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0. Introduction and Theorem

Let if be a real Hubert space and A be a positive self adjoint operator
in H. Let φ be a lower semi continuous proper convex function from H
to (—00,00] and 9φ be the subdifferential of φ. Then we shall consider
the following equation

(0.1)

-
air

-
at

on [0, T]

where T1 is a positive number.
The above equation was studied in Schatzman [3], [4], [5] and Maruo

[2]. In this paper we prove the existence of a solution of the problem (0.1)
under certain assumptions which are somewhat weaker than those of Schatz-
man [5] and Maruo [2].

In [5] Schatzman showed the existence and uniqueness of a solution of
the following nonlinear wave equation

(0.2)

do?~J^ ' ' di2 Qx2

in the sense of distributions in [0, 1] X [0, Γ],

u(x, t)^r(x), u(xy 0) = u0(x) y for #e[0, 1],

» a.e. in [0,1],
dt

X#, ί) =

w(0, t) = w(l, ί) = 0 for te [0, Γ],

where r is a continuous given function such that r(0)<0, r(l)<0 and r(x)
dx

^0 (in the distribution sense). Set K= {/eL2(0, 1) /(*) ̂
tion (0.2) is rewritten as the following equation in L2(Q, 1)

The equa-
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d2

d?
(0.3)

u+Au+dIK

f
«) = L

o if u<=κ
where l(u) = \ and

loo if

A = — — (Dirichlet problem).
doc

We will show that we can apply our main theorem to this equation if only r
is a continuous function satisfying r(0)<0, r(l)<0 to deduce the existence
of a solution of (0.3). The solution of (0.3), however, does not always satisfy
the locally energy conserving condition (see [5]). Hence we cannot get the
uniqueness of a solution.

Let Ω be a domain in Rn with smooth boundary and consider the case

φ(u)=\ \u(x)\p+1dx, />>!. Then the equation (0.1) represents a nonlinear
JΩ

Klein-Gordon equation. It will be shown that if (n+2)>p(n— 2), the result
of this paper can be applied to (0.1) in this case. Note that when n=3 this
inequality is satisfied for/>=3.

Now we state notations which will be used throughout this paper. The
inner product of H is denoted by ( , •). When S is a Banach space, its norm
is denoted by \ \s. We denote by V the domain of Al/2 endowed with the
graph norm. By 3φλ and φλ we denote the Yosida approximations of 8φ and
φ respectively (i.e. dφλx=\~1(l — J^~lx and φι(x)=(2\)~l\x— Jλx \H~\- φ(Jλx)
where /A=(l+λ8φ)-1).

Next we shall introduce the assumptions.
Let X L and X2 be real Banach spaces.

ASSUMPTION 1. The following inclusion relations hold:

V C Xj_ C H C X2 and Xl c {the dual space of X2}

where each inclusion mapping is continuous. Moreover X1 is separable and
the inclusion mapping from V to X1 is compact. H is dense in X2.

ASSUMPTION 2. There exists #e V such that

(Qφλx, x—z) ^Ci I dφλx I X2— c2

for Λ?e Vy I x I γ^R and | φ(x) \ ̂ R where cλ and c2 are positive constants depend-
ing only on R and z.

ASSUMPTION 3. The continuous function/ from [0, T]yH to H satisfies
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for any *e[0, T] and x,

dt

where h is a function belonging to Lι(0, T).

ASSUMPTION 4. The closure of D(φ) Π V in H is equal to the closure of
D(φ) in H.

Clearly V and X1 are dense in H. By assumption H is dense in X2. We
use the same notation ( , ) as the inner product of H to denote the pairings
between F, X19 X2 and their corresponding duals.

Now we define the solution of (0.1).

DEFINITION. We say that a function weC([0, T]\ XJ Π WL(Q, Γ; H) is a
solution of the equation (0.1) when it satisfies the following requirements;

1) For any t e [0, T\ u(f) <Ξ Z)(φ) Γi F.

2) There exist weak right and left derivatives u(t)&H for any /e [0, T].
dt

Moreover for any *e[0, T]

+2 \T(f(s, «(,)), -|-«(
Jo αί

(with necessary modifications at 0 and T).
3) There exists a linear functional F on C([0, T]; A^) such that

Jo JO

for any ι;eC([0, Γ]; XJ and

Γ / / /(/(ί,U
Jo

—Γ v * ds
Jo

A tt(ι), ̂ - «(,)) Λ+
as as I J

for any v e C([0, T\ )̂ Π ̂ (0, Γ; F) Π PFi(0, Γ; H).
4) The initial conditions are satisfied in the following sense

Λ

where Iζ, is the closure of the domain of φ, Iκ is the indicator function of
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KQ and QIκQ is the subdifferential of !KO-

We state the theorem.

Theorem. Let a and b be given elements satisfying

Then under the assumptions 1, 2, 3 and 4 we have at least one solution of (0.1).

To prove the above theorem we consider the following approximate equa-
tions for λ>0

dt2

(0.4)

In the next section using a method similar to that of [2] we shall investigate
the convergence of the solutions of the approximate equations (0.4). In section
2 we prove the theorem. In section 3 we show some examples.

