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1. Introduction

Convergence of the logarithm of the first return time normalized by the block
length has been investigated in relation to data compression methods such as Ziv-
Lempel algorithms [11]. For each sample sequence = (1 2 . . .) from an ergodic
stationary information source, define ( ) to be the probability of the initial -block
in , i.e., ( ) = Pr( 1 · · · ). The classical Shannon-Breiman-McMillan Theorem
states that−(log )/ converges to entropy in 1 and almost surely. Throughout the
article, log denotes the logarithm with respect to base 2 andln denotes the natural
logarithm.

DEFINITION 1.1. Given a block size , the first return time is defined by

( ) = min{ ≥ 1 : 1 · · · = +1 · · · + }

Kac’s Lemma [3] states that [ | 1 . . . = ] = 1/Pr( ). This suggests that
( ) is close to 1/ ( ), hence we expect that (log )/ converges to entropy in

a suitable sense. It was proved that (log )/ converges to entropy in probability by
Wyner and Ziv [8] and almost surely by Ornstein and Weiss [6].For a comprehen-
sive introduction to the subject consult Shields [7] and thereferences therein. For the
application to the testing pseudorandom numbers, see [2]. Recently several interesting
results have been obtained regarding convergence rates by other investigators for
and related concepts such as the longest match-length, the waiting time and the redun-
dancy rate, etc. See [4], [10]. In this article we investigate the relation between first
return time and entropy for a Bernoulli process. Since the formula contains a correc-
tion terms, it approximates the entropy very well. See the last section for simulations.

In his Ph.D thesis [9] A.J. Wyner discovered that for a stationary aperiodic
Markov chain with entropy we have a second order limit law:

lim
→∞

Pr

(
log −

σ
√ ≤ α

)

= (α)
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where

(α) =
∫ α

−∞

1√
2π

exp

(

−
2

2

)

and

σ2 = lim
→∞

Var(− log ( ))

Kontoyiannis ([4, Corollary 1]) showed that for anyβ > 0

log[ ( ) ( )] = ( β)

almost surely for mixing Markov chains. Later A.J. Wyner ([10, Corollary B5]) proved
that for anyǫ > 0

−(1 + ǫ) · log ≤ log[ ( ) ( )] ≤ log log

eventually, almost surely for mixing Markov chains. Hence we have

−(1 + ǫ) · log ≤ [log ] ≤ log log

approximately for large . In this paper we investigate the speed of convergence of the
average of log to entropy. Now we state the main theorem.

Theorem 1.2. For a Bernoulli process with entropy, we have

lim
→∞

[log( )] = − γ

ln 2

and

lim
→∞

[log ] − · = − γ

ln 2

Maurer [5] studied thenon-overlapping first return time

′ ( ) ≡ min{ ≥ 1 : 1 · · · = +1 · · · + }

In computing ′ ( ) we need approximately times more digits of than ( ). So
the overlapping algorithm is efficient compared to the non-overlapping one.

DEFINITION 1.3. For 0< < 1, define

( ) ≡
∞∑

=1

(1− ) −1 log
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Put = 2− . Then the expectation of log′ equals ( ) in case of the Bernoulli
(1/2 1/2)-process. Note that

lim
→0+

[ ( ) + log ] = lim
→1−

[ (1− ) + log(1− )]

=
∞∑

=1

(

ln
+ 1 − 1

) /

ln 2

= − γ

ln 2
= −0 832746· · ·

where γ = lim →∞
(∑

=1(1/ ) − ln
)

is Euler’s constant. Hence the expectation of
log ′ is approximately equal to−γ/ ln 2 for large . In Markov case a similar result
is obtained in [1].

In Section 2 we prove Theorem 1.2 and we propose a practical formula for en-
tropy approximation in Section 3.

2. Proof of Theorem 1.2

An alphabet is a finite setA and we call each element ofA a symbol. A block
is a finite sequence of symbols, and ann-block is a block of length . Let| |
be the length of the block . For an -block =1 2 · · · we write [ ] =

+1 · · · 1≤ ≤ ≤ .

DEFINITION 2.1. Let be an -block. Suppose satisfies 1≤ < and

( [1 ] [1 ] · · · [1 ] )[1 ] =

for some 1≤ ≤ . The smallest such is denoted byλ1( ), and the next small-
est such that is not a multiple ofλ1( ) is λ2( ), and we can defineλ ( ) by the
smallest such which is not a multiple ofλ ( ) for every < .

