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0. Introduction

The purpose of this work is to investigate the asymptotic behaviour of
Green’s functions in the so-called shadow for Laplace operator in an exterior
domain. As a consequence a field scattered by a non-trapping obstacle will
be examined at high frequencies.

These asymptotics have been studied by many authors since Keller’s
article [6] appeared. It was shown that for some convex obstacles the scat-
tered field in the shadow should be as small as the exponent exp(—A4|k|¥3),
A>0, is when the frequency & tends to infinity. Such an estimate is believed
to take place for a large class of domains but it has not been proved yet even for
strictly convex obstacles except for some special cases. In [12], Ludwig con-
structed an asymptotic solution # for Helmholtz equation in the deep shadow
which behaved like exp(—A4|k|?), A>0, as k—oo, but he did not show that
the difference between u, and the exact solution could be estimated by the
same exponent.

The asymptotics of Green’s functions in the shadow were investigated
in [1], [2], [3], [14]. Recently, an asymptotic solution of Green’s functions
in the deep shadow was obtained by Zayaev and Philippov [4] for planar strict-
ly convex obstacles. Probably, the technique developed in [8], [9], [11] may
be used to obtain the asymptotic expansions of Green’s functions at high fre-
quences for any strictly convex obstacle in R", n>2.

Let K be a compact in R", n>2, with a real analytic boundary T" and let
Q=R"\K. The obstacle K is called non-trapping if for any R>0 with K
CBir={x=R"; |x| <R} there exists Tx>0 such that there are no generalized
geodesics, (for definition see [13]), with length T, within QN B;. Denote
by A,, respectively by Ap, the self-adjoint extension of the Laplace operator
in R", respectively in Q with Dirichlet boundary conditions. Let

Rf(k) = (—A;—F)™

be the resolvent of the operator —A;, j=0, D in 4+ Imk>0. Consider the
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cut-off resolvents
0.1y {k=C; +-Imk>0} ok — RF 4(k) = XRE(R) X = L(LA(Q), L}(Q))

where X e Cq)(Q)={pesC~(Q)); suppp is compact} and X(x)=1 in a neigh-
bourhood of T". Hereafter _L(H,, H;) stands for the Banach space of bounded
linear operators mapping from the Banach space H, into the Banach space H,
and equipped with the usual norm. Obviously the functions (0.1) are analytic
with respect to & in 4-Imk>0.

Our first result is

Theorem 1. Suppose K non-trapping. Then the function (0.1) admits
an analytic continuation in the region

Ut e = {keC; FImk<alk|"*—gG}
for some positive constants a and (3.

This theorem was proved for strictly convex obstacles with C* boundaries
and for n=3 by Babich and Grigorieva [2]. Recently, in [8], [9], Bardos,
Lebeau and Rauch showed that the region Ug is free of poles of the scattering
matrix for any non-trapping obstacle with an analytic boundary, provided
n>3 odd. They investigated the generator B of the semi-group Z(t) intro-
duced by Lax and Phillips in [7]. Using the propagation of the Gevrey sin-
gularities of the solutions of the mixed problem for the wave equation they
proved the estimate ||B’Z(t,)|| < AC(3j)! for some ?, and for any j€Z*. Then
the region U,z does not contain poles of the scattering matrix according to
the results in [7], §3. This result can be obtained also from Theorem 1 since
the poles of the scattering matrix coincide with the poles of the meromorphic
continuation of Ry (k).

A result close to Theorem 1 was proved by Vainberg [18] and Rauch [16]
when K is non-trapping and T is smooth. In this case the functions (0.1) have
analytic continuations in {k€C; FImk<a Log|k|—B}. It is an open prob-
lem if Theorem 1 can be extended to hold for any smooth, non-trapping ob-
stacle.

Let us now consider the distribution kernel G*(k, x, y) (G~ (k, x, y)) of the
resolvent R3(k) in +Im k>0 which is usually called outgoing (incoming)
Green’s function. For any k>0 the distribution G*(k, x, y) solves the problem

(ARG, 3, 9) = —8(x—y), (x,1)EQXQ
BG* =
* —ora-mry 4GE o s _ oa-np
G*(k, x, y) = O(r ), T¥sz =o(r )
r
_asr = |x—y|—>oc0 and keR) = (0, )

(0.2)
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where B u=u.

