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PARTI 

Intermolecular Interactions of 

Nitronyl Nitroxide derivatives 



Chapter 1 

General Introduction 

1. 1 Introduction 

The studies of spin networks , which contain organic radicals ， 紅e interesting targets of 

research from the aspect of developing novel magnetic materials. Organic radicals are 

uitable for investigating the magnetism of nearly ideal Heisenberg spin systems and they 

almost have intermolecular antiferromagnetic interactions. Genuine organic ferromagnets 

consisting only of the light elements of C, H, N, 0 were researched for a long time, experimen凶l

and theoretical studies have been reported by many researchers. In 1991 , Kinoshita and 

co-worker reported that the ﾟ phase crystal of p-nitrophenyl nitronyl nitroxide (J刈PNN)

undergoes a ferromagnetic transition at 0.6 K [1-3]. This finding has activated the study of 

the molecular magnetism. Follow this, several organic b凶k ferromagnets have been repo口ed

w�hin a few ye紅s. Not only many experimental but also theoretical studies have been 

carried out to elucidate the mechanism of the magnetic interaction [4, 5]. In βp-NPNN 

crystal , theoretical studies suggest that close contact between nitronyl nitroxide groups and 

nitrophenyl moieties of nearest neighbor play import釦t roles for ferromagnetic phase. y 

phase of p-NPNN are also investigated, crystal structure has a great influence on magnetic 

properties [6]. 

These theoretical treatment based on molecular orbital calculations have been perfoロned

in not only p-NPNN but also several groups for various molecular systems in cooperation 

with experimental studies. It was shown that the magnetic interaction between organic 

radicals can be characterized quantitatively by the effective exchange interactions (Jab)' 

Theoretical studies were shown that the sign and magnitude of the calculated Jab values 
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depend sensitively on the stacking mode of the radical molecules. The spin alignment rules 

were derived on the basis of the calculated results for nitronyl nitroxide derivatives. 

The purpose of the thesis is to investigate the magnetic behavior of crystals and 

clusters , and propose the calculational methods which can treat spin clusters. 1n this study 、

semiempirical and ab initio MO  methods are used for organic radical crystals which werc 

found by many researchers. Experimental results have been reproduced by calculations. On 

the other hand, genetic algorithms (GA's) are developed for the calculations of magnetic 

properties of spin clusters. The author could search the global minima of Ising spin glass , 

and investigate the dependence of magnetizations and susceptibilities on temperature. 

Ferromagnetic and antiferromagnetic interactions were found in these crystals , and the 

fcrromagnetic phase transition is reported for some of these compounds. Nitronyl nitroxide 

derivatives are ilJustrated in Fig. 1. 1. 

One of the nitronyl nitroxide derivatives which does not have phenyl rings is MeNN 

(2). Hosokoshi and co-worker reported the magnetic measurements of it [14]. The MeNN 

crystals involves the close spacing between the NO group and the methyl group at 2-position. 

Thcre are both of the ferromagnetic and antiferromagnetic coupling in this crystal. This 

molecular packing is an example of the close spacing between the ONCNO moieties to give 

ferromagnetic coupling. 

Phenyl nitronyl nitroxide (PNNO) derivatives 訂e one of the most significant compounds 

for organic ferromagnets. Various compounds were synthesized and measured in experimental 

studies. Inoue and co-worker reported synthesis and magnetic measurements of NNBA' (4) 

alts [15]. They performed the magnetic measurements and manifested that dimers have a 

short intermolecular contact between the oxygen atom in NN group and the alpha carbon 

atom in the nearest -neighbor NN group with T -shape conformation. These salts provided the 

first example of ferromagnetic dimers of radical anions. Hosokoshi and co-worker reported 

the p-FPNN (5) crystal and it was said that the magnetic properties are explained by the 

forma�n of a 出plet state within the dimer and additional inter-dimer ferromagnetic interactions 

[16]. 

On the other hand、 magnetic networks are related with opti江口zation methods. Neural 

network calculations , which are one of the most important optimization method , are inspired 

by lsing model [7]. They are able to treat several optimization problems , and the dctailed 

studies of magnetic networks are expected to develop the optimization methods. 

The ground states of spin glasses are also one of the most important optimization 

problem. The search for them is NP-hard problem [8]. Because 2N spin states are considcrable 

for a N-spin cluster, calculational times exponentially increase with a growth of the number 

of spin sites. Several optimization methods have been used for this problem, and genetic 

algorithms are one of them. They are carried out for Edwards-Anderson 土1 Ising spin gla、

with short-range interactions [9-12]. 

1. 2 Nitronyl nitroxide derivatives 

Theoretical studies have been also carried out for these derivatives. ln theoretical 

tudies, molecular orbital calculations have been carried out for pair models of PNNO derivatives 

to elucidate J ab values 匤 their crystals. It was shown that the sign and magnitude of the 

ca1culated Jab values depend sensitively on the stacking mode of the radical molecules [4]. 

The spin alignment rules were derived on the basis of the calculated results for PNNO 

derivatives [17-21]. 

The search for a bulk fe汀omagnet consisting only of the light elements of C, H , N and 

o has been one of the most interesting t訂get of research in the field of material science. 

There are some difficulties to study organic ferromagnetic materials. Organic materials are 

diamagnets in general, because the electronic structure of organic molecules is of a c1osed-shell. 

Although free radicals have an open-shell struc印re ， an antip紅allel electron spin alignment i 

favorable between the unpaired electrons on the basis of the chemical bonding. Therefore , 

preparations of persistent radicals and the control of the spin alignment are indispensable to 

developments of organomagnetic materials. 

The crystal structure and the existence of the intermolecular ferromagnetic interactions 

of the ß-p-NPNN , which consists only of the light elements of C, H , N and 0 , were reported 

in 1989 [13]. The ferromagnet� transition of it was reported in 1991 , and it is the first 

organic bulk ferromagnet. For the y phase of p-NPNN, intra-plane ferromagnetic interaction 

and the inter-plane antiferromag附ic interaction are found. A theoretical explanation for ゚ｭ
and y-phase crystals of p-NPNN was already carried out. 

p申NPNNis one of nitronyl nitroxide derivatives. Because nitronyl nitroxide derivative 

have been expected to be ferromagnets , several compounds are synthesized and measurcd. 

1. 3 lntermolecular magnetic interaction (Jab) 

1. 3. 1 Calculation for 1ab 

The spin Hamiltonian models can reproduce the experimental results for molecular 

magnetic materials. The intermolecular interactions of nitronyl nitroxide derivatives 訂e able 

to be explained by Heisenberg Hamiltonian which has only one te口n for magnetic interaction: 

色 =-2ヱ Jふ 、
1
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Jllb is the parameter of the magnetic interaction, as illustrated in Fig. 1. 2. 

ln this thesi山o sites mo仙 are considered. Jab are able to be calct帥d by 例
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and Heisenberg Hamiltonian. 

For two sites model , Heisenberg Hamiltonian are expressed by 

H = -2JabSa . Sh 

The operator 5'2 is mentioned as 

32 =3; +S; +2 ・ S白 . Sh 

where, 

S = Sa + Sb 

From the eq. (1. 3), the expectation value of energy is calculated as 

E =何-2仏 5b l\f')

=一川(52)_ (ど+ど))
therefore , 

J-E(LS)-E(HS) 

ab 一(52) HS -(52 )υ 

(1. 2) 

(1. 3) 

(1. 4) 

( 1. 5) 

(1.6) 

where E(LS) and E(HS) are the energies of the low spin and high spin states, respectively. 

In this thesis, positive Jab means ferromagnetic interaction, and negative Jab leads the 

antiferromagnetic coupling, as shown in Fig. 1. 2. 

1. 3. 2 Three terms of Jab 

The effective exchange integral Jab for a radical pair is generally expressed by three 

different teロns under the approximately spin-projected unrestricted Hartree-Fock (APUHF) 

approximation, i. e. [21] , 

Jab(APU町)=Jω(KE)+Jab(PE)+Jab(SP). (1. 7) 

The kinetic (KE) and potential (PE) exchange teロns 紅e， respectively , determined by SOMOｭ

SOMO overlap Sab and intermolecular exchange integral ~b ' The spin polarization (SP) term 

is given by the product of spin densities (Pa(b)) induced by the spin polarization effect [17]. 

6 

The ferromagnetic interaction in molecular crystals can be explained by these terms. A 

simple classification of the magnetic interaction was derived [19 , 20]. 

Case 1 (Jab(KE)<O , Jab(PE)>O; Jゅ<0) (1. 8a) 

Case II (Jab( KE):::::O , Jab(PE)>O; J ab>O) (1. 8b) 

Case III (.fぷKE):::::O， Jab(PE):::::O , Jab(SP)>O; Jab>O) (1. 8c) 

Case IV (Jab(KE):::::O , Jab(PE):::::O, Jab(SP)<O; Jab <0) (1. 8d) 

Cases 1 and II 紅e understood intuitively by the symmetry of SOMO-SOMO contact. The 

effecti ve exchange interaction between closely located radical groups is usually 

antiferromagnetic (Jabく0) [4] , since the KE interaction stabilizes the low spin (LS) state (Case 

1). However, if the mutual orientation of radical groups is controlled to reduce the KE term, 

the ferromagnetic interaction (Jab>O) is expected at a short inte口nolecular distance (Case II) 

because of nonzero Coulombic exchange integral (J ab(PE)=~b) as studied in the case of 

imple nitroxide pair model [1]. On the other hand , the SP term induced by the indirect 

interactions through bond and space becomes important when the distance between the two 

radical groups is large (Case III, IV). For example， βphase of p-NPNN corresponds to the 

case III [5]. The sign of Jab(SP) depends on the phase of spin alternation by the SP effect. 

Ab initio configuration interaction (CI) method by use of the complete active space 

(CAS) selected on the basis of the occupation numbers of the UHF natural orbitals (UNO), i. 

e. , UNO CASCI , has been used to estimate the SOMO-SOMO direct interaction terms (KE 

and PE) [19 , 20, 23 , 24]. Semiempirical INDO method has been successfully employed to 

calculate Jab values which include all terms in eq. (1. 7). 

1. 4 MO methods 

1. 4. 1 Hartree-Fock method 

Hartree-Fock (HF) method plays an important role for theoretical explanations of 

chemistry. In addition , it is a starting point for more accurate approximations. Most of the 

computational methods of quantum chemistry 訂e based on HF approximation. 

In HF method , the wave function is expressed by one Slater deterrninant. The HF 

equation is mentioned as follows: 

[h(l) + ヱ Jb (l) ーヱム(中 (1. 9) 

This is the HF equation for electron 1. In eq. (1. 9) , 
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h(l) =十7-計 、
、
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52 because constituents of higher order are mixed. When the number ofα-electrons Nαis 

larger than that of -゚electrons Nβ ， the expectational value of 52 in UHF is mentioned as 

following equatlOn: 

is the electronic kinetic energy and electron-nuclear attraction energy of electron 1. Jh (1) 

and K
b
(l) is the Coulombic operator and the exchange operator, respectively , and two 

electrons correlations are replaced with one electron potential in these ope凶or. XII (1) is the 
(32)uJO2LCI+NP-tt|sf|2 (1. 12) 

spin orbital, and ε。 is the orbital energy. 

where, 

1.4.2 INDO method 

INDO (Intermed僘te Neglect of Differential Overlap) method is one of the sefTﾚempirical 

MO methods. 1n this method, one center two electrons integrals is obtained a 

WL" =(Nプ)(Nα;NP+1) (1. 13) 

(ss I ss) = (ss I xx) = pO 

(xx I xx) = pO + 二~p2
25 

In spite of this weak point, UHF method , which is suitable for the calculations of unpaired 

electrons , is used in these studies of radicals. 

1. 4. 4 Configuration interaction method 

(xx Iη) ニ pO_ 三p2
25 Configuration interaction (C1) method is a more accurate method based on HF 

approximation. C1 wave function is mentioned as follows: 

(xs I xs) 二 iGI

(刀|刀)=会 p2
|φ) = col¥}'o ) +ヱ<\\}'o: ) +エ<~\\}'I。ニ) +ヱdlv。;c) + (1. 14) 

、
‘
.

ノ

守
s
i--

• 1
i
 

，
，
z
・
、

ar 。くb

r<s 
日 <hくc
r<S<1 

where s, x and y express the s, 2px and 2py orbitals, respectively. pO are calculated from the 

Slater orbital, p2 and G1 are determined in semiempirical procedures. Two center integrals 

are ignored in INDO method. 

where l'Po ) is the RHF wave 加ction. 1n wave function ¥¥}'o: ), the electron in Xa excite to 

Xr' 

According to eq. (1. 14), a full C1 wave function contains all excited states. Though it 

is an exact solution when basis function is complete, full C1 calculations 訂e very difficult to 

1. 4. 3 Restricted and unrestricted spin orbital 
r2K¥ 

carried ou1. There are I " T I Slater determinants in 2K spin orbitals and N electron, and the 
~ N } 

1n restricted spin orbital ， α-spin and ゚-spin are in a same spatial orbital. On the other 

hand, they are in different spatial orbitals in unrestricted spin orbital as shown in Fig. 1. 3. 

HF method used restricted spin orbital is known as RHF method , and it with unrestricted spin 

orbital is known as UHF. 

For open shell systems, because α叩in electron and βspin electron 紅e given different 

potential energies , unrestricted spin orbital gives a lower energy than restricted spin orbital. 

On the other hand, unrestricted spin orbital always overestimates the expectational values of 

calculations 紅e not able to be done even though a small molecule is considered. 

For complete active space (CAS) C1, a subset of the orbitals and electrons 訂e selected, 

and full CI 紅e carried out only in this subse1. This subset is known as complete active space. 

CASC1 method with n electrons and m orbitals is specified CASC1 {n, rn}. CASC1 with SCF 

of a referential orbital is CASSCF. 2-electrons and 2-orbitals active space is illustrated in 

Fig. 1.4. 

8 9 



l. 4. 5 Naturalorbital 

One electron density matrix of UHF wave function is mentioned as follows: 
The spin orbitals �tY (y ニ α， )゚ are determined by the spin unrestricted Kohn剖lam (UKS) 

equatlOn 

p(川')= N f tp(川， fN)V(11;ら ぬ)dl)_ ... drN (1. 15) 

[ _~V2 号tli+j問dr2 + 九]ゅ川ゆI山
The sum of matrixes for α-spin and βspin is diagonalized, eq. (1. 16) are obtained: 

Pα(円イ)+ P゚  (1j, l�') = I, ÇYi(円 )v;(イ) (1. 16) 

Vxc[p] = 8Exc[p]/ 8p 

H(UKS)ﾘT = ε/g (l. 19) 

Spin orbital {Vi} is known as natural orbital (NO) , and �; (0 壬 ç; ::;; 2) is known a 

occupation number. 

NO is useful for CASC1 and CASSCF calculations of radicals because the occupation 

number of NO contributed unpaired electron is almost equal to 1. CASC1 with UHF natural 

orbital (UNO) and CASSCF with UNO is known as UNO CASC1 and UNO CASSCF, 

respecti vel y . 

There are several approximate correlation-correction functionals in DFT methods: 

Vosko-Wilk-Nusair (V\\市~) [27] , Perdew's 1981 (PL) functionals [28] , Perdew's 1986 (P86) 

[29] , Lee-Yang-Parr (L YP) おnctional [30], etc. Because UKS B-L YP method gives reasonable 

spin densities for nitronyl nitroxide derivatives , L YP functionals 訂e used for calculations of 

NN derivatives. 

1. 5 Details of following chapters in part 1 

1. 4. 6 Density functional theory 

The many ferrnion systems 紅e treated the Hamiltoruans developed with the Hohenbergｭ

Kohn theorem. The total energy in the density functional theory (DFf) is mentioned a 

follows [25 , 26]: 

The pu中ose of this part is to investigate the intermolecular magnetic interaction in the 

crystalline phases of nitronyl nitroxide derivatives. For this pu中ose ， the author c紅司ed out 

ab initio and semiempirical MO calculations for these derivatives. 

E= T(r)+ V(r)+G(r)+ ιc (r) (1. 17) 

1n this chapter, the author briefIy reviewed the organic magnets and the method of 

quantum chemical caJculations. 

1n chapter 2, intermolecular interactions in αphase of HNN, which is the simplest NN 

derivatives ， 訂e calculated. Computational values 紅e comp紅ed with an experimental value, 

and advantages of each methods are discussed. 

In chapter 3, the calculations for 1ab of p-CNPNN are carried out. The important pairs 

for magnetic properties of p-CNPNN crystal and the important parts of p-CNPNN molecule 

are investigated, and 2D ferromagnetic interactions with antiferromagnetic interplane 

ínteractions 紅e discussed. 

In chapter 4, the author investigates intermolecular interactions of hydrogen bonded 

NN derivatives. 1nteractions in αand ゚  phase crystals of HQNN and RSNN crystal are 

calculated, and the roles of hydrogen bonds are discussed. 

Summary of the part 1 is described in chapter 5. 

ι/ -乞j帆(円)'12Øi (円 )d円引tr(行 )d円+元!?け)帆+ιc

p(1j) = ェ。; (円)軌(円)

where T(r) , V(r) , G(r) and Exc(r) are the electronic kinetic energy , the electron-nuclear 

attraction energy , the Coulombic repulsion energy between electrons and the exchange 

correlation energy , respectively. The total density p is given by the spin unrestricted 

approxlmatlon as 

p=pα + p゚  

pα= エ lø~12 ， p゚ = エ løfl 2
(1. 18) 

ハ
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Figure 1. 1 Various nitronyl nitroxide derivatives are illustrated. 
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Figure L 2 

E(LS) ⑦① 

~E • Jab 

1ab > 0 

1ab < 0 

町HS)⑦⑦

feπomagnetíc interact卲n 

antiferromagnetic interaction 

Intermolecular interactions (1ab) between two spin sites 紅e illustrated_ The 

positive 如d negative 1ab values mean fe打0- and antiferro-magnetic interactions, 

respectively. 

今|

restricted spin orbital unrestricted spin orbital 

Figure 1. 3 Restricted and unrestricted spin orbitals are shown. In unrestricted spin orbitals, 

α- and βspins occupy the different spacial orbitals. 
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Interactions in αphase of 2-Hydro Magnetic 

pace actlve SOMO 

HOMO 

SOMO 

HOMO 

Nitronyl Nitroxide 41 1. 
and lilustration of {2, 2} active space of two radicals. Two unpaired electron 

two SOMOs are considered in this active space. 

Figure 1.4 

2. 1 Introduction 

Recently, in a series of theoretical studies of ferromagnetic interaction in PNNO 

derivatives, it was shown that the ON-C-NO moieties play important roles for the sign 組d

magnitude of the effective exchange interaction (Jab) in the crystal [31]. Replacing the 

phenyl ring by a hydrogen atom is expected to in町oduce direct contacts between the ON-C-NO 

立lOlet1es.

Recently Kinoshita and co-worker reported the magnetic property of αphase 2-hydroxy 

nitronyl nitroxide (2-hydroxy-4, 4, 5, 5 -tetr但nethyl-4 ， 5-dihydro-lH-irnidazolyl-l-oxyl・3・

oxide, abbreviated as HNN) [32 , 33]. Because this compound has the simplest structure of 

all nitronyl nitroxide derivatives , investigations of 1到N are interested. The whole temperaωre 

dependence of xv can be reproduced by the dimer model with J Iks = -7.65 cm- 1
• 

two types of molecular packings of nearest neighbor in α-HNN ， and only one has 

antiferromagnetic coupling and the other one is negligibly small. 

It is particularly interesting and important to investigate theoretically the origin of the 

magnetic behavior in this crystal. In this chapter the author reports the molecular orbital 

(MO) calculations to deterrnine the intermolecular effective exchange integrals for several 

pair models whose geometries 訂e extracted from the X-ray structure in the crysta1. 

There 訂e



2. 2 Crystal structure 

Fig. 2. 1 displays the molecular packing of α-HNN. There is a noticeable chain 

structure along the c axis. Each chain contains two types of dimeric structure as shown in 

Fig. 2. 2. One of them is pair A , it has close spacing between ON-C-NO moieties. The other 

is pair B with the NO...HC contact. This contact is doubled as a result of the inversion 

symme仕y at the center of the two molecules. Intrachain molecular coupling is pair C , and 

the distance between two molecules of pair C is longer than that of interchain dimeric pairs. 

The theoretical calculations were performed for a11 possible pairs, A (1-2) , B (1 -3) , C 

(1-4), D (4-5) and E (4-6) by use of the semiempirical , ab ﾎnifio MO and DFT methods ・

4-31G basis sets were used for these pairs, and 6-31G* basis sets were also used for simplified 

pair models. 

2. 3 Calculations for HNN pair molecules 

In order to elucidate the ferromagnetic property observed for the HNN crystal , 

semiempirical INDO and ab initio calculations are carried out for four pair models of HNN 

molecules. Table 2. 1 shows the calculated 1ab values. Serniempirical INDO , DFT、 UNO

CASCI {2, 2} and UNO CASSCF {2 , 2} methods c組 reproduce qualitatively the experimental 

results. The pむr A in Fig. 2. 2 which has close spacing between ON-C-NO moieties show 

the largest 1ab' 1 ab values of other pairs 紅e much smaller than 1ab for A. These result 

suggests that dimeric antiferromagnetic interaction exists along the c axis and interaction 

between the chains is weak. 

UNO CASCI {2, 2} and UNO CASSCF {2 , 2} methods by use of two active UNO 

and two unp出red electrons give suitable 1ab values for pair A , suggesting a large contribution 

of direct SOMO-SOMO coupling to the antiferromagnetic interaction of pa甘 A.

2. 4 Calculations for the simplified pair models 

To study possible mechanisms of the magnetic interaction in the HNN crystal in 

detail , theoretical calculations with various methods were perfo口ned for the simplified pair 

models of pair A and B. 

The model A1 and B] consist of two nitronyl nitroxides (ON-C-NO). Table 2. 2 

shows the 1ab values obtained by several computational methods. The following conclusion、

were drawn from Table 2. 2: 

(i) Fig. 2. 3 illustrates the results of model AJ and pair A. The results of calculations of 

model AJ and B} almost can reproduce the results for pair A and B. These results suggest 

that ON-C-NO moieties play important roles for the magnetic interactions of pair A and B. 
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(ii) The conclusion (i) suggests that model AJ and B} can be calculated by MO methods 

instead of pair A and B. For the model A]' calculational results using 4-31 G and 6-31 G* 

basis sets are compared and illustrated in Fig. 2. 4. These results resemble each other except 

for those of UNO CASCI {10, 10} method. Because UNO CASCI {10, 10} method gives 

unsuitable 1ω values compared with experimental result, it is negligible. 

(ii�) The results calculated by several methods for model AJ are shown in Fig. 2. 5. For these 

calculations , 4-31 G basis sets were used for ab initio MO and DFT methods because of the 

conclusion (ii). INDO , UBLYP , UB3LYP , UNO CASCI {2, 2 }, UNO CASSCF {2 , 2 }, 

UNO CASSCF {10, 10} methods give the reasonable 1ab values. The results of UNO CASCI 

{2, 2} and UNO CASSCF {2, 2} methods suggest a large contribution of direct SOMO-SOMO 

coupling to the ferromagnetic interaction. 

