Title	Generalizations of Nakayama ring. IV. Left serial rings with $(*, 1)$
Author(s)	Harada, Manabu; Baba, Yoshitomo
Citation	Osaka Journal of Mathematics. 1987, 24(1), p. 139-145
Version Type	VoR
URL	https://doi.org/10.18910/11416
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir. library.osaka-u.ac.jp/

GENERALIZATIONS OF NAKAYAMA RING IV

(LEFT SERIAL RINGS WITH (*, I))

Yoshitomo BABA and Manabu HARADA

(Received January 16, 1986)

Let R be an algebra over an algebraically closed field K with finite dimension. Under an assumption $J^{4}=0$, we have studied a left serial algebra with $(*, 1)$: the radical of any hollow right R-module is always a direct sum of hollow modules, in [3], where J is the Jacobson radical of R. In this case $e J / e J^{2}$ is square-free, i.e., a direct sum of simple modules, which are not isomorphic to one another. We shall give, in this note, a complete characterization of a left serial ring with $(*, 1)$ under the assumption: $e J / e J^{2}$ square-free. In the forthcoming paper [5], we shall study a left serial ring with $(*, 1)$ in general.

1. Definitions and preliminaries

In this note we only deal with a left and right artinian ring R with identity. We assume that every R-module M is a unitary right (or left) R-module and denote its Jacobson radical and socle by $J(M)$ and $\operatorname{Soc}(M)$, respectively. $|M|$ means the length of a composition series of M. If M has a unique composition series, we call M a uniserial module. If, for each primitive idempotent $e, e R$ is uniserial as a right R-module, we call R a right serial ring (Nakayama ring).

We obtained a characterization of a right serial ring in terms of submodules in a direct sum of uniserial modules [1]. As a generalization of the above result, we studied the following property:
$(*, \mathrm{n})$ Every maximal submodule of a direct sum of n hollow modules is also a direct sum of hollow modules [2].

In this note we shall study a ring with ($*, 1$), i.e., every factor module of $e J$ is a direct sum of hollow modules for each primitive idempotent e, where $J=\mathrm{J}(R)$. Concerning ($*, 1$) we got

Lemma A ([4], Theorem 4). Let R be a right artinian ring. Then R satisfies $(*, 1)$ for any hollow right R-module if and only if the following two conditions are fulfiled:

1) $e J=\sum_{i=1}^{m} \oplus A_{i}$, where e is any primitive idempotent in R and the A_{i} are hollow.
2) Let $C_{i} \supset D_{i}$ be two submodules of A_{i} such that $C_{i} \mid D_{i}$ is simpje. If $f: C_{i} \mid D_{i} \approx C_{j} / D_{j}$ for $i \neq j, f$ or f^{-1} is extendible to an element in $\operatorname{Hom}_{R}\left(A_{i} / D_{i}\right.$, $\left.A_{j} / D_{j}\right)$ or $\operatorname{Hom}_{R}\left(A_{j} / D_{j}, A_{i} / D_{i}\right)$.

On the other hand T. Sumioka found the following remarkable result:
Lemma B ([6], Corollary 4.2). Let R be a left serial ring, then eJ ${ }^{i}$ is a direct sum of hollow modules as right R-modules for any i.

We shall study, in this paper, only left serial rings, and so we denote the content of Lemma B by the following diagram:

The diagram means that $\mathrm{J}(e R)=e J=\sum_{i=1}^{n} \oplus A_{i}, \mathrm{~J}\left(A_{k}\right)=\sum_{i=1}^{n_{k}} \oplus A_{k i} \quad(k=1,2, \cdots, n)$. (cf. [2], § 2).

Further we continue to observe (1).

$$
\begin{equation*}
\frac{A_{11}}{\frac{1}{A_{11} A_{112} \cdots A_{11 t_{1}} \cdots J\left(A_{11}\right)}} \stackrel{A_{12}}{A_{121} A_{122} \cdots A_{12 t_{2}} \cdots J\left(A_{12}\right)} \tag{2}
\end{equation*}
$$

and repeat this process. We sometime denote $A_{i_{1} i_{2} \cdots i_{t}}$ by A_{α}, and define $|\alpha|=t$. Let $\alpha=i_{1} i_{2}, \cdots, i_{t}$ and $\beta=j_{1} j_{2} \cdots j_{t}$. We define $\alpha>\beta$ if $t<t^{\prime}$ and $i_{1}=j_{1} \cdots, i_{t}=j_{t}$, which is nothing but $A_{\alpha} \supset A_{\beta}$. We note that $\alpha \not \equiv \beta$ if and only if $A_{\alpha} \cap A_{\beta}=0$.