The point x,&Q belongs to the shadow Sh(y,) of K with respect to a
given point y,&{ if there are no generalized geodesics starting at y, and passing
through x,. Denote by d(x, y) the distance function in 0, i.e.

d(x, y) = inf {length of ¢; v is a path in O connecting x and y} .
Denote Di=D#{1..-Dj» where D;=17'9[0x; and p=(p,, **,p.) € Z}, Z,={0,1, -+:}.

Theorem 2. Suppose K non-trapping and x,& Sh(y,). Then there exists
a neighbourhood © of (xy, ¥,) in QX Q) such that

(0.3) | Dy D% D} G*(k, x, y)| < Cexp(—A|k|"PFd(x, y) ImE)
in UL, X O for any (m, p, 9) € Z3**" and for some positive constants a, 3, A, and
C=C(m, p, q)-

Now consider the scattering of plane waves by the obstacle K. Let o
S*1={0=R"; |0|=1} and denote L,={xER"; {x, wy>=s} where {x, w>=

i %;0;. Consider the solution ug(k, x) of the problem
i=1

(A+R?) us(k, x) = 0
Us/zer = — €50 [xer

us = O (r'="7), di us—ikus = o(r® "7 as r= |x|—>oc0.
r

The point x, belongs to the shadow SAi(K, w) of K with respect to a given
direction o if non of the generalized geodesics (z), £>0, starting at L, for some
s<min{y, wy and having » as an initial direction passes through the point

yer

%y (¢ is the natural parameter on 7).

Theorem 3. Suppose K non-trapping and x,&Sh(K, w). Then there exists
a neighbourhood O of x, in & such that

(0.4) | D D¥(us(k, x)+-€*<=2)| <C exp(—A|k|?)
in [ky, o0) X O for some A>0 and any k>0, m>0, p=Z.

An immediate consequence of (0.4) is the Kirchoff approximation of 36— Us/p
14

in the shadow, where v is the outward normal to T".

An estimate close to (0.3) was obtained for strictly convex obstacles in
[2]. Moreover, some asymptotic expansions in the shadow for x, and y, suf-
ficiently close to T" and n=2 were recently cbtained by Zayaev and Philippov
in [4]. Provided x&Skh(y,) and T" smooth the Green’s functions G* were
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estimated in [14] as follows
|G*(k, %, ¥) | <Cy k7Y

for any N>0 in k>k,>0 and (x, ¥) in a neighbourhood of (x4, ¥o).

The estimate (0.4) was predicted by Keller’'s geometrical theory of dif-
fraction [5], [6], see also [12].

The method we use is close to that developed by Vainberg [18] (see also
[16]) in order to prove uniform decay of the local energy for hyperbolic equa-
tions. The propagation of Gevrey singularities for the mixed problem studied
in [10], [11] and the non-trapping condition allow us to compare the solutions
of the mixed problem with suitably chosen solutions of the Cauchy problem
for the wave equation. This is used in Proposition 1 to prove that the kernels
of the cut-off resolvents R ,(k) coincide with the Fourier transforms of some
compactly supported distributions modulo exponentially decreasing functions,
holomorphic in UZ,. The theorems follow from Proposition 1 by using once
more the results on the propagation of Gevrey singularities for the mixed prob-
lem.

1. Estimates of Green’s functions

In this section we prove theorems 1 and 2. Let us denote by Uy(t) and

U(t) the propagators of the Cauchy problem and the mixed problem respec-
tively, i.e.

) {(af—A) Uft)f(x) =0 in (t, x)ER'XR"
Ui0) f(x) =0, 8,Uy0)f(x) =f(x), fEC(R"),
@—A) U fx) =0 in (t, x)ER'XQ

(1.2) B U®) f(x) =0
U(0) f(x) =0, 8U(0)f(x)=f(x), fECFTQ).

Using standard energy estimates one can extend the operators Uy(t) and U(z)
by continuity in L*(R") and in L*Q) respectively. Recall that a function f(2)
defined in a domain MCR? belongs to the Gevrey class G(M), s>1, if for
any compact M;C M there exist some constants A=A(M,, f), B=B(M,, f)
such that

sup | D" f(2) | <4 B*(at!)’

for any @, |a|=a;,++a,, a!l=(a!):-+(a,!).