2. 5 Conclusion 

intermolecular interactions inα-HNN crystal 

The pair A plays an important role in α-IDぜN crystal. The intermolecular interaction 

of pair A is maybe comp訂ed with the experimental one derived from magnetic susceptibility 

measurement by assuming the dimer model. ln this pair, ON-C-NO moieties 訂e significant 

for the intrapair interaction of p出r A. 

the validities of methods for calculations 

UHF/4-31 G method gave the unsuitable results because SP teロns were overestimated 

by it. Because the wave function of UHF was inadequate, 1ab values calculated by UMP2 and 

UMP4 methods were much different from experimental value. Though UNO CASCI {6 , 6} 

and UNO CASSCF {6 , 6} methods gave unsuitable 1ab values , UNO CASSCF {1 0, 10} 

method gave reasonable results. From these results , more active spaces are desirable, however, 

it is difficult because of bounds of computers. 

問DO， DFT and UNO CASSCF methods are suitable for 回\TN molecules. The validity 

of these methods are discussed also in following chapters. 

17 

「一一一一一一一 一一ーー 一一一一一一一一一一一一1



Table 2. 1 Calculated Jah values for several pairs of HNN. 

Table 2.2 Calculated Jah values for simplified models for the pair A and B. 

Ja/cm-I 

A B C D E 

INDO -4.917 0.524 0.011 -0.016 0.050 

UHF/4-31G -66.727 6.258 0.292 -0.066 0.285 

UHF/6-31G* -60.315 4.416 0.261 -0.068 0.263 

UBL YP/4-31 G -8.932 0.233 0.092 ー0 .953 0.255 

UBLYP/6-31G* -9.146 0.266 

UB2LYP/4-31G -30.763 1.775 0.204 ー0 . 009 0.426 

UB3L YP/4-31G -12.674 0.843 0.143 

Ja/cm-J 

A A B B 

INDO -4.917 -3.692 0.524 0.169 
UHF/4-31G -66.727 -63.902 6.258 7.059 
UHF/6-31G* -60.315 -62.677 4.416 4.759 
UBLYP/4-31G -8.932 -10.442 0.233 0.215 
UBL YP/6-31 G* -9.146 -11.263 0.266 0.233 

UNO CASCI {2, 2} aJ -5.679 0.014 0.705 0.004 0.059 

UNO CASSCF {2, 2 }a) -7.395 0.748 0.214 0.107 0.304 

UNO CASCI {6, 6}a) -51.413 -0.810 0.081 -0.091 0.131 

UNO CASSCF {6, 6} a) ー23.966 ー0.224 0.110 -0.011 0.165 

UB2L YP/4-31G -30.763 -31.778 1.775 
UB3L YP/4-31G -12.674 ー 13.244 0.843 0.521 
UMP2/4-31G -20.255 -0.826 
UMP4/4-31G -2l.617 ー1.540

UNO CASCI {10, 10}aJ -227.082 -3.259 

UNO CASSCF {10, 10}al -22.869 
UNO CASCI {2 , 2} a) -5.679 -5.261 0.014 0.067 
UNO CASSCF {2 , 2 }a) -7.395 -7.251 0.748 0.006 

a) 4-31 G basis set was used. 
UNO CASCI {6, 6} a) -51.413 -40.893 -0.810 -1.280 
UNO CASSCF {6 , 6}a) -23.966 -25.478 -0.224 ー0 .457

UNO CASPT2 {6 , 6 }al -42.643 -1.975 
UNO CASCI {10, 10}a) -227.082 -216.916 -3.259 -18.773 
UNO CASSCF {10, 10}a) -22.869 -19.299 

UNO CASCI {2, 2} b) -7.036 0.089 
UNO CASSCF {2 , 2}b) -9.434 0.013 
UNO CASCI {6, 6} b) -46.186 ー 1.244
UNO CASSCF {6, 6} b) -25.461 -0.411 
UNO CASCI {10, 10}bl -122.270 -12.069 
UNO CASSCF {10, 10}bl -21.684 

a) 4-31 G basis set was used. 
a) 6-31G料 basis set was used. 
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Figure 2.3 Cornp紅lson with 1ab values of rnodel A and pair A1 are illustrated. UNO 

CASCI 加d UNO CASSCF rnethods are abbreviated to "CI" and "SCF" , 

respectively. 
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Chapter 3 
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3. 1 Introduction 

In a series of theoretical studies of ferromagnetic interaction in organic radical 

crystals, it was shown that the sign and magni回de of the effective exchange interaction 

(Jab) strongly depend on stacking modes of radical molecules in the crystal [4, 5, 6, 31]. 

Recently m釦y experimental efforts to cons甘uct the stacking modes which exhibit s甘ong

ferromagnetic interaction have been p出d by syn出esizing a v紅白ty of nitroxide derivatives 

[3 , 34, 35]. 

Recently Hosokoshi and co-worker reported the magnetic property of pｭ

cyanophenyl nitronyl nitroxide (2-( 4'-cyanophenyl )-4, 4, 5, 5-te仕訂nethyl-4， 5-dihydroｭ

lH-imidazolyl-l-oxyl-3-oxide, abbreviated as p-CNPNN) [36]. The susceptibility above 

4 K can be explained by the ferromagnetic square-lattice Heisenberg model with J = 
0.52 cm- 1

• It is suggested from the structure analysis 出at 出e origin of the two dimensional 

fe町omagnetic behavior may be attributed to the intermolecular contacts between nitronyl 

nitroxide groups and cyanophenyl groups in a sheet p紅allel to the ac-plane. 

It is p訂ticularly interesting and impo口ant to investigate theoretically the origin 
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of the two-dimensional magnetic behavior in this crystal. In this chapter the author 

reports the molecular orbital (MO) calculations to determine the intermolecular effectivc 

exchange integrals for several pair models whose geometries are extracted from the 

X -ray structure in the crystal. 

3. 2 Crystal structure 

Fig. 3. l(a) illustrates the packing arrangement of p-CNPNN molecules (1 伽ough

6) in the crystal and Fig. 3. 1 (b) shows the geometry of p-CNPNN molecule. There are 

two crystallographically independent molecules. One of the molecules corresponds to 1, 

4 or 6 (group 1) and the other to 2, 3 or 5 (group 11). Since disorder of the methyl 

groups in group 1 was suggested and correct geometry of the methyl groups was not 

determined, the geometry of the methyl groups in group 11 was used for group 1 in our 

MO calculations. The sheet structure parallel to the ac-plane is outstanding. Within the 

sheet, each molecule in 1 is surrounded by four molecules in 11 and vice νersa. As 

shown in Fig. 3. 2, relatively short distances were found between the carbon atom of the 

cyano group and the terminal oxygen atom of the nitroxide group , i. e. , r2 along the 

a-axis and r2' along the c-凱js. Close contact between the terminal oxygen atom of the 

nitroxide group and the carbon atoms of 出e phenyl group was also found. The molecular 

packing along the a-axis is very sirnil紅 to that along the c-axis. From the crystal 

structure the magnetic interaction in the ac-plane is interested. 

The theoretical calculations were performed for the pむrs of p-CNPNN molecules , 

A (1-2) , BI (1-4) , BII(2-3) , C (1-5) and D(I-6) , in the crystal shown in Fig. 3.1 by use 

of semiempirical INDO and DFT methods. UNO CASCI and UNO CASSCF method 

were also used for the simplified pair models. 

3. 3 Calculations for p-CNPNN pairs 

In order to study the magnetic prope口y observed for p-CNPNN crystal , the 

semi-empirical INDO calculation was carried out for whole molecular skeleton (pairs A , 

BI , BII, C and D). Table 3. 1 shows the calculated 1ab values. The INDO method give 

reasonable values for 1ab as compared with the experiment, and DFT methods gi ve 

qualitatively reasonable values [36]. The pairs A and C on the ac-plane show large 
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positive 1ub values. The reason of the large positive 1ab may be explained by short 

intermolecular distances for the pairs A and C. The INDO and DFT calculations 

suggests that pseudo-two-dimensional ferromagnetic interaction exists in the molecular 

sheet parallel to the ac-plane and interaction between the sheets (BI and BII) is weak. 

This result qualitatively explains the experimental result by Hosokoshi and co-worker. 

3.4 Calculations for simplified pair models 

In order to elucidate the magnetic interaction path in the pairs described above , 

various computations were carried out for the simplified pair models. 

3. 4. 1 Simplified models for the pairs A and C 

Different simplified pむr models shown in Fig. 3. 3 were considered to designate 

the role of cyano, phenyl and methyl groups for the intermolecular magnetic interaction. 

A1 and C} are the most simplified pair models , in which only the nitronyl nitroxide 

groups 紅e considered. Cyano groups of A 佃d C are replaced by hydrogen atoms in the 

pairs A2 and C2, whereas cyanophenyl groups 訂e replaced by hydrogen atoms in the 

pairs A3 and C3・ In the pairs , A4 and C4, methyl groups of A and C are replaced by 

hydrogen atoms. 

Table 3. 2 shows 1ab values calculated for the simplified models by several 

computation剖 methods. Large and positive values of Jム were obtruned by use of INDO 

and DFT methods for the model p出rs ， A2' A4' C2 and C4 ・ These results indicate that 

cyanophenyl group contributes dominantly to the intermolecular ferromagnetic interaction 

in the pairs , A and C. Particularly the phenyl group seems to be important for the 

ferromagnetic interaction in the prurs , A and C. Direct interaction between rutronyl 

nitroxide groups is negligible as shown in the pair models , A J 組d C1 ・ It is note worthy 

that 1 ab values calculated by UNO CASCI {2 , 2} and UNO CASSCF {2, 2} methods 

predomin如tly reflect the direct SOMO-SOMO interactions , KE 叩d PE terms in Eq. 1. 

Therefore, the ferromagnetic interactions in A and C prurs are classified into Case III. 

3.4.2 Simplified models for the pairs BI, BII and D 

The inter-sheet magnetic interaction was estimated by use of sirnplified models 
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of the pむrs BI (1-4) and BII (2-3) shown in Fig. 3. 1 and Fig. 3. 4. Model pa幻irs BIJ and 

BIIJ consist of two ni山Ítror

C∞ompo∞nent臼soぱfp-CNPNN molecules 紅e retained and termina旧a叫lc∞omponent臼s arl陀e simplified, 

i. e. , atoms located between the two nitronyl nitroxide groups of the pairs are maintained. 

Table 3. 3 shows that the direct interactions are negligible in the models BIt , 

BII" BI2 and BII2 as indicated by UNO CASCI {2 , 2} and UNO CASSCF {2, 2 J 

methods. INDO method revealed a small antiferromagnetic interaction for model BI~ 

as in the case of BII. On the other hand, model BI2 have small ferromagnetic intcraction 

as in the case of BI. These results suggest a weak magnetic interaction between the 

molecular sheets p紅allel to the ac-plane. 

Finally the magnetic interaction in the pair D was examined. Simpli白ed model 

pair D1 consists of two nitronyl nitroxide molecules , whereas hydrogen atoms of D
1 

were replaced by cyanophenyl groups in D2 as shown in Fig. 3. 4. 

INDO, three types of DFT methods , UNO CASCI (2 , 2} and UNO CASSCF {2, 

2} gave negligibly small 1ab values , indicating the negligible magnetic interaction in the 

pむr D compared with the ferromagnetic interactions in the pairs, A and C. Therefore, 

the ferromagnetic interaction in the molecular sheet p紅allel to the ac-plane is concluded 

to be quasi-squ訂e-Iattice type , in accord with the experiment [36]. 

3. 5 Conclusion 

Characteristic magnetic interaction in p-CNPNN crystal was studied by 

semiempirical and ab initio calculations. Effective exchange integ凶 1ab was calculated 

for several p出r molecules in the crystal. Quas�-two-dimensional ferromagnetic interaction 

in the molecular sheet parallel to the ac-plane was revealed. The phenyl group of 

p-CNPNN molecule plays a dominant role for the ferromagnetic interaction. The methyl 

and cy組o groups slightly contribute to cancel the ferromagnetic interaction. 1ab values, 

0.541 and 0.301 cm-J, in the molecular sheet (Table 1) obtained by INDO method may 

be comp訂ed with the experimental one (J = 0.52 cm-I) derived from magnetic susceptibility 

measurement by assuming the square-lattice Heisenberg model [36]. 
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Table 3. 1 Jαb values for the pairs of p-CNPNN molecules shown in Fig. 3. 1. 

1ab /cm-1 

methods A BI BII C D 

INDO凡JHF 0.541 0.003 -0.003 0.301 0.000 

UBLYP/4-31G 1.629 0.002 -0.002 0.884 

UB2L YP/4-31 G 2.302 0.015 -0.009 0.705 

UB3L YP/4-31 G 1.736 0.002 -0.004 0.827 

experiment (square-lattice Heisenberg model)9 

0.52 

Table 3. 2 1ab values for the simplified models of pairs, A and C , shown in Fig. 3. 1. 

1ab /cm" 

methods A A1 A2 A3 A4 

INDO凡汗fF 0.541 0.000 0.643 0.000 0.636 

UBLYF/4-31G 1.629 1.659 

UB2L YF/4-31G 2.302 2.947 

UB3LYP/4-31G 1.736 2.017 

UNO CASCI {2, 2} a) 0.000 0.019 

UNO CASSCF(2, 2}al 0.000 

a) 4-31 G basis set was used. 

1ab /cm-1 

methods C C1 C2 C3 C4 

別DO凡月fF 0.301 0.000 0.331 0.000 0.374 

UBL YF/4-31 G 0.884 0.830 

UB2L YP/4-31 G 0.705 1.185 

UB3LYP/4-31G 0.924 

UNO CASCI {2, 2} a) 0.000 0.005 

UNO CASSCF{2 , 2}a) 0.000 
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Table 3.3 Jab values for the simplified models of the pairs , B and D. 

J
ah 
Icm.J 

methods BI BI) BI2 BII BIIl BII2 D DJ D2 

問DO凡圧IF 0.003 0.000 0.003 -0.003 0.000 -0.003 0.000 0.000 0.000 

UBL YP/4-31 G 0.002 -0.002 

UB2LYP/4-31G 0.015 -0.009 

UB3L YP/4-31G 0.002 ー0.004

UNO CASCI {2, 2} a) 0.000 0.000 0.000 0.000 ー0.001 骨0.001

UNO CASSCF{2, 2}a) 0.000 0.000 0.000 0.000 0.000 

a) 4-31 G basis set was used. 

(a) 

Figure 3. 1 Crystal structure (a) and molecular geometry (b) of p-CNPNN. 
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Figure 3. 2 Pairs of p-CNPNN molecules along the a-and c-axes. 
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Chapter 4 

Hydrogen-bonded Nitronyl Nitroxide 

4. 1 lntroduction 

Several calculations suggested that molecular assembly and intermolecular magnetic 

interactions may be controlled by intermolecular hydrogen bonds [17, 21]. The pu中ose of 

this chapter is to elucidation of intermolecular magnetic interactions of hydrogen-bonded 

pairs of org釦ic radical crystals. 

Recently , Sugawara and co-worker reported the magnetic behavior ofαand ゚  phase 
of 2' , 5'-dihydroxyphenyl nitronyl nitroxide (2-(2', 5'-dihydroxyphenyl)-4, 4, 5, 5-te甘但ne出yl・4，

5-dihydro-lH-imidazolyl-l-oxy-3-oxide, abbreviated as HQNN) , and 3' ，グーdihydroxyphenyl

nitronyl nitroxide (2-(3' , 5ιihydroxyphenyl)・4 ， 4 , 5, 5-tetramethyl-4, 5-dihydro-lHｭ

imidazolyl-l-oxy-3-oxide, abbreviated as RSNN) [37-39].α-HQNN crystal undergoes a 

fe汀omagnetic phase transition at low temperature and intermolecular hydrogen bond is formed 

between oxygen atom of nitronyl nitroxide (NN) group and hydrogen atom of hydroxyl 

group. The temperature dependence of the magnetic susceptibility of this crystal was well 

reproduced by the ST model with the J~ = +0.65 cm-1• The intermolecular hydrogen bond is 

also formed in βHQNN crystal, the hydrogen bonded chain runs along the a axis. The 

experimental plot for this crystal indicated exhibiting an antiferromagnetic interaction, and 

the plot was found to be best fitted by the ST model with ferromagnetic interaction of J~ = 

+3.5 cm-I
• In RSNN crystal, a double intermolecular hydrogen bond is formed between the 

oxygen atom of nitronyl nitroxide (NN) group and the hydrogen atom of the hydroxyl group. 

This crystal undergoes a ferromagnet兤 in凶pむr interactions and an antiferromagnetic interpair 

mteractions at low temperature. The plot for RSNN was reproduced by the ST model with 
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the ferromagnetic interaction of 1/1九= +7.0 cm 1. 

It is particularly interesting and important to investigate theoretically the origin of the 

magnetic interaction in these crystal to understand the role of the hydrogen bonds. In this 

chapter the author reports the molecular orbital (MO) calculations to determine the 

intermolecular effective exchange integrals for several pair models whose geometries are 

extracted from the X-ray structure in the crystal. 

4.2α-HQNN 

4. 2. 1 Crystal structure 

Fig. 4. l(a) illustrates the packing a汀angement of HQNN molecules (1 through 5) in 

the crystal and Fig. 4. 1 (b) shows the geometry of a HQNN molecule with numbering 

scheme. The following features are remarked from the X-ray structure analysis. 

(i) The hydroxyl group (0(1 ')H) forms a strong intramolecular hydrogen bond (O( 1 ')... O( 1) : 

2.507 ﾅ) with one of the NO groups (N(l)ー0(1)). This hydrogen bond induces a remarkable 

deformation of the NN group. The bond lengths of N(l)ーO(1) and C(] )-N( 1) at the hydrogenｭ

bonded side 訂e 1.303 and 1.332Å, respectively , whereas those of N(2)ー0(2) and C(1)-N(2) at 

the opposite side 訂e 1.272 and 1.367 A, respectively. 

(ii) The hydroxyl group O(l')H of molecule 1 also participates in an intermolecular hydrogen 

bond with the 0(2')H group of the translated molecule (2) aJong the c-axis , resulting in a 

one-dimensional hydrogen-bonded chain along the c-axis. A similar one-dimensionaJ chain 

runs parallel to the previous one related with inversion symmetry between the two facing 

molecules. Two NN groups related by inversion symmetry 訂e located in proximity with the 

ぬort NO.. .ON of dis凶ce 3.159λpresumably due to two bifurcated hydrogen bonds b酬een

the two hydroxyl groups as shown in Fig. 4. 2 B. These two 紅rays form a herringbone type 

structure. 

The theoretical calculations were performed for a11 possible p出rs ， A (1-2), B ( 1 -3) 、 C

(1-4), D (1-5) and E (2-5) by use of the semiempirical INDO and DFf method [24]. Ab initio 

UNO CASCI and CASSCF caJculations [23 , 24] were also carried out for simpli白ed pair 

models. 

4.2.2 Calculations for HQNN pair molecules 

In order to elucidate the ferromagnetic property observed for the α-HQNN crystal , the 

author carried out semiempirical INDO and DFT calculations for five pair models of HQNN 

molecules. Table 4. 1 shows the calculated 1ab values. Semiempirical INDO and DFT 

methods can reproduce qualitatively the experimental results. The pair B in Fig. 4. 2 which 

has bifurcated hydrogen bonds (OH.. .OH and OH.. .O-N) shows the largest 1ab' 1"h values of 

other pairs are smaller than a half of Jab for B. One of the origins of this significant feature 
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may be attributed to the dependence of Jab on the interatomic distance (R). The Jab decreases 

exponentially with the increase of R [17, 18]. Other contributions will be discussed later. 

4. 2. 3 Calculations for the simplified pair models 

To study possible mechanisms of the fe汀omagnetic interaction in the α-HQNN crystal 

in detail , theoreticaJ calculations with various methods were performed for the several simplified 

pair models. 

(A) Simplified models for the pair A 

The simplified pair models, A) through As shown in Fig. 4. 3 were considered. The 

model AJ consists of two nitronyl nitroxides (ON-C-NO) and the model A2 consists of two 

nitronyl nitroxides with hydroquinone moieties. In the model ~ hydroquinone moieties of A 

are replaced by hydrogen atoms , in A4 hydroxyl groups of A 訂e replaced by hydrogen atoms 

and in ﾅs one of the methyl groups of A is replaced by hydrogen atom. The methy1 group 

Jocates in close proximity to adjacent N-O group. Positions of the substituted hydrogen 

atoms were optimized by PM3 (semiempirical method). Table 4. 2 shows the calculated Jab 

values and gives the following results. 

(i) INDO and DFf calculations suggest that the methyl group in close proximity to adjacent 

N-O group is significant for the intermolecular ferromagnetic interaction (positive 1ab value). 

Replacement of the methyl group by hydrogen atom leads to very weak antiferromagnetic 

interaction in ﾅs by 別DO， UBL YF and UB3L YF. 

(ii) UNO CASCI {2, 2} and UNO CASSCF {2, 2} methods by use of two active UNOs and 

two unpaired electrons give very smaJl positive Jab vaJues, suggesting a smaJl contribution of 

direct SOMO-SOMO coupling to 出e ferromagnetic interaction. 

(B) Simplified models for the pair B 

1ab values were calculated for the simplified p出r models , B1 through B5 shown in Fig. 

4. 4. The models BI and B2 are simplified in the s組le way as Al 加d A2 • For the model B3' 

hydroxyl groups linked to N-O radical group by bifurcated hydrogen bond in model B 紅e

replaced by hydrogen atoms. In the model B4 hydroxy ethylene groups linked to opposite 

N-O radical group by bifurcated hydrogen bond are attached to B.. The hydroxyl groups of 

B4 are replaced by hydrogen atoms in B5. Table 4. 3 shows the 1ab vaJues obtained by several 

computational methods. The following conclusions were drawn 仕omTable 4. 3: 

(i) All the methods give positive 1ab vaJues for pむrs B2 and B4' which have intermolecular 

hydrogen bonds, and negative 1ab values for p出rs Bl' B3 and B5' which do not have intermolecular 

hydrogen bonds. These results indicate that the intermolecular hydrogen bond plays an 

lmportant role for the ferromagnetic interaction in the p白rB.

(ii) Comparisons between αb initio and INDO results show that semiempirical INDO method 

glves smaller 1.ゆ values than those of D円脱出ods

Table 4. 3 suggests that the hydrogen bonds in model B play a dominant role for the 

llltermolecular ferromagnetic 匤teraction. For investigating this interaction more precisely 
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the hydroxyl groups of the model B4 were rotated simultaneously about the Table 4. 41ωvs. 

rotation angle of OH group respective C-O axis with rotation angle R (Fig. 4. 5). 1ab value 

was calculated by INDO method for every 300 of the rotation angle. Table 4. 4 and Fig. 4. 6 

shows the 1ab values for the pair B4 with different angles. When the rotation angle is in 

between 1200 and 2400 , the 1ab value turns into negative. ]t is noted that brcak of the 

hydrogen bonding in the p出r B4 leads to antiferromagnet� interaction. 