1. Convergence of approximate solutions

In this section under the assumptions 1, 2, 3 and 4 we shall study the con-
vergence of the solutions of (0.4). In what follows let initial values a and b
belong to Vf]D(φ) and H respectively.
First we show some properties of the approximate solutions.

Lemma 1. For any λ>0 we have solutions of the problem (0.4) such that

if>eC([0, Γ]; H) nL-(0, Γ; V) Π WL(0, Γ; H) Π Wl(0, Γ; V*)

where V* is the dual space of V.

Proof. See p. 289 Barbu [1].

Lemma 2. We hold the following equality and inequality

at

a\2

γ+2φ,(a)+2 (/(,, ι̂ (,)), - uλ(s)) ds
as

2)



SOME NONLINEAR WAVE EQUATIONS 25

where C1 is a constant depending only on h and T.

Proof. See Lemma 2.2 in [2].

Lemma 3. There exists a constant independent of λ such that

T
I x2 ds^ Constant.

Proof. In the inequality of assumption 2 we put x=uλ(t). From Lemma
2 the constants cϊ and c2 are independent of λ. Replacing dφ^u by — (#"+
Auλ—f( , wλ)), integrating over [0, Γ], using the integration by parts and
noting 2) of Lemma 2 we get the conclusion of the Lemma.

Lemma 4. We have a continuous function u from [0, T] to H such that
a subsequence {uλ.} of the sequence {uλ} converges uniformly to u in H as λy— *0.

Proof. In view of 2) of Lemma 2 |w λ (0lv ig uniformly bounded. Hence
from the assumption 1 we know that {uλ(t)} is a relatively compact subset of
H for any ίe [0, T]. From 2) of Lemma 2 {uλ} is uniformly continuous. Thus
using Ascoli-Arzela's theorem this lemma is proved.

For simplicity we denote this subsequence by {uλ} .

Lemma 5. There exists a subsequence {λ;} of {\} such that {uλj} con-

verges to u in C([0, T]; XJ, \ - uλ.\ converges to - u in weak^-L^Q, Γ; H)
I dt ) dt

and {uλ.(t)} weakly converges to u(t) in V for any ίe[0, T]. Hence we know that

and

u(ί) eZ)(φ) Π V for any t e [0, T] .

Proof. From 2) of Lemma 2 it is easy to prove that some subsequence

I - uλj\ converges to - u in weak*-Loo(0, T; H). Since {uλj(t)} is bounded

in V it follows from Lemma 4 that {uλj(t)} weakly converges to u(f) in V. Next

we assume that there exists a sequence {ί, }Γ-ι such that

(urn ^=ίoo ,
t+~

K*t )-<*~)U^δ0>0 and f f e[O f Γ]

for i= 1,2, - .

Since \u(ti)\v is bounded there exists a subsequence {u(ίίy)} which converges
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to some element w of Xλ. On the other hand u is continuous in H. Hence
w=u(t00). The above results contradict (1.1). Thus u is continuous in Xλ.
Combining that for any £^[0, T] {uλj(t)} is a relatively compact set in Xlt

that {uλj} is uniformly convergent to u in H and that u is continuous in X1

we can prove that {uλj} is uniformly convergent to u in Xλ.
For simplicity we denote the subsequence {λy} by {λ} .

J t
dφλUλ(t) dt by pλ(t) for any fe[0, Γ]. Then pλ belongs to

°

Lemma 6. There exists a subsequence -{λy}c-{λ} such that for

andt(Ξ[Q, T], {(pλ/0> «)> converges.

Proof. From Lemma 3 for any a^Xi we know that the total variation

of the function {(pλ(0> α)} on IP> *̂] *s uniformly bounded in λ. Noting that
Xl is separable and using Kelly's choice theorem and the diagonal method we
have a subsequence {λy} such that

lim (pλ/£)> #) exists for any
-

For simplicity we denote {λy} by
Put

o
for »eC([0, ϊ1]; JCJ and ίe[0, Γ] .

Lemma 7. For each ίe[0, 71] ίAere eΛ wίί a linear continuous functional
Ft on C([0, T]; X,) such that

lim Fλ» = F,(β) /or any
λ-ί O

Proof. Combining Lemmas 3 and 6 and approximating ϋ by step func-
tions we can prove this lemma.

Lemma 8. For any v e C([0, T] -ΪΊ) ίA^ ̂  exist

right lim Ft(v) and left lim Ft(v)
t-+tQ ί->/0

where t0^[Q, T] (with necessary modifications at 0 and T).