Let XG*R"), X(x)=1 in a neighbourhood of Br={x; x<R} and X(x)
=0 for x€& By, for some R,>R. In view of the non-trapping condition there
exists >R, such that any generalized geodesic starting at Bg leaves it by
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the time 7. Then from the theorem about the propagation of Gevrey G?
singularities proved by G. Lebeau [10] follows that the distribution kernel
U(t, x, y) of U(t) is a G* function in

Qo = [R\(—T, T)] X (Bg,N Q) X(Bg,N Q).
Therefore the estimate
(1.3) |DiD; DS U(t, x, y)| <Aq CH*HPY((j+ e +181)!)°

holds in (¢, x, y)€@Q for any compact QCQ, and any j, o, 8. Moreover the
constants 49 and Cq do not depend on (Z, x, y)€Q and on j, @, 8.

Let {=G¥R"*"), £=1 in a neighbourhood of the set {(¢, x)R"""; | |x]|
—t|<T} and §(¢, x)=0if | |x|—2|>T+1. Consider the operators

Ut)y=XUt)X, Upu(t)=XUyt)X, Et)=¢U@)X.
Next we write the modified resolvent R} ,(k) in the form
(14) Ry (k) = X E(R)+Zy(k)
where
X B(k) = g: ¢ XE(t)dt, Imk>0,

denotes the Fourier-Laplace transform of XE€ LY(R', _L(L*(Q), LXQ))). Note
that the operator-valued function XE(t) has a compact support with respect
to ¢ since X(x) {(¢, x) has. 'Therefore XEA(k) is an analytic function with values
in the space L(L*(Q), L*Q)), while Z,(k) is analytic in {k=C; Im k>0}. Let
H(Q), s=0, s€Z, be the closure of C,)(Q) with respect to the Sobolev norm
|luH§='ESHD'”uH§z<Q) and let H~°(Q) be the dual space of H°(Q). We shall use

also the domain D° of the operator (—Ajp)*%2 s>0, s€Z, equipped with the
graph topology, where the operator (—Ap)*? is given by the functional calculas.
Denote by D~° the dual space of D°. Theorems 1 and 2 will follow from

Proposition 1. The function Z,(k) can be extended as an analytic function
{keC; Im k>0} 2k — Z, (k) LH(Q), H(Q))

for any s=>0, s&€Z. Moreover, there exist some positive constants & and 3 such
that Z,(k) has an analytic continuation in U} g and

(1.5) IDF Zx(®)l| gz -+ ey < C exp(—A|k|'"*—~TIm K), m>0,
in ke U g for some positive constants A and C=C(m, s).

Proof. Let us denote F(t)=[07—A, ¢] U(t) X, where [F,, F,|=F,F,—F,F,
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is the commutator of the operators F; and F, and ¢ stands for the operator of
multiplication by the function {(#, x). Then E(f) is the propagator of the
problem

(01 —A) E(2) f(x) = F(t) f(x)
(1.6) BE@t)f =0
EQ0) f(x) =0, 08,E(0)f(x) = X(x)f(x), fELXQ).

The distribution kernel F(2, x, y) of the operator F(#) belongs to the Gevrey
class G} R'x Q1 x Q) in view of the propagation of Gevrey singularities of
U(t, %, y) and the definition of the functions §(¢, x) and X(x). Moreover
(1.7) supp Fc{(t, x, y) ER'XOxQ;
[t|>T, T<||x|—t|<T+1, |y| <R}
in view of the finite propagation speed for the wave equation.
Let F(t, x, y) be a G* continuation of the function F(¢, «, y) such that (1.7)

continues to hold. Denote by F(t) the operator with a distribution kernel
F'(¢, x, y) and consider the problem

{ (0% —A) W(0) f(x) = F(2) f()

(1.8) W(0) f(x) = 8, W(0) f(x) = 0, fECF(R")

The distribution kernel W(t, x, y) of W(¢) is a G® function since the function
F(t, x, y) is such, F(t)=0 in |¢| <T and since

W(t) = S: Us) F(t—s)ds

Let v C~(R"), Y(x)=0 in a neighbourhood of B; and X(x¥)=1 on supp
(1—+). Denote

Q(2) f(%) = (87 —A) (E@) f(%)—¥W(¥) f(x))
= (1=9) FQ) f()+[A, ¥] W(2) f (%)

in x€0 for feC(Q2). In view of (1.6), (1.7) and Duhamel’s formula we
obtain

B [~ W) f = U X+, Ut—5) XQ) fds, fe12(0).