Let ( ) = {λ1( ) λ2( ) . . .} and if has no such , we write ( ) =∅.

EXAMPLE 2.2. Consider the case of binary blocks, in other words, the symbols
are 0 and 1. The number of different binary 4-blocks is 16. By symmetry we only
have to examine 8 different blocks having ‘0’ as the first symbol. We have

(0000) ={1} (0010) = (0100) = (0110) ={3}
(0101) ={2} (0001) = (0011) = (0111) =∅

If we consider the 5-block = 00100, we have ( ) ={3 4} and [1 λ1( )] =
001 [1 λ2( )] = 0010.
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We classify -blocks into the following sets

T ( ) =
{

| | = : λ1( ) >
2

or ( ) = ∅
}

R( ) =
{

| | = : λ1( ) ≤
2

}

Lemma 2.3. For a Bernoulli process, Pr( 1 · · · ∈ R( )) converges to0 expo-
nentially as →∞.

Proof. Let be the maximal probability of the symbols. Then for < we have

Pr( ∈ ( 1 · · · )) ≤ −

and

Pr( 1 · · · ∈ R( )) ≤
[ /2]
∑

=1

− =
−[ /2] −

1−

where [ ] is the greatest integer that does not exceed .

Lemma 2.4. Let be an -block.
(i) If = ( )[1 ] for some -block , 1 ≤ < , then ∈ ( ) or is a
multiple of someλ ∈ ( ).

(ii) If = [ +1 ] [1 ] for some1 ≤ < , then there isλ ∈ ( ) such thatλ
divides and .

Proof. (i) is directly derived from the definition of ( ).
(ii) Let ′ = gcd( ) and = ′, = ′. Put = [( −1) ′+1 ′] . Then

1 · · · = +1 · · · 1 · · · . So we have = if ≡ + (mod ). Since
and are relatively prime, ’s are identical for every .

DEFINITION 2.5. (i) For an -block and ≥ let F( ) be the set of all
-blocks such that of length + does not contain except for the first , in

other words,

F( ) = { : ( )[ + −1] 6= for any > 1}

For 1≤ < , let F( ) be the set of all -blocks.
(ii) Let S( ) be the set of -blocks , ≥ 1, such that of length +2 does
not contain except for the first and the last ’s, or equivalently

S( ) = { : ( )[ + −1] 6= for any 1< ≤ + }
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Clearly, we haveS( ) ⊂ F( ).

EXAMPLE 2.6. Take = 010 and = 3. The 3-blocks ‘001’ is not inS(010 3)
but in F(010 3), since the 6-block ‘010 001 010’ has three ‘010’ blocks (e.g. 010
001 010). Now we have

F(010 3) ={000 001 011 110 111}
S(010 3) ={000 011 110 111}

The following shows the relation betweenF( ) and S( ).

Lemma 2.7. For ∈ T ( ) and > we have a pairwise disjoint union

S( ) = F( ) \
⋃

λ∈ ( )

{ ∈ F( ) : ( )[ + −λ+1 + ] = [1 λ]}

= F( ) \
⋃

λ∈ ( )

{ [1 λ] : ∈ S( − λ)}

Proof. Take a -block ∈ F( ). If ( ) [ + −1] = for some , then >

+ 1 and

= ( )[ + −1] = ( )[ + ] [1 − −1]

Put λ = + − + 1. Then by Lemma 2.4(i)λ ∈ ( ) and ( )[ + ] = [1 λ] . Hence
we have

S( ) = { : ( )[ + −1] 6= for any < ≤ + }
= { ∈ F( ) : ( )[ + −λ+1 + ] 6= [1 λ] for any λ ∈ ( )}
= F( ) \

⋃

λ∈ ( )

{ ∈ F( ) : ( )[ + −λ+1 + ] = [1 λ]}

Suppose that there exists ∈ F( ) such that [ + −λ+1 + ] = [1 λ] and

[ + −λ′+1 + ] = [1 λ′ ] for someλ, λ′ ∈ ( ) with λ < λ′. Then [1 λ] = [λ′−λ+1 λ′]

and

[1 λ′ ] = ( [1 λ] [1 λ] )[1 λ′] = [1 λ] [1 λ′−λ] = [λ′−λ+1 λ′ ] [1 λ′−λ]

By Lemma 2.4(ii) [1 λ′ ] = [1 λ′−λ] · · · [1 λ′−λ] and this contradictsλ′ ∈ ( ).
Hence the sets{ ∈ F( ) : [ + −λ+1 + ] = [1 λ]} are disjoint.