Let x be an element in $e J$. Then $x=x_{1}+x_{2}+\cdots+x_{n} ; x_{i} \in A_{i}$. If $x_{1} \in J\left(A_{1}\right)$, $x_{1}=x_{11}+x_{12}+\cdots+x_{1 n_{1}} ; x_{1 i} \in A_{1 i}$. Repeating this process, we obtain finally
(3) $x=z_{1}+z_{2}+\cdots+z_{t}$, where $z_{i} \in A_{\alpha_{i}}-J\left(A_{\alpha_{i}}\right)$, and $\alpha_{i} \not \not \nless \alpha_{j}$ if $i \neq j$, i.e.; $\sum_{i=1}^{t} A_{\alpha_{i}}=\Sigma \oplus A_{\alpha_{i}}$.

Finally, let e and f be primitive idempotents. By $\mathrm{T}\left(e J^{i} f\right)$) (resp. $\left.\mathrm{T}\left(J^{i} f\right)\right)$ we denote the set $e J^{i} f-e J^{i+1} f$ (resp. $J^{i} f-J^{i+1} f$). For a hollow module A, \bar{A} means $A / J(A)$.

2. Main Theorem

We shall give a characterization of a left serial ring with $(*, 1)$ as a right R-module.

Theorem. Let R be a left serial ring such that eJ/eJ ${ }^{2}$ is square-free for each primitive idempotent e. Then
$(*, 1)$ holds for any hollow right R-module if and only if we have the following condition: If $A_{\alpha} / J\left(A_{\alpha}\right) \approx A_{\beta} / J\left(A_{\beta}\right)$ for $\alpha=i_{1} i_{2} \cdots i_{k}, \beta=j_{1} j_{2} \cdots j_{s}(1<k<s$ and $\left.i_{1} \neq j_{1}\right), A_{\beta^{\prime}} / J\left(A_{\beta}\right)$ is uniterial, where $\beta^{\prime}=j_{1} j_{2} \cdots j_{s-k+1}$ and A_{α}, A_{β} and $A_{\beta^{\prime}}$ are hollow modules in (1). (See [5], for the general case.)

Corollary. Let R be a left serial algebra over an algebraically closed field of finite dimension. Then $(*, 1)$ holds for any hollow right R-module if and only if the condition in Theorem is satisfied.

Proof. This is clear from Theorem and [3], Lemma 3.
We shall study some properties of a left serial ring. T. Sumioka has communicated us the following lemma.

Lemma 1 (T. Sumioka). Let R be left serial. Let x (resp. y) be in $T\left(e J^{i} f\right)\left(\right.$ resp. $T\left(f J^{j} g\right)$), where e, f and g are primitive idempotents. If $J^{i+j} g \neq 0$, $x y \in T\left(e J^{i+j} g\right)$.

Proof. Assume that $x y \in e J^{i+j+1} g$. Since R is left serial, $R x=J^{i} f$ and $R y=J^{j} g$. Hence $J^{i+j} g=J^{i} R y=J^{i} f y=R x y \subset R e J^{i+j+1} g \subset J^{i+j+1} g$. Therefore $\mathrm{J}\left(J^{i+j} g\right)=J^{i+j} g$, which is a contradiction to the assumption $J^{i+j} g \neq 0$.

From now on for a left serial ring $R A_{\alpha}, A_{\beta} \cdots$ are hollow modules in the diagram (1) and $A_{\alpha(i)}$ means a submodule of A_{i}. When we need to specify $|\alpha(i)|=t$, we denote $A_{\alpha(i)}$ by $A_{\alpha(i, t)}$.

Lemma 2. Let R be a left serial ring and X, Y hollow right submodules in R. If f: $X / X_{1} \approx Y / Y_{1}$ for some $X_{1} \subset X$ and $Y_{1} \subset Y$, there exists d in R such that $d X=Y$ (or $d Y=X$). If $X_{1}=J(X)$ and $Y_{1}=J(Y)$, d_{l}, left-sided multiplication of d, induces f. In general, if d_{l} induces $f, d X_{1} \subset Y_{1}$. In particular, if $\bar{A}_{\alpha(i)} \approx$ $\bar{A}_{\beta(j)}(|\alpha(i)| \leq|\beta(j)|)$, wee can find such d in A_{j}.

