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0. Introduction and Theorem

Let H be a real Hilbert space and 4 be a positive self adjoint operator
in H. Let ¢ be a lower semi continuous proper convex function from H
to (—oo,0] and 8¢ be the subdifferential of ¢. Then we shall consider
the following equation

2
j—tzu—}—Au—l-agbuBf(-, %)

(0.1) J
u0)=a, Zu@=5 on [0,T]

where T is a positive number.

The above equation was studied in Schatzman [3], [4], [5] and Maruo
[2]. In this paper we prove the existence of a solution of the problem (0.1)
under certain assumptions which are somewhat weaker than those of Schatz-
man [5] and Maruo [2].

In [5] Schatzman showed the existence and uniqueness of a solution of
the following nonlinear wave equation

@ ) u—ry=0, Ly &
<6_t2u 6x2u> (u—r)=0, 6—t2u axzuéo

in the sense of distributions in [0, 1]X [0, T,
(0.2) {u(x, t)=r(x), u(x, 0) =u(x), for x&]0, 1],

-%mw=m@&ammu,

u(0,t) =u(1,t)=0 for t0, T,

2
where 7 is a continuous given function such that r(0)<<0, r(1)<<0 and %r(x)
x

=0 (in the distribution sense). Set K={f&L,(0, 1); f(x)=r(x)}. The equa-
tion (0.2) is rewritten as the following equation in L,(0, 1)
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%u—}—/lu—}-@lx us0
(0.3) i
u(0) = z"(o) =1
0 if uesK
where I(u) = { i wek and
oo if u

2
A= —2‘% (Dirichlet problem).

We will show that we can apply our main theorem to this equation if only 7
is a continuous function satisfying 7(0)<<0, 7(1)<<O to deduce the existence
of a solution of (0.3). The solution of (0.3), however, does not always satisfy
the locally energy conserving condition (see [5]). Hence we cannot get the
uniqueness of a solution.

Let Q be a domain in R” with smooth boundary and consider the case

qb(u):S |u(x)|?*'dx, p>1. Then the equation (0.1) represents a nonlinear
Q

Klein-Gordon equation. It will be shown that if (z+42)> p(n—2), the result
of this paper can be applied to (0.1) in this case. Note that when n=3 this
inequality is satisfied for p=3.

Now we state notations which will be used throughout this paper. The
inner product of H is denoted by (-, +). When S is a Banach space, its norm
is denoted by |:|s. We denote by V' the domain of AY? endowed with the
graph norm. By 9¢, and ¢, we denote the Yosida approximations of 9¢ and
¢ respectively (i.e. 9px=A"Y(1—J,) ¢ and P(x)=02N)"!|x— x| %+ d(Jrx)
where J,=(1+2A0¢)™).

Next we shall introduce the assumptions.

Let X, and X, be real Banach spaces.

AssumpTiON 1. The following inclusion relations hold:
VcX,cHcX, and X, C {the dual space of X,}

where each inclusion mapping is continuous. Moreover X, is separable and
the inclusion mapping from V to X is compact. H is dense in X,.

AssuMPTION 2. 'There exists &V such that
(0ax, x—2)=c,|0Px | 2, Cz

forxeV, |x¥|y=Rand | $(x)| =R where ¢, and ¢, are positive constants depend-
ing only on R and 2.

AssumPTION 3. The continuous function f from [0, T']x H to H satisfies
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for any t€[0, T] and », yeH
Lf@ ) —f(&, 9) | a=h(t) |x—y|x,
-1 D) a=h(t) (4 1] )

where 4 is a function belonging to L,(0, T').

AssuMpTION 4. The closure of D(¢)NV in H is equal to the closure of
D(¢) in H.

Clearly V and X, are dense in H. By assumption H is dense in X,. We
use the same notation (-, -) as the inner product of H to denote the pairings
between V, X,, X, and their corresponding duals.

Now we define the solution of (0.1).

DeriNITION. We say that a function uC([0, T]; X,)NWL0, T; H) is a
solution of the equation (0.1) when it satisfies the following requirements;

1) Forany:<[0, Tl w(t)esD(d)NV.