(C) Simplified models for the pairs C , D and E 

The simplified models Cl' DJ and EJ shown in Figure 4. 7 were considered. Table 4. 

5 shows the calculated 1ab values. These pairs are simplified in the same way as AJ. All 1孔4“』

values calculated by the n呼DO method 訂e small compa紅red with the pa白irs A and B becausc of 

the long intermolecular distances. 

4.3 -゚HQNN 

4. 3. 1 Crystal structure 

Fig. 4. 8 illus甘ates 出e packing 紅rangement of HQNN molecules (1 through 4) in the 

crystal. The following features 紅e remarked from the X-ray structure analysis. 

(i) The phenolic hydroxy group (O(l')H) shown in Fig. 4.1 (b) participates in the in廿amolecular

hydrogen bond with the oxygen atom of the NN group (O( 1 ')…0 (1) : 2.616入). The 

intramolecular distance is slightly longer than that ofα，-HQNN. As a result, the degree of 

bond alternation in the NN group is lessened to some extent, N(l)-O(l) and C(l)-N(l) at the 

hydrogen bonded side 紅e 1.296 and 1.350A, respectively , whereas those of N(2)ー0(2) and 

C(1)-N(2) at the opposite side 訂e 1.279 and 1.364A, respectively. 

(ii) The hydroxyl group 0(2')H of molecule 1 also forms the intermolecular hydrogen bond 

with the oxygen atom 0(2) of the NN group which does not participate in the intramolecular 

hydrogen bond in adjacent molecule 2 as Fig. 4. 9. The intermolecular distance between 

hydroxyl group and the NN group which forms intermolecular hydrogen bond is 2.777λ 

The hydrogen bonded chain runs in a zigzag manner along the a-axis , and such chains stack 

along the c-axis. The HQNN molecules in the stack (1 and 3) are dimerized as shown Fig. 4. 

8. Within the dimer, HQNN has the inversion symmetry and the distance between two NN 

groups 0(2)…C(l) is 3.781λThe distance between molecules 1 and 4 is 4.287λ 

The theoretical calculations were perfo口ned for a11 possible pairs , A (1 ・ 2) ， B (1-3) , 

and C (1-4) by use of the semiempirical INDO , UBLYP, UB2LYP and UB3LYP method 

[24]. UNO CASCI and CASSCF [23 , 24J calculations 訂e carried out for simplified models ・

4.3.2 Calculations for HQNN pair molecules 

1n order to elucidate the magnetic property observed for the HQNN crystal , we carried 
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out semiempirical INDO and DFT calculations for three pair models of HQNN molecules. 

Table 4. 6 shows the calculated 1ab values. Semiempirical INDO , UB2L YP/4-31 G and 

UB3L YP/4-31 G methods can reproduce the experimental results , qualitatively. The p出rB in 

Fig. 4. 8 which has short distance of two NN groups (NO.. .C) shows the largest 1ab' 1ab 

values of other pairs are smaller than a half of 1ab for B. INDO method gave smaJler 1ab 

values than UB2L YP and UB3L YP methods. 1ah values of pair A which has the intermolecular 

hydrogen bond are slightly larger than the pair C. One of the origins of this significant 

featurc may be attributed to the dependence of ら on the interatomﾍc distance (R). The 1ab 

decreases exponentially with the increase of R [17 , 18]. Other contributions will be discussed 

later. 

4. 3. 3 Calculations for the simplified pair models 

To study possible mechanisms of the magnetic interaction in the -゚HQNN crystal in 

detail , theoretical calculations with various methods were perfo口ned for the several simplified 

pair models ・

for the p出rA

The simplified models AJ through As shown in Fig. 4. 10 were considered. The 

model A , consists of two nitronyl nitroxides (ON-C-NO), and the rnodel ~ consists two 

nitronyl nitroxides and one hydroquinone moiety which is linked to the N-O radical group by 

the intermolecular hydrogen bond. 1n the rnodel A3 the hydroxyl group participates in 

hydrogen bond in model Al is replaced by hydrogen atom. In the model A4組dﾅs' hydroquinone 

moieties of A) and ﾅ:z are replaced by l-hydroxy butadiene group without break the 

intermolecular hydrogen bond, respectively. Table 4. 7 shows the 1ab values obtained by 

several computational methods. The following conclusions were drawn from Table 4. 7: 

(i) UB2L YP/4-31G , UNO CASCI{ 10, 10} 釦d UNO CASSCF {10, 10} methods give positive 

1ab values for model ﾅ2 and A4' which have intermolecular hydrogen bonds, and negative 1ab 

values for model ﾅs which does not have intermolecular hydrogen bonds. The model ﾅ3 and 

ﾅs have srnaller 1ab values than ﾅ2 and ﾅ4 by INDO method. These results indicate that the 

intermolecular hydrogen bond plays an important role for the magnetic interaction in the pair 

包.

(ii) Comparisons among INDO, DFT and UNO CASSCF results show that serniempirical 

INDO method and UNO CASSCF method gives reasonable 1ab for the models which have 

hydrogen bonds. Though the 1ab value calculated by UB2L YP/4-31 G method is reasonable , 

UB3L YP/4-31G and UBLYP/4・31G methods do not give reasonable 1ab values. 

Table 4. 7 suggests that the hydrogen bonds in model ﾅ play a dorninant role for the 

intermolecular ferromagnetic interaction. For investigating this interaction more precisely, 

the hydroxyl groups of the model A4 were rotated simultaneously about the respective C-O 

axis with rotation angle e (Fig. 4. 5) same asα-HQNN in section 4. 2. 1ゅ value was 

calculated by INDO method for every 300 of the rotation angle. Table 4. 8 and Fig. 4. 11 

shows the 1ah values for the model ﾅ4 with different angles. When the rotation angle of the 
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model A4 is in 1200 and between 2700 and 3300 , the 1ab value tums into negative. 1t is noted 

that break of 出e hydrogcn bonding in the pair A4 leads to antiferromagnetic interaction. 

(B) Simplified models for the pair B and � 
1ab values were calculated for the simpli白ed pair models , B( and C1 shown in Fig. 4. 

12. The models BJ and C1 is simplified in the same way as A). Table 4. 9 shows the 1uh 

values obtained by several computational methods. The following 

conclusions were drawn from Table 4. 9: 

(i) Al1 the methods give positive 1a゙ values for pairs B1 and C) ・ These results indicate that 

the ON-C-NO moieties play important roles for the magnetic interaction in the pair B and C. 

(ii) UNO CASCI {2 , 2} methods by using of two active UNOs and two unpaired electron 

give reasonable 1ab values, suggesting large contribution of direct SOMO-SOMO coupling to 

the feπomagnetic interaction. 

4.4 RSNN 

4.4. 1 Crystal structure 

Fig. 4. 13 (a) illus仕ates the packing arrangement of RSNN molecules (1 through 5) in 

the crystal. Fig. 4. 13 (b) shows the geometry of a RSNN molecule with the numbering 

scheme. The following features are remarked from the X-ray structure analysis. 

(i) Compared with α-HQNN， RSNN have no intramolecular hydrogen bond. Therefore, 

there is no bond alternation in the NN group, and the twist angle between the NN group and 

the phenyl ring (23.3 degrees) is smaller than that of HQNN. 

(ii) The hydroxyl groups O(l')H and 0(2')H of molecule 1, 4 and 5 also participate in 

intermolecular hydrogen bonds with the oxygen atoms of NN groups of two 叫acent molecule 

at the both sites, resulting in a one-dimensional hydrogen-bonded chain along the diagonal of 

ac-plane , as shown in Fig. 4. 14. The distances of the hydrogen bonds are the same on one 

side of the molecule (d} =1.84ﾅ; between 1 and 4) , they 紅e slightly longer on the other side 

(d2 = 1.89ﾅ; between 1 and 5). Two types of similar one-dimensional chains run parallel to 

the previous one related with inversion symmetry between the two facing molecules. The 

oxygen of the NN group (0(2)) is located close to the C(l) of the NN group of the dimeric 

counte叩art with the intermolecular distance of 3.727 ﾅ as depicted in 1-2 of Fig. 4. 13 (a). 

Since the overlap of the NN groups between pairs 1-3 is poor, the NN groups are located 

remote form each other. 

The theoretical calculations were performed for a11 the possible pairs , A(1-2) , B (1 -3), 

C (1-4) and D (1-5) , by using of the INDO , UBLYP , UB2LYP and UB3LYP methods [24]. 

Ab initio UNO CASC1 and CASSCF calculations [23 , 24] were also carried out for simplified 

pair models (see Figs 3, 4 and 6). 
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4. 4. 2 Calculations for RSNN pair molecules 

1n order to elucidate the magnetic prope口y observed for the RSNN crystal, we carried 

out semiempirical INDO 叩d ab initio calculations for four pair models of RSNN molecules. 

Table 4. 10 shows the calculated 1ab values. Semiempirical INDO and D打 methods can 

reproduce qualitatively the experimental results for the pair A and B. The pair A which has 

close contact between each NN groups (N -0. . . C) shows the largest 1 ab. 1ab values of the pair 

B are slightly smaller than those of the pair A. On the other hand, the pair C and D have 

ma11 Llab' values in comparison with those of the pair A and B. One of the origins of this 

signifjcant feature may be attributed to the dependence of 1ab on the interatomic distance (R). 

The 1ab decreases exponentially with the increase of R [1 7, 18]. Other contributions will be 

discussed later. 

4.4.3 Calculations for the simplified pair models 

To study mechanisms of the magnetic interaction in RSNN crystal in detail , theoretical 

calculations with various methods 紅e performed for the several simplified pair models. 

(A) Simplified models for the pa汀 A

The simplified pa� models, AJ shown in Fig. 4. 15 were considered. The model A1 

consists of two nitronyl nitroxides (ON-C-NO). Positions of the substituted hydrogen atoms 

were optimized by PM3 (semiempirical method). Table 4. 11 shows the calculated 1ab values 

and gives the following reSUlts. 

(i) 別DO and DFT calculations for model A) can reproduce qualitatively the result of the full 

p釦 A. 1t suggests 出at NN groups of this pair are significant for 由e intermolecular ferromagnetic 

interaction (positive 1ab v叫ue).

(ii) UNO CASC1 {2 , 2} 釦d UNO CASSCF {2, 2} methods by using of two active UNOs 

and two unpaired electrons give positive 1ab values , suggesting large contribution of direct 

SOMO-SOMO coupling to the ferromagnetic interaction. 

(B) Simplified models for the pair B 

1ab values were calculated for the simplified pair models, B} through B3 shown in Fig. 

4. 16. The models B1 is simplified in the same way as Al ・ The model B2 consists of two 

nitronyl nitroxides with dihydroxyphenyl moieties , and the hydroxyl groups of B2 are replaced 

by hydrogen atoms in B3・ Table 4. 12 shows the 1ab values obtained by several computational 

methods. The following 

concJusions were drawn from Table 4.12: 

(i) All the methods give positive 1ab values for pむrs B2 and B3, which have phenyl rings , and 

negligible 1 ah values for p出r Bp which does not have phenyl rings. These reSUltS indicate 

that the pheny 1 ring plays an important role for the ferromagnetic interaction in the pむrB，

and NN groups scarcely contribute to positive 1ab values. 
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(ii) Comparisons between the 1ab values of the model B2 and that of the model B3 show that 

hydroxyl groups do not play an important role for the intermolecular interaction in the pair B. 

(C) Simplified models for the pairs C and D 

The simplified models C) through C4 and D) through D4 shown in Fig. 4. 17 are 

considered. Table 4. 13 shows calculated 1ab values. The model C) and D) are simplified in 

the same way as Al' and the model Cz and D2 are simplified in the same way as B2• For the 

model C3 and D3' the hydroxyl groups linked to N-O radical group by hydrogen bond in C2 

and D2 訂e replaced by hydrogen atoms. 1n the model C4 and D4' hydroxy butadiene groups 

linked to opposite N-O radical group by hydrogen bond are attached to C) and D) ・

(i) 1NDO and UNO CASSCF methods give negative 1ab values for model C2 and C4, which 

have intermolecular hydrogen bonds , and positive 1ab values for model C3 which does not 

have intermolecular hydrogen bonds. These results indicate that the inte口nolecular hydrogen 

bond plays an important role for the magnetic interaction in the pair C. 

(ii) The absolute values of 1ab for the model D2 m紘e a difference form that of D 4・ 1t suggest 

that the intermolecular hydrogen bonds are significant for the intermolecular interaction in 

pむr D. 

(iii) Comparisons among 1NDO, UBL YP/4-31 G and UNO CASSCF results show that 

semiempirical INDO method gives reasonable 1ab values for a11 models , and UNO CASSCF 

method gives reasonable 1ab for the models wruch have phenyl rings 

(iv) A11 1ab values of these rnodels calculated by the INDO method are smaller than those of 

pむrsAandB.

Table IV suggests that the hydrogen bonds in rnodel C and D play a dominant role 

for the intermolecular ferrornagnetic interaction. For investigating this interaction more 

precisely , the hydroxyl groups of the model C4 and D4 were rotated simultaneously about the 

respective C-O axis wi出 rotation angle 8 (Fig. 4. 5). 1ab value was calculated by INDO 

method for every 300 of the rotation angle. Fig. 4. 18 and Table 4. 14 shows the 1ah values 

for the rnodel C4 and D4 with different angles. When the rotation angle of the model C4 is in 

between 300 and 2400 , the 1ab value turns into positive. Regarding the rnodel D4' 1ab value 

turns into negative with rotation angle 600
• It is noted that break of the hydrogen bonding in 

the model C4 leads to ferromagnetic interaction , and in the model D4 that leads to 

antiferromagnetic interaction. For the model C4, the rotation of hydroxyl group change 

more sensi ti vel y 出e sign of 1ab values th叩 the model D4' This implies that the pressure 

effect is an interesting experirnental task in the future. 

4. 5 Conclusion 

4. 5. 1α-HQNN 

Ab initio and serniempirical calculations indicate that magnetic interaction through thc 
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bifurcated hydrogen bonds in the pair B is dominant for the ferromagnetic property of 

α-HQNN crystaJ. The 1ah value of the pair B was almost three times larger than that of other 

pairs (A , C , D and E). The pair B has bifurcated hydrogen bonds and the simplified models 

of B without hydrogen bonds show negative 1ah values. The UNO CASSCF method with two 

SOMOs and two unpaired electrons {2 , 2} demonstrates that the SOMO-SOMO potential 

exchange (PE) interaction is not important for the ferromagnetic interaction in the pair B. 

The 1ab value of the pair A was positive in the case that a11 the methyl groups remain. 

Close contact between the methyl group and adjacent N-O radical group is important for the 

intermolecular ferromagnetic interact�n rather than hydrogen bonding in the pair A. 

4.5.2 -゚HQNN 

The 1ab values of the pair B were much larger than that of other pairs (A and C). The 

UNO CASC1 {2 , 2} and UNO CASSCF {2, 2} results show that the SOMO-SOMO potential 

exchange (PE) interaction is dorninant for the intermolecular ferromagnetic interactions of 

pair B and C. 

The pair A has hydrogen bonds and the sirnplified rnodels of A without hydrogen 

bonds show smaller 1ab values than models with hydrogen bonds. The UNO CASCI {2, 2} 

demonstrates that the SOMO-SOMO potential exchange (PE) interaction is not important for 

the magnetic interaction in the pair A. 

4.5.3 RSNN 

The 1ab values of the pair A were rnuch larger than that of pair C and D. The UNO 

CASSCF {2, 2} result shows that the SOMO-SOMO potential exchange (PE) interaction is 

dominant for the intermolecular ferromagnetic interactions of pむr A, while the through-bond 
mteraction is predorninant in the pair B. 

Ab initio and serniempirical calculations indicate that the hydrogen bonds 訂e dominant 

for the intermolecular magnetic interactions. The 1ab values of the simplified rnodels without 

hydrogen bond are rnuch different from the full pair C 加d D. The UNO CASSCF method 

with two SOMOs and two unpaired electrons {2, 2} demonstrates that the SOMO-SOMO 

potential exchange (PE) interaction is not important for the ferromagnetic interaction in the 

pair C 加d D. 

4.5.4 Role of hydrogen bond 

The simplified model B4 ofα，-HQNN， the model A4 of βHQNN， The model C4 and 

D 4 of RSNN gave a useful guide for understanding of the role of the hydrogen bond: the sign 

of 1ab value depends on the rotation angle of the hydroxyl groups. 

The 1ab values of -゚HQNN and RSNN change more sensitively the model B4 of 

α-HQNN around 0 0

• 1n the RSNN, the dependence of 1ab values on rotation angles of the 
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model C ,f was larger than that of D4・ Assuming that the rotation of the hydroxyl group 1S 

ωused by the pressure effect, the influence of this effects for the -゚HQNN and RSNN 

crystals are expected to be larger than that of α-HQNN. 
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Table 4. 1 1ab values for the pairs shown in Fig. 4. 1. 

1ab/cm.
1 

methods A B C 

。~DO/UHF 0.013 0.041 -0.003 

UBLYP/4-31G 0.145 1.396 0.114 

UB2L YP/4-31G 0.156 1.409 0.081 

UB3LYP/4-31G 0.178 1.464 0.122 

Table 4.2 1ab values for the simplified models of the pair A. 

1ab !cm'1 

methods A Al A2 

INDO凡JHF 0.013 0.000 -0.001 

UBLYP/4-31G 0.145 -0.099 

UB2LYP/4-31G 0.156 0.009 

UB3L YP/4-31G 0.178 ー0.011

閃o CASCI{2, 2}al 0.003 0.006 

UNO CASSCF{2 , 2}al 0.002 0.002 

a) 4-31G basis set was used. 

Table 4.3 1ab values for the simplified models for the p出r B .

1ab !cm'1 

methods B Bl B2 

INDO川町 0.041 ー0.030 0.121 

UBLYP/4-31G 1.396 

UB2L YP/4-31 G 1.409 

UB3LYP/4-31G 1.464 

UNO CASCI {2, 2} a) ー1.554 0.142 

UNO CASSCF{2 , 2}a) ー1.036 0.014 

a) 4-31 G basis set was used. 
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D E 

0.010 0.008 

0.033 0.033 

0.072 0.162 

0.037 0.108 

A3 A4 As 

0.009 0.005 -0.004 

0.129 

0.127 

0.129 

B3 B4 Bs 

-0.138 0.141 信0.505

3.862 ー7.218

3.430 -5.973 

3.900 -4.641 

0.148 ー 1.002

0.016 -l.848 



Table 4.4 1ab vs. rotation angle of OH group. 
Table 4.7 1ab values for the simplified models of the pair A. 

。
1ab (INDO) 。

1ab (INDO) 1ab /cm-I 

methods A A1 A2 A3 A4 As 
。。

0.141 1800 -0.545 

300 1.179 2100 -0.530 INDO凡JHF 0.102 0.000 0.112 0.012 0.151 0.032 

600 7.088 2400 ー0.061 UBLYP/4-31G 0.000 -0.090 

900 4.339 2700 4.288 UB2LYP/4-31G 0.544 0.944 -0.723 

1200 ー0.055 3000 7.028 UB3LYP/4-31G 0.279 ー0.006 -0.250 

1500 一0.529 3300 1.172 UNO CASCI{2, 2}aJ 0.004 0.004 

UNO CASCI {10, 10}aJ 0.109 -0.049 

UNO CASSCF {10, 10}aJ 0.061 -0.004 

a) 4-31 G basis set was used. 

Table 4.5 1ab for the simplified models for the pairs C , D and E 

Table 4.6 1ab values for the pairs shown in Fig. 4. 8. Table 4.9 1ab for the simplified models for the pむrs B and C 

1ab/cm-
1 1ab /Clτn-

methods A B C methods B B1 C C} 

EぜDO凡JHF 0.102 0.959 0.065 INDO凡JHF 0.959 1.837 0.065 0.088 

UBL YP/4-31 G 0.000 ー0.585 0.191 UBL YP/4-31 G ー0.585 8.830 0.191 1.005 

UB2L YP/4-31G 0.544 7.243 0.252 UB2L YP/4-31 G 7.243 13.859 0.252 0.850 

UB3LYP/4-31G 0.279 4.633 0.198 UB3LYP/4-31G 4.633 12.207 0.198 1.105 

UNO CASCI {2,2 }aJ 0.392 0.054 

UNO CASCF {2, 2 } 13.232 1.064 

UNO CASSCF {6, 6} 5.812 0.008 

a) 4-31G basis set was used. 
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Table 4. 10 Jゅ values for the pairs shown in Fig. 4. 13. Table 4. 13 1ah for the simplified models for the pairs C and D 

1ablcm-
1 

1ab Icm-I 

methods A B C D methods C C) C2 C3 C4 

INOO尺JHF 0.782 0.613 -0.010 0.065 Eぜ00凡JHF ー0.010 0.000 -0.010 0.025 -0.066 

UBLYP/4-31G 2.718 2.693 ー0.086 ー0.046 UBL YP/4-31 G -0.086 0.064 -0.033 0.816 

UB2LYP/4-31G 5.532 4.154 0.138 0.443 UB2LYP/4-31G 0.138 0.274 ー0.050 1.683 

UB3LYP/4-31G 4.971 3.449 0.048 0.219 UB3LYP/4-31G 0.048 0.149 -0.007 1.314 

UNO CASSCF{2, 2}a) -0.005 0.025 -0.005 

UNO CASSCF{6, 6}a) -0.007 -0.031 

Table 4. 11 1ab values for the simplified models of the pair ﾅ a) 4-31G basis set was used. 

1ab Icm-1 

methods A ﾅ1 

1ab Icm-1 

別DO凡月-IF 0.782 1.518 
methods D D) D2 D3 D4 

UBL YP/4-31G 2.718 8.473 

UB2L YP/4-31 G 5.532 7.623 
町DO/l庁F 0.065 0.000 0.075 0.035 0.314 

UB3L YP/4-31G 4.971 9.870 
UBLYP/4-31G -0.046 0.209 0.155 1.369 

UMP2/4-31G 1.978 
UB2LYP/4-31G 0.443 0.522 0.090 2.692 

UNO CASCI{2, 2}a) 1.349 
UB3LYP/4-31G 0.219 0.334 0.160 2.176 

UNO CASSCF{2, 2}a) 13.694 
UNO CASCI {2, 2} a) 0.008 -0.022 0.007 

UNO CASSCF{6, 6}a) 2.484 
UNO CASSCF {2, 2} a) ー0.005 0.080 -0.007 

UNO CASSCF{ 10, 10}a) 2.271 
UNO CASCI { 6, 6} a) 0.178 ー0.306 0.582 

a) 4-31G basis set was used. 
UNO CASSCF{6, 6}a) 0.017 0.044 0.231 

UNOCASCI{10, 10}a) 0.017 -0.237 

Table 4. 12 1ab values for the simplified models for the pair 8 
a) 4-31G basis set was used. 