Proof. Since X is hollow, we can find a generator x of X with $x e=x$ for some primitive idempotent e. Put $f\left(x+X_{1}\right)=y+Y_{1}(y \in Y) . \quad f$ being an isomorphism, y is a generator of Y and we may assume $y e=y$. Further we may assume $x \in T\left(J^{j}\right), y \in T\left(J^{j}\right)$ and $i \leqslant j$ (if $j>j$, replace X by Y). Then, since Re is uniserial, there exists d in R such that $d x=y$. If $X_{1}=J(X)=x J, d X_{1}=d x J=$ $y J=Y_{1}$. Let x_{1} be an element in X_{1} and $x_{1}=x r ; r \in R$. Then $d x_{1}=d x r=y r \in Y$ and $d x_{1}+Y_{1}=y r+Y_{1}=f\left(x r+X_{1}\right)=Y_{1}$, provided that d_{l} induces f. Hence $d X_{1} \subset$ Y_{1} (see the proof of [3], Theorem 3), If $\bar{A}_{\alpha(i)} \approx \bar{A}_{\beta(j)}, d a=b$, where $A_{\alpha(i)}=a R$, $A_{\beta(j)}=b R$ and $d \in e J e . \quad$ Let $d=\Sigma d_{i}: d_{i} \in A_{i} . \quad$ Since $b=d a=\Sigma d_{i} a \in A_{j}, b=d_{j} a$.

Lemma 3. Let R be a left serial ring. Assume $\bar{A}_{\alpha(i, t)} \approx \bar{A}_{\beta(j, t)}$ for $A_{\alpha(i, t)} \subset$ A_{i} and $A_{\beta(j, t)} \subset A_{j}$. Then $A_{\alpha^{\prime}(i, p)} \approx A_{\beta^{\prime}(j, p)}$, provided $A_{\alpha^{\prime}(i, p)} \supset A_{\alpha(i, t)}$ and $A_{\beta^{\prime}(j, p)}$ $\supset A_{\beta(j, t)}$.

Proof. We show $\bar{A}_{\alpha^{\prime}(i, p)} \approx \bar{A}_{\beta^{\prime}(j, p)}$. From Lemma 2, there exists an element d in $e R e$ such that $d A_{\alpha(i, t)}=A_{\beta(j, t)}$. Let $\pi_{\gamma(s)}$ be the projection of $e J^{p}$ to $A_{\gamma(s, p)}$. Then $d_{l}\left|A_{\alpha^{\prime}(i, p)}=\left(\sum_{s} \pi_{\gamma(s)} d_{l}\right)\right| A_{\alpha^{\prime}(i, p)}$, where d_{l} means the left-sided multiplication of d. If $\pi_{\beta^{\prime}(j, p)} d_{l} \mid A_{\alpha^{\prime}(i, p)}$ is an epimorphism, $\bar{A}_{\alpha^{\prime}(i, p)} \approx \bar{A}_{\beta^{\prime}(j, p)}$. Assume $\pi_{\beta^{\prime}(j, p)}\left(d A_{\alpha^{\prime}(i, p)}\right) \subset J\left(A_{\beta^{\prime}(j, p)}\right)$. Let $A_{\alpha(i, t)}=a_{t} R$ and $A_{\alpha^{\prime}(i, p)}=a_{p} R$. Then $a_{t}=a_{p} x ; x \in T\left(J^{t-p}\right) . \quad\left(\pi_{\beta^{\prime}(i, p)}\left(e J^{p}\right) \supset\right) A_{\beta(j, t)}=d A_{\alpha(i, t)}=d a_{t} R=\Sigma\left(\pi_{\gamma(s)} d a_{t}\right) R=$ $\pi_{\beta^{\prime}(j, p)}\left(d a_{p} x R\right) \subset J\left(A_{\beta^{\prime}(j, p)}\right) x R \subset e J^{t+1}$, a contradiction. Hence $\bar{A}_{\alpha^{\prime}(i, p)} \approx \bar{A}_{\beta^{\prime}(j, p)}$, and so $A_{\alpha^{\prime}(i, p)} \approx A_{\beta^{\prime}(j, p)}$ by Lemma 2 (note $A_{\alpha^{\prime}(i, p)}, A_{\beta^{\prime}(j, p)}$ are contained in $e J^{p}$ but not in $e J^{p+1}$).