2) There exist weak right and left derivatives %u(t) eH for any t<[0, T].

Moreover for any t<[0, T']
lid;iu(t)lir—i— lu(t) |3 +2p(u(@) < |b] 5+ | al2+2¢(a)
+2 ST (f(s, u(s)), _j_ u(s)) ds
0 s

(with necessary modifications at 0 and T').
3) There exists a linear functional F on C([0, T]; X,) such that

Fo—w= | o) d—|] o0s) ds
for any v=C([0, T; X,) and
S: (% u(s), % v(s)) ds+ S: (f(s, u(s)—Au(s), o(s)) ds
+6, 9 O) (LT, (1)) = Fo)

for any v C([0, T]; X,)N L0, T; V)N WL, T; H).
4) The initial conditions are satisfied in the following sense

u(0) = a, b—-‘—i‘i— w(0) €8I, a

where K, is the closure of the domain of ¢, Ik, is the indicator function of
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K, and 98I, is the subdifferential of Ig,.
We state the theorem.
Theorem. Let a and b be given elements satisfying
acsVND(¢p), beH.
Then under the assumptions 1, 2, 3 and 4 we have at least one solution of (0.1).

To prove the above theorem we consider the following approximate equa-
tions for A >0

2

% u)‘—{—Au}‘—I—a(;b)‘ 22N =f(') u)\)
(0.4)

1(0) = a, %uA(O) —b.

In the next section using a method similar to that of [2] we shall investigate
the convergence of the solutions of the approximate equations (0.4). In section
2 we prove the theorem. In section 3 we show some examples.

1. Convergence of approximate solutions

In this section under the assumptions 1, 2, 3 and 4 we shall study the con-
vergence of the solutions of (0.4). In what follows let initial values @ and &
belong to "N D(¢) and H respectively.

First we show some properties of the approximate solutions.
Lemma 1. For any N>0 we have solutions of the problem (0.4) such that
u,eC([0, TT; HYNLLO, T; V)NWL(O, T; HYNWZ(0, T; V*)
where V* is the dual space of V.
Proof. See p. 289 Barbu [1].

Lemma 2. We hold the following equality and inequality
D 1L ()i 1) 4265 (a(0)
t
— 1Bl lal5+265@)42 | (705,10, 2 1(s)) ds

2) %u«t)mlux(t)|a+2¢x<ux(t»
<C(1bl3+ali+ lal}+1)
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where C, is a constant depending only on h and T.
Proof. See Lemma 2.2 in [2].

Lemma 3. There exists a constant independent of N\ such that
T
S |0prn(s) | x, ds < Constant.
0

Proof. In the inequality of assumption 2 we put x=u,(t). From Lemma
2 the constants ¢, and ¢, are independent of A. Replacing d¢u by —(ui+
Au,—f(+, u,)), integrating over [0, T'], using the integration by parts and
noting 2) of Lemma 2 we get the conclusion of the Lemma.

Lemma 4. We have a continuous function u from [0, T] to H such that
a subsequence {u,;} of the sequence {w,} converges uniformly to u in H as x;—0.

Proof. In view of 2) of Lemma 2 |u,(¢)|y is uniformly bounded. Hence
from the assumption 1 we know that {u(#)} is a relatively compact subset of
H for any t<[0, T']. From 2) of Lemma 2 {%,} is uniformly continuous. Thus
using Ascoli-Arzela’s theorem this lemma is proved.

For simplicity we denote this subsequence by {u,}.

Lemma 5. There exists a subsequence {\;} of {\} such that {u,;} con-
verges to u in C([0, T]; X)), {—% U, j} converges to —j;u in weak*-L.(0, T'; H)
and {u, ) weakly converges to u(t) in V for any t<[0, T). Hence we know that

usC(0, T]; X)NWL0, T; H)
and
wt)eD()NV  forany tE[0, T].
Proof. From 2) of Lemma 2 it is easy to prove that some subsequence

{% N 1} converges to —%— u in weak*-L..(0, T'; H). Since {u,,(#)} is bounded
in V it follows from Lemma 4 that {u, ()} weakly converges to u(f) in V. Next

we assume that there exists a sequence {£;}7.; such that

lim tiztoo )
(L1) |u(t)—u(te)| x,28,>0 and t,E[0, T
fori=1,2, .