1ab Icm-' 

methods B 8) 82 83 

INOO尺JHF 0.613 0.000 1.460 1.590 

UBL YP/4-31G 2.693 0.000 4.882 3.672 

UB2L YP/4-31G 4.154 0.000 10.434 7.455 

UB3L YP/4-31G 3.449 0.002 6_755 4.900 

UNO CASCI {2, 2} a) 0.032 0.005 

UNO CASSCF{2 , 2}al 2.031 1.941 

UNO CASSCF{6, 6}al 1.337 0.709 

a) 4-31G basis set was used. 
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Table 4. 14 1ab vs. rotation angle of OH group. 

pairC 

。
1ah (INDO) 。 1ab (INDO) 

。。 -0.066 1800 0.162 

300 0.914 2100 0.121 

600 0.614 2400 0.087 

900 0.219 2700 -0.148 

1200 0.170 3000 -1.732 

1500 0.182 3300 -1.833 、-'，-'-ノ f三五ぇ....ò;l \ ノ 。 HO 

N 
仁村哲ぐ~直戸・R .J[ 

p出rD

A=()N(2) ?r 'p E--』

N 

。
1ab (別DO) 。 ら(町DO) )司そコ cy 

f、f勺 1
/ 

。 OH 

。。 0.314 1800 0.262 (b) 

300 0.274 2100 0.270 

600 -0.057 2400 0.280 

900 0.275 2700 0.241 
Figure 4. 1 Crystal structure (a) and molecular geometry (b) ofα-HQNN. 

1200 0.291 300。 0.204 

1500 0.272 3300 0.309 

A B 

Figure 4.2 Pairs which have intermolecular hydrogen bonds. 
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(models for D are constructed with the same way as models for C) 

In this p訂t， the author investigated the intermolecular magnetic interactions of various 

nitronyl nitroxide derivatives by using quantum chemistry. In this chapter, the author will 

umrnarize the results of this p訂t.

-l.5 

'5- ーでーーぢーーでー岨ー持ーーー持ーー-)E- -ーうそ"必ーーー

The author adopted the computational schemes mentioned in chapter 1. The effective 

exchange interactions (Jab) were derived , and magnetic interactions are characterized 

quantitatively by 1ab values. 

About 1ab values of nitronyl nitroxide derivatives, it was found the absolute values of 

SOMO-SOMO directly interactions (pair A ofα-HNN and pair B of βHQNN 加d pair A of 

RSNN) were much larger than those through the pheny 1 rings (pair A and C of p-CNPNN) 

and hydrogen bonds (pair B of α-HQNN ， Pむr A of ゚ -HQNN and pair C and D of RSNN) , 

and the intermolecular interactions through the phenyl rings were larger than those through 

the hydrogen bonds. 

For the hydrogen bonded pairs , the rotations of hydroxyl groups derived the change of 

1ah values. It suggests that the pressure effect of these derivatives 訂e expected. Assuming 

that the rotation of the hydroxyl group is caused by the pressure effect, the influence of this 

effects for the -゚HQNN and RSNN crystals are larger than that ofα-HQNN. 
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About calculational methods , semiempirical INDO methods reproduced qualitatively 

experimental results for these derivatives. On the other hand, it was found thatαb initio UHF 

methods are not reasonable for not only quantitative but also qualitative calculations of 

intermolecular interactions because they overestimates the spin polarization effects. About 

DFT methods , UB2L YP and UB3L YP methods were able to reproduce qualitatively 
Figure 4. 18 1ab vs. rotation angle of OH group. 
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exoerimental results for nitronyl nitroxide derivatives. 

-For CASCI and CASSCF methods, 2-orbitals and 2-electrons active space({2, 2)) 

was not enough to calculate the intermolecular magnetic interactions because CASCI and 

CASSCF with {2 , 2} active space are able to calculate only the SOMO-SOMO potential 

exchange interactions. Interactions through the phenyl groups and hydrogen bonds were 

especially not obtained reasonable values. lt is considered that 6-orbitals and 6-electrons ({ 6, 

6 }) or more are required for these calculations. 

For the molecular pair models ofα.-HNN， 4-31 G and 6-31 G* basis sets were used. 

J_L values calculated with them were sirnilar to each other. It suggests that 4-31 G basis set 

are enough to 叫ωla阿u山atively reason枇 intermolecular i伽ac附lS for nitrony 1 nitroxide 

derivatives. 

For all derivatives , calculational results reproduced the experimental results. It was 

found that the two sites model based on Heisenberg Hamiltonian is e仔'ective for the calculation 

of intermolecular magnetic interactions of organic radical crystals. 
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Chapter 1 

Genetic Algorithms 

1.1 History and development 

An important problem in computational chemistry is the determination of global 

energy minima of large molecular clusters. This task becomes more difficult as the number 

of dimensions and, hence , the number of local minima, grows. Within the past decade many 

optimization methods have been developed. These methods have both strong and weak 

points for each problem. 

In general, optimization methods can be categorized as either deterministic or stochastic. 

When the number of degrees of freedom are increased, deterministic methods become difficult 

to search global minima, exponentially. On the other hand , the stochastic methods produce 

candidates of global minima in a probabilistic steps. Though these methods can give the 

olutions rapidly，出ey can not avoid local minima, frequently. 

Genetic algorithms (GA's) classify one of stochastic methods. These algorithms 訂e

based on neo-Darwinism, and they imitate the biological evolution process. GA's are robust 

optimization methods, therefore they adapt to several problems. 

1n 1960's, Holland proposed GA's as leaming methods they can adapt wide v紅白ty of 

environments [40]. His studies are the groundwork of GA's , especially in machine leaming 

[41]. After his works, Goldberg applied GA's to various problems, i. e. , search, machine 

learning and optimization [42]. His book had a great influence on other scientists, and GA's 

became popular optimization methods for not only the mathematical problems, i. e. traveling 

salesman problem [43-49] , scheduling problem [50-54] , knapsack problem [55 , 56] , but also 

for chemistry , physics, engineering, etc. 
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Recently , GA's have been used for many chemical problems, conformational analysis 

[57-60], alloy systems [61] , protein folding [62-69] , geometry optimization [70-76] and 

molecular design [77] ・ The searches for the global minima of Ising spin glass [9-12] and 

thermodynamical calculations [78] of Ising spin clusters are one of them. Though there are 

some studies for these problems, fixed 土Jvalues were used in thcse studies and experimental 

or calculated 1ab values were not adopted. 

ln Ising model spin networks , when the number of spin sites are increased , the 

number of spin states and local minima of energies are exponentially increased. Thus , 

efficient optimization methods are indispensable to solve these problems. Simulated annealing 

methods [79-82] and neural network calculations [7] are well-known heuristics methods , 

however , they sometimes provide local minima for large systems. On the other hand , GA's 

are frequently able to escape local minima, and they are one of the fittest methods for thesc 

purposes. 

ln Part 1 of this thesis , intermolecular magnetic interactions were treated by using of 

ab initio and semiempirical MO  methods. ln the following chapters 、 the author mentlOn 

GA's for the purpose of investigation of magnetic behavior of spin networks connected by 

magnetic interactions calculated by ab initio and semiemp叝ical MO methods ・

1.2 Outlines of procedures 

GA's irnitate the biological evolution process [40]. A population has many individuals , 

and 'fitter' individuals for environments survive from cuπent generation to next generatJOn 10 

higher probability. That is called "selection" or "reproduction". When a generation change , 

individuals in a next generation is formed by "crossover" and "mutation" operator. ln Fig. 1. 

1, flow chart of GA's 紅e shown. 

To c訂巧r out GA's , it is necessary that solutions of problems code to chromosomes 

(" coding") ・ 1n biological creatures, an individual frequently have some chromosomes. On 

the other hand, in GA's , an individual mostly have only one chromosome to describe it 

property. A chromosome contains many genes which are described any symbol. "1" and "0川
are frequently used for this purpose, though genes are sometimes expressed by real number 

or any other symbols. The location of a gene is called "locus". The chromosomes in GA' 

訂e shown in Fig. 1.2. 

The procedures of GA's 訂e mentioned as follows. 

At first , a population of first generation are made. The individuals in it are mostly 

produced random1y. 

1n the selection phase, fitness of a11 individuals 紅e given by using of fitness functions ・

Fitter individuals survive with higher probability , as shown in Fig. 1. 3. This resemble 

natural selection called 、urvival of the fittest". Scaling procedures are occasionally desirable 

before selectioo. 

10 crossover phase , two individuals are selected as parents. These two individuals 
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breed two children by following procedures: the chromosomes of parents are divided into two 

or many p紅白 at the same points. The chromosomes of children are formed by complement訂y

subsets of parental chromosomes , as shown in Fig. 1. 4. These ch匀dren take the place of 

their parents. 

The mutation operator is very simple. Some individuals are rando凶y selected. 1n 

these individuals , some loci are also randomly selected, and genes of these loci change in 

certain probabilities , as shown in Fig. 1. 5. These probabilities are almost fixed values, but 

sometimes they are defined to mutation functions. 

These three operator, "selection" , "crossover" and "mutation" are very important 

procedures in GA's. A selection is indispensable to optimization, and a mutation is key 

operator for keeping variety of individuals. A crossover operator is characteristic procedure 

of GA's. Because children inherit properties from both of parents , GA's are able to give 

reasonable solutions in early generation. 

1. 3 Details of following chapters in part II 

To the purpose of studies of Ising model spin networks by using GA's , the author 

carried out from the fundamental studies to the applications to real materials for these GA's. 

The contents of each chapter in this p訂t is as follows. 

1n this chapter, basic informations of GA's were described. It was mentioned that 

GA's are robust for widely environments. 

1n the chapter 2, procedures of GA's for Ising model spin networks are illustrated. 

Pure G A methods 訂e described, and p訂ticular operations for Ising problems are proposed. 

1n the chapter 3, theoretical background of GA's are described. Some terms are 

defined , and schema theorem and building block hypothesis 訂e mainly illustrated. 

1n the chapter 4, pure GA calculations are carried out for Ising spin clusters. The 

behaviors of several operators are investigated. These calculations are preparations of following 

studies ・

1n the chapter 5, hybrid GA's for 1sing model are developed. These methods are able 

to give the ground state of spin clusters. 

In the chapter 6, thermodynamical calculations are c紅ried out by using GA's. Particular 

operators 紅e introduced, and the comparison with classical Metropolis's methods is conducted. 

10 the chapter 7, GA's are adopted to real compounds. The magnetic behavior of Mnl2 

cluster are investigated by using interactions assumed from experimental results. The 

intermolecular magnetic interactions of α.-HQNN obtained in part 1 are used , and magnetic 

behaviors of α.-HQNN clusters are a1so calculated. 

Finally , summary of p紅t II is mentioned in the chapter 8. 
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Coding 

Generate N individuals (population of first generation) 

Calculate fitness function for each individual 

Selection ("survival of the fittest") 

Cross over (produce children) 

mutatlOn 

A change of generation 

output 

Figure 1. 1 Flow chart of GA's for Ising model spin networks. 

C訂B

~少

~ 

gene (in second locus) 

Figure 1. 2 Some individuals 紅e included in a population, and individuals 訂e described 

by chromosomes. In this figure , chromosomes 紅e expressed by bitstrings. A 

chromosome have some genes. 1n this figure , one bit of bitstring means one 

gene. The location of a gene is called "locus". 

current generatlon 

1100010 
(10) 

1111101 
(4) 

1101000 
(6) 

selection 

next generatlon 

1100010 
(10) 1011011 

(12) 

1011011 
(12) 

1100010 
(10) 

1001111 
(8) 

Figure 1. 3 lndividuals which have larger fitness remain and increase in larger probability. 

They replace individuals which have smaller fitness. 
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Chapter 2 

Figure 1. 4 Two children are bred from two parents in crossover phase. One point crossover 

is shown in this f�ure. Children are formed by the exchange of the right parts 

of crossover po�ts in both p紅ents .
Details of Genetic Operators for Ising Model 

• mutatlon 2. 1 Introduction 

Figure 1. 5 In mutation phase, randoITﾙY selected genes change. When the chromosome 

訂e expressed by bitstring, the genes "1" are changed to "0", and νice verSQ. 

Though GA's are able to adopt various problems , it is necessary that parameters and 

operators of GA's are set up for each problem. An optimization for Ising model cluster is 

standard optirnization problem. Some characteristic steps and parameters 訂e introduced to 

GA's. ln 出is chapter, p紅ameters and operators of GA's for Ising model are provided. 

ln the following section 2. 2, magnetic prope口ies of Ising model 訂e described. The 

magnetizations and susceptibilities of Ising model clusters can be calculated by the use of 

pin states. Ising spin glass is also mentioned in this section. The characteristics of spin 

glass clusters are "frustration" and "randomness". Because of them, it is difficult to search 

for the ground state of spin glass. 

In the section 2. 3, a coding procedure is provided. Genotypes of Ising model spin 

networks are coded from phenotype of spin states. Two alleles "1" and "0" are used in 

chromosomes, and characteristic descriptions are adopted to Ising model. 

In the section 2. 4, fitness functions and selection operators are provided. These 

functions and operators are impo口ant for selecting superior individuals. Fitness functions 訂e

obtained from Heisenberg Hamiltonian. For selection operators, roulette rule, which is one 

of stochastic procedures, is mainly mentioned in trus section. The elitist preserving selection 

is also descr兊ed. By using this selection, fittest individuals can always survive. 

In the sections 2. 5 加d 2. 6, crossover and mutation procedures for Ising model are 

proposed. These 訂e similar to simple GA, except for using multi-points crossover operators. 

A mutation depending on energies of spin states 訂e also proposed. This mutation is important 
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for thermodynaITﾚcal calculations discussed in chapter 6. 

Finally, in the section 2. 7, other p訂ameters and operators are described. The author 

mentions population sizes of GA's and a conditions for finish the program, etc. 

2. 2 Magnetic properties of Ising model 

Ising model is very useful to study magnetism. 1n this model , there 訂e spm sltes on 

the fixed lattice points , and interactions exist between two spin sites. Spin sites have two 

states; up-spin and down-spin. 

1sing Hamiltonian is expressed as 

H= ーヱ Ji/iSj (2. 1) 

where Jij is the magnet� interaction and :tl/2 is adopted for Si and sJ・+112 and -112 expresse 

up-spin and down-spin，日spectively. The positive ゐ means ferromagnetic interaction, and 

the negative one means antiferromagnetic interaction , same as Jab mentioned in part 1 

A ferromagnet and an antiferromagnet are illustrated in Fig. 2. 1. 1n ferromagnets , all 

interactions between two spin sites are fe汀omagnetic ， and in antiferromagnets a11 interaction 

are antiferromagnetic. A model of clusters which include randomly located ferromagnetic 

interactions and antiferromagnetic interactions are shown in Fig. 2. 2. Therc are no state 

which can satisfy a11 interactions in this cluster. This is known as "frustration" , and the 

cluster which has frustration and randomness is known as "spin glass". The energy does not 

change when up-spins replace to down-spins and down-spins replace up-spins in * marked 4 

spins of this cluster. Thus, because various spin states have same or almost same energies for 

the spin glass clusters, the search for the ground state is the veηdifficult problem. 

1n 1sing model , the locations of spin sites 訂e fixed , only spin states change. 1n thi 

model , magnetization M is calculated as follows: 

M=京区(Si) (2.2) 

where, N is the number of spin sites. 

On the other hand, the susceptibility χin equilibrium states is calculated using the 

average of squ訂ed magnetizations and the squared average of magnetizations: 

x=jTエ((いj)-(ξ )(S;)) (2.3) 
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where , T means the temperature. 

2. 3 Coding for Ising model 

A coding procedure is first step of GA's. Spin states of Ising spin clusters are 

transformed into chromosomes made from genes. Using these chromosomes, genetic operators 

proposed in following sections can operate. 

1n general , various symbols 訂e used for genes. For example, in biological creatures, 

physical characteristics can be described from four symbols , G, C, A and T. In GA's , "1" and 

"0" are frequently used for genes , and chromosomes are expressed by binary bitstrings. 1n 

GA's , except for "1" and "0川， genes are occasionally described by real numbers, structural 

formulas of molecules, etc. 

For 1sing model spin networks , binary bitstrings are used. Descriptions for Ising 

clusters are simple. Spin sites of the network are numbered randomly. According to these 

numbers , "1" and "0" are aπanged in bitstrings to generate chromosomes; up-spins are 

described by "1 川， and down-spins 訂e "0" , shown in Fig 2. 3. 

Because S=I/2 Ising model 紅e treated , the energy does not change by replacing 

up-spins with down-spins. For example , the chromosome '1 0 0 1 ・ express the same state as 

'0 1 1 0' , as shown in Fig 2. 4. 1n this thesis , the first gene of chromosomes is constant "1" 

unless there 紅e particular descriptions (in the above example, '1 0 0 l' 訂e adopted) . 

2. 4 Fitness function and selection 

2. 4. 1 Fitness function 

1n GA's , fitness for a11 individuals 訂e given by fitness functions. The fitness is the 

degree of tendencies of survivals in environment. 1n GA's , it expresses the validity of 

solutions for given problems. 

The fitness for 1sing model spin networks is in proportion to energies calculated by 

lsing model Hamiltonian in eq. (2. 1). 1n this thesis , the fitness of an individual x is defined 

by following equation: 

f(x) = ヱJustSj (2.4) 

where, Jυis magnetic interactions calculated by ab initio or semiempirical MO  methods. Si = 

1/2 (up-spin) when the gene is 1, Si = -1/2 (down spin) when the gene is O. 

Eq. (2. 4) means that the individuals which have larger fitness are more suitable for 
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this problem, it is different from energies mentioned in eq. (2. 1), in which smaller values 

mean more stable states, because fitness is related in a probability of survival of an indiv�ual. 

2. 4. 2 Scaling 

Fitness calculated by eq. (2.4) is sometimes unsuitable for selection operators because 

of too large or too small values. When the spin state is not the global minimum, fitness 

frequently becomes negative value. To improve the fitness , the scaling is indispensable 

procedure before selection phase. For 1sing model, two types of scaling are adopted in thi 

thesis. 

One of them is a linear scaling , shown in eq. (2. 5) and Fig 2. 5. 

g(x)=a.f(x)+b (2.5) 

where a and b are real const組t ， f(x) is the fitness of an individual x obtained by eq. (2.4) 

before scaling, and g( x) is the scaled fitness of x. The gradient and the segment of eq. (2. 5) 

訂e determined to be convenient for each problem. 

Another type of scaling is the exponential scaling: 

g(x) = e゚f(x) (2.6) 

where f(x) and g(x) are similar to linear scaling. This scaling is base on Boltzmann 

distribution , negative fitness can change to positive by this scaling. 

2. 4. 3 Roulette rule 

After fitness is obtained for a11 individuals in a cu町ent generation, "survival of the 

fittest" is carried out. 1n this procedure, �dividuals survive or disappear according to fitness ・

Roulette rule is frequently used for this purpose [40]. The probability of survival for individual 

Xi is calculated by: 

p-l色L
i - N 

ヱf(xi )
(2.7) 

where Pi is the probability of survival for �dividual xi' N is the number of individuals in a 

population (abbreviated to "population size"). 1n Fig. 2. 6, roulette rule is illustrated. N 

individuals are selected by N times trial of roulette. 1n this thesis , roulette rule is only 

adopted as stochastic selection operator using fitness. 

2. 4. 4 Elitist preserving selection 

The global minima occasionally perish after many generation changes by roulette 

rule. To avoid this extinction, elitist preserving selection is frequently used together with 

other se]ection operators [83]. 

1n this selection, one or some fittest individuals in a current generation unconditionally 

urvive to next generation without crossover, mutation and any other operations. This selection 

have to be adopted carefully , because GA's possibly fall into local minima. 

2. 5 Crossover 

As mentioned above , crossover operators play the most important roles in GA's. By 

these operators , GA's are able to search various spin states , efficiently. 

Crossover is carried out after roulette rule selection. Two individuals are randomly 

selected as parents , and chromosomes of these parents are divided into two or many parts at 

one or many points with a probability of crossover (abbreviated to Pc)' These points are 

called "crossover points" , and number of them is expressed as CP. Children are fo口ned by 

alternate construction of divided parts of parents, see in Fig. 2. 7. These children take the 

place of their parents in the certain proportion. This proportion is called "generation gap" 

abbreviated as G. In this thesis , G=l is fixed , it is known as "discrete generation model". 

2. 5. 1 One-point and multi-points crossover 

The one-point crossover is the most simple rule of crossover operators. A crossover 

point is randomly selected in the same point of two p紅ental chromosomes , and chromosomes 

of parents 紅e divided into left and right p紅白. Children are bred by an exchange of the right 

parts between parents, see in Fig. 2. 7 (a). 

By the one-point crossover, first gene always belong to left p訂t， and last gene is 

always in right part, as shown in Fig. 2. 7 (a). Because the generated child chromosomes 

strongly depend on 紅Tangement of genes by one-point crossover, it is possibly unsuitable for 

optnllizatlOn. 

Multi-points crossovers operate same way of the one-point crossover. Crossover 

points , which are CP in number, are randomly selected , and parental chromosomes are 

divided into CP+ 1 parts. To form children , these parts of one parent and the other are 

alternately connected, as shown in Fig. 2. 7 (b). Uniform crossover is one of the multi-points 

crossover. For uniform crossover, CP is not fixed and arbitrary chosen [84]. 



2.5.2 x crossover 

As mentioned in section 2. 3, there are two genotypes for one spin state in GA's for 

Ising model. According to this property , new type of crossover are proposed. If the only one 

of these chromosomes is in a population, both of two genotypes are adopted in crossover 

phase , so-called 支 crossover.

In crossover phase, when the two p紅ental chromosomes x and y are selected , X and Y 

are divided into two p紅白 x.-x} and Y.-Y2' respectively. 1n all of these parts, replacing "}" 

with "0" (up-spins with down-spins) generates x l' 支2' Y. and Y2' as shown in Fig. 2. 8. 

Children are constructed from both original and replaced p紅白， possible children are following 

eight individuals: 

X.-Y2' X.-Y2' X.-Y2' X.-Y2 

Y.-Xz , y.-x2' YI-Xz' y.-xz 

On the other hand, because x and 支 have same energies , X.-Y2 and 支.-Y2 are also decoded to 

same spin states. Thus , half of eight chromosomes are ornitted, and following four indi vidual 

survlve: 

X]-Y2' X.-Y2 

y] -Xz, Y 1-x2 

N individuals 訂e selected in selection phase t出hough the popu叫la剖仙tiぬon s幻lZおet旬empo町r紅ily in恥lにcr印eaおseι‘、"

Thus, the population size is always maintained. 