For every ∈ S( −λ) we have [1 λ] ∈ F( ) obviously. Put ∈ F( )
with [ −λ+1 ] = [1 λ] . If [1 −λ] /∈ S( − λ), then there isλ′ with λ′ < − λ
such that [1 −λ−λ′ ] = ( [1 −λ] )[1 + −λ−λ′] or = ( [ −λ−λ′+1 −λ] )[1 ]. So by
Lemma 2.4(i)λ′ ∈ ( ) or λ′ is a multiple ofλ1( ). Sinceλ′ < − λ < /2, this
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contradicts ∈ T ( ). Hence we have

{ ∈ F( ) : ( )[ + −λ+1 + ] = [1 λ]} = { [1 λ] : ∈ S( − λ)}

DEFINITION 2.8. For a given -block , define

( ) = Pr( ( ) = | 1 . . . = ( ) ≥ )

( ) = Pr( +1 · · · + ∈ F( ) | 1 · · · = )

( ) = Pr( +1 · · · + ∈ S( ) | 1 · · · = )

We have ( )≥ ( ). Put 0( ) = 1, 0( ) = 1.

Proposition 2.9. For Bernoulli processes we have

Pr( ( )> | 1 · · · = ) = ( )

Pr( ( ) = + | 1 · · · = ) = ( ) Pr( )

Proof. Let 1 · · · = . Since ( )> if and only if 1 · · · + = for
some ∈ F( ), we have

Pr( ( )> | 1 · · · = ) = Pr( +1 · · · + ∈ F( )) = ( )

And since ( ) = + if and only if 1 · · · +2 = for some ∈ S( ), we
have

Pr( ( ) = + | 1 · · · = )

= Pr( +1 · · · + ∈ S( )) · Pr( + +1 · · · +2 = )

= ( ) · Pr( )

Since 0( ) = 0( ) = 1, the equations hold for = 0.

Now we find the recurrence relations between ( ) and ( ).

Proposition 2.10. For a Bernoulli process with ∈ T ( ), if ≥ ,

( ) = −1( )− − ( ) Pr( )

( ) = ( )−
∑

λ∈ ( )

Pr( [1 λ] ) −λ( )
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Proof. From Proposition 2.9 we have

( ) = Pr( ( )> | 1 · · · = )

= Pr( ( )> − 1 | 1 · · · = )− Pr( ( ) = | 1 · · · = )

= −1( )− − ( ) Pr( )

By Lemma 2.7 we have

( ) = Pr( +1 · · · + ∈ F( ))

−
∑

λ∈ ( )

Pr( +1 · · · + −λ ∈ S( − λ) + −λ+1 · · · + = [1 λ] )

= ( )−
∑

λ∈ ( )

−λ( ) Pr( [1 λ])

Lemma 2.11. For a Bernoulli process with ∈ T ( ), if ≥ ,

( ) =
Pr( )

(1− −1( )) · · · (1− − +1( ))
−
∑

λ∈ ( )

Pr( [1 λ] ) −λ( )
(1− −1( )) · · · (1− −λ( ))

Proof. From Proposition 2.10 we have for≥

( ) = ( )−
∑

λ∈ ( )

+ −λ−1( )− + −λ( )
Pr( [λ+1 ])

and

−1( )− ( ) = Pr( ) − ( )−
∑

λ∈ ( )

Pr( [1 λ])( −λ−1( )− −λ( ))

Since ( ) = (1− 1( ))(1− 2( )) · · · (1− ( )), we conclude the lemma.

REMARK 2.12. (i) From the definition of ( ) we have for 1≤ < = | |

( ) =







0 if /∈ ( )
Pr( [1 ] )

∏

< (1− ( ))
if ∈ ( )

and

(1− 1( )) · · · (1− −1( )) =

{

1 if ( ) = ∅
1−∑λ∈ ( ) Pr( [1 λ] ) if ( ) 6= ∅
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(ii) For ∈ T ( ) andλ ∈ ( ) we have

Pr( ) = Pr( [1 λ]) Pr( [1 −λ]) = Pr( [1 −λ])
2 Pr( [ −λ+1 λ])

and

Pr( )< Pr( [1 λ] ) <
√

Pr( )

Lemma 2.13. For each Bernoulli process there is such that for every block
∈ T ( ) with > we have ( ) <

√
Pr( ) for each ≥ 1.