Lemma 4. Let R be a left serial ring. Assume that eJ= $\Sigma \oplus A_{i}$, where the A_{i} are hollow. Then there are no non-zero elements d_{1}, d_{2} in eJe such that $d_{1} \in A_{i}, d_{2} \in A_{j}(i \neq j)$ provided $\bar{A}_{i} \approx \bar{A}_{j}$.

Proof. We may assume that $d_{1} \in \mathrm{~T}\left(A_{\alpha(i)}\right)$ and $d_{2} \in \mathrm{~T}\left(A_{\alpha(j)}\right)$. Put $t_{1}=|\alpha(i)|$ and $t_{2}=|\alpha(j)|$. Then $t_{1} \neq t_{2}$ by assumption and Lemma 3, since $\overline{d_{i} R} \approx \bar{R}$ for $i=1,2$. We can choose a pair ($d_{1}^{\prime}, d_{2}^{\prime}$) such that $t_{1}^{\prime}+t_{2}^{\prime}$ is minimal $\left(t_{1}^{\prime}<t_{2}^{\prime}\right)$. Then there exists d_{0} in $A_{j} \cap e J^{t_{2}^{\prime}-t_{1}^{\prime}}$ such that $d_{0} d_{1}^{\prime}=d_{2}^{\prime}$ from Lemma 2, and so (d_{1}^{\prime}, d_{0}) gives the contradiction to the minimality.

Lemma 5. Let A_{i} be as above. Assume that any pair of $\left\{A_{1}, A_{2}, A_{3}\right\}$ is not isomorphic to one another. Then, for any primitive idempotent g, there are no three elements $\left\{a_{i j_{i}}\right\}$ as follows: 1) $a_{1 j_{1}} \in \mathrm{~T}\left(A_{1} J^{j_{1}}\right), a_{2 j_{2}} \in \mathrm{~T}\left(A_{1} J^{j_{2}}\right)$ and $a_{3 j_{3}} \in$ $\mathrm{T}\left(A_{2} J^{j_{3}}\right)$ such that $a_{i j i} g=a_{i j i}$ and $j_{1}<\min \left(j_{2}, j_{3}\right)$ or 2) $a_{i j_{i}} \in A_{i}$ and $a_{i j i} g=a_{i j i}$ for $i=1,2,3$.

Proof. Since $R a_{i j_{i}} \subset R g$ and $e a_{i j_{i}}=a_{i j_{i}}$, this is clear from Lemmas 2 and 4.

Now we study a right artinian ring with $(*, 1)$. For the sake of simplicity, we change the expression of a direct decomosition of $e J^{i}$.

The following lemma is the "only if" part of Theorem.
Lemma 6. Assume that R is a right artinian ring with (*, 1) as right R modules. Put eJ $=A_{1} \oplus B_{1} \oplus \cdots, e J^{i}=\sum_{k=1}^{n_{i}} \oplus A_{i k} \oplus \sum_{k=1}^{n_{i}^{\prime}} \oplus B_{i k} \oplus \cdots$, where the A_{1}, B_{1}, $A_{i k}, B_{i k} \cdots$ are hollow and $A_{1} \supset A_{i k}, B_{1} \supset B_{i k}, \cdots$. If $\bar{A}_{i 1} \approx \bar{B}_{j 1}$ for $1<i<j, B_{j-i+11} /$ $J\left(B_{j_{1} 1}\right)$ is uniserial.