2. 6 Mutation 

2. 6. 1 General algorithm of mutation 

Mutation operators 訂e indispensable to GA's for the pu叩ose of keeping varieties of 

individuals. General algorithm of mutation is as follows: the individuals selected with 

probability of mutations (Pm)' and randomly selected genes of the individuals change, see in 

Fig. 1. 5. The genes "1" are mutated to "0" , and "0" to "1". This operation means that 

up-spins are flipped to down-spins, vice νersa. 

2. 6. 2 Mutation depending on energies 

In the general mutation, physical properties of spin states are not considered. Thus , if 

randomly mutation cause the increase of energies of the individual , it become the unfit 
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individual and perishes rapidly in selection phase, and varieties of individuals decrease. To 

avoid this problem, the probability of mutation of each individual is determined by following 

equatlOn: 

P"， 二 eßI'1E

where, 

M =んrrent (x) ーんU/ate(x) 

=0 

(んrren t(x) > んω(X))

(んrr，バ

(2.8) 

(2.9) 

where fcurrenr(X) and fm l山 (X) are the non -scal ed fitness of the indi vidUal x before and after 

mutation , respectively. ﾟ is the constant value related with temperature: 

ß=土
kT 

(2. 10) 

This type of mutation is similar to Metropolis Monte Carlo calculations [85] and simulated 

annealing, and it is illustrated in Fig. 2. 9. 

2. 7 Other parameters and operators 

The principal operators of GA's , selection , crossover and mutation, were provided in 

previous sections. 1n this section, other p訂ameters and operators 訂e described. 

The length of chromosome (expressed as "n ") is determined as the number of spin 

ites. Population size N is the number of individuals in one generation. It grows larger, 

uperior individuals can be obtained. 

Temperature T is used for ﾟ of exponential scaling described in eq. (2. 6) and mutation 

depending on energies mentioned in eq. (2. 10). 

The ending condition of GA's is judged by the number of generations. When the 

calculation reaches for decided number of generations (凡ax)' the program is ended. kmal¥ is 

required to be sufficiently large to give global minima. 
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Figure 2. 4 Chromosome x and its inverse chromosome 支. Both of them have the same 

energies in Ising model. 
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Figure 2. 5 The linear scaling is illustrated. Segments and gradients are deterrnined in 

order to improve the fitness. Scaled fitness are always positive for all individuals ・

Figure 2.7 (a) one-point crossover and (b) multi-points crossover (in this figure , three-points 

crossover). In this figure, "parts of parent 1" and "parts of parent2" breed 

two children. 

individuals fitness probabilitie 

1 1 1 0 1 0 4.0 4/18 

100001 2.0 2/18 

111001 1.0 1/18 

10011 1 6.0 6/18 

110110 5.0 5/18 

噌
B
E
Anu 

n
U
 

唱
E
i

咽
E
A

唱
E
i
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Chapter 3 

Theoretical Background 

3.1 Introduction 

Holland mentioned the theoretical background of GA's [40]. He introduced a concept 

of "schema" ， 加d it plays the most important role for GA's theory. Schemata can be regarded 

as p紅白 of individuals. GA's can not give reasonable solutions for given problems unless 

suitable schemata are piled up. The searches by using GA's are carried out by a lot of 

combination of schemata. Reasonable solutions are only obtained by appropriate explorations 

of schemata. Recently , various GA's have been used, a11 of them are based on the Holland's 

theories. 

In this chapter, theoretical background of GA's are mentioned. The schema theorem 

and the building block hypothesis are mainly described, and validity of GA's for Ising 

problems is discussed. 

In the following section 3. 2, some important terms are introduced. Above all , 

"hamming distance" is indispensable to not only schema, but also improvements of GA's. 

Schemata for binary bitstrings are also provided. 

In the section 3. 3, the number of schemata is discussed. Individuals transform by 

USlllg genetic operators. The changes of individuals go with change of the number of 

schemata. When superior schemata can survived, suitable individuals can grow. The change 

of the number of schemata is expressed by the schema theorem. The implicit para11elism and 

the building block hypothesis are also mentioned in this section. 
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3.2 Terms for schema 

3. 2. 1 Hamming distance 

For the investigation of GA's , differences between two individua1s need to be measured. 

A hamming distance is used for this purpose. 

When two individuals a and b are given by binary bitstrings expressed by eq. (3. 1) , 

α = (anan_I • •• a I ) , b = (ムlん1'" b1) (αi ， bi ε {O， l}) (3. 1) 

the hamming distance d(α， b) is defined by eq. (3. 2). 

d(a ,b) = ヱ lai -bil (3.2) 

When two individuals 訂e different from each other at only one gene , the hamming 

distance between them is only 1. If the difference between two chromosomes is larger, the 

hamming distance also grow larger. It is indispensable that the neighbor (small hamming 

distance) individuals around fittest solution have large fitness , because global mjnima are 

obtained from neighbor individuals. 

In Ising model , large hamming distance does not always mean large difference of two 

individuals. As shown in Fig. 3. 1 (a) , though two individuals have largest hamming distance 

which is equal to length of chromosome n , they describe same spin state. On the other hand, 

shown in Fig. 3. 1 (b) , small hamming distance always mean small difference of two 

individuals , GA's 訂e expected to give reasonable results for Ising model. 

3. 2. 2 Schema of bitstring 

Schemata can be regarded as parts of individuals. Assuming that individuals are the 

sets whose elements are genes , schemata are able to be looked upon as subsets. To make 

schemata, some genes are picked up from a chromosome, p紅tially. The uncared loci are 

described * ("don't care symbol"). For example , all of 1 料0，料*1 ， 1 *00 and 1011 are 

schemata. All of 1000, 1001 , 1100 and 1101 belong to schema 1 キOキ.

In the schema H , the number of loci which do not contain * are called the order of 
schema H , and expressed by o(H). For example, o(H) = 5, when the schema H=** 110* 1 * 1. 

The length from first defined locus to last defined locus is called "defining length" 

and expressed byδ(H). The schemaH defined same as above mentioned , 8(H) = 6. 
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3. 3 The number of schemata 

3. 3. 1 The number of schemata and implicit paral1elism 

In GA's whose individuals made by "1" and "0" , the number of schemata have following 

properties. In this section, the length of chromosome is n, and population size is N. 

(1) The number of schemata for one indi vidual is equal to 2n
• 

Because a locus in a schema can be occupied either "*" or the defined gene. 

(2) The number of schemata in a population is at most N2 n
• 

Prope口y (1) leads to prope口Y (2). It is frequently much smaller because of overlap. 

(3) The number of schemata which is made by "0" , "1" and "*" is equal to 3n
• 

Because the number of loci is n, and three symbols 紅e used. 

When individuals are randomly generated (the genes are decided "1" or "0" with the 

ame probability), the expectation value of the number of schemata in a population is expressed 

by eq. (3. 3). 

tnCi 2i (1 一 (1- (川 (3.3) 

The number of schemata whose orders o(H) = i is n C)'. Where , one certain schema H 

whose o(H) = i is considered. It occurs with a probability (1/2)' that a randomly generated 

f 、 N

indi vidual belong to schema H. It happens with a p帥ability (1 -(1/2)') that all of N 

i耐id叫 do not b伽

that at least one individual belong to schema H. When this probability multiplied by n Ci 2' , 

eq. (3. 3) are obtained. 

When the N individuals are treated, less than N2n schemata are also treated in parallel. 

Because o[ this property, not only N individuals but also N2n schemata 紅e able to operate to 

search for global minima in GA's. This property is called "implicit parallelism" [42]. In Fig. 

3. 2, implicit parallelism is illustrated. 
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3.3.2 Evaluation for schemata 

Schemata can be evaluated by similar procedure to fitness for individuals. The 

evaluated value of the schema H in generation k is calculated as fo11ows. 

f(Hl)=-LZf(x) 
IH(k)1 x州k )

(3.4) 

where, f( H , k) is the evaluated value (fitness of the 叫ema) ， IH(k)1 is the number of 

individuals which belong to schema H in generation k. According to eq. (3.4) , f(H， k) し

the average of the fitness of a11 individuals which belong to schema H. The variation of 

schemata by genetic operators depend on this evaluated value. 

3. 3. 3 Schema theorem 

Genetic operators have influences on the number of individuals which belong to one 

certain schema. The number of them increases or decreases according to the evaluated value 

of the schema. 

(i) selection 

In this thesis , the roulette rule are adopted as selection operators. m( H , k) is defined 

the number of individualS which belong to schema H in generation k. The evaluated value of 

H is described by f(H ,k) , and the average of fitness for all individuals in a population i 

J(k). After operating roulette rule selection, the expectation value of the number of survival 

individuals which belong to schema H is equal to eq. (3.5): 

m刈(H，えk+什1)μse凶帥附向…el昨巾ωl伝k加ec叩CI

(ii) crossover 

fパ(H， kめ) 

f(伏例k刈) 
(3.5) 

In one-point crossover, an individual which belongs to schema H is broken with 

probability pc8(H)/(n -1). On the other hand, the new individuals belong to schema H 

might be generated by crossover. And when the both of two parents belong to schema H , 

m( H , k+ 1) does not decrease because both of two children also belong to schema H. Considering 

these conditions, the number of individuals belong to schema H is described as follows: 
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(1-Pc8巴1m(H,k + l) crossover 三 11- f'~_v\'1" J I x m(H,k + lteleclion 
¥ n -1 J 

(3.6) 

In the same way , by CP-points crossover, 

( .. CrD -_ . '" ,, ' C,," � 
m(H,k + l) crossover 三 /1-Pc ~ CP nープ( H ) 臼 / x m(H,k + l)seleclion (3.6)' 

¥ n-l "-"CP ) 

(iii) mutation 

An individual belongs ωs山maH after mutation wi川帥ability (1-Pmr(H). Because 

the probability of mutation 仇) is enough small , (1-Pmr(H) is able to be approxima凶 to

1-Pmo(H). Similarly to crossover, because m(H, k+l) possibly increぉe by mutation operators, 

the probability is mentioned as follows: 

p(H,k + ltuωIlOn 三 1-Pmo(H) (3.7) 

According to these equations , the following theorem is introduced by one-point crossover 

[40] , 

f(H ,k) ( 1-Pc8(H) _ D ()( H) � m(H,k + 1) ~ m(H， k)一「一|一一一一一 Pmo(H) I 
f(k) ¥- n-l rm-'--) 

and CP-points crossover [86]: 

(3.8) 

m(H,k + 1) ~ m(H， k)型'~)(I-p ん -nー 1 -8(H) ('cp _ Pmo(H) � (3. 8)' 
f(k) ~- rc n-1CCP rm-'--'j 

This theorem is known as "schema theorem". The number of individuals which belong to 

schema H in next generation is calculated by this theorem, however, it is not easy to use for 

eJucidation of GA's because calcuJation of f(k) is generally difficult. 

3. 3. 4 Building block hypothesis 

According to schema theorem, the mechanism of generating superior individuals by 

GA's is introduced as a following hypothesis: 
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building block hypothesis 

In GA's , optimized individuals are generated by the schemata mentioned after: x=111010 支 =000101

(1) The defining lengths are short. 

(2) The evaluated values are large. 
⑥ 咋叩六11ご;二二汗'ì;一{'i'
⑥主655伊，{<<"< ④

Hamming distance between these two chromosomes is equal to 6 (= n : length of 

( r,e ;j ⑨ 
>:

⑨ ; ⑨イ ⑥
To this hypothesis , it is found that the following mentioned coding is indispensable. 

(1) The individuals which have similar phenotypes also have similar genotypes. 

(2) Each locus do not have large interference. 

chromosome). 

(a) 

For Ising model, this hypothesis can be satisfied. As mentioned in section 3. 2. 1, 

when two chromosomes have small hamming distance, they are always have a small difference. 

And, because the locus number is defined randomJy, the interference of loci is enough small 

that GA's can operate well. Building block hypothesis in Ising model is shown in Fig. 3. 3. 

x=111010 y=111000 

⑨ 
⑥ 

⑨ f ⑨ 
⑨ 

Hamming distance between these two chromosomes is equal to 1, and there is only 

one different spin between these two spin states. 

(b) 

Figure 3. 1 Hamming distances for Ising model. (a) largest hamming distance n means 

same spin state. (b) smaller hamming distance (< n12) always means more 

similar spin states. 
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Figure 3. 2 Implicit parallelism is illustrated. When an individual change, at most 2n 

schemata (in this figure , 8 schemata) 紅e treated. 
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Figure 3. 3 Building block hypothesis for 1sing model. The fittest spin state is obtained 

by combination of small spin clusters. 
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Chapter 4 

Pure Genetic Algorithms for Searches for 

Global Minima of Ising Model Spin Clusters 

4. 1 lntroduction 

Recently , searches for the global minima of 2D or 3D lattice Ising models which 

contain fixed 土， values by using of GA's were carried out [9-12]. On the other hand, there 

were no studies on GA's with calculated J values. 1n this chapter, the author discusses GA's 

with the random located spins and J values calculated by ab initio MO methods. The 

hydrogen atoms clusters are treated , and the interactions between two sites are ca1culated by 

UHF/4-31G method. Only pure GA's are discussed in this chapter, however, many 

improvements of GA's are proposed. 

1n the following section 4. 2, simple genetic algorithm (S-GA) is mentioned. This is 

the simplest method, and all aJgorithms 紅e based on it. The results of calculations of S-GA 

町ecomp訂ed with results of random search. Two types of coding 紅e adopted for S-GA. 

1n the section 4. 3, elitist preserving selection and two scalings are carried out. Elitist 

preserving selection is not stochastic procedure, therefore, it has some advantages and 

disadvantages. On the other hand, scaling of fitness functions are a1so discussed. Linear 

caling and exponential scaling 訂e adopted, and the roles of some p紅白neters 紅e discussed. 

1n the section 4. 4, the improvements of crossover are carried out. The ro1es of two 

parameters are investigated, and particular crossover operator of 1sing model is adopted. 

Crossover is a characteristic procedure of GA's, and validity of GA's depend on the approach 

of crossover. 1mprovements of this operator are expected to play important roles of GA's. 

1n section 4. 5, mutation which depends on energies is provided. This type of mutation 

plays an important role in foJ1owing chapter 5 and 6. The procedures and resuJts of searches 
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for global minima by this mutation are i11ustrated in this section. 

ln section 4. 6, the other operators and p訂ameters are considered. ln GA's , though 

selection, crossover and mutation are principal operators , better solutions can be obtained by 

the improvements of other operator, occasionally. ln this section, it is adopted that randomJy 

generated individuals replace natural individuaJs. On the other hand , dependence of validity 

of solutions on the number of spin sites is investigated. The number of spin states exponcntially 

increase with growth of the number of spin sites. The behavior of GA's for this problem is 

discussed. 

Sumrnery of this chapter is described in section 4. 7. 

4. 2 Two types of simple genetic algorithms 

4.2. 1 Simple genetic algorithm 

Simple genetic algorithm (S-GA) contains on]y basic genetic operators. Chromosome 

紅e expressed by bitstring constructed by "0" and "1". Roulette rule is adopted , one-po匤t 

crossover and normaJ mutation 紅e used. Any other genetic operators are not used in S-GA. 

S-GA are carried out for 15 sites spin networks (n= 15) and 19 sites networks (n= 19). 

There 紅e 215 (15 sites) and i9 (19 sites) spin states in these systems, the energy of each spin 

state can be calculated in the bounds of computers. To comp紅e these energies, a11 of 2
15 
or 

219 spin states can be given the ranking of stability , each other. Because the chromosome of 

S-GA can decode to spin state, aJl chromosomes can be given the ranking in a11 possible spin 

states. The validity of GA's is defined as ranking of the best chromosome. 100 types of 

clusters are calculated, and the average of vaJidities is obtained. When networks conta匤 at 

most 20 spin sites , this evaluational approach can be adopted the other types of GA's. 

ln this section, the linear scaJing is adopted , and a=1 in eq. (2. 5). The segment of thi 

function is defined from the smallest fitness in the population. ln this scaling, m匇mum 

scaled fitness is equal to 0, see Fig. 4. 1. 

ln S-GA, CP=l is defined. ln this calculation, Pc =0.5 , Pm二0.01 and N=100 are 

adopted. The number of generation is 200 and 300 for 15-and 19-sites clusters, respectively. 

4. 2. 2 Fixed and non-ftxed fust locus 

ln Ising model , the energy does not change by replacing up-spins with down-spins , a 

shown in Fig. 2. 4. Thus, "1" can be adopted in first loci of chromosomes, constantly. With 

this procedure, the number of spin states become 214 (15 sites) and 218 (19 sites) , calculationaJ 

time become shorter. 

Though calculations become easy by fixed first locus procedure, varieties of schemata 

decrease. To escape this problem, other type of S-GA, in which 0 is also adopted in the first 

loci of chromosomes, is also considered. These two types of S-GA's are carried out for 15 

and 19 sites spin networks. ln non-fixed first locus calculation, the stabilities 訂e probably 

twice as large as those of S-GA with fixed first locus , and they are reevaluated by the same 

procedures of fixed first locus algorithm. 

4. 2. 3 Results and discussions 

The stabilities, convergent generations and probabilities to reach the global minima 

given by S-GA's 紅e shown in Table 4. 1 and 4.2. For search of 15 sites spin networks , both 

of S-GA's are not more suitable than random search. However, for 19 sites networks , the 

probability to reach the global minima by GA's is as large as that of random search. lt 

suggests that GA's are expected to be rnore suitable for larger networks. 

The results of S-GA with the non-fixed first locus shown in Table 4. 2 紅e better than 

those of fixed S-GA for both of 15 sites and 19 sites networks. The difference between the 

results of two S-GA's for 19 sites is smaller than that for 15 sites. The fixed S-GA is 

expected to work as well as non-fixed S-GA when the cluster size is enough large. Because 

the calculational time of non-fixed S-GA is much 1訂ger than fixed S-GA, fixed one is used in 

the following sections in this chapter. 

Though S-GA is the most simple of all GA's, it can be used as well as random se訂ch.

For the purpose to obtain better solutions, improvements of operators and p紅ameters 訂e

necessary to GA's. 

4. 3 Several selections 

4. 3. 1 Elitist preserving selection 

Elitist preserving selection is used with S-GA. In this method, when the fittest 

individual does not survive, it replaces the unfit individual in next generation. Thus , by this 

selection, the fittest individual always survives. Parameters 紅e the same as S-GA in section 

4.2.2. 

4. 3. 2 Several scalings 

For the scaJing methods, linear scaJing and exponential scaJing are used. The segments 

of linear scaling change with the fixed gradient a=l , shown in Fig. 4. 2. Pc' Pm' N and n are 

the same as those of S-GA. On the other hand, ~ax is over 1000, and CP=8 is adopted. 

CP=1 is too smaJl to obtain suitable individuals , it is discussed in following section 4. 5. 

With exponential scaling , 15 sites and 19 sites networks 紅e calculated. 日 of eq. (2. 6) is 

defined as 1fT, and 1.0 x 10・5K to 1.0 xl05K are adopted as T. CP=8 for 15-spin networks 

and CP= 10 for 19-spin networks are used. 



4.3.3 Results and discussions 

elitist preserving selection 

The stabilities , convergent generations and probabilities to reach the global minima 

for adding the elitist preserving selection 紅e shown in Table 4. 3 and Fig. 4. 3. S-GA with 

elitist preserving selection give much better solutions than S-GA, because the fit schemata 

remain by elitist preserving procedure. S-GA converges faster 出an S-GA with elitist preserving, 

because S-GA falls into local minima in early generation. When two GA's give same 

solution, the behavior of each algori出m is shown in Fig. 4. 3. According to Fig. 4. 3, the 

stabilities calculated by S-GA with elitist preserving selection monotonically decrcase, and 

the global rninima 訂e obtained more efficiently than S-GA. 

1t suggest that elitist preserving selection is valid to the pu叩ose of search the global 

rrumma. 

linear scaling 

The dependence of stabilities , convergent generations and probabilities to reach the 

global rninima on segments of linear scaling is shown in Table 4. 4 and Fig. 4. 4. Stabilitie 

and probabilities toto reach reach the global rninima do not depend on segments. On the 

other hand, convergent generations increase when the segments become larger, because the 

di汀erence 紅nong fitness of individuals 訂e decrease when segments grow larger. 

exponential scaling 

In Table 4. 5 and Fig. 4. 5 and Fig. 4. 6, the dependence of stabilities , convergent 

generations and probabilities to reach the global rninima on temperature of exponential scaling 

is shown. Higher temperatures give more stable states and larger probabilities to reach the 

global rninima. On the other hand , GA's converge too early to give global rninima in low 

temperature. 

By this scaling , the difference of fitness between fit and unfit individuals are 

overestimated. When temperature become higher, the overestimation become smaller, and 

GA's with exponential scaling give more reasonable results than those with linear scaling. 

On the other hand, GA's are sirnilar to random search in too high temperatures, because the 

differences of fitness among all individuals become too small to use roulette rule. 

4. 4 Several crossovers 

Mentioned in section 4. 2, S-GA is almost not suitable for Ising model. Selection 

operators were improved in previous sections 4. 3, however, the validity is not sufficiently 

better than those of random search. Thus , it is necessary that crossover and mutation operators 

訂e improved. 

There are two main parameters for crossover operators. One is the number of crossover 

points (expressed by CP), the other is the probability of crossover (expressed by Pc)' 1n this 

section , two parameters change, and new crossover operator is introduced. 

4. 4. 1 Methods and procedures 

(A) Investigations of role of the number of crossover points 

At first , the roles of the number of crossover points 紅e investigated. The number of 

crossover points is 1 in S-GA. 1n this section, CP=1 to 12 and uniform crossover are adopted 

for 15-spin clusters, and CP= 1 to 16 and uniform crossover are adopted for 19 sites networks. 

The other parameters are equal to S-GA with using the elitist preserving selection mentioned 

in section 4. 3. 1. 

(B) Investigations of the role of the probability of crossover 

1n GA's of this thesis , the Pc is important because it also plays a role of generation 

gap. Thus, the discussion of behaviors of Pc is indispensable, and Pc=O.1 to 1.0 are adopted. 

CP=8 (for 15-spin clusters) and CP=10 (for 19-spin clusters) 訂e used in these algorithms. 

Other p紅ameters are defined as the same as (A). 

(C) 王 crossover

1n (A) and (B) , the improvements of parameters 紅e carried out. 1n the next step, the 

new operator is adopted to obtain much more reasonable results. 1t is 支 crossover， proposed 

in section 2. 5. 2. By this crossover, both x and 支紅e considered. It is expected that better 

solutions 訂e given, because more types of schemata 訂e considered. The 支 crossover strengthen 

the "implicit p紅allelism" .

In these calculations, CP=8, Pc=0.5 and kmax=200 and 1000 (for 15-spins), and CP=10, 
Pc=0.5, ~ax=2∞， 3∞， 1000, 1500 and 2∞o (for 19叩ins) 訂e adopted. Other parameters are 

defined same values as S-GA. 

