
For an integer # we can easily find integers r, such that

7y = 1f, (mod k,)
0 < Tn = n .
Then {a,”™} converges to @ because

anfn — an']n. a’uﬁnkn ,

where p, are integers whose absolute values are less than 7.

Let us denote by A the aggregate of limit points @". A is clearly
a non-trivial subgroup of G contained in W, because A>@ =+-e. This
contradicts the hypothesm and whence we complete the proof of
Lemma 1.

Now we shall have the

Theorem 1. A locally compact group which has mo arbitrarily
small subgroup, has the property (S).

Proof. Let us take a neighbourhood U of e such that U2<W
Let V be a neighbourhood of e contained in U*. If z, 22, a3, ... x eU
and "' eV, then clearly 2'cW for all i<2’*' and by Lemma 1
xz'eU for all i<2’*', Therefore for a large 7, xZJEV, which shows
that G has the property (S).

§3. Concerning Theorem 2 we shall also use the Kuranishi’s®
results. He proved that if (xV"yV")* converge uniformly to a conti-
nuous function over UxU, then G is a Lie group.

We shall need some preparatory lemmas.

4 L c. 3).
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Lemma 2. Under the assumption of Theorem 2 a metric p (2, ¥)
can be defined so that p(x?, ¢) may be differentiable at A = 0.

Proof. At first we must define the metric. Without loss of ge-
nerality U may be taken as a symmetric one. v 4

Let y be an element of the boundary Bd (U) of U™, and let U be
a neighbourhood of e such that

U2 C U.
Let us define a metric p(x, ¥) in U such thdt

p(x,e) = inf 27 |7, |
(¥)

p(z,2z) = p(z7'z, e)
where inf (¥) means the infimum of 3|\, when we take an arbitrary
decomposition

r = yl’l‘yz’h g/,,a”

for a suitable y,’s € Bd (U) and real A/’s.
It is clear that
p(x,y) = p(y, 2)
p(z,y)+p(y,2) = p(2,2).

This metric p (@, ) satisfies the metric conditions when we prove
that p(z, y) =0 implies 2=y. We may supposé that ¥y =e and G is
connected.

For a sufficiently large s

#®* €U.
We denote by t(n) the smallest integer such that
(U™ 3 2.
Then
st (n) > n,
t(n)/n > 1/s.
From this inequality we shall have easily
| p(x,e) > 0.

Hence we have proved. that p (x, y) satisfies the metric conditions.
From the definition we can easily see that

'5) We may assume that Bd (U) intersects in only one point with any one-parameter
semi-group. See H. Whitney: On regular family of curves, Bull. Amer. Math. Soc. 47,
145-147 (1941).
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, p(ate) <
for v € U.

" Then p(x* e) is dlfferentlable because p (2%, e) is subadditive and
p(a* e)/AL19,

§4. Now let us study some properties of this metric p (z, ¥).
Lemma 3. The metric p(«, ¥) has the following properties :

i) p(x, y) is left invariant,
ii) Ky (y, e)<p (yx, )<K,p (y, €),”
iii) if p(x, )= 0 (u), then

P(w yx, e) = 140 (p).
r(y, e)

.Proof. . 1) is evident. From the definition of this metric we have
for some y,’s € Bd (U), real A,’s and an arbitrarily small ¢,

p(y, - < &
and
y =yt Lyt
Let us consider a real number s(y) with
x4z ¢ Bd (D) .
Then for every ¢
0<K, <s(y) < K, <oo.
Hence by simple calculations we obtain
K.p(y,€) = p(a7iyx, €) < Kyp (y,e).

Thus the proposition ii) is proved.
In case p (2, ) =0 (u),

s(y) = 1+0 (),
because
platyx, e) 1 - p(@ e)+p(yay, €) 0(n)
r(y, e) p(y,e) p(y, e)

Hence the pr0p0S1t10n iii) is proved and we complete the proof of
Lemma 3.

6) See, Einar Hllle thctzonal Analysis and Semigroups, Amer. Math. Soc. Coll.
Pub. p. 143.

7) 1In this note K;’s are all absolute constants. They could be taken near to 1 excépt K,
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§5. From the following relations
r(xarae ') 27! (vaxe ') = x2ax2a7?!,
we have _ _
p(raxa=l, e) (1+C(x)) = p(x%ax?at, e),
where C () denotes
o—1
sup p(z-lyx, e).
v p(y, e)

If 67 (@) and &7 (x) are <mn,
then

p (zaxa?, e) i]j; (1+C (2?))

p(2ax?"a 1, e)

p(x""", e) + 0(1/2")

2" 1K.p(x, €) .

It is possible to take our neighbourhood U so small as to make K,

sufficiently near to 1.
On the other hand

[\ Y,

”

I 4 + C(x¥))y2"
can be taken sufficiently near to 1 too.
Then we have
p(xaxa™t, e) = K,p(x,e)
with K, >1.
Put
x == S =6

_ - — g2
Ty = Xy 10 X", W =0

Then by simple calculations :
p(xy e) = K/fp(x,e)
or '
p(wa)*"a?", ) = K p(x, €).

Now take m%qy%"x—%qy—yz" for x and y/"zp for ¢ in the above
inequality.
Then
p(x%'ya-%'y, €)
> Krp(a'ysw-5"y-%", e).
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This means that
2p (x2 ys z-5"y- %", e).
converge to zero when p and ¢ increase to oo.
Consequently"
p(z*ya "y, e) [ p

converge to zero when A and _p decrease to zero.
§6. Proof of Theorem 2.
Put

F” (x’ 2/) — (xl/n,yl/n)n .
Then
p(Fu(, ) Fun(2, 9))
p (@ ymy,  (yiey)

I

< Kynp (8", (/"7yV"))
< K-ln :_i;‘l pf(yl/”!’, xft/npylﬂwa,f/np)l :

By the inequality obtained in the last chapter

< K, np/np &,
= Klen )

where &, converges to zero when 7 — co.

Hence we proved that F,(x, y) converge uniformly in U x U, which
completes the proof of Theorem 2.

To conclude this note, the author wishes to thank Dr. Gotdé and
Dr. Kuranishi for their valuable suggestions and advices.

(Received January 11, 1951)

Added in proof. Theorem 1 is true when the group is locally connected. The proof
will be given in the next number of this journal.