Proof. Let be the maximal probability of the symbols. Chooseso that√
< 1/ and 1−2/ /( − 1) < 1 for all > and ≥ 2. Put λ = λ ( ). If

λ ( ) <
√

Pr( ) for all < , then

λ ( ) =
Pr( [1 λ ])

(1− λ1( )) · · · (1− λ −1( ))

= Pr( [1 λ1])
Pr( [λ1+1 λ2])
1− λ1( )

· · · Pr( [λ −1+1 λ ])

1− λ −1( )

<
√

Pr( )

(

1−√Pr( )

) −1

<
√

Pr( )

( −2/

1−
√

) −1

<
√

Pr( )

( 1−2/

− 1

) −1

<
√

Pr( )

Since

λ1( ) = Pr( [1 λ1]) <
√

Pr( )

by induction rule we have λ( ) <
√

Pr( ) for all λ ∈ ( ). and ( )<
√

Pr( )
for all < .

If ( ) <
√

Pr( ) for all < , Then from Lemma 2.11 we have

( ) <
Pr( )

(1−√Pr( ) ) −1

≤
√

Pr( )

√

(1−
√

) −1
<
√

Pr( )

√

1− ( − 1)
√

=
√

Pr( )

√

1−
√

+
√ ≤

√

Pr( )

Lemma 2.14. If we put

α ≡
√

1−
√
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where is the maximal probability of the symbols, then for≥ we have

( ) < Pr( ) + Pr( )α

Proof. By Lemma 2.11 and 2.13 we have

( ) ≤ Pr( )
(1− −1( )) · · · (1− − +1( ))

<
Pr( )

(1−√Pr( ) ) −1
≤ Pr( )

(1−
√

) −1

and

( )− Pr( ) < Pr( )

(

1− (1−
√

) −1

(1−
√

) −1

)

< Pr( )

(

( − 1)
√

1− ( − 1)
√

)

< Pr( )α

Lemma 2.15. For sufficiently large if ∈ T ( ) and ≥ , then we have

( ) > Pr( )− Pr( )α

Proof. By Lemma 2.11, 2.13 and 2.14 we have

( ) ≥ Pr( )−
∑

λ

Pr( [1 λ]) −λ( )
(1− −1( )) · · · (1− −λ( ))

> Pr( )−
2
· Pr( )(1 +α )

√
Pr( )

(1−√Pr( ) ) −1

≥ Pr( )− Pr( )(1 +α )
√

2(1−
√

) −1

and

( )− Pr( )> −Pr( )
(1 +α )

√

2(1−
√

) −1

> −Pr( )
α (1 +α )

2
> −Pr( )α

for sufficiently large .

Lemma 2.16. For any sequence0≤ 1 < 2 < · · · , let

( 1 2 . . . ) =
∞∑

=1

(1− 1) · · · (1− −1)
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be a function of 1, 2 . . . under the conditions of
(1) 0≤ ≤ 1, = 1, 2 . . . ,
(2)

∑∞
=1 diverges.

Then is monotonously decreasing in1, 2 . . . .

Proof. For a fixed andδ > 0, we have

( 1 . . . . . .)− ( 1 . . . + δ . . .)

=(1− 1) · · · (1− −1)δ

(

− +
∞∑

= +1

(1− +1) · · · (1− −1)

)

≥(1− 1) · · · (1− −1)δ

(

− + +1

∞∑

= +1

(1− +1) · · · (1− −1)

)

Since for ≥ + 1,

∏

= +1

(1− ) = 1−
∑

= +1

(1− +1) · · · (1− −1)

we have

∞∑

= +1

(1− +1) · · · (1− −1) = 1−
∞∏

= +1

(1− )

From the condition (2)

log

( ∞∏

= +1

(1− )

)

=
∞∑

= +1

log(1− ) ≤ −
∞∑

= +1

= −∞

and

∞∑

= +1

(1− +1) · · · (1− −1) = 1

Hence we have

( 1 . . . . . .)− ( 1 . . . + δ . . .)