Proof. Put $C_{1}=\sum_{k=2}^{n_{2}} \oplus A_{2 k}+\sum_{k=2}^{n_{3}} \oplus A_{3 k}+\cdots+\sum_{k=1}^{n_{i}} \oplus A_{i k}$ and $D_{1}=\sum_{k=2}^{n_{2}} \oplus A_{2 k}+\cdots$ $+\sum_{k=2}^{n_{i}-1} \oplus A_{i-1 k}+\mathrm{J}\left(A_{i 1}\right)+\sum_{k=2}^{n_{i}} \oplus A_{i k}$. Then $f: C_{1} / D_{1} \approx A_{i 1} / \mathrm{J}\left(A_{i 1}\right) \approx B_{j 1} / \mathrm{J}\left(B_{j 1}\right)$. Assume that f^{-1} is extendible to a g^{\prime} in $\operatorname{Hom}_{R}\left(B_{1} / J\left(B_{j 1}\right), A_{1} / D_{1}\right)$. Since $B_{1} J^{i} \supset$ $B_{1} J^{j-1} \supset B_{j 1}, g^{\prime}\left(B_{1} J^{i} / \mathrm{J}\left(B_{j 1}\right)\right) \supset g^{\prime}\left(B_{j 1} / \mathrm{J}\left(B_{j 1}\right)\right)=f^{-1}\left(B_{j 1} / \mathrm{J}\left(B_{j 1}\right)\right) \neq 0$. On the other
hand, $g^{\prime}\left(B_{1} J^{i} / \mathrm{J}\left(B_{j 1}\right)\right) \subset\left(A_{1} / D_{1}\right) J^{i}=0$ for $A_{1} J^{i} \subset D_{1}$, which is a contradiction. Hence f is extendible to a g in $\operatorname{Hom}_{R}\left(A_{1} / D_{1}, B_{1} / \mathrm{J}\left(B_{j 1}\right)\right)$ by Lemma A. Since A_{1} / D_{1} is uniserial, $\operatorname{Soc}\left(A_{1} / D_{1}\right)=\left(A_{i 1}+D_{1}\right) / D_{1} \approx A_{i 1} /\left(\mathrm{J}\left(A_{i 1}\right)\right.$ and $g \mid A_{1 i} / \mathrm{J}\left(A_{i 1}\right)=f$ is an isomorphism, g is a monomorphism. Consider a uniserial module $\widetilde{B}_{i-1}=$ $g\left(\left(A_{i-11}+D_{1}\right) / D_{1}\right) \supset B_{j 1} / \mathrm{J}\left(B_{j 1}\right) . \quad$ Let $\mathrm{J}\left(B_{j-11}\right)=B_{j 1} \oplus B_{j 2} \oplus \cdots \oplus B_{j t}$. Assume $B_{j 2} \neq 0$.

Then $\operatorname{Soc}\left(B_{1} / B_{j 1}\right)=\sum_{k=2}^{t} \oplus \operatorname{Soc}\left(B_{j k}\right) \oplus \sum_{k=2}^{t^{\prime}} \oplus \operatorname{Soc}\left(B_{j-1 k}\right) \oplus \cdots$. Since $\operatorname{Soc}\left(\tilde{B}_{i-1}\right)=$ $B_{j 1} / J\left(B_{j 1}\right), \tilde{B}_{i-1}$ is not uniserial. Hence $B_{j 2}=B_{j 3}=\cdots=B_{j t}=0$. Considering the same situation for $g\left(\left(A_{i-21}+D_{1}\right) / D_{1}\right)$, we obtain similarly $B_{j-12}=\cdots=B_{j-1 t^{\prime}}$ $=0$, where $\mathrm{J}\left(B_{j-21}\right)=B_{j-11} \oplus \cdots \oplus B_{j-1 t} \cdots$. Repeating this argument, we know $B_{j-i+11} / \mathrm{J}\left(B_{j 1}\right)$ is uniserial.

In Lemma 6, if $i=j, B_{1} / \mathrm{J}\left(B_{i 1}\right)$ is not uniserial in general (see Example 1 in [5]).

Lemma 7. Let R be left serial and $A_{\alpha(i, t)}, A_{\beta(i, t)}$ hollow modules in (1). Assume $\alpha(i, t) \neq \beta(i, t)$. Then there are no d in J such that $d A_{\alpha(i, t)}=d A_{\beta(i, t)} \neq 0$.

Proof. Let $A_{\alpha(i, t)}=a R, A_{\beta(i, t)}=b R$ and assume that there exists d such that $d a R=d b R$. Then there exists r in R such that $d a r=d b$, and so $d(a r-b)=0$. On the other hand, $a r-b \neq 0$ by assumption, and there exists a primitive idempotent g such that $d b=d b g$. Further $d \in \mathrm{~T}\left(J^{s}\right)$ for some s and $0 \neq d b \in$ $\mathrm{T}\left(J^{t+s} g\right)$ by Lemma 1. Hence $d(a r-b) \in \mathrm{T}\left(J^{t+s} g\right)$, a contradiction to Lemma 1.