Multiplying the last equality by X and performing Fourier-Laplace trans-
form with respect to ¢ we obtain

(1.9) XB(R) f = Rb (k) f4-R3 k) QR fH4X W (k) f
for Im £>0. We are going to prove that the functions X W(k) and Q(k) can
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be continued analytically for Im £<0.
Let H=C~(R"), H(x)=0 for x&B;, H(x)=1 outside By, and set

G(2) f(x) = (8 —A) (W(2) f (%) — J() E(2) f(x))
= (1=H) F@) f(%)—[A, H] E2) f(x) .

The function R'St—E(t)e_L(D*, D**') is bounded for any s€ Z, [A, H]e
L(D~**', H™%(R"), and H¥(Q)CD™ for any s>0, s€Z. Then R'St—
[A, H] E(t) is a bounded function with values in L(H™%(Q), H(R")), s=0,
seZ, and

(1.10) “G(t)”.f(H_S(Q),H_S(R”))SC

for any t= R
In view of (1.6), (1.7), (1.10) and Duhamel’s formula we write

W() f(x) = H(x) E(2) f(x)+ S: Ui(t—s) G(s) f(x)ds, fEH™(Q) .

Note that the support of the distribution kernel of G(%) is contained in {(z, x, ¥);
|t <2T+2, || <T+1, |y| <T+1}. Therefore
T,
(1.11) X W) f=X, So Ult—s) X%,.G(s) fds, feH™(Q),
for any 7,>2T+2, where X,€C7(R"), X,(x)=1 in B, and X,C7(By).

Lemma 1. Let X,&C5(B,\By). Then %,Ut) X, LH(R"), H(Q))
for any s€ R and any t[2T+3, o). Moreover the function
[2T43, 00)21 > %Uy(t) X, € LIH(R"), H(Q))
can be continued analytically in {t=C; |t| >2T+3} and
for any teC, |t|>2T+3, for j >max(0, 3—n), and for some A which does not
depend on j.

Proof. The conclusion is obvious when z is odd because of Huyghens
principle. Suppose #>2 is even, j>1, and set O,={(¢, », y)=C***'; |t|>2T
+3, |2|<T, |y|<T+1}. Then Ut x, y)=C,(— |x—y|?) @ D2 for any
(t, x, ) €O, and for some constant C,. Using Cauchy integral formula we
obtain for any j>1, a, B the estimate

|Di D2 DB Uy, x, y)| <(27)"*"'(j—1)! (a+B)! 21**P! max{| D,Uy(z, %, 3)|;
lz—t| =1, [x—Z|+|y—F| = 1/2} <A, 4(j!) 2]
in @, which yields (1.12).
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According to (1.10), (1.11) and lemma 1 the function
[Tz o0)2t > X.W(t)eLH(Q), H'(Q)), T,=2T+2,

can be continued as an analytical one in {¢t&C; |¢|>T,} for any :>0 and any
X,=C7(B;\Bg). Moreover the estimate

(1.13) 1D %W ) - gy <AGj)! 2172

is valid in |#| >T; for any j >max(0, 3—n) and any s>0, s& Z where the con-
stant 4 does not depend on j.

Now we can estimate the norm of the Fourier-Laplace transform of X,W(t)
in L(H, H’). Let Rek>Fk,>0 for some k>0. Since W(t)=0 in [¢|<T
we can write

X, W(k) = k™ S: et DX, W (1) di4-k~ S: e DX, W (1) dt .
2

Using (1.13) we can change the contour of integration in the second integral to
obtain

exp(C [k [') X, W (k) = 33 €/ [P () [ 7 e D, W () at

j=o 0
et S" e X,(D,W) (Ty--if) df] .
0
Integrating [j/3] times by parts in any member of the last sum we have
exp(C R |"7) %, W(k) = 33 C7 r-um-(j1)
[gTz ekt XZD[ti/3]+l W(t) dt—}—e”’Tz Sm ekt xz(DEi/IiHl W) (Tz+lt) dt]
0 0

where [m] denotes the integer part of meR). Since WeG® and in view of
(1.13) any member of the last sum can be estimated by
T when Imk>0
T, when Imk<0

in {keC; Re k>k, >0}, where the constants A4, and B, do not depend on
jEZ. Provided that C<B7'? we obtain