4.4.2 Results and discussions 

(A) Investigations of role of the number of crossover points 

The dependence of stabilities, convergent generations and probabilities to reach the 

global minima on CP is shown in Table 4. 6, Fig. 4. 7 and Fig. 4. 8. Stabilities, convergent 

generations 印d probabilities to reach the global minima 紅e not different 仕omseveral numbers 

of crossover points without CP= 1 and 2 in 15 sites spin networks. 1t suggests that any 

number of crossover points can be adopted except for very small numbers. For 19 sites 

clusters, results do not depend on the numbers of crossover points with all CP. 

(B) Investigations of role of the effects of the probability of crossover 

The dependence of stabilities , convergent generations and probabilities to reach the 

global minima on Pc is given in Table 4. 7, Fig. 4. 9 and Fig. 4. 10. For 15-spin clusters, 



more stable soJutions are obtained in more early generations by larger Pc' and the global 

minima 訂e more probably obtained. The results indicate that higher probabi1ity gives better 

solutions , more rapidly. For 19-spin clusters , though the higher Pc gives better solut�ns 

similar to IS-spins, the result 紅e saturated around Pc=0.5. 

(C) 支 crossover

The stabilities , convergent generations and probabilities to reach the global minima 

for adding 支 crossover are shown in Table 4. 8, Table 4. 9 and Fig. 4. 11. Though 支
crossover requires more generations than S-GA, it can give the better solutions for both 15 

and 19 sites network. It works as well as random search for 15 sites , and it works much 

better than random search for 19 sites. 1t is expected to work better for larger systems ・

Because 支 crossover preserves the v訂iety of a schemata, the "bottleneck problem" are 

avoided. For example, even though all individuals become having same chromosome x., new 

type of children can be generated because 支 is also considered, see in Fig. 4. 12. According 

to Table 4. 9 and Fig. 4. 11 , GA's 紅e able to search new solutions, endlessly. It suggests that 

more generations can give better solutions. 

4. 5 恥1utation depending on energies 

4.5. 1 Methods and procedures 

In previous sections 4. 4 , the improvements of crossover operators were treated. The 

validity of GA's turns better than that of S-GA, however, not much better than that of random 

search. 1n this section, mutation operators 訂e improved. 

This improved mutation depends on energy values described in eq. (2. 8), (2. 9) and 

(2. 10), and it is sirnilar to Metropolis method. 1n a standard mutation , individuals are 

selected according to Pm' and only one randornly selected locus is mutated. On the other 

hand , all individuals and allloci are possibly considered in this mutation. At first , one locu 

訂e randornly selected. Llli is calculated, and mutation is adopted with the probability calculated 

by eq. (2. 8) ・ In each individual , n trials are carried out, nN mutations are tried in one 

generatlOn. 

Parameters are defined same as S-GA, except for Pm' T = 1.0 X 10.
5 
K to 1.0 x 1ぴ K

is adopted in eq. (2. 10) ・ Elitist preserving selection is not used , because global minima are 

expected to be obtained in very early generations by this algorithm. 10 types of 100-spin 

cJusters are also calculated, CP=50 is adopted for these clusters. 

4.5.2 Results and discussions 

The dependence of stabilities , convergent generations and probabilities to reach the 

global minima on temperaωre of this mutation is shown in Table 4. 10. In this mutation, the 
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probabilities of mutation (Pm) are larger th加 that of standard mutation, whose Pm = 0.01. It 

gives much better results than other pure GA's because of high Pm' M加y spin states resembled 

with one state can be searched by this mutation. This type of improvement is also discussed 

in following chapter 5. 

For 100 sites , too high and too low temperature give worse solutions than the other 

temperatures. Temperature become higher, the more mutations are carried out. When 

temperature become lower, less mutations are done. The results suggests that too much or 

too little mutations 訂e not desirable. 

4.6 Other parameters 

4.6. 1 Replacement by the random1y generated individuals 

methods and procedures 

In GA's , though v紅白ty of individuals is preserved in the e征ly generations, all individuals 

become having similar schemata in the late generations. This is similar to "bottleneck 

problem" of the theory of the evolution. To escape this "bottleneck problem" , individuals 紅e

replaced by randornly generated individuals in late generations. It is expected that this type 

of GA's can endlessly search new solutions similar to 支 crossover. The algorithm of it is 

follows: when the fittest individuals are not change for 20 generationsヲ 10% of fitter individuals 

remain, and 90% of individuals are replaced by randomly generated individuals. The other 

procedures are sむne as S-GA with elitist preserving selection. 

results and discussions 

The stabilities, convergent generations and probabilities to reach the global minima 

for adding the replacement are shown in Table 4. 11. GA's with this replacement are much 

more suitable for search for global minima than S-GA, and give better solutions 出an random 

e紅ch. GA's 紅e generally suitable for larger systems, this type of GA's 訂e also suitable for 

small clusters, i. e. 15 sites. 

4. 6. 2 Investigations of roles of the number of spin sites 

methods and procedures 

The complexity of calculations increases the order of 2n in direct method of search for 

global minima of Ising model spin networks. In this section, effects of the number of spin 

sites are discussed by using S-GA with elitist preserving selection. 

results and discussions 

The dependence of stabilities, convergent generations and probabilities to reach the 

global minima on the number of spin sites is shown in Table 4. 12 and Fig. 4. 13. The 
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stabilities exponentia11y increase when the number of spin sites increase. However, convergent 

generations linearly increase and probabilities to reach the global minima also linearly decrease. 

Thus, GA's are expected to give reasonable solutions for large systems. 

4. 7 Conclusion 

In this study , it was found that some of the pure GA's are able to give reasonable 

results for search for global minima of Ising model spin networks. Though S-GA is not 

suitable for this problem, GA's c加 be easily improved by changes of operators and p紅白neters.

These improvements can be divided into three classes. 

The first is the improvements for preserving varieties of individuals. The exponential 

scaling in high tempera回re ， an increase in the number of crossover points, an increase in the 

probability of crossover，支 crossover and the replacement by the random1y generated individua1 

are classed in this category. The variety of individua1s is very important for GA's. When the 

variety becomes narrow , a11 individuals rapidly become having same chromosomes. These 

improvements preserve the variety of schemata, and they s仕eng出en the "implicit parallelism". 

Especially ，支 crossover and the replacement by the randomly generated individuals work 

well. These two procedures can keep the variety through the first generation to last generation , 

and they c叩 give the global minima for a11 clusters in enough big generations. 

The second is the tightening up the rule of "survival of the fittest". The exponential 

scaling in low temperature and elitist preserving selection belong to this class. In GA's , it j 

necessary that fitter individuals survive with more probability and breed more children. 

When improvements of this type are adopted , fitter individuals rapidly multiply and they 

become difficult to die. Thus , better solutions 訂e obtained in early generation. On the other 

hand , the variety of individuals tend to become narrow. According to the calculational 

results of the exponential scaling in low temperature , stabilities of solutions are frequently 

worse 出an the ten times of those of high temperature. It sugges白出at though these improvement 

紅e useful to simplify the algorithms, they are unsuitable for highly accurate ca1culations. 

The last is the using together with local search. Mutation depending on energies i 

the improvement of this class. GA can search widely , and improvements of this class can 

locally search in detail. This combination is expected to give reasonable results. The 

improvements of this type play important roles for GA's , and they are discussed in next 

chapter. 

These three types of improvements are expected to derive more reasonable solutions 

when they are used together with each other. 
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Table 4. 1 The stabilities, convergent generations and probabilities to reach the global 

minima calculated by S-GA are illustrated. (100 trials) 

15 

average of stabilities 9.96 

convergent generation 32.65 

probability to reach the global minima 0.24 

(probability in random search) (0.704988)1) 

1) 200 generations 

2) 300 generations 

19 

91.49 

55.03 

0.10 

(0.108136)2) 

Table 4.2 The stabilities, convergent generations and probabilities to reach the global 

min匇a calculated by S-GA with non-fixed first locus. (100 trials) 

average of stabilities 

(converted stabilities) 

convergent generatlOn 

probability to reach the global minima 

(probability in random search) 

1) 200 generations 

2) 300 generations 

15 

11.08 

(6.04) 

28.07 

0.27 

(0.704988)1) 

19 

178.92 

(89.96) 

51.88 

0.09 

(0.108136)2) 

Table 4.3 The stabilities, convergent generations and probabilities to reach the global 

minima ca1culated by S-GA with elitist preserving selection. (100 trials) 

average of stabilities 

convergent generatlOn 

probability to reach the global minima 

(probability in random search) 

15 

5.80 

48.59 

0.43 

(0.704988) 

19 

48.02 

75.17 

0.19 

(0.108136) 

Table 4.4 The dependence of stablities, convergent generations and probabilities to reach 

the global minima on the segment of linear scaling. (300 tria1s) 

scaled minimum fitness stabilities generatlOn probability 

。 4.4667 82.5900 0.4800 

4.4767 86.1900 0.4967 

10 6.0233 137.6233 0.4633 

100 6.1100 171.7767 0.4367 

1000 4.3900 162.0500 0.5233 

10000 4.6033 222.6633 0.4667 
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Table 4.5 The dependence of stabilities, convergent generations and probabilities to reach 

the global minima on temperature of exponential scaling. Table 4.6 The dependence of stabilities, convergent generations and probabilities to reach 

the global minima on CP. 

15 sites: 

temperature/K stabilities generatlOn probability 15 spin sites (average of 400 trials) 

1.0 X 10.5 28.61 21.55 0.19 

1.0 X 10.4 32.87 25.96 0.24 CP stabi1ities generatlOn probability 

1.0 X 10.3 40.98 22.50 0.18 6.0025 48.1575 0.4000 

l.0 X 10.2 26.34 26.98 0.15 2 5.9475 38.6000 0.4325 

l.0 x 10・ l 40.05 27.66 0.20 3 5.2975 41.3300 0.4325 

1.0 29.41 37.85 0.12 4 4.4525 43.1875 0.4325 

1.0 X 101 29.96 36.18 0.16 5 5.3075 40.8200 0.4475 

1.0x 102 19.84 48.73 0.26 6 4.9050 46.0250 0.4575 

1.0 X 103 9.10 43.84 0.37 7 5.4775 37.9150 0.4250 

1.0 X 104 4.72 52.29 0.43 8 5.0400 44.4925 0.5025 

1.0 X 105 3.65 70.97 0.39 9 5.5925 38.8050 0.4725 

1.0 X 106 3.60 79.53 0.60 10 5.2375 46.2775 0.4275 

1.0 X 107 3.73 92.10 0.52 11 4.6150 45.1725 0.4275 

1.0 X 108 3.10 107.09 0.54 12 5.0625 41.2400 0.4250 

1.0 X 109 4.65 100.96 0.43 Uniform 5.3150 50.3650 0.4750 

l.0 X 1010 3.61 82.24 0.53 
] 9 spin sites (average of 100 trials) 

19 sites: 
CP stabilities generatlOn probability 

48.02 75.17 0.19 
temperature/K stabilities generatlon probability 2 48.01 80.79 0.15 

1.0 x 10・5 273.08 42.12 0.08 3 21.84 75.59 0.17 
1.0 X 10-4 372.36 42.19 0.10 4 44.87 73.50 0.19 
1.0 X 10.3 256.65 42.49 0.04 5 47.51 69.36 0.17 
1.0 x 10・2 459.51 43.47 0.04 

6 60.46 64.55 0.18 
1.0 X 10.1 255.67 43.00 0.06 7 26.12 65.69 0.23 

1.0 293.62 47.03 0.06 
8 37.50 64.21 0.18 

1.0 X 101 373.22 53.87 0.04 
9 30.40 68.87 0.16 

1.0 X 102 283.98 75.06 0.06 
10 30.19 77.23 0.22 

1.0 X 103 130.26 97.74 0.10 
11 42.66 46.88 0.19 

1.0 X 104 43.08 84.63 0.10 12 35.94 65.16 0.22 
1.0 X 105 38.94 110.50 0.19 13 55.42 63.26 0.21 
1.0 X 106 21.29 126.79 0.18 14 35.41 72.65 0.16 
1.0 X 107 19.47 136.56 0.18 

15 42.04 67.19 0.24 
1.0 X 108 33.46 144.89 0.26 16 35.04 67.74 0.18 
1.0 X 109 36.92 140.96 0.18 Uniform 27.33 72.11 0.17 
1.0 X 1010 20.57 144.47 0.21 

100 101 



Table 4.7 The dependence of stabilities, convergent generations and probabilities to reach 

the global minima on pc. (100 trials) 

Table 4.8 Comparison with the results of 支 crossover and S-GA. 

15 spin sites (100 trials) 

S-GA 

stabilities generatlOn probability of 

reach the global minima stability 9.96 

9.70 47.43 0.35 convergent generatlOn 32.65 

8.06 40.95 0.40 probability to reach the global minima 0.24 

6.39 45.35 0.39 (probability in random search) (0.704988) 

5.46 40.48 0.41 

4.96 40.25 0.42 19 spin sites (100 trials) 

5.38 35.88 0.47 

4.90 37.31 0.48 S-GA 

4.44 32.65 0.38 

4.39 24.43 0.45 stability 91.49 

4.08 26.50 0.48 convergent generatlOn 55.03 

probability to reach the global minima 0.10 

(probability in random search) (0.108136) 

15 sites: 

probabi1ities of 
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x crossover 
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2.30 

59.94 

0.68 

(0.704988) 

19 sites: 

x crossover 

(九以= 300) 

9.93 

124.70 

0.34 

(0.108136) 

probabilities of stabilities generatl� probability of 

reach the global minima 

53.99 77.73 0.16 

56.49 93.85 0.21 

27.49 83.23 0.19 

30.46 66.32 0.22 

19.99 70.36 0.25 

31.33 68.35 0.20 

25.13 67.14 0.17 

17.68 74.33 0.30 

26.56 57.52 0.20 

19.42 65.96 0.23 19 spin sites (l00 trials) 

crossover Table 4.9 The dependence of stabilities, convergent generations and probabilities to reach 
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max generatlOn 

200 

300 

500 

1000 

1500 

2000 

stabilities 

15.47 

9.93 

9.11 

4.58 

3.89 

2.33 

generatlOll probability 

87.85 0.31 (0.073456) 

124.70 0.34 (0.108136) 

177.33 0.50 (0.173649) 

319.23 0.60 (0.317143) 

425.71 0.68 (0.435721) 

531.89 0.73 (0.533707) 
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Table 4. 10 The dependence of stabilities, convergent generations and probabilities to reach 

the global minima on temperature of the mutation depending on energles. 

15 spin sites (l00 trials) 

kT/K stabilities generatlOn probability 

1.0 x 10・5 1.00 2.09 1.00 

l.0 x 10・4 1.00 2.37 1.00 

1.0 X 10.3 1.00 2.04 1.00 

1.0 X 10-2 1.00 2.27 1.00 

1.0 x 10・ l 1.00 2.17 l.00 

1.0 1.00 2.09 1.00 

1.0 X 101 1.00 2.29 1.00 

1.0 X 102 1.00 2.09 1.00 

1.0 X 103 1.00 2.17 1.00 

1.0 X 104 1.00 2.02 1.00 

1.0 X 105 1.00 2.36 1.00 

19 spin sites (100 trials) 

kT/K stabilities generatlOn probability 

1.0 X 10-5 1.03 4.31 0.97 

1.0 X 10-4 1.03 4.40 0.97 

1.0 X 10-3 1.03 5.32 0.97 

l.0 X 10-2 1.03 4.50 0.97 

1.0 X 10.1 1.06 4.09 0.99 

1.0 1.01 6.49 0.99 

1.0 X 101 1.01 5.08 0.99 

1.0 X 102 1.07 4.24 0.97 

1.0 X 103 1.03 4.81 0.97 

1.0 X 104 1.03 4.34 0.97 

1.0 X 105 l.03 5.13 0.98 

104 

100 sites 

cluster 1 2 3 4 5 6 7 8 9 10 

, 19145. -77840. -35123. -93122. -53566. ー 109617. -84324. -136180. -55238. -63559. 

10δ .464977 .646797 2.012291 3.064633 3.133081 .680619 .972871 .146079 .605005 .955392 

10-4 .437909 .338805 .490387 3.350229 1.084064 .528278 .810394 .565702 2.190759 1.235387 

10-3 .511224 .815508 1.433930 2.932413 1.607760 1.236288 .866622 1.083804 1.738865 1.43] 875 

102.543931 1.527401 2.151353 3.582563 2.067740 1.219559 1.065161 1.708057 1.599230 1.187711 

JOぺ . 647560 1.428357 2.145068 4.035167 3.485444 1.033149 .966737 2.075819 2.296205 1.333507 

1.0 .813544 1.482537 1.586258 4.] 11130 2.790128 .837388 .097609 2.080859 1.636931 1.500009 

101 .334764 1.009497 2.192497 3.340926 2.834002 1.289996 1.055811 1.644722 2.325788 1.010827 

102 
.487025 1.997845 2.616287 2.800214 2.387979 1.137707 .934168 1.551475 1.528797 1.494546 

101 .437909 .338805 .490387 3.350229 1.084064 .528278 .810394 .565702 2.190759 1.235387 

104 
.464977 .646797 2.012291 3.064633 3.133081 .680619 .972871 .146079 .605005 .955392 

105 .780314 .293920 .515926 .935229 .816537 .562803 .385726 1.400052 1.157759 1.347250 

Table 4. 11 The stabilities, convergent generationes and probabilities to reach the global 

minima calculated by GA with replacement by rando凶y generated individuals. 

15 

average of stabilities 1.60 

convergent generation 62.74 

probability to reach the global minima 0.75 

(probability in random search) (0.704988)1) 

1) 200 generations 

2) 300 generations 

19 

7.94 

112.69 

0.41 

(0.108136)2) 

Table 4. 12 The dependence of stabilities, convergent generations 釦d probabilities to reach 

the global minima on the number of spin sites. 

the number of stabilities generatlOn probability 

Splll sltes (random search) 

11 1.65 14.88 0.77 (l.000000) 

12 1.90 20.02 0.67 (0.999943) 

13 2.24 25.67 0.61 (0.992429) 

14 3.65 27.21 0.51 (0.912975) 

15 5.87 37.60 0.43 (0.704988) 

16 7.36 38.17 0.36 (0.456845) 

17 13.68 49.75 0.25 (0.263008) 

18 22.82 68.46 0.29 (0.141517) 

19 48.01 80.79 0.15 (0.073456) 
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g(x) g(x) = a. f(x) -f(xmJn) 
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Figure 4. 1 Scaling adopted in S-GA. A IIﾙnimum fitness before scaling is f(xmij , and 

after scaling g(xmin) is equa1 to O. 
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Figure 4. 3 Stabilities transition by changes of generation compare between S-GA and 

S-GA with elitist preserving selection. 
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the global minima on the segment of linear scaling in 15 sites network. 
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Figure 4. 7 The dependence of stabilities , convergent generations and probabilities of reach 

the global minima on CP in 15 sites network is illustrated. 
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Figure 4. 10 The dependence of stabilities , convergent generations and probabilities of reach 

the global minima on Pc in 19 sites network is illustrated. 
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Figure 4. 12 (a) The p紅ents which have same chromosome generate the children which 

have the same type of chromosome by standard crossover. (b) The new type 

of chromosome (underlined) is generated even if two parents have same 

chromosome. 

Figure 4. 13 The dependence of stabilities, convergent generations and probabilities of reach 

the global minima on the number of spin sites is illustrated. 
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Chapter 5 

Hybrid Genetic Algorithms 

5. 1 Introduction 

As shown in previous chapter 4 , pure GA's are occasionally unsuitable for search for 

global minima. There is a weak point for GA's that they are not good at local search. Thus, 

though GA's can give the many types of metastable states , they are not able to give just 

global minima, occasionaIly. Some pure GA's are suitable for searches for the global 

mlmma, 1. e . 支 crossover in section 2. 5. 2 and 4. 4, GA's with replacement of randomly 

generated individuals in section 4. 6. 1 and GA's for fixed 士JIsing spin glass proposed by P疂 

[8 ], however, they require a lot of generations tiU obtain global minima. Thus , hybrid GA's 

which include local searches 訂e desirable to search for the global minima. 

In geometry optimizations for molecules and polymers, a lot of hybrid GA's have 

been proposed , i. e. , GA's with conjugate-gradient minimization , molecular dynamics 

quenching , etc [71-76]. On the other hand , though the hybrid GA's have been proposed for 

fixed 士J EA spin glass [11 , 12] , there were not hybrid GA's for Ising model spin network 

problems with calculated Jab values. In this chapter, hybrid GA's for Ising model spin 

networks むe proposed and carried out. 

There are two types of hybrid GA's: 

(1) The heuristic searches are carried out after GA calculations (GA solution • heuristic) 

[87]. 

(2) The individuals are obtained by heuristic methods before GA trials (heuristic solutions • 

GA) [88]. 

In this chapter, type (2) hybrid GA's are carried out. 
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In following section 5. 2, local search around hamming distance of 1 is used with 

GA's. Because this is simplest local search procedure, it is good example for investigation of 

hybrid GA's. 

In section 5. 3, hill climbing algorithm is mixed with GA's. In this algorithm , the 

local search mentioned in section 5. 2 is repeated till fall into local minima. These local 

IIllll1ma 紅e adopted as individuals of GA's , and pure GA's are carried out. 

Summary of this chapter is described in section 5. 4. 

where , 

8E = E( neighborhood) -E( original) 

i:the locus which is occupied by different gene in the original and the neighborhood. 

5. 2. 1 The neighborhood having hamming distance of 1 

When some of neighborhoods have larger fitness than an original individual , the 

fittest neighborhood replace the original , as shown in Fig. 5. 4. When no neighborhoods has 

larger fitness than an original individual, the original individual is adopted without change. 

In this case, this individual is the local or global minimum. This procedure is adopted to all 

individuals, a new population is given. Genetic operators are used for this new population. 

ln this method , neighborhoods are different from an original indi vidual at only one 

gene , therefore, l-neighborhood search is similar to mutations. This search is able to be 

regarded as 出e particular situation of a mutation depending on energies , mentioned as following 
eg. (5.2) 

5. 2 1-neighborhood search 

In GA's , candidate of solutions which have similar genotypes state to each other are 

known as the "neighborhood". For GA's for Ising model , similar genotypes decode to similar 

phenotypes. The degrees of resemblance between two individuals are described by hamming 

distance mentioned in section 3. 2. The ne訂er neighborhood have smaller hamming distance. 

Though GA's can search through the various possible solutions , they are 仕equently

unsuitable for local s.earch. In GA's discussed previous chapter 4, local search 訂e carried out 

in only mutation phase. ln selection phase , individuals are simply selected and their 

neighborhood is not considered. ln crossover phase , because the phenotypes of generated 

children are generally different from those of p紅ents ， the neighborhood is not searched, as 

shown in Fig 5. 1. Even though a fit individual which 紅e very similar to global minima i 

obtained, crossover operators frequently break this precious individual. 

For Ising model , the neighborhoods which have hamming distance of 1 (abbreviated 

as l-neighborhood) are the ne紅est pair, as shown in Fig 5. 2 (a). When the length of 

chromosome is n, there 訂e n l-neighborhoods around one individual , as illustrated in Fig 5. 