The following is the "if" part of Theorem.
Lemma 8. Let R be a left serial ring with $\overline{e J}$ square-free. If R satisfies the result in Lemma 6, then $(*, 1)$ holds for any hollow module.

Proof. First we shall show from the assumption that
(4) there are no three distinct hollow modules $A_{\alpha(i, s)}, A_{\beta(i, s)}$ and $A_{\gamma(j, t)}$ such that $\bar{A}_{\alpha(i, s)} \approx \bar{A}_{\beta(i, s)} \approx \bar{A}_{\gamma(j, t)}$ and $i \neq j, s<t$.

Contrarily we assume that there exist such modules. Put $A_{\alpha(i, s)}=a R, A_{\beta(i, s)}=$
$b R$ and $A_{\boldsymbol{\gamma}(j, t)}=c R$. $\quad A_{\boldsymbol{\gamma}^{\prime}(j, t-s+1)} / \mathrm{J}\left(A_{\boldsymbol{\gamma}(j, t)}\right)$ is unisreial for some $\gamma^{\prime}(j, t-s+1)>$ $\gamma(j, t)$ by assumption. We may assume that $a g=a, b g=b$ and $c g=c$ for some primitive idempotent g. Then there exists d^{\prime} in $\mathrm{T}\left(e J^{t-s} e\right)$ such that

$$
\begin{equation*}
d^{\prime} a=c \tag{5}
\end{equation*}
$$

by Lemmas 1 and 2. Let $A_{i}=a_{i} R$ and $d^{\prime} a_{i}=\sum_{j} v_{j}$ as in (3) ($a_{i} h=a_{i}, v_{j} h=v_{j}$ for some primitive idempotent h). $\quad a$ being in $A_{i}, a=a_{i} r$ for some r in J. Then $c=d^{\prime} a=d^{\prime} a_{i} r=\sum_{j} v_{j} r$. Hence from the observation after (2)

$$
\begin{equation*}
c=v_{k} r \text { for some } k \text { (say 1) and } v_{k^{\prime}} r=0 \quad \text { for } k^{\prime} \neq 1 \tag{6}
\end{equation*}
$$

$c=v_{1} r$ implies that $v_{1} \in A_{\delta(j)}$ and $\delta(j)>\beta(j, t)$. Further $a=a_{i} r$ implies $r \in$ $\mathrm{T}\left(h J^{s-1} g\right)$, and so $v_{1} \in \mathrm{~T}\left(J^{t-s+1} h\right)$ by Lemma 1. Hence $v_{1} \in A_{\gamma^{\prime}(j, t-s+1)}$ (note $\left.A_{\gamma(j, t)} \subset A_{\gamma^{\prime}(j, t-s+1)}\right)$. Now there exists d in $\mathrm{T}\left(e J^{t-s} e\right) \cap A_{j}$ with $v_{1}=d a_{i}$, and so

$$
\begin{equation*}
d a=d a_{i} r=v_{1} r=c \quad \text { and } \quad d a_{i}=v_{1} \tag{7}
\end{equation*}
$$