≥ (1− 1) · · · (1− −1)δ (− + +1) ≥ 0

Proof of Theorem 1.2. Since

Pr( ( ) = | 1 . . . = ) = (1− 1( )) · · · (1− −1( )) ( )
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we have from Lemma 2.14, 2.15 and 2.16

[log | 1 · · · = ] =
∞∑

=1

(1− 1( )) · · · (1− −1( )) ( ) log

≥
−1∑

=1

(1− 1( )) · · · (1− −1( )) ( ) log

+ (1− 1( )) · · · (1− −1( ))
∞∑

=

(1− Pr( )(1 +α )) − Pr( )(1 +α ) log

=
−1∑

=1

(1− 1) · · · (1− −1) log +
(1− 1) · · · (1− −1)
(1− Pr( )(1 +α )) −1

(Pr( )(1 +α ))

− (1− 1) · · · (1− −1)
−1∑

=1

(1− Pr( )(1 +α )) − Pr( )(1 +α ) log

and

[log | 1 · · · = ]

≤
−1∑

=1

(1− 1) · · · (1− −1) log +
(1− 1) · · · (1− −1)
(1− Pr( )(1− α )) −1

(Pr( )(1− α ))

− (1− 1) · · · (1− −1)
−1∑

=1

(1− Pr( )(1− α )) − Pr( )(1− α ) log

where is the function in Definition 1.3. Put

±( ) ≡
−1∑

=1

(1− 1( )) · · · (1− −1( )) ( ) log

− (1− 1( )) · · · (1− −1( ))
−1∑

=1

(1− Pr( )(1± α )) − Pr( )(1± α ) log

Then for all ∈ T ( ) we have

(1− 1( )) · · · (1− −1( ))
(1− Pr( )(1 +α )) −1

(Pr( )(1 +α )) + +( )

< [log | 1 · · · = ]

<
(1− 1( )) · · · (1− −1( ))

(1− Pr( )(1− α )) −1
(Pr( )(1− α )) + −( )
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From Remark 2.12 we have for ∈ T ( )

1−∑λ∈ ( ) Pr( [1 λ])

(1− Pr( )) −1
(Pr( )(1 +α )) + +( )

< [log | 1 · · · = ]

<
1−∑λ∈ ( ) Pr( [1 λ])

(1− Pr( )) −1
(Pr( )(1− α )) + −( )

and

1−∑λ∈ ( ) Pr( [1 λ] )

(1− Pr( )) −1
(Pr( )(1 +α ))− (Pr( )) + +( )

< [log − (Pr( 1 · · · )) | 1 · · · = ]

<
1−∑λ∈ ( ) Pr( [1 λ] )

(1− Pr( )) −1
(Pr( )(1− α ))− (Pr( )) + −( )

By Lemma 2.17 given below we have

lim
→∞

[
log ( )− (Pr( 1 · · · )) | 1 · · · ∈ T ( )

]
= 0

and

lim
→∞

[
log ( ) + log ( ) | 1 · · · ∈ T ( )

]
= − γ

ln 2

By Jensen’s inequality and Kac’s lemma, for any we have

[
log + log | 1 · · · =

]
≤ log

[
| 1 · · · =

]
≤ 0

and if we let ¯ be the minimal probability of a symbol,

[
log + log | 1 · · · =

]
≥

[
log | 1 · · · =

]
≥ log ¯

Hence by Lemma 2.3 we have

lim
→∞

[
log + log

]
= − γ

ln 2

Lemma 2.17. For sufficiently large , if ∈ T ( ), then

∣
∣ ±( )

∣
∣ < ( − 1)

√
log( − 1) + ( − 1) (1 +α ) log( − 1)

and
∣
∣
∣
∣

1−∑λ∈ ( ) Pr( [1 λ] )

(1− Pr( )) −1
(Pr( )(1± α ))− (Pr( ))

∣
∣
∣
∣

<
η( (1 +α ))
(1− ) −1

− log(1− α )
(1− ) −1

− log
2

2 /2
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whereη( ) = ( ) + log( ) +γ/ ln 2.