2 (b). These neighborhoods are different from an original individual at only one gene. The 

fitness of the original and neighborhoods are comp紅ed with each other, the fittest one i 

adopted in next generation. The selected individual is nearer to global or local minima than 

original one, as shown in Fig 5. 3. 

mutation depending on energies: 

Pm = e弘E

1
i
 

一
一

(んrrenl(x) > んu仰 (X))

(んrreバX) 豆んu附 (X)) (5.2) 

l-neighborhood search: 

= 0 

(fOnginal ( x) > んIg励。r (X)) 

(forigirUli ( X )刊凹ghbor (x)， んrg肋or(X) 手 max(f(x)))

(んrrgin.a l( x) 壬ん刷bor(X)， んg伽r(X) = max(f(x))) 

(5.3) 

Pm = 0 

一

As shown in these equations , l-neighborhood search is similar to very low-T situations of 

mutation depending on energies. 

ln order to investigate the validity of this type of GA, 15 and 19 sites network 訂e

calculated. For this GA, CP=8 (for 15 sites) and CP=10 (for 19 sites) 訂e adopted, and elitist 

preserving selection is used. Mutations 訂e not carried out, because 1-neighborhood search 

plays a role of mutations. Other p訂ameters are same as S-GA. 

5. 2. 2 Methods and procedures 

5. 2. 3 Results and discussions 

When the generation change , a new population is given. Before all genetic operations, 

one individual is picked up , and a11 l-neighborhoods of it are considered. The difference of 

fitness between the original and one of the neighborhoods is equal to following eq. (5. 1): 

SE=22;JtjSiSj (5. 1) 

The stabilities , convergent generations and probabilities to reach the global minima 

for adding l-neighborhood search 訂e shown in Table 5. 1 加d 5. 2. For 15 sites networks , 

this type of GA gives global minima for all calculations, and for almost a11 19-spin clusters, 

global minima are given. These solutions are given in much earlier generations than pure 

GA's. Pure GA's frequently are not more suitable than random search for 15 sites networks , 

however, GA with l-neighborhood search can give better results than random search. These 
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results suggests that a local search method can compensate for weak points of GA's even 

though it is very simple. 

5. 3 Hill climbing 

5. 3. 1 Hill climbing search 

The hill climbing search is one of the search methods to obtain local and global 

minima. This search is carried out by subsequentiallocal search till it gi ves the local minima, 

as illustrated in Fig. 5. 5 (a). At first , the energy (or fitness , etc.) of an initial point i 

calculated, and more stable states than initial are found. One of these states is chosen , and 

more stab1e neighborhood states than chosen one are found , again. This procedure are 

repeated till reach local or global minima, it is like a rolling stone on a slope. 

Because the hill climbing search is too simple to find global minima, it is not suitable 

for optimizations. When the local minima 紅e obtained , the hill climbing search is not able to 

avoid the minima. Thus , it explore only a little pattem of spin states , a lot of spin state 

remain without search. On the other hand , this search and GA's are used together, they 紅e

complemented each other. GA's are not suitable for local search , and hill climbing alway 

can fall into local minima. The hill climbing is unsuitable for wide search , and GA's are able 

to explore various states. GA's with hill climbing search is illustrated in Fig. 5. 5 (b). 

5. 3. 2 Methods and proced町民

In previous section 5. 2, l-neighborhood search was provided. The hill climbing 

search is same as sequentia1 tria1 of l-neighborhood se紅ch. When the original indi vidual is 

given, neighborhoods around it are considered by same approach of 1-neighborhood search. 

When the fittest neighborhood is selected, it is regarded as the next origina1 individual in the 

hill climbing search. The neighborhoods around the new original indi vidual are calculated 

again , and this approach is continued till fall into the loca1 or global minimum. When the 

local minimum is obtained, it is adopted as the individual of GA's , and GA's are carried out. 

According to the results of a previous section, global minima of 15 and 19 sites spin 

networks were almost obtained by GA with 1-neighborhood search, and these networks are 

too small to investigate the validity of GA with hill climbing. Thus , 100 sites clusters are 

considered for this algorithm. CP=50 are adopted, and elitist preserving selection is used. 

Other operators and parameters are same as S-GA. 

5. 3. 3 Result and discussions 

For 100 sites clusters, because a11 spin states are not ab1e to be obtained, stabilities 

122 

and probabilities to reach the global minima are not ab1e to be given. Thus , energies of the 

fittest individuals given by pure GA, GA with l-neighborhood search and GA with hill 

climbing search are compared. The calculated energies given by GA with hill climbing 

search are shown in Table 5. 3. 

GA with hill climbing search almost gives the most stable solutions of a11. GA with 

hill climbing search always gives much more stable solutions than pure GA, and more stable 

than those of GA with 1-neighborhood search without only one c]uster. From these results , 

GA's with more efficiently local search algorithm are expected to be able to give fitter 

solutions. On the other hand , the solutions are frequent1y obtained in more early generations 

by this GA than by pure GA's. lt suggests that this type of GA is suitable for big clusters. 

5. 4 Conclusion 

It is found that more improvements for GA's give more suitable solutions , though 

ome of pure GA's gave reasonable results for search for global minima of randomly generated 

Ising clusters. These improvements belong to 1ast class of section 4. 7. The calcu1ations of 

large clusters can be carried out by using of these improvements. 

The GA's with local searches 紅e useful for search for the global minima of randomly 

generated Ising model spin clusters. Even if very simp1e search was adopted, calculational 

res叫臼 were more reasonable than pure GA's. Though pure GA's with 支 crossover or replacement 

by randomly generated individuals gave more suitab1e results than random search, GA's with 

the local search were much more suitable results. If more accurate local search 訂e adopted, 

more reasonable results are expected to be obtained. 

The local searches can not be always used with GA's, and appropriate local searches 

for given prob1em 訂e required, however, hybrid GA's are frequently one of the best methods 

for optimizations. 
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Table 5. 1 The stabilities, convergent generations and probabilities to reach the global 

minima calculated by GA's with l-neighborhood search for 15 sites spin 

networks. 

average of stabilities 

convergent generatlOn 

probability to reach the global minima 

(probability in random search) 

pure GA 

5.04 

44.49 

0.50 

(0.704988) 

GA's with 

l-neighborhood search 

1.00 

3.07 

1.00 

(0.704988) 

Tab1e 5.2 The stabilities, convergent generations and probabilities to reach the global 

minima calculated by GA's with 1-neighborhood search for 19 sites spin 

networks. 

average of stabilities 

convergent generatlOn 

probability to reach the global minima 

(probability in random search) 

pure GA 

30.19 

77.23 

0.22 

(0.073456) 

GA's with 

l-neighborhood search 

1.02 

4.98 

0.98 

(0.073456) 

Table 5.3 The energies and convergent generation calculated by several hybrid GA's for 

10 types of 100 sites spin clusters. 

energy/cm-J (convergent generation) 

pure GA GA with GA with 

1-neighborhood search hill climbing search 

cluster 1 -19144.821058 ー 19146.338207 。- 19146.344495 
(299) (144) (292) 

cluster 2 ー77835.026778 ー77842.153410 。-77842.156823
(289) (203) (13) 

cluster 3 -35095.175993 -35125.835278 �-35126.210076 
(221) (291) (215) 

cIuster 4 -93113.395320 -93127.607569 。-93127.793423
(256) (256) (164) 

cluster 5 -53557.570196 。- 53571.773003 -53571.771496 

(284) (187) (209) 

cluster 6 -109606.919753 -109616.993566 �-109618.485822 

(299) (204) (235) 

cIuster 7 -84319.688287 司 84325.201073 。-84325.208202
(203) (240) (57) 

cluster 8 ー 136162.984815 ー 136183 .494138 。-136183.528589
(296) (276) (231) 

cluster 9 -55228.791826 -55240.873537 。-55240.950263
(241) (166) (289) 

cluster 10 -63555.887060 -63560.886179 。-63560.90461 

(268) (294) (45) 

。 : The most stable solution. 
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Chapter 6 

Thermodynamical Calculations 

6. 1 Introduction 

In previous chapters , searches for global rninima of Ising spin clusters were discussed. 

Complicated networks , which contain 100 spin sites and 4950 interactions calculated by ab 

initio UHF/4-31 G method, c釦 be calculated by these methods. 

On the other hand, the application of GA's to c紅ry out the口nodynamical calculations 

紅e also considered. Though they 訂e not optirnization problems , global rninima of systems 

play important roles in them. For example , when the dependence on temperature for 

magnetization is calculated, local minima have to be avoided for a coπect calculation. GA's 

are expected to give reasonable results for thermodynarnical calculations because of widely 

search. In this chapter, dependences of magnetic properties on temperature for Ising model 

spin networks , i. e., magnetization and susceptibility ， 訂e calculated by using of GA's. 

ln the following section 6. 2, improvements for selection operators to these problems 

訂e provided. Two types of selection can be adopted for therrnodynarnical calculations. 

ln the section 6. 3, crossover operators are improved. There is only one type of 

crossover for thermodynarnical problems , however, the standard crossover can be used to 

calculate the magnetization. Though 支 crossover can not use for this purpose by itself, it can 

assist the other operator. 

ln the section 6. 4, improvements for the mutation operators 紅e provided. It is equal 

to the Metropolis method. 

ln the section 6. 5, the combinations of these improved operators 訂e carried out, and 

thermodynarnical properties are calculated. GA's 訂e comp訂ed with the Metropolis method. 



Summary of this chapter is described in section 6. 6. p=f(Xi) 

i.2 エ(ぺ 1 Xf(xj)) 

6. 2 Improvement for selection 

一

6. 2. 1 Selection based on Boltzmann distribution (Se) 

When there 訂e a lot of states for one system, the probabilities of state i are equal to 

eq. (6. 1). 

一
f(xi) 

エf(Xj f
Nx 之f(xk )

(6.4) 

ry 

pI 
(6. 1) 

whe 民 ﾟ is 附ted to temperatu 爪 ﾟ = ljkT. Thus, t恥h恥1児ermody戸f吋I凶micωa叫lp仰rop戸阿e訂rties 訂抗e obtained 

by this distribution. Though the exponential scaling provided in section 2. 3 is similar to thi 

rule, the distribution of individuals in the last generation is not equal to eq. (6. 1り) because k凡πma

t凶ria叫Is 0ぱf selection op戸eratωors 紅e carried ou凶t. Assurning the random initial popu凶latio∞n and large 

enough popu叫lation size , the distribution of individuals 訂e able to be calculated as follow山

In the first generation, the probability of survival of one individual x , is defined as eq. 

(6. 2), because all individuals randoIIﾙY exist in initial generation. 

Thus , N i•2 is equal to eq. (6. 5) because individuals which belong to state i survive with 

probability Ni.1 X Pi.2 through the twice selection. 

Ni.2 = Ni,1 X Pl.2 X N 

Pi.l ニ f(Xi )
I エ f(xj )

(6.2) 
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where, the individual xi decode to state i, andf(x) is the fitness of め The expectation value 

of the number of individuals which can decode to state i in first generation (abbreviated a 

Ni.l) is equal to eq. (6. 3). 
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(6.5) 

N" = N x D. , = f(XiLXN 
1 .." 1" i . 1 ヱ !(Xj ) ハ

(6.3) 
Thus , in the last generation kmaJ.' the expectation value of the nurnber of individuals which 

belong to i Ni.km;u is equal to eq. (6. 6). 

where, N is the population size, which is the number of a11 individuals in a population. 

1n second generation, when only selection operators are considered, the individuals of 

this type survive with the probability Pi.2 mentioned as follows: 

k 二 f(Xit十 xN
エf(Xjf剛

(6.6) 

For this reason , Boltzmann distribution is not obtained by using exponential scaling. To the 
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purpose of Boltzmann distribution, scaling proposed in eq. (6. 7) is adopted. 

(6.7) 

By using this scaling, Boltzmann distribution is obtained in the last generation km似 ・

This scaling 紅e expected to be similar to the exponential scaling discussed in section 

4. 3. For example, eq. (6.7) with T= 1.0 is equal to the exponentiaJ scaling with T= 1.0 x kn削・

Because GA's can search better states with higher T in exponential scaling, the larger kmω are 

desirable in eq. (6. 7). The larger 丸山 needs the larger computational times , and it is one of 

the weak points of trus scaling. 

6.2.2 Random selection (S) 

The scaling proposed in eq. (6. 7) gives the Boltzmann distribution ‘ however, thi 

scaling has serious weak points , which is discussed not only in section 6. 2. 1, but also as 

follows. If the number of individuals (=population size) is infínite , eq. (6. 7) give the 

reasonable solutions to the purpose of investigations of thermodynarnical properﾜes. However, 

the populat卲n size is finite (in fact , only N=100 or 1000 is adopted) , this scaling is not 

suitable for this purpose because the differences of fitness between superior and inferior 

individuals is overestimated in the low temperature, same as discussed in section 4. 4. To 

overcome this weak point, population size need to increase , it is frequently difficult because 

of the bounds of computers. 

Without 白is scallng，組y selection rules using fitness function can not give the Boltzmann 

distribution. Random selection (Sr)' which does not use fitness , can be adopted for thi 

purpose. By Sr' a population does not change from the cu汀ent generation to the next 

generation. When the improvements of crossover and mutation operators achieve the Boltzmann 

distribution, this distribution is not broken because selection operators do nothing. 

When Sr is adopted, improvements for crossover and mutation are 匤dispensable to 

investigate thermodynamical properties. They 紅e discussed in the sections 6. 3 and 6. 4. 

6. 2. 3 Elitist preserving selection 

Though the elitist preserving select卲n is a useful operator for search global minima , 

as discussed in section 4. 3, it prevents the Boltzmann distributions. When it is adopted in 

GA's , N-l indi viduals are selected by the roulette rules , and operated by the crossovers and 

mutations. On the other hand, one individual, which iおs "、'el日itis引t'川" does not obey these n叩u]e~‘、u司噌J

Thus, the distr兊ution of individuals is not equal to Boltzmann distribution because of the 

elitist individual. For this reason , the elitist preserving selection are not adopted for the 

studies of therrnodynamical properties. 

6. 3 Improvement for crossover 

Crossover operators play important roles in GA's, because the wide searches are given 

by them. It is the one of advantages of GA's for thermodynamical problems that they can 

frequently avoid local minima, and this merit is obtained by crossover operations. When 

GA's are adopted for thermodynamical calculations, the improvements of crossover operators 

are indispensable. 

6. 3. 1 Standard crossover (C) 

ln general , magnetic properties 紅e broken by standard crossover operators because 

pin states are frequently different between parents and children, as mentioned in section 5. 2 

and Fig S. 1. When a pair of p紅ents and children is picked up, not only spin states but also 

magnetizat卲ns are different between them. N aturally , susceptibilities and other magnetic 

properties can not be calculated. On the other hand, when all individuals 匤 a population are 

considered, only magnetization can be calculated. 

In crossover phase, the exchange of genes between two p訂ents are done , however, no 

gene loses, no gene adds and no gene mutate. The genes in divided p紅白 of parents never 

change, though the spin states change by crossover operators. Because the numbers of "1" 

and "0" of all 匤dividuals does not change by crossover, the sum of magnetizations of all 

children is sarne as that of parents. Only magnetization can be calculated by standard 

crossover (C). 

6. 3. 2 Crossover with Metropolis method (C
M

) 

For the calculations of not only magnetizations but also other magnetic properties, Cs 

﨎 not suitable because the Boltzmann distribution can not be obtained by Cs' The irnprovement 

for crossover is indispensable , and the procedures of improved crossover (CM) 訂e as follows. 

After standard crossover, one of children and one of parents 訂e randomly selected, 

the energies of thern are calculated. The differences of energies between them 紅e obtained, 

as eq. (6. 12). 

色E= EChild - Ep (6. 12) 

where , EChild and Eparent are the energies of the child and their p訂ent，陀spectively. By using 

M , Metropolis method is carried out [85]. The crossover is adopted with the probability Pc' 

defined as follows: 

Pc' =e-/3M (M>O) 

=1 (M~O) (6. 13) 



where, ﾟ = 11 kT , and k is equal to Boltzmann constant. When the crossover is not adopted , 

the parental individual remains in next generation. 

6.3.3x crossover(Ct) 

Because 支 crossover (C;) proposed in section 2. 5. 2 changes the number of "1" and 

"0" , it can not be used together with Cs for the pu中ose of studies of magnetizations. On the 

other hand, it can be used with CM provided in section 6. 3. 2. Though CM is suitable for 

thermodynamical calculations , it frequently falls into the local minima in very low ternperature. 

On the other hand, though individuals can escape from local rninima by C~， it is unsuitable 

for thermodynamical calculations. Thus , the method CM used with C; is expected to gi ve 

suitable solutions for Ising model spin networks. 

In C~， four children are obtained by two parents, as mentioned in section 2. 5. 2. For 

the thermodynarnical studies , only two children have to remain. Thus , either x1-Y::! or X1-Y2' 

and either YI-X2 or Y 1-丸紅e randomly selected, two individuals are adopted. After this step , 

survivals are determined by Cw 

6. 3.4 Results for the investigations of improvements of crossover 

In order to investigate the behavior of improvements of crossover, searches for global 

rninima are carried out. At first , only crossover operator is improved. The dependence of 

stabilities, convergent generations and probabilities to reach the global minima on temperature 

of CM and CM+C; 訂e shown in Table 6. 1 and Table 6. 2, respectively. For these calculatìons, 

selection and mutation 紅e same as pure GA's. Next, Sr provided in section 6. 2. 2 are 

adopted. In Table 6. 3 , the results of GA's with Sr' C; and CM are shown. These results are 

compared and illustrated in Fig. 6. 1 and Fig 6. 2. 

For these calculations , p訂ameters are adopted as follows: n=15 and 19, Nニ 100，

CP=I , Pm=O.OI in standard rnutation. kmax=200 (for 15 sites) and 300 (for 19 sites) are 

adopted for GA without C;, kmax=200 (for 15 sites) and 1000 (for 19 sites) are used for GA's 

withCx. T= 1 x 10・ 5 to 1 X 105 紅e adopted 

The results of CM + C; are better than those of only ~， and the results of Sr + CM + C; 

are the best of all. CM can not avoid local rninima, similar as C s• CM + C; can make up for 

this disadvantage, however , ~ occasionally does not work well in low temperature even 

though C; is used with. As shown in Table 6. 1 and 6. 2, the convergence is much faster in 

lower temperature by these algorithms. In lower temperature, the crossover is carried out in 

less probability than in higher temperature. Because the crossover is the key of GA's, better 

solutions can not be obtained when crossover 訂e less adopted. Adopting Sr' this problem i 

overcome. The generation gap by Sr is much smaller than that of standard roulette rule , 

because Sr does nothing for a population. Because the population changes more slowly in 

GA's with Sr than any other selection operators , the bottleneck problem come more slowly. 
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6. 4 Improvement for mutation 

In standard mutation , the mutationalloci 紅e randornly selected, and the properties of 

individuals are not considered. lt can not be used for thermodynarnical calculations. Only 

the mutation discussed in section 2. 6. 2 and 4. 5, which is similar to Metropolis method, can 

be adopted for this pu中ose.

6. 5 GA's for thermodynamical calculations 

6. 5. 1 Methods and procedures 

For thermodynamical calculations, improvements proposed in previous sections 6. 2, 

6. 3 and 6. 4 are adopted. There 紅e 6 types of combinations of them. 

for all prope口ies

1: Se + CM + Me 

II: Sr + CM + Me 

III: Se + CM + C; + Me 

IV: Sr + CM + C; +恥仁

only for the magnetization 

l' : Se + Cs + Me 

II' : Sr + Cs + Me 

(Se: exponential sc叫ing ， Sr: random selection, CM: crossover with Metropolis methods , C;: 支

crossover, Cs: standard crossover, ~: mutation depending on energies) 

At first , these algorithms are used for search for global minima, and the validities of 

them are investigated. 

Not only search for global rninima, but also tempera印re dependences of magnetic 

behaviors of spin clusters are calculated. For 15 sites spin networks , thermodynarnical 

calculations are carried out. For these calculations, T = 1 x 10・5 to 1 X 105 紅e adopted. In 

order to search for global minima and thermodynamical calculations, k1lU1X = 10∞ and 仏=

3000 are adopted, respectively. The calculations of magnetization and susceptibility are 

tarted at 2000th generation because the no influence of initial individuals 紅e required. 

6. 5. 2 Results and discussions 

search for global minima 

The results of search for the global minima by 6 types of GA's are illustrated in Fig. 

6. 3. These results suggest that selection operator is the most important operator for the 

search for the global minima. Sr gives more suitable solutions than Se ・ Local minima 訂e
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occasional1y obtained by GA's with Se in very low and high temperature, because GA's with 

Se occasionally can not avoid local minima in low temperature , and they possibly avoid 

global minima because of too many crossovers and mutations in high temperature. Sr is not 

influenced by temperature, therefore, GA's with Sr gives better solutions than GA's with Se ・

On the other hand, GA's with C~ are able to escape local minima, especially , Sr + CM + 

Cx + Me perfectly gives global minima. Though Cx assists in searching for the global minima , 

Se + CM + Cx +叫 occasionally falls into local minima similar to other algorithms including 

S ~. 
E 

thermodynamical calculations 

The results of thermodyn出nical calculations for 15-spin clusters shown in Fig. 6. 4 

(A) and (B) are illustrated in Fig. 6.5 and 6. 6 , respectively. These results are compared with 

Metropolis Monte Carlo simulations (MC). Though initial individuals are randomJy generated 

for GA's , ground states of spin clusters are adopted for MC calculations. For simpler network 

(A) , the magnetizations calculated by all algorithms without Sr + Cs + Me are similar to 

results of MC. Though Sr was more suitable for searches for global minima than Sc a 

discussed in sect�n 6. 3.4, Sr + Cs +叫 gave the most unsuitable solutions for 批rmodynarni叫

calculations. Though Sr is one of the selection operators, it does not "select" the individual 

but it rearrange the individuals. Thus , "survival of the fittest" is carried out very slowly and 

various individuals remain even though many generations change. Though the wide variety 

is desirable for the search for global minima, it is undesirable for the thermodynamical 

calculations. Because the average of all individuals is used for thermodynarnical calculation内

the wide variety 仕equently makes an e汀or. It is desirable that all individuals become global 

minima for thermodynamical calculations. 