Since |u(t;)|y is bounded there exists a subsequence {u(t;;)} which converges
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to some element w of X;. On the other hand # is continuous in H. Hence
w=u(t.). The above results contradict (1.1). Thus # is continuous in X|.
Combining that for any t&[0, T] {u,(t)} is a relatively compact set in X,
that {«,,} is uniformly convergent to # in H and that % is continuous in X,
we can prove that {u,;} is uniformly convergent to % in X.

For simplicity we denote the subsequence {\;} by {\}.

We denote St 0¢,u\(2) dt by pa(t) for any t=[0, T]. Then p, belongs to
0
WL(0, T1; H).

Lemma 6. There exists a subsequence {\;} C{\} such that for acX,
and tE[0, T, {(pa,(t), )} converges.

Proof. From Lemma 3 for any o= X, we know that the total variation
of the function {(pA(t), @)} on [0, T'] is uniformly bounded in A. Noting that
X, is separable and using Helly’s choice theorem and the diagonal method we
have a subsequence {\;} such that

lim (p,,(t), @) exists for any a€X,.
Aj>0

For simplicity we denote {\;} by {\}.
Put

S: (8n(s), v(s)) ds = F, (v) for veC([0, T]; X;) and t<[0, T].

Lemma 7. For each t<[0, T] there exists a linear continuous functional
F, on C([0, T]; X,) such that
lir? F, (v) = Fy() for any v€C([0, T]; X)) .
->
Proof. Combining Lemmas 3 and 6 and approximating v by step func-
tions we can prove this lemma.
Lemma 8. For any veC([0, T']; X)) there exist
right im F,(v) and left im F(v)
>ty t->ty

where t,E[0, T'] (with necessary modifications at 0 and T).

Proof. From Lemma 7 it follows
. t
|F©)—F)| <tim | 106 ()| x, dr-Sup, 1o(7)]x,.

Combining this inequality with Lemma 3 we see that Fy(v) is of bounded varia-
tion. Thus the lemma is proved.
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We put
lim F,(v) = F(v).
t>T
Lemma 9. For any t<[0, T] there exist weak right and left derivatives

dd:

57 u(t) in H (with necessary modifications at 0 and T).

Proof. Let v be an arbitrary element of CY[0, T']; X,)NC([0, T]; V).
Forming the inner product of (0.4) and v and integrating by parts we get

(1.2) <714? 1 (8), v(t)) — (5, @(0))+S; (% 4 (5), % v(s)) ds

+{ (65, o)~ 45, 0(5) ds—Fo(0).

From Lemmas 4, 5 and 7, the right side of the above equality converges for

any t<[0, T] as A—0. Since {ij uA(t)} is uniformly bounded in H in view

of Lemma 2, it follows that {% u,\(t)} converges weakly in H for any t<[0, T].
Put
Y, = {t€[0, T]; weak lim -4 u,(t) = % u(z)} .
A0 dt dt
Put 9(¢)=v,&V in (1.2). We know that the total variation on Y, of the right

side of (1.2) is uniformly bounded for A. Hence the total variation on Y, of

(% u(t), vo> is bounded. Thus using that V' is dense in H we have the ex-

istence of

weak left lim ~5~ u(t) and weak right lim % u(t) .

S ) t 1EX g, 121
Therefore this lemma is proved.

Lemma 10. Let v€C([0, T]; X)) and v(t)eD(¢) for a.e t<[0, T].
Then 3t follows

fim fm | (306~ pu) &= || (3(0)—pu(s)) ds.

t>T A»0

Proof. From Lemma 4 and 5 the sequence {Ju,(¢)} converges to u(¢).
Since ¢ is lower semi continuous it follows

lim ¢ (uy(2)) Zim B( [yaun(t)) 2 b(u(?)) -
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From Theorem 2.2 in [1] (p. 57) we have

$a(v(2))=$(v(2)) and lim ¢(v(2)) = H(v(?)) -
Combining the above two results and Fatou’s lemma we can prove our asser-
tion.