Proof. By Remark 2.12 for 1≤ < we have

(1− 1( )) · · · (1− −1( )) ( ) =

{

0 if /∈ ( )

Pr( [1 ] ) if ∈ ( )

Since if ∈ T ( ), Pr( [1 λ] ) <
√

Pr( ) for λ ∈ ( ), we have

| ±( )| ≤
−1∑

=1

(1− 1) · · · (1− −1) log

+ (1− 1) · · · (1− −1)
−1∑

=1

(1− Pr( )(1± α )) − Pr( )(1± α ) log

<( − 1)
√

Pr( ) log( − 1) + ( − 1) Pr( )(1 +α ) log( − 1)

≤( − 1)
√

log( − 1) + ( − 1) (1 +α ) log( − 1)

Now consider the blocks ofT ( ). Since Pr( [1 λ] ) <
√

Pr( ), we have

1−
√

Pr( )<
1−∑λ∈ ( ) Pr( [1 λ])

(1− Pr( )) −1
<

1
(1− Pr( )) −1

The functionη( ) = ( ) + log( ) +γ/ ln 2 of is monotonically increasing with
lim →0 η( ) = 0. Hence

1−∑λ∈ ( ) Pr( [1 λ])

(1− Pr( )) −1
(Pr( )(1± α ))− (Pr( ))

<
(Pr( )(1− α ))
(1− Pr( )) −1 − (Pr( ))

=
η(Pr( )(1− α ))
(1− Pr( )) −1 − η(Pr( ))− log(1− α )

(1− Pr( )) −1

−
(

1
(1− Pr( )) −1

− 1

)(

log Pr( ) +
γ

ln 2

)

<
η(Pr( )(1− α ))
(1− Pr( )) −1

− log(1− α )
(1− Pr( )) −1

− ( − 1) Pr( )
1− ( − 1) Pr( )

log Pr( )

<
η( (1− α ))
(1− ) −1

− log(1− α )
(1− ) −1

− ( − 1)
1− ( − 1)

log

<
η( (1− α ))
(1− ) −1

− log(1− α )
(1− ) −1

− 2 log
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and

1−∑λ∈ ( ) Pr( [1 λ])

(1− Pr( )) −1
(Pr( )(1± α ))− (Pr( ))

>

(

1−
∑

λ

Pr( [1 λ])

)

(Pr( )(1 +α ))− (Pr( ))

=

(

1−
∑

λ

Pr( [1 λ])

)

η(Pr( )(1 +α ))− η(Pr( ))

−
(

1−
∑

λ

Pr( [1 λ])

)

log(1 +α ) +
∑

λ

Pr( [1 λ])
(

log Pr( ) +
γ

ln 2

)

>− η(Pr( ))− log(1 +α ) +
2

√

Pr( ) log Pr( )

>− η( )− α +
log

2
2 /2

Hence we have
∣
∣
∣
∣

1−∑λ∈ ( ) Pr( [1 λ])

(1− Pr( )) −1
(Pr( )(1± α ))− (Pr( ))

∣
∣
∣
∣
<

where

=
η( (1 +α ))
(1− ) −1 −

log(1− α )
(1− ) −1 −

log
2

2 /2

3. Estimation of entropy

From Theorem 1.2 ( [log ] +γ/ln 2)/ is close to the entropy for sufficiently
large . If is the left-shift defined by ( ) = +1, then by the ergodicity we have
(1/ )

∑

0≤ ≤1 log ( ) converges to [log ] almost surely as → ∞. Hence
we approximate the entropy by

( ) ≡ 1



1 ∑

0≤ ≤ −1

log ( ) +
γ

ln 2





The conventional formula with no correction term is given by

′( ) ≡ 1 1 ∑

0≤ ≤ −1

log ( )

In the following we compare the effectiveness of ( ) and′( ).
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Fig. 1. Test result for Example 3.1 for = 10000.
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Fig. 2. Test result for Example 3.2 for = 10000.

EXAMPLE 3.1. Consider the Bernoulli process associated with the (1/4 3/4) prod-
uct measure. Note that =−1/4 log2(1/4)− 3/4 log2(3/4) = 0 811278· · · . For gener-
ating the typical point of Bernoulli process , we use the random number generator
employed in Fortran 90. Here = 10000 is rather large to demonstrate the accuracy
of the theoretical prediction and in practical applications a sample of small size will
do. The test result is given in Fig. 1.

EXAMPLE 3.2. Consider the Bernoulli process associated with the (1/8 7/8) prod-
uct measure. Note that =−1/8 log2(1/8)−7/8 log2(7/8) = 0 543564· · · . We test this
example by the same method as before. The test result is givenin Fig. 2.
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