by (6). Let $b=a_{i} r^{\prime}$ for some r^{\prime} in R. Then $r^{\prime} \in \mathrm{T}\left(J^{s-1}\right)$ and $d b=d a_{i} r^{\prime}=$ $v_{1} r^{\prime} \in A_{\gamma^{\prime}(j, t-s+1)} \cap \mathrm{T}\left(J^{t}\right)=A_{\gamma(j, t)}$, since $A_{\gamma^{\prime}(j, t-s+1)} / \mathrm{J}\left(A_{\gamma(j, t)}\right)$ is uniserial. Hence $d A_{\alpha(i, s)}=d A_{\beta(i, s)} \neq 0$, which is a contradiction to Lemma 7. Thus we have shown (4). Now let $A_{1} \supset C_{1} \supset D_{1}$ and $A_{2} \supset C_{2} \supset D_{2}$ be submodules such that $f: C_{1} / D_{1} \approx C_{2} / D_{2}$ and C_{1} / D_{1} is simple. Let $c_{i}=\sum_{k} z_{i k}$ be a generator of C_{i} for $i=1$, 2, where $z_{i k} \in \mathrm{~T}\left(A_{\alpha_{i k}}\right)$ from (3) and $z_{i k} g=z_{i k}$ for some primitive idempotent g. We choose a generator $c_{i} \in C_{i}$ with $\min _{i=1,2}\left\{\min _{k}\left|\alpha_{i k}\right|\right\}$. We may assume that $c_{1}=\sum_{k} z_{1 k}$ and $\left|\alpha_{11}=11 \cdots 1\right|$ is minimal. Then $c_{1}=z_{11}(=x)$ from (4) and Lemmas 3 and 5. We shall take the following D_{1}^{*} similarly to D_{1} in the proof of Lemma 6: $D_{1}^{*}=A_{12} \oplus A_{13} \oplus \cdots \oplus A_{112} \oplus A_{113} \oplus \cdots \oplus A_{11 \cdots 12} \oplus \cdots\left(11 \cdots 1=\alpha_{11}\right)$. We shall show

$$
\begin{equation*}
D_{1} \subset \mathrm{~J}\left(A_{\alpha_{11}}\right) \oplus D_{1}^{*} \tag{8}
\end{equation*}
$$

Let y be an element in D_{1} and $y=\sum y_{i} ; y_{i} \in A_{\alpha_{i}}$ as in (3). Assume $\alpha_{1} \geqslant \alpha_{11}=$ $11 \cdots 1$. Then there exists r in $R g$ such that $y_{1} r=x, \quad x-y r=\sum_{i \geqslant 2}-y_{i} r$ is also a generator of C_{1} and contained in D_{1}^{*}. Since $A_{\alpha_{11} \cap} \cap D_{1}^{*}=0$, we obtain a contradiction from (4) and Lemma 5. Hence $\alpha_{1}<\alpha_{11}$, and so (8) is true. We choose a representative w in C_{2} of $f(x)$ such that $w g=w$. Let $w=\sum_{i=1}^{r} w_{i}\left(w_{i} g=w_{i}\right)$ as in (3); $w_{i} \in A_{\beta(2)}$. Since $w_{1} g=w_{1}$ and $\left|\alpha_{11}\right|$ is minimal, there exists d_{1}^{\prime} in A_{2} with $d_{1}^{\prime} x=w_{1}$. Now we have the same situation as (5). Hence from the argument after (5), similarly to (7) there exists d_{1} in $\mathrm{T}\left(e J^{t-s} e\right) \cap A_{2}$ such that $d_{1} a_{1} \in$ $\mathrm{T}\left(A_{\beta^{\prime}(t, t-s+1)}\right)$ and $d_{1} x=w_{1}$, where $t=\left|\beta_{1}(2)\right|, s=\left|\alpha_{11}\right|$ and $\beta^{\prime}(2, t-s+1)>\beta_{1}(2)$. Let $\gamma(1, q)=11 \cdots 1$ and $\gamma^{\prime}(1, q)$ be two distinct indices with $1<q \leqslant s$. Let
$p \in D_{1}^{*} \cap A_{\gamma^{\prime}(1, q)}$ and a_{q} a generator of $A_{\gamma(1, q)}$. Then $x=a_{q} r^{\prime}$ for some r^{\prime} in R. $d_{1} a_{q} r^{\prime}=d_{1} x=w_{1} \neq 0$, and so $d_{1} a_{q}(\neq 0) \in \mathrm{T}\left(e J^{t-s+q}\right)$. If $d_{1} p \neq 0, d_{1} p \in \mathrm{~T}\left(e J^{t-s+q}\right)$ by Lemma 1 and $d_{1} p$ and $d_{1} a_{q}$ generate a same submodule between $A_{\beta^{\prime}(2, t-s+1)}=$ $d_{1} A_{1}$ and $A_{\beta_{1}(2)}$, since $A_{\beta^{\prime}(2, t-s+1)} / \mathrm{J}\left(A_{\beta_{1}(2)}\right)$ is uniserial, which is a contradiction to Lemma 7. Therefore $d_{1} p=0$ and so $d_{1}\left(D_{1}^{*}\right)=0$. Similarly we can find $d_{i} \in A_{2}$ such that $d_{i} x=w_{i}$ for each w_{i} and $d_{i}\left(D_{1}^{*}\right)=0$. Put $d^{*}=\sum_{i=1}^{r} d_{i}$. Then $d^{*} x=$ $\sum d_{i} x=\sum w_{i}=w$. Let u be any element in D_{1}, then from (8) $u=u_{1}+u_{2}$, where $u_{1} \in \mathrm{~J}\left(A_{a_{11}}\right), u_{2} \in D_{1}^{*}$. We denote $u_{1}=x j ; j \in \mathrm{~J} . \quad d^{*} u=d^{*} u_{1}+d^{*} u_{2}=d^{*} u_{1}=d^{*} x j$ $=w j \in C_{2} J \subset D_{2}$. Therefore d_{l}^{*}, left-sided multiplication of d^{*}, is the desired extension of f.

