<table>
<thead>
<tr>
<th>Title</th>
<th>An integration theorem for completely integrable systems with singularities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Matsuda, Michihiko</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 5(2) P.279–P.283</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1968</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/11404</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/11404</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
Let \(M \) be a \(C^\infty \)-manifold. We denote the Lie algebra of all vector fields on \(M \) of \(C^\infty \)-class by \(L(M) \). For two elements \(u \) and \(v \) of \(L(M) \), defining \((\text{ad} v)^k u\) inductively as \([v, (\text{ad} v)^{k-1} u]\), we consider a power series

\[
g_t(u, v) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} (\text{ad} v)^k u.
\]

Let \(c(u, v; x) \) be the radius of convergence of \(g_t(u, v) \) at \(x \) on \(M \). We consider a Lie subalgebra \(L \) of \(L(M) \) which satisfies the following convergence condition \((C)\):

\[\begin{align*}
(\text{i}) & \quad c(u, v; x) \leq c(u, v; K) \quad \text{at every } x \quad \text{on } K, \quad \text{and} \\
(\text{ii}) & \quad g_t(u, v) \text{ is continuously differentiable with respect to } (t, x) \quad \text{term by term at every } (t, x) \quad \text{which satisfies } |t| < c(u, v; K) \quad \text{and} \quad x \in K^\circ, \quad \text{the interior of } K.
\end{align*}\]

Theorem. If a Lie subalgebra \(L \) satisfies the condition \((C)\), then through every point \(x \) on \(M \) there passes a maximal integral manifold \(N(x) \) of \(L \). Any integral manifold of \(L \) containing \(x \) is an open submanifold of \(N(x) \).

Here an integral manifold \(N \) of \(L \) is a connected submanifold of \(M \) which satisfies \(T_x(N) = L(x) \) at every \(x \) on \(N \), where \(L(x) = \{ u(x); u \in L \} \).

The problem was solved under the following assumptions (i) \(\sim\) (iii) respectively by Chevalley, Hermann and Nagano:

\[\begin{align*}
(\text{i}) & \quad \text{dim } L(x) \text{ is constant on } M \quad \text{(Frobenius' theorem, Chevalley [1])}, \\
(\text{ii}) & \quad \text{dim } L \text{ is finite} \quad \text{(Hermann [2])},
\end{align*}\]

(iii) \(M \) and \(L(M) \) are of \(C^\infty \)-class, but \(L \) is arbitrary (Nagano [3]).

If we assume (ii) or (iii), then \(L \) satisfies our condition \((C)\) (see Remark 1 and Remark 2).

\[\text{(*) This work was partially supported by the Yukawa Fellowship.}\]
Proof of Theorem. We shall prove only the local existence of an integral manifold of L passing through x, since the local uniqueness of integral manifolds and the existence of the maximal integral manifold can be proved in the same way as Nagano [3] and Chevalley [1].

Let $U=\{(x^1, \ldots, x^n); |x^i-x^i_0|<a\}$ be a relatively compact cubic neighbourhood of $x_0=(x^i_0)$ such that $\phi_t(v)$ gives a diffeomorphism from U to $\phi_t(v)U$, if $|t|<T(v, U)$. Here $\phi_t(v)$ is a local one-parameter group of diffeomorphisms generated by v, and $T(v, U)$ is a positive number. By our assumption $g_t(u, v)$ satisfies a symmetric hyperbolic partial differential equation

$$\frac{\partial h}{\partial t} + v^i \frac{\partial h}{\partial x^i} - h \frac{\partial v}{\partial x^i} = 0$$

at (t, x) which satisfies $|t|<c(u, v; \bar{U})$ and $x\in U$, where $v=v^i \frac{\partial}{\partial x^i}$. Also $\phi_t(v)*u$ satisfies the same partial differential equation at such (t, x) that $|t|<T(v, U)$ and $x\in U$. Since $g_t(u, v)$ and $\phi_t(v)*u$ have the same initial value u at $t=0$, by the uniqueness theorem we obtain

$$\phi_t(v)*u = \sum_{k=0}^{\infty} (-1)^k \frac{t^k}{k!} (\text{ad} v)^k u$$

at (t, x) such that $|t|<\min\{c(u, v; \bar{U}), T(v, U)\}$ and

$$A|t| + \sqrt{\sum_{i=1}^{n} (x^i-x^i_0)^2} < a,$$

where $A=\max \sqrt{\sum_{i=1}^{n} v^i(x)^2}$ on \bar{U}.