(1.14) %W | a1 -+, (@< Cs exp(—C |k |"*—B Im k)

A, CIB{fePmk | B — {

for Rek>k,>0, where C,=A,(1—CB}”)™". Proceeding in the same way
when Re k< —k,<<0 we can continue X, W(k) analytically in C\{k; Im k<0,
|Re k| <k} so that (1.14) holds in this region for any 2,>0. Then the Fourier-
Laplace transform Q(k) of Q(t)=(1—+)F(t)+[A, ¥r] W(t) can be continued ana-
lytically in C'\[0, —zo0) and
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(1.15) IO £zr-+(@y, ey < C. exp(—C |k |"—B Im &)
is fulfilled in C\{k; Im k<0, |Re k| <ky} for any k,>0.
Lemma 2. The function C2 ki XE(k) € L(H'(Q), H'(Q)) is analytic and
(L16)  IXE®)| o,y < C(L+ | B| ) cersmeso-tmb
for any s>0, se€Z.

Proof. The assertion is obvious for t=0 since U(t) is a bounded function
in R! with values in _L(L*Q), L*(Q)) and X {(¢, x)=0 for any t>2T+1. Sup-
pose s>1 and consider

(1.17) [(A_l) XE(R) f = L(k) f—X f+([A, X]—(F+1) X) E(F) f
‘ XE(R) frn =0
for fe H'(Q)). Here

L(E) f = —g: ¢t XF(t) fdt < H'(Q)

and L(k) satisfies the estimate (1.16) for any s>0 since the distribution kernel
of the operator XF() is smooth and supp(XF)C {|x| <R, |y|<R,, |t|<2T+
1} in view of (1.7). 'Then

IXE(R) fll <C((14 R [DIXLE) £l +-eCTHOmex-1mb]| £]|)

feH(Q), for some X,€CqG)(Q), X;=1 in a neighbourhood of supp(X) which
proves (1.16) by induction. Differentiating (1.17) with respect to 2 and using

(1.16) it is easy to prove that % XE(k) € -L(HYQ), H(Q)) for any s>0, s€ Z.

Thus XE(k) is an analytic function.

According to (1.15) the operator I—l—é(k): H(Q)— H(Q) is invertable
for any k€U, and for some a, 8. Then R} (k) is an analytic function in
U, with values in L(H*(Q), H*(Q)) and satisfies (1.16) in view of (1.9) and
Lemma 2. Now, (1.5) follows for m=0 from (1.9), (1.14) and (1.15), choosing
a and @ small enough. Using Cauchy integral formula we obtain (1.5) for
any meZ,.

To prove theorem 2 we choose some neighbourhoods O, and O, of x,
respectively y, O;CQ, so that none of the generalized geodesics starting at
O, passes through O,. Set O=0,X O, and suppose that O;C By and T >sup
{d(x, y); (x, y)€O}. According to proposition 1 we have

G*(k, %, y) = S: &M £(t, %) U(t, x, ) di-+Zy(k, %, )

where



10 G. Porov

| DFDiD3Z(k, %, y)| = |<D% 8,, Dt Zy(k) D3 8,>| <|IDF Zy(R)l| gz~ preylI8sllp-s
<Cexp(—A|k|"*—T Imk)<C exp(—A4,|k|'P—d(x, y) Im k)

in U} X O for some >0 and 4,>0. Here <38,, p)=¢(x) for any p= C)(Q)
and s>n-+p+q. On the other hand &(¢, x) U(t, x, y) is a G® function in R'X O
with a compact support with respect to . Moreover, U(t, x, y)=0 for |t|<
d(x, y) since the propagation speed for the solutions of the mixed problem for
the wave equation equals one (see [17]). Now the arguments used in the proof
of (1.14) yield (0.3).