On the other hand, CM operates like as selections. Though the selection operator Sr 

does not "select" , the crossover operator CM "select" the individuals. The probability of 

crossover defined in eq. (6. 13) depends on energies of clusters, and it is substituted for the 

roulette rule . 叫 is contained in all GA's for thermodynamical calculations, and it also 

operate similar to selection operator. 1n this operator, the probability of mutations defined in 

eq. (2. 8) is substituted for the roulette rule. Though only one operator Me selects the 

individuals in Sr + Cs + Me' two operators CM and Me are substituted for selection operator in 

Sr + CM + Me and Sr + CM + Cx + Me' Sr is useful for the search for the global minima, and CM 

+ Me makes up for the weak points of S r・ Thus， Sr + ~ + Me and Sr + CM + Cx + Me were 

able to give much more suitable solutions than not only Sr + Cs + Me' but also Se + Cs + Me 

and Se + CM + Me・

The peaks of susceptibility curve by 3 types of GA's are equal to each other (5.0 x 

10・5 K) , and the peak of Se + ~ + Me is 1.0 x 10~S K higher than other GA's. The peak of 

susceptibility curve of MC is only 1.0 x 10 ・5 K lower than that of 3 types of GA's. For more 

complex network (B), Sr + CM +恥1e， Se + CM + C}¥ + Me and Sr + CM + C}¥ + Me gives suitable 

results even though randomJy generated initial states are used. The peaks of the susceplibility 

curve by these 3 algorithms and MC are almost equal to each other, similar to cluster (A). 

It is interesting that Se +CM +Cx +悶 workedbetter than Sr +Cs + Me for thermodynamical 
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calculations, though Sr + Cs + Me was more suitable for the search for global minima. 

Because Cx are expected to be able to avoid the local minima, Se + CM + Cx + Me gives much 

better solutions than other algorithms with Se' 1t suggests that C; plays an important role of 

thermodynamical caIculations. 

6. 6 Conclusion 

Thermodynamical calculations requires different procedures from the search for the 

global minima. Two types of selections, three types of crossovers and one types of mutation 

were used for this purpose. 

For selection operators , two types of operators were used. Se is the one of the 

exponential scaling, which gives Boltzmann distribution. Though Sr is the selection operator, 

it does not "select" the individuals. 1t does nothing , and it can preserve the variety of 

individuals. GA's w咜h Sr almost gave more suitable results for calculations of magnetic 

properties than those with Se' except for Sr + Cs +Me wruch can not sufficiently select the 

fittest individuals. 

There are t耐ee types of crossovers , which is Cs' CM and ~ + C;. For searches for 

global minima of spin clusters, GA's with CM + C; can not always give reasonable results, 

however, they gave much be仕er results than others for thermodynamical calculations. Because 

CM + Cx can overcome the weak points of Sr' S r + CM + C; + Me is expected to be one of the 

most suitable algorithrns for thermodynamical calculations of 1sing spin clusters. 

Me is the only one type of mutation, and only one type of local search method which 

can use for thermodynamical calculations. Though the GA with C
M 
+ C; occasionally gave 

unsuitable results for searches for global minima (Table 6. 2, Fig. 6. 1 and Fig. 6. 2) , GA's 

with CM + C; + Me almost gave global minima (Fig. 6. 3). Thus , it is expected to work well 

for local search. 

139 



Table 6. 1 The dependence of stabilities, convergent generations and probabilities to reach Table 6. 2 The dependence of stabilities, convergent generations and probabilities to reach 
the global minima on the temperature of GA with Cw the global minima on the temperature of GA with CM + C~. 

15 spin sites (100 trials) 15 spin sites (100 trials) 

temperature/K stabilities generatlon probability temperature/K stabilities generatl� probability 
1.0 X 10-5 9.01 22.67 0.33 1.0 X 10-5 4.95 22.97 0.44 
1.0 X 10-4 10.55 25.70 0.34 1.0 X 10-4 5.67 26.22 0.47 
1.0 X 10-3 11.27 23.44 0.31 1.0 X 10-3 6.89 28.01 0.43 
1.0 X 10-2 7.01 26.62 0.36 1.0 x 10・2 5.05 21.90 0.49 
1.0 X 10-1 6.78 22.57 0.37 1.0 X 10-1 5.17 25.92 0.46 

1.0 8.66 24.46 0.44 
1.0 8.29 21.73 0.47 

1.0 X 101 6.77 21.50 0.38 1.0 X 101 7.03 20.36 0.40 
1.0 X 102 7.49 25.60 0.34 1.0 X 102 4.80 34.62 0.48 
1.0 X 103 6.85 31.56 0.41 1.0 X 103 5.04 36.16 0.51 
1.0 X 104 5.86 43.08 0.44 1.0 X 104 4.60 46.37 0.54 
1.0 X 105 6.52 49.41 0.40 1.0 X 105 2.02 65.95 0.72 

19 spin sites (100 trials) 19 spin sites (100 trials) 

temperature/K stabilities generatlOn probability temperature/K stabilities generatl� probability 
1.0 X 10-5 96.56 44.16 0.15 1.0 X 10-5 30.61 87.85 0.29 
1.0 X 10-4 66.87 36.59 0.20 1.0 x 10・4 35.11 59.58 0.20 
1.0 x 10・3 39.39 39.71 0.19 1.0 X 10-3 30.29 59.04 0.20 
1.0 X 10-2 111.63 40.50 0.10 1.0 x 10・2 54.05 67.82 0.22 
1.0 X 10-1 69.89 36.78 0.15 1.0 x 10・ l 37.49 76.44 0.17 

1.0 65.09 36.33 0.16 
1.0 29.00 99.85 0.23 

1.0 X 101 61.35 36.42 0.11 
1.0 X 101 35.86 79.51 0.14 

1.0 X 102 66.24 39.01 0.11 1.0 X 102 65.45 55.90 0.33 
1.0 X 103 45.85 50.63 0.22 1.0 X 103 27.60 102.12 0.23 
1.0 X 104 45.92 64.54 0.15 

1.0 X 104 31.95 186.18 0.29 
1.0 X 105 64.11 77.48 0.19 

l.0 X 105 8.28 228.03 0.56 
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Table 6.3 The dependence of stabilities, convergent generations and probabilities to reach 

the global rninima on the temperature of GA with Sr + CM + C;. 

15 spin sites (100 trials) 

temperature/K 

1.0 X 10.5 

1.0 x 10・4

1.0 X 10.3 

1.0 x 10'~ 

1.0 X 10.1 

1.0 

1.0 X 101 

1.0 X 102 

1.0 X 103 

1.0 X 104 

1.0 X 105 

19 spin sites (100 trials) 

temperature/K 

1.0 X 10.5 

1.0 X 10-4 

1.0 X 10.3 

1.0 X 10.2 

1.0 X 10.1 

1.0 

1.0 X 101 

1.0 X 102 

1.0 X 103 

1.0 X 104 

1.0 X 105 

stabilities 

1.43 

1.62 

1.36 

1.38 

1.66 

1.43 

1.57 

1.49 

1.80 

1.44 

1.41 

stabilities 

5.25 

3.88 

6.74 

4.84 

5.35 

5.06 

4.07 

7.11 

3.53 

6.65 

2.32 

generatlOn probabiJity 

27.43 0.85 

28.25 0.83 

28.51 0.82 

28.44 0.89 

26.39 0.84 

29.64 0.89 

30.11 0.84 

30.48 0.81 

42.12 0.77 

59.25 0.81 

75.51 0.70 

generatlOn probability 

70.86 0.57 

59.93 0.55 

93.05 0.58 

69.25 0.59 

86.42 0.60 

67.32 0.60 

64.19 0.52 

101.58 0.51 

112.75 0.48 

213.60 0.52 

386.54 0.55 
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Figure 6. 1 The dependence of stabilities, convergent generations and probabiJities to reach 

the global minima on the temperature of GA's with CM for 15 sites networks. 
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Figure 6. 2 The dependence of stabilities, convergent generations and probabilities to reach 

the global minima on the temperature of GA's with CM for 19 sites networks. 
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Figure 6. 3 The results of search for the global minima by several improved GA's. 
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The dependence of magnetic properties on temperature in 15-spin cluster shown 

in Fig. 6. 4 (A). 
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7. 1 Introduction 

。

1n previous chapters, GA's are used for randomly generated sp匤 clusters. It was 

found that GA's are su咜able for se紅白 global rn匤匇a and thermodynarn兤al calculations of 

various clusters. In this chapter, the magnetic properties of real compounds 訂e calculated. 

Recently , magnetic interactions of several compounds have been investigated by calculations 

and experiments, for example, nitronyl nitroxide derivatives mentioned in part 1 of this these. 

It is interesting that GA's operate for investigations of magnetic behaviors by using these 

results. 

ハ
U1

1
 

1n the following section 7. 2, magnet兤 properties of Mn12 cluster which is the meta1-

organic radica1 system [89, 90] are ca1culated. Though S=1/2 is adopted in previous GA's, it 

is not a]ways suitable for real compounds. 1n Mn12 cluster, S=3/2 and 4/2 紅e used, and 

improvements of GA's are indispensable. 1n this section, GA's wh兤h have four and five 

alleles 紅e developed , and calculations 訂e carried out by these algorithms. Though the 

magnetic interactions of Mn12 cluster 紅e not obtained by MO methods , four types of J values 

have been assumed from experimental results. These assumed J values are used for GA's. 

1n the section 7. 3, nitronyl nitroxide derivatives are ca1culated by GA's. 1n part 1, 

MO calculations of intermolecular magnetic interactions of nitronyl nitroxide derivatives 

crystals were carried out. 1t was found that DFT methods reproduced the experimental 

results , qualitatively. According to these results , thermodynamica1 ca1culations of nitronyl 

nitroxide derivatives 紅e carried out by using calculated Jab Va1ues in this section. 
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Figure 6.6 The dependence of magnetic properties on temperature in 15-spin cluster shown 

in Fig. 6. 4 (B) 
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7.2 恥1n 1 2 cluster 

7. 2. 1 Cluster structure and magnetic behavior of Mn12 

Considerable effort has been directed at understanding magnetic exchange interactions 

occurring in polynuclear transition-metal complexes. Recently ‘ Sessoli and his co-worker 

reported the syntheses and electrochemical and magnetochemical properties of 

[Mn 12012(02CPh) 16(H20)J (3) , its solvate 3.PhCOOH.CH2C12, and 

[Mn I201i0 2CMe)1 6(H20)4] ・MeCOOH.3~0 (4) [89]. These compounds have four Mn
1V 
and 

eight Mnll1. 3 consists of a central [Mn fV ~ 04]8+ cubane held within a nonplanar ring of eight 

MnDI atoms by eightμ3-02・ ions. Peripheralligation is provided by 16 1l2-02CPh-and four 

terminal H20 groups, where the four H20 ligands 紅e located on two Mn atoms ・

Magnetization measurements 訂e used to determine that in these fields complex 3 aod 

3.PhCOOH.CH2C12 have S=10 and S=9 ground states, respectively. AC susceptibility data in 

zero applied field 訂e given for complexes 3 and 4, and it is concluded that 3 has S=9 grouod 

state and 4 has S= 1 0 ground state at zero field. 

In Mn41VMn8Hl complex, there are at least four different types of pairwise exchange 

interaction illustrated as Fig. 7. 1. The p訂ameter 1j refers to MnJv... Mnlll pairs bridged by 

twoμ-oxo ions; 12 to Mn fV… Mnlll pむrs bridged by oneμoxoion;J3 tO Mniv---MIllV pairs; 加d

14 to Mn[ll... MnIll pairs. Theoretical calculations of spin-state orderings assuming 1 I >み、み

>> 14 are presented to rationalize the S=8-10 ground states. 

7.2.2 GA's for S:;tl/2 

Though S=1/2 is adopted for all GA calculations in previous chapters , Sl is not alway 

equal to :t1l2 for real compounds , for example, S=3/2 and 4/2 in Mn12 cluster. The bitstring 

coding can not be used for these systems, and the improvements of three principaJ operator 

for GA's, which are selection, crossover and mutation，紅e indispensable. 

coding 

When S= 1/2 , spin states are described by b匤ary bitstrings. sF 1/2 and sj=-1I2 code to 

川 1" and "0" , respectively. When S:;t1/2, spin states can not be expressed only two alleles "1" 

and "0". For the purpose of GA caIculations , � is necessary that all different spin states are 

given different alleles. CaIculations for Mn12 cluster, alleles 紅e defined as follows: 

for spin sites i= 1 to 8 of Fig. 7. 1: 

Sj 

allele 

-412 

0 

-2/2 

for spin sites i=9 to 12 of Fig. 7. 1: 

0 

2 

150 

+2/2 

3 

+4/2 

4 

Sj 

allele 

-3/2 

0 

-112 +112 

2 

+3/2 

3 

This type of coding can be used for other S学112 spin clusters. 

selection 

Isiog Hamiltonian is also used for fitness function same as GA's for S=1/2. All 

selection operators mentioned in previous chapters , which are the roulette rule selection and 

the random selection, can be adopted for S学 1/2 clusters without improvements. Coding 

procedure does not have an influence for selection operators. 

crossover 

Standard crossover (Cs) and Metropolis crossover (~) can be used same as S= 112 

clusters because the genes 訂e not rewritten by these operators. On the other hand, improvement 

of 支 crossover (C~) are indispensable. In S= 112 clusters , "1" 紅e replaced "0" and "0" are 

rep]aced "1" by C子 For S=312 clusters, "0" ゃう "3" and "1" •• "2" are adopted, and for 

S=4/2 clusters , "0" •• "4" , "1" ←今 "3" and "2" ←→ "2刊訂e adopted by improved C;. 

mutation 

The improvements of mutation operators 紅e indispensable to S手 112 clusters. In GA's 

for S= 1/2 spin cluster, the mutation operator is the alternation of "1" •• "0". ForS剖/2

clusters, genes in selected loci change in mutation phase, randomly. For exarnple, "0" mutate 

to "1" or "2" or 川 3" in S=3/2 spin site. 

7. 2. 3 Results and discussions 

The dependence of magnetizations and susceptibilities on temperature for Mnl2 cluster 

hown in Fig. 7. 2 and 7. 3. For these calculations, ~=5000 and CP=6 are used, and 

other parameters are defined same as section 6. 5. Initial individuals are randornly generated. 

The calculations of magnetization and susceptibility are started at 4000th generation because 

the no influence of initial individuals 紅e required. 

S=10 ground states in low temperature 訂e reproduced by two types of GA's with C;, 

especially Sr + CM + C; +叫 Sr+ ら+叫， which is the GA with Sr without C;, c如 not give 

reasonable results , though it is able to give suitable spin states for randomly generated 

15-spin clusters. According to these calculations, it was found that C~ play 如 important role 

forGA瓦 GA's without C; 訂e frequently not able to avoid the local minima because 12 and 13 

have similar values to each other. Though the results of Se + ~ + Cx + Me are reasonable in 

low and high temperature, it occasionally fell into the local minima around 30-40K. It 

suggests that Sr + CM + C~ + Me is the most suitable for thermodynamical calculations of 6 

types of GA's. 
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7.3α-HQNN crystal 

7. 3. 1 lntermolecular interactions in α-HQNN crystal 

Crystal structure and intermo1ecular interactions of α，-HQNN were discussed ln chapter 

4 in part 1. This crystal exhibits a ferromagnetic phase transition at 0.5 K and it is a first 

organic ferromagnet which is constructed by hydrogen bonds [37-39]. In this crystal, the pair 

which has bifurcated hydrogen bonds (pair B) plays an important role for magnetic behavior 

of this crystal. This pair forms one hydrogen-bonded chain along c-axis. The interpair 

interaction along c-axis (pair A) is smaller than intrapair interaction. Interchain interactions 

(pair C , D and E) are smaller than those of pair A and B [91]. These ﾎnteractions are 

illustrated in Fig. 7.4. 

In chapter 4 of part 1, Jab values have been obtained by several methods , and it was 

found that DFf methods give reasonable values. In this section , Jab values calculated by 

UBLYP/4-31G, UB2L YP/4-31G 釦d UB3L YP/4-31 G methods are used, and magnetic behavior 

ofα-HQNN is investigated. The Sr + CM + C; + Me algorithm for 10 x 10 x 10 cells (4000 

molecules) and 15 x 15 x 15 cells (13500 molecules) of α-HQNN is carried out. All genes of 

initial individuals 紅e "1 " because α，-HQNN crystal has a ferromagnetic phase transition. 

7. 3. 2 Results and discussions 

The dependence of magnetizations and susceptibilities on temperature for α-HQNN i 

illustrated in Fig. 7. 5, 7. 6 and 7. 7. According to Fig. 7. 5, ~ = 700 is expected to be 

enough large for these calculations. The results of calculations shown in Fig. 7. 6 and 7. 7 

are given by the GA's with ~ax = 700. From these results , it was found that GA's can 

reproduce the ferromagnetic phase transition. The transition temperature is 0.24 K, 0.30 K 

and 0.31 K by using of the Jab values calculated by UBL YP/4-31 G, UB2L YP/4-31 G and 

UB3L YP/4-31G methods, respectively , as shown in Fig. 7. 6. GA reproduces the experimental 

results of dependence of susceptibility on Trrc in higher temperature than T c' as shown in 

Fig. 7. 7. In lower temperature than Tc' because the magnetization was not dependent 

linearly on the extemal magnetic field , the susceptibility changed irregularly with lowering 

the temperature. 

7. 4 Conclusions 

1n chapter 6, it was found that Sr is useful for thermodynamical calculations. And in 

this chapter, it was found that GA's with C; are able to give the suitable spin states even if the 

spin clusters have many local minima. According to these results , Sr + CM + C; + Mc is 
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expected to be most useful for Ising model spin cluster of 6 types of GA's. 

Though CM is the important operator to thermodynamical calculations , the population 

tend to be "bottleneck" situation and escape from the "bottleneck" are difficult by ~ especially 

in low temperature. On the other hand, though C; is not indispensable to thermodynamical 

calculations, it is expected to avoid the bottleneck problem. 1t is considered that the advantages 

of CM and Cx make up for disadvantages of each other, and GA's with ~ + C
x 
give reasonable 

results for Ising spin clusters. 

For α-HQNN crystal, Sr + CM + C~ + Me with Jab values calculated by DFT methods 

give ferromagnetic phase transition and they reproduced the qualitatively experimental results. 

Jt suggests that both GA's and DFT methods are strong methods to study the magnetic 

behavior of organic radical crystals. 
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Chapter 8 

Concluding Remarks and Future Prospects in 

Part 11 

8. 1 Concluding remarks 
。 1.0 1.2 0.2 0.6 0.8 0.4 

Trrc 
In this part, the author developed the GA's in order to investigate the magnetic 

behaviors of Ising spin clusters by using magnetic interactions between two spin sﾏtes. In this 

chapter, the author wiU summarize the results of this part and make future discussions. 

Fi忠lre 7.7 The dependence of susceptibility calculated by GA on Trrc 紅ecomp訂ed with 

experimental values. GA reproduces the experimental results in higher 

temperature than Tc' 

The author used the GA's mentioned in chapter 1 for the Ising spin clusters. The 

coding procedure and genetic operators, selection, crossover and mutation , had been improved 

for these clusters in chapter 2. For Ising model , individuals were expressed by bitstrings and 

fitness functions were obtained by Heisenberg Hamiltonian. It is important that individual x 

and 支 shown in Fig. 2. 4 have same energies for this clusters. 

The se訂ches for global minima and thermodynamical calculations by pure GA's were 

carried out, and some parameters and operators were improved for these calculations (chapter 

4 and 6). There are three types of improvements for this purpose; (1) improvements for 

preserving varieties , (2) the tightening up the rule of "survival of the fittest" and (3) hybridizing 

of GA's and local searches. 

Improvements of type (1) are most useful and they are important not only for search 

for global minima but also for thermodynamical calculations. The exponential scaling in 

high temperature, an increase in the number of crossover points , an increase in the probability 

of crossover，支 crossover and the replacement by 出e randomly generated individuals (described 

in chapter 4) and Sr and C; (described in chapter 6) 紅e classed in category (1). 
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Type (2) improvements have both strong and weak points. Fitter individuals are 

difficult to die, and the varieties of individuals become naπow by using improvements of this 

type. The exponential scaling in low temperature and elitist preserving selection (described 

in chapter 4) and Se (described in chapter 6) belong to category (2). Because improvements 

of this type are frequently not able to avoid the local minima, they are not suitable for 

thermodynarnical calculations. 

GA's improved by type (3) procedures are equal to hybrid GA's discussed in chapter 

5. Though GA's 紅e good at widely search, they are not suitable for local searches. On the 

other hand, heuristic methods can give the local rninima, though they can not give the global 

rninima, frequently. Thus , when GA's were used together with the local search, reasonable 

solutions were frequently obtained. Though improvements of this type are most suitable for 

the searches for the global minima, they frequently can not be used for thermodynamical 

calcuIations, and only Me (described in chapter 4 and 6) can be adopted for this pu中ose.

Thermodynarnical calculations are carried out for randomly generated spin clusters 

(described in chapter 6) and real compounds (described in chapter 7). Because GA's could 

avoid local rninima, they gave reasonable results even if initial individuals were randomly 

generated. S r + CM + Cl( +叫 is the most suitable methods for thermodynarnical calculations. 

In this algorithm , Sr and C~ avoid the local minima, and CM and Me are carried out the rule of 

"survival of the fittest". It can calculated the magnetic behaviors of real compounds , which 

have many sites and many local minima. For α-HQNN crystal, Sr + CM + Cx + Me gives the 

fe汀omagnetic phase transition, and it reproduces qualitatively experiment剖 results. 1t suggest 

that it can calculate the magnetic behaviors for organic radical clusters. 

8. 2 Future prospects 

In this theses , though GA's for Ising model spin clusters were developed , Heisenberg 

model are frequently required for investigations of the magnetic behavior of organic 

ferromagnets. Heisenberg Harniltonian is described as 

主=ーミJふ (8. 1) 

where Jab is magnetic interactions. 

Because Sa and Sb are vectors , two or more variables are required for one spin site, 

and these variables are not integral but real numbers. There are two types of GA's for 

optimizations of real variables. 

(l) Real number is expressed by binary bitstrings , and they are regarded as chromosomes. 

All genes are expressed by "1" and "0" , and GA's are used for bitstrings same as integral 

variables. 
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(2) One gene expresses one real number, and genetic operators need to be improved in order 

to treat the real genes. 

They 訂e illustrated in Fig. 8. 1. 

By (1) type GA's , one GA trial is required for optimization of one real variable. For n 

sites spin clusters , 2n or more GA trials are necessary. And furthermore , GA's for real 

numbers expressed by binary bitstrings occasionally do not satisfy the building block hypothesis. 

For example, chromosomes "] 0 0 0" , "0 1 1 1" and "0 0 0 0" express "8" , "7" and "0" , 

respectively. On the other hand, hamming distance between "8" and "7" is larger than 

between 川 8" and "0". Sirnilar phenotypes do not always mean sirnilar genotypes. 

By (2) type GA's , optimization for one spin cluster can be carried out by one GA trial. 

Spin states code to chromosomes by same procedures as GA's for Ising model , and they 

satisfy bu�ding block hypothesis. For Heisenberg models , (2) type GA's are expected to be 

reasonable. 

In this thesis , though classical Monte Carlo calculations were carried out, quantum 

Monte Carlo methods are desirable for more accurate calculations. The treatment of real 

variables are indispensable for the development of GA's using with quantum Monte Carlo 

methods , same as GA's for the Heisenberg model. 
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