If $v(x_0)\neq 0$, we may assume that $v=\frac{\partial}{\partial x^3}$ in U. Then from the identity (1) we get

$$u(x(t-t)) = \sum_{k=0}^{\infty} (-1)^k \frac{t^k}{k!} u^{(k)}(t),$$

where $x(t)=(x^1+t, x^2, \ldots, x^n)$ and $u^{(k)}=\frac{\partial^k u}{\partial (x^i)^k}$. This identity (2) holds for (t, τ) such that

$$|t|+|\tau|<a, \quad |t|<\min\left\{\frac{a}{2}, c(u, v; \bar{U})\right\}.$$

As a function of τ, $u(x(t))$ is real analytic in the interval $(-a, +a)$. Hence we have

$$u^{(l)}(x(t-t)) = \sum_{k=0}^{\infty} (-1)^k \frac{t^k}{k!} u^{(k+l)}(x(t))$$

for (t, τ) which satisfies (3) and for every $l\in Z_+$. From this identity we get
at $x(t)$ for every t which satisfies (3) and for every $l \in \mathbb{Z}_+$.

Let us consider an integral curve C passing through x_0. Take a point $y(s) = \exp(sv)x_0$ on C. Then there exists such a positive number σ that we have

(6) \[\phi_\sigma(v)_{\#}(\text{ad} v)^l u = \sum_{k=0}^{\infty} (-1)^k \frac{t^k}{k!} (\text{ad} v)^{l+k} u \]

at every $y(s')$ on C between x_0 and $y(s)$ and for every $l \in \mathbb{Z}_+$. We may assume that $s = m\sigma$ for a positive integer m.

Operating $\phi_{m\sigma}(v)_{\#}$ on the identity (6) at $y(\sigma)$, we get

\[\phi_{m\sigma}(v)_{\#}(\text{ad} v)^l u = \sum_{k=0}^{\infty} (-1)^k \frac{t^k}{k!} \phi_{m\sigma}(v)_{\#}(\text{ad} v)^{l+k} u \]

at $y(m\sigma)$ for every $l \in \mathbb{Z}_+$. Then operating $\phi_{m\sigma}(v)_{\#}$ on the identity (6) at $y(2\sigma)$, we have

\[\phi_{m\sigma}(v)_{\#}(\text{ad} v)^l u = \sum_{k=0}^{\infty} (-1)^k \frac{t^k}{k!} \phi_{m\sigma}(v)_{\#}(\text{ad} v)^{l+k} u \]

at $y(m\sigma)$ for every $l \in \mathbb{Z}_+$. Thus we obtain

\[\phi_{m-n\sigma}(v)_{\#}(\text{ad} v)^l u = \sum_{k=0}^{\infty} (-1)^k \frac{t^k}{k!} \phi_{m-n\sigma}(v)_{\#}(\text{ad} v)^{l+k} u \]

at $y(m\sigma)$ for such (n, l) that $0 \leq n \leq m-1$ and $l \in \mathbb{Z}_+$. In particular for $n=m-1$, we have

\[\phi_{\sigma}(v)_{\#}(\text{ad} v)^l u = \sum_{k=0}^{\infty} (-1)^k \frac{t^k}{k!} (\text{ad} v)^{l+k} u \]

at $y(m\sigma)$ for every $l \in \mathbb{Z}_+$. Hence inductively we obtain

(7) \[\phi_{m-n\sigma}(v)_{\#}(\text{ad} v)^l u \in L(\exp(sv)x_0), \quad (0 \leq n \leq m-1) \]

for every $l \in \mathbb{Z}_+$. In particular for $n=l=0$, we get

(8) \[\phi_\sigma(v)_{\#} u \in L(\exp(sv)x_0). \]

Since u is arbitrary in L, we have

(9) \[\dim L(\exp(sv)x_0) = \dim L(x_0), \]

on an integral curve C passing through x_0.