Denote by e(n, x, y) the spectral function of the operator —A, given as
the distribution kernel of the spectral projector E, of —A,. Since E,—I in
L*(Q) as A—>c0 and

5_; %, x, ) = Qi) HGHN, %, 9)—G (N, x4, )} for xy, A>0,

it is easy to obtain from theorem 2 the following
Corollary 1. Suppote K non-trapping and x,& Sh(y,). Then
| DY D% Di e(n, %, y)| <C exp(—A A, A>0,

in [Ng, )X O for (m, p, §)E Z %+, Ay>0.

2. Asymptotics of the scattered waves

In this section we prove theorem 3. Translating the origin to a given
point 2,€ R" the function ug(k, x) is multiplied by exp(ik{2y, @). Thus we can
suppose that KC By(x)={x=R"; |x—x,| <R} and <{x, w>>0 for any xE By,
(%,). Consider the function

o(k, %) = us(k, x)+-p(x) e
where @ & G*(Bg.1(%,)) and @(x)=1 on Bg(x,), supp @ C Bg.y(%,). Then

[(A—i—kz) v(k, x) = [A, @] ek
v(k, x);p =0

and v(k, x) satisfies the outgoing Sommerfeld’s condition at infinity. Therefore

v(k, x) = R} (k) ([4, p] &**)
= Z(R)([A, ] =)+ XB(k) ([A, @] €#)
for x& Bg(x,) where XEG3(R"), X=1 on By,,(%,), supp(X) C Bg.5(%o)-

The first term of the last equality is estimated by proposition 1. The
second one is equal to the Fourier-Laplace transform of the distribution
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ot ®) = X(x) S' (15, %) Ut—9) [A, 9] 3(s—<x, D) ds
since v,(s, ¥)=[A, @] 8(s—<y, »)>) vanishes for s<<0. The distribution v, is
well-defined since v, has a compact support, v,€D™" for m>3 and §(t—s)
U(¢—s) is a continuous function with valued in L(D~*, D~™).

We are going to prove that there exists a neighbourhood @ of x, such that
v, is a G*® function in R'X O.

Let us write v;=Q(v,) where the operator Q has a distribution kernel
o(t, s, x, y)=X(x) {(t—s) H(t—s) U(t, x, y) X(y) and H(s)=0 for s<0, H(s)=1
for s>0. We shall evaluate the Gevrey G® wave front SS3(v,) of v, using the
relation SS3(2,) ©.SS3(Q)'0SS%(v,). We have

SS8¥w,) CA{(s, ¥5 7, 1); s=<L¥, 0)>0, y&EBg(%), n=—70, 70} .
Moreover, theorem 1.4 in [10] yields

SSS(Q)IC {(‘I’t—s(s’y’ T 7]); SV T 77); s<t,7+0} U {(0’ ¥ 7, E; 0,9, 7,9)}

where ¢'(s, y, 7, )=(t+s, ¥'(s, y, 7, 1), 7, E'(5, ¥, 7, 1)) is the generalized bi-
characteristic starting at (s, y, 7, ) and ¢ is the natural parameter on it. Thus
we have

SS¥wv) A, 275, 3, T, —7Tw), T, E); 7O, 0<s=<y, wp<t, y&EBe(x0)} -
Note that the initial codirection of the generalized geodesic v(£)=x'(s, ¥, T, %)

is Z—Z(O):—n/f for any yeQ. Then

SS¥v,)C {(¢, v(t—s), 7, E); v is a generalized geodesic with
7O € By, LL(0) = 0, 0<s=<y(0), <1} .
Moreover «(t) & Bg(%,) for any ¢>0 when (0) € Bg(x,) and {y(0), w)=><xp, w)
while (t—s)=9,(2), 7,(¢) is the generalized geodesic with initial data ,(0)=

¥(0)—s we Ly, %(0)2(0, when 7(0) & By(xo) and <(0), wp<<xp wp. There-
fore

(sing supp ¢3(v;)) N Br(%o) C {x=1(t); =0 and v is a generalized
geodesic with  y(0)& L, ‘fl—Z(O) — o} .

Since x,&Sh(K, ») we can choose a neighbourhood © of x, such that (sing
suppe3(v;)) N O=¢ which proves theorem 3 since supp(v,) is compact.
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