Lemma 11. The function u satisfies the initial conditions in the sense stated
in 4) of Definition.

Proof. For any veD(¢) NV from (1.2) it follows
<—dd? u(t), v—u(t))—(b, v—a)
— |, (fts, u)—au(9), o—u(s) ds—{ (L-u(e), 2L us)) ds
—F(v—w)=l—I1,+1;.
d+
The left side of the above tends to <7 u(0)—b, v—a) as t—0. From

ucL.(0, T; VYNWLO, T; H) we have
liml;=0 and limI,=0.

>0 >0
On the other hand from Lemmas 5 and 7 it follows
F(v—u)= klr{)l F, (v—u,).
Hence arguing as in the proof of Lemma 10
- t
lim F(o—)=<Tim lim " (2(0)—ta(a(6)) ds = 0.
t->0 t»0 A>0 Jo

Thus

(%u(O)—b, v—a)go for any veD($)N V.

Therefore using the assumption 4 we obtain

d+
b~ u(0)Solxa.

2. The proof of Theorem

Combining the definition of the subdifferential and Lemma 5, 7 and 10
we have the first half of 3) in Definition of the solution. From Lemmas 4, 5, 7
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(1.2), 1) and the second half of 3) follow. Combining 2) of Lemmas 2, 5 and
9 we have 2) in Definition. From Lemma 11 we know 4). Thus the proof
of the theorem is complete.

3. Examples

ExampLE 1. Let Q be a bounded domain in R" with a smooth boundary.
Set

H=L,Q), X, = Lp+1(ﬂ)a X, = L(p+1)/p(ﬂ) ’
A = —A (Dirichlet problem) and

$) = | 1u(x)|#*1 dx

where p>1.

Then we know d¢pu=(p+1)|u|?"" u.

Putting w,=(1+A0¢)' f we have 0p\(f)=0¢(m,), |w\(x)|=|f(x)| and
wy(x)+f(x)=0. Hence it follows that

@rf 1) = 0+ D] 1m@1?1 )| dx2(p+ D) ()17 d

and

[0¢af | x, = (p+1) ( SQ [0y(x) | 2+ d)?"2*D)
Then we have

@b £, ) Z(2+1)7710¢hs f | 5, 2> (p4+1)2(10¢s f 1 x,—1) -

Thus the assumption 2 is satisfied.

If (n+2)> p(n—2) using Sobolev’s lemma we know that the assumption 1 is

satisfied. Since A=— A (Dirichlet problem) it is easy to show the assumption 4.
ExampLE 2. Put H=L,(0, 1), X;=C([0, 1]), X,=L,(0, 1) and A=—§;§

(Dirichlet problem).

Let 7 be a continuous function on [0, 1] such that 7(0)<<0 and r(1)<<0. Set

K = {feL)0, 1); f(x)=r(x) a.e x<[0, 1]} .

Let ¢=1I, which is the indicator function of K. From Sobolev’s lemma the
assumptions 1 and 4 follow. We choose a function § C*([0, 1]) such that 6(0)
=60(1)=0 and (x)—r(x) =5,>0 for any x<[0, 1].

Since
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{0 if f(x)=r(x)
P0SE)= @ —rte) i Sy <),
and f(x)<<r(x) implies
0(x)—f (x)>0(x)—r(x) 25,
we have

(6¢Afaf—0)§80|6¢xflxz .

Hence the assumption 2 holds with =86, ¢,=3§, and ¢,=0.

ExampPLE 3. Let K be a closed convex set in H with inner points and

X,=H=X,. Let A be a positive self adjoint operator in H and ¥ be Domain
(4*?) endowed with the graph norm of A2, If an inclution mapping from
V to H is compact it follows that the assumption 1 holds. From Lemma 2.3
in [2] we have the assumption 2.

(1]
[2]
[31
(4]
(3]
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