For a point x on M, we shall take such a system $\{w_1, \ldots, w_r\}$ of vector fields in L that $w_i(x)$, \ldots, $w_r(x)$ are independent at x and span $L(x)$. Let L' be the
linear space spanned by these \(w_i \) in \(L \). We imbed some neighbourhood of the zero in \(L' \) into \(M \) by the mapping: \(w \rightarrow \exp (w)x \). Let \(N \) be its image, which is a submanifold of \(M \). Take two elements \(u \) and \(v \) of \(L' \). We put \(f(s, t) = \exp (t(su+v))x \). Then we claim that

\[
\left[\frac{\partial f(s, t)}{\partial s} \right]_{s=0} = \int_0^t \phi_s(v)_*u \, dt.
\]

The left hand side of (10) is a vector field on the curve \(f(0, t) \). To prove this identity we show that both sides of (10) satisfy the same ordinary differential equation

\[
\frac{dh}{dt} = u + h^i \frac{\partial v}{\partial x^i}
\]

along the curve \(f(0, t) \). We take such a local coordinate system \((x^i) \) around \(f(0, t) \) that we have \(v = \frac{\partial}{\partial x^i} \) with respect to this coordinate system. Then for sufficiently small \(\Delta t \), we get

\[
\phi_{t+\Delta t}(v)_*u(f(0, t+\Delta t)) = \phi_t(v)_*u(f(0, t)).
\]

Hence we have

\[
\lim_{\Delta t \to 0} \frac{1}{\Delta t} \left\{ \int_0^{t+\Delta t} \phi_s(v)_*u(f(0, t+\Delta t)) \, dt - \int_0^t \phi_s(v)_*u(f(0, t)) \, dt \right\}
= \lim_{\Delta t \to 0} \frac{1}{\Delta t} \int_{t-\Delta t}^t \phi_s(v)_*u(f(0, t+\Delta t)) \, dt = u(f(0, t)).
\]

With respect to an arbitrary coordinate system \((x^i) \), the right hand side of (10) satisfies the equation (11). The left hand side of (10) satisfies (11) along the curve \(f(0, t) \), because we have

\[
\frac{\partial}{\partial t} \left[\frac{\partial f}{\partial s} \right]_{s=0} = \left[\frac{\partial}{\partial s} \left(\frac{\partial f}{\partial t} \right) \right]_{s=0} = \left[\frac{\partial}{\partial s} (su+v) \right]_{s=0}.
\]

Since both sides of (10) have the same initial value 0 at \(t=0 \), we obtain the identity (10).

By the identity (10) we have

\[
\left[\frac{\partial f(s, t)}{\partial s} \right]_{s=0} \in L(f(0, t)).
\]

The tangent space of \(N \) at \(f(0, t) \) is spanned by the left hand side of (12), if \(u \) varies over all elements of \(L' \). Hence, by (9), we see that \(N \) is an integral manifold of \(L \).
Remark 1. Suppose $\dim L$ be finite. We shall show that $c(u, v; x) = \infty$ for every pair of u and v in L and for every x on M. Take a basis \(\{u_1, \ldots, u_r\} \) of L. We get
\[
u = c^i u_i \quad \text{and} \quad (\text{ad} v) u_i = c_i^j u_j,
\]
where c^i and c_i^j are real constants. We have
\[
(\text{ad} v)^k u = c^{i_0} c^{i_1}_{i_0} \cdots c^{i_k}_{i_{k-1}} u_{i_k},
\]
for $k = 0, 1, 2, \ldots$. Let c be the maximum of $|c^i|$ and $|c_i^j|$, $(1 \leq h, i, j \leq r)$. We obtain the inequality
\[
|c^{i_0} c^{i_1}_{i_0} \cdots c^{i_k}_{i_{k-1}}| \leq c^{k+1} r^k.
\]
Hence $g_i(u, v)$ is expressed in the form $\sum_{i=1}^{r} a^i(t) u_i$, where $a^i(t)$ $(1 \leq i \leq r)$ is an entire function having a majorant series of the form $\sum_{k=0}^{\infty} c^{k+1} r^k t^k(k!)^{-1}$.

Our condition (C) is satisfied by L in this case.

Remark 2. Let M and $L(M)$ be of C^ω-class. Then we have the identity (1) as a direct consequence of the fact that $\phi_t(v) u$ is real analytic with respect to (t, x) at $(0, x)$. Our condition (C) is satisfied by every Lie subalgebra of $L(M)$.

Remark 3. We shall give an example of L which is neither finite dimensional or real analytic, but satisfies (C). Let M be $S^1 \times S^1$. Take a function $f(x)$ on S^1 which vanishes at infinitely many points, but does not vanish identically. We define L as the Lie subalgebra generated by $f(x) \frac{\partial}{\partial x} + g(y) \frac{\partial}{\partial y}$, where g varies over all real analytic functions on S^1. Then L is neither finite dimensional or real analytic, but satisfies (C).

Remark 4. There exists a Lie subalgebra L which does not satisfy our condition (C). Nagano [3] gave an example of L to which our theorem can not be applied.

Osaka University

Bibliography