Proposition. Let R be a left serial ring with $(*, 1)$. Let $\alpha(1, s)=11 \cdots 1$, $\beta(2, t)=211 \cdots 1(s<t)$ and $\left|A_{\beta(2, t)}\right|=k$. If $\bar{A}_{\alpha(1, s)} \approx \bar{A}_{\beta(2, t)}$, then $A_{\beta^{\prime}(t-s+1)} \approx A_{1} \mid D$, where $\beta^{\prime}(2, t-s+1)=21 \cdots 1$ and after renumbering $A_{\alpha(1 p)}$ for all $p, D=A_{12} \oplus$ $A_{13} \oplus \cdots \oplus A_{112} \oplus A_{113} \oplus \cdots \oplus \mathrm{~J}\left(A_{\gamma(1, s+k-1)}\right) ; \gamma(1, s+k-1)=11 \cdots 1$. Hence $A_{\beta^{\prime}(2, t-s+1)}$ is uniserial.

Proof. Since $\bar{A}_{\alpha(1, s)} \approx \bar{A}_{\boldsymbol{\beta}(2, t)}$, there exists d in A_{2} such that $d A_{\alpha(1, s)}=A_{\beta(2, t)}$ by Lemma 2, and so $d \mathrm{~J}\left(A_{\alpha(1, s)}\right)=\mathrm{J}\left(A_{\beta(2, t)}\right)$. Let $\mathrm{J}\left(A_{\alpha(1, s)}\right)=A_{11 \cdots 1} \oplus A_{11 \cdots 12} \oplus \cdots$ and $\mathrm{J}\left(A_{\beta(2, t)}\right)=A_{21 \cdots 1} \oplus A_{21 \cdots 12} \oplus \cdots$. Since $d \mathrm{~J}\left(A_{\alpha(1, s)}\right)=\mathrm{J}\left(A_{\beta(2, t)}\right)$ and $A_{211 \cdots 1}$ is hollow, $\bar{A}_{21 \cdots, \cdots} \approx \bar{A}_{11 \cdots 1 k}$ for scme k. Then $A_{21 \cdots 1 k^{\prime}}=0$ for $k^{\prime} \neq 1$ by Theorem. Repeating this argument, we know that $A_{\beta(2, t)}$ is uniserial and $A_{\beta^{\prime \prime}(2, t+k-1)}$ is the socle of $A_{\boldsymbol{\beta}(2, t)}$ and is isomorphic to $A_{\boldsymbol{\alpha}^{\prime}(1, s+k-1)}$. There exists d^{\prime} in J from (7) such that $d^{\prime} A_{1}=A_{\beta^{\prime}(2, t-s+1)}$ and $d^{\prime} A_{\alpha^{\prime}(1, s+k-1)}=A_{\beta^{\prime \prime}(2, t+k-1)}$. Therefore we obtain the proposition from the last part of proof of Theorem.

References

[1] M. Harada: Serial rings and direct decompositions, J. Pure Appl. Algebra, 31 (1984), 55-61.
[2] -: On maximal submodules of a finite direct sum of hollow modules III, Osaka J. Math. 22 (1985), 81-98.
[3] —: Note on left serial algebras, Tsukuba J. Math. 10 (1986), 193-197.
[4] -: Generalizations of Nakayama ring III, Osaka J. Math. 23 (1986), 523539.
[5] : Generalizations of Nakayama ring V , to appear.
[6] T. Sumioka: Tachikawa's theorem on algebras of left colocal type, Osaka J. Math. 22 (1984), 629-648.