Proof. From Lemma 7 it follows

\Ft(v)-Fs(s)\^Km Γ |9φλ
λ-> 0 Js

Combining this inequality with Lemma 3 we see that Ft(v) is of bounded varia-
tion. Thus the lemma is proved.
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We put

lim Ft(v) = F(v) .
t+τ

Lemma 9. For any ίe[0, T] there exist weak right and left derivatives

d±

- u(t) in H (with necessary modifications at 0 and T).
dt

Proof. Let v be an arbitrary element of C\[Q, Γ]; JSΓ1)ΠCf([0, T]; V).
Forming the inner product of (0.4) and v and integrating by parts we get

(1.2) (A «λ (ί), *(*)) = (*, «

Jo

From Lemmas 4, 5 and 7, the right side of the above equality converges for

any fe[0, Γ] as λ-*Ό. Since < - wλ(ί)> is uniformly bounded in H in view
I dt J

of Lemma 2, it follows that < - uλ(t) \ converges weakly in H for any /e[0, T],
{ dt )dt

Put

Y0 = {ίe[0, Γ]; weak lim -~

Put z;(ί)= VQ^V in (1.2). We know that the total variation on Y0 of the right
side of (1.2) is uniformly bounded for λ. Hence the total variation on Y0 of

( - u(t), v0] is bounded. Thus using that V is dense in H we have the ex-
\ dt /
istence of

weak left lim - u(ΐ) and weak right lim - u(t) .
/er0,/->/0 dt tGY0,t+tQ dt

Therefore this lemma is proved.

Lemma 10. Let »eC([0, Γ]; X^ and v(t)<=ΞD(φ) for a.e ίe[0, T}.
Then it follows

ίϊm Rm Γ (φλK*))-φλK(*))) Λ^ Γ (Φ(^
f-+T λ->0 JO JO

Proof. From Lemma 4 and 5 the sequence {Jλuλ(t)} converges to u(t).
Since φ is lower semi continuous it follows

lim λ
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From Theorem 2.2 in [1] (p. 57) we have

φ,(v(t))^φ(v(t)) and lim φλ(v(t)) = φ(v(t)).
λ+O

= Γ (/k «w)- ̂ "W, «-««) *- Γ (4- *W' 4- u
Jo Jo \ as ds

Combining the above two results and Fatou's lemma we can prove our asser-
tion.

Lemma 11. The function u satisfies the initial conditions in the sense stated
in 4) of Definition.

Proof. For any v^D(φ) Π V from (1.2) it follows

ds

The left side of the above tends to ( — ιι(0)— ή, v— a] as t^O. From
\ at J

ιιeL«(0, Γ; F) Π ϊΓi(0, Γ; //) we have

lim /! = 0 and lim I2 = 0 .
/•ί O ί^ O

On the other hand from Lemmas 5 and 7 it follows

Ft(v-u) = lim ^(ϋ-ifO .
λ->Ό

Hence arguing as in the proof of Lemma 10

lim F^-ttJ^Πm lim (' (φλ(^)-φλKW)) ds = 0 .
/-^O i +0 λ->0 Jo

Thus

(4- «(0)— *»»—«) ̂ ° for any
\ αί /

Therefore using the assumption 4 we obtain

2. The proof of Theorem

Combining the definition of the sub differential and Lemma 5, 7 and 10
we have the first half of 3) in Definition of the solution. From Lemmas 4, 5, 7
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(1.2), 1) and the second half of 3) follow. Combining 2) of Lemmas 2, 5 and
9 we have 2) in Definition. From Lemma 11 we know 4). Thus the proof
of the theorem is complete.

3. Examples

EXAMPLE 1. Let Ω be a bounded domain in R" with a smooth boundary.
Set

H = L2(Ω), X, = L,+1(ίl), X2 =

A = — Δ (Dirichlet problem) and

where p>l.
Then we know dφu=(p+l)\u\p~1 u.
Putting wλ = (ί+\Qφ)-lf we have 8φλ(/) = 9φ(wλ), I «>*(*) I ̂  I /(*) I and
wλ(Λ) * f(χ) ^0. Hence it follows that

and

1 9ΦΛ/ U =

Then we have

Thus the assumption 2 is satisfied.
If (n-^2)>p(n—2) using Sobolev's lemma we know that the assumption 1 is
satisfied. Since A= — Δ (Dirichlet problem) it is easy to show the assumption 4.

EXAMPLE 2. Put H=L2(Q, 1), -X^CflΌ, 1]), -XΓ2=Lι(0, 1) and A=--^~
dor

(Dirichlet problem).
Let r be a continuous function on [0, 1] such that r(0)<0 and r(l)<0. Set

K=

Let φ=Iκ which is the indicator function of K. From Sobolev's lemma the
assumptions 1 and 4 follow. We choose a function fleC^fO, 1]) such that 0(0)
=0(1)=0 and θ(x)-r(x)^8Q>0 for any *e[0, 1],
Since
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_ (0 if f(x)^r(x)

\\~\f(x)-r(x)) if f(x)<r(x),

andf(x)<r(x) implies

we have

Hence the assumption 2 holds with z=θ> c1=S0 and c2=0.

EXAMPLE 3. Let K be a closed convex set in H with inner points and

X1=H=X2. Let A be a positive self adjoint operator in H and V be Domain

(Al/2) endowed with the graph norm of A1/2. If an inclution mapping from

V to H is compact it follows that the assumption 1 holds. From Lemma 2.3

in [2] we have the assumption 2.
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