

Title	An extension of Whitney's congruence
Author(s)	Yamada, Yuichi
Citation	Osaka Journal of Mathematics. 1995, 32(1), p. 185–192
Version Type	VoR
URL	https://doi.org/10.18910/11418
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Yamada, Y. Osaka J. Math. **32** (1995), 185–192

AN EXTENSION OF WHITNEY'S CONGRUENCE

YUICHI YAMADA

(Received July 1, 1993)

1. Introduction and Main results

Throughout this paper, we will work in the PL category, and all embeddings will be locally flat.

Let M be a connected and oriented 4-manifold, F a closed and connected surface of Euler characteristic $\chi(F)$. For a given embedding of F into $M(F \subset M)$, let e(M,F) be the normal Euler number of it, and let [F] be the element in $H_2(M;Z_2)$ represented by F in M. We are interested in the ralation between e(M,F) and [F]. In the case of $M=S^4$, the following theorem is well-known.

Theorem 1.1 (H. Whitney [8]: Whitney's congruence). If $M = S^4$,

$$e(M,F)+2\chi(F)\equiv 0 \mod 4.$$

For some time, we assume that M is closed and $H_1(M;Z) = \{0\}$. We will define a Z_4 -quadratic map q from $H_2(M;Z_2)$ to Z_4 as follows. By the assumption $H_1(M;Z) = \{0\}$, the mod 2-reduction map p_2 from $H_2(M;Z)$ to $H_2(M;Z_2)$ is surjective. For a given element α in $H_2(M;Z_2)$, we define $q(\alpha)$ by

$$q(\alpha) \equiv \widetilde{\alpha} \circ \widetilde{\alpha} \mod 4$$
,

where $\tilde{\alpha}$ is an element of $p_2^{-1}(\alpha)$ and \circ is the intersection form on $H_2(M; Z)$.

The well-definedness of q is easy to see, and q is Z_4 -quadratic, i.e.,

$$q(\alpha + \beta) \equiv q(\alpha) + q(\beta) + 2(\alpha \bullet \beta) \mod 4$$
,

where • is $(Z_2$ -valued) intersection form on $H_2(M; Z_2)$, and 2: $Z_2 \rightarrow Z_4$ is the natural embedding.

Using the quadratic function q, we extend Theorem 1.1 as follows:

Theorem 1.2.

$$e(M,F) + 2\chi(F) \equiv q([F]) \mod 4.$$

Y. YAMADA

It is well-known that if $F \subset M$ is characteristic (i.e., [F] is dual to the 2nd Stiefel-Whitney class $w_2(M)$), then $\sigma(M) \equiv [F] \circ [F] \mod 8$, where $\sigma(M)$ is the signature of M. Thus we have

Corollary 1.3 (V.A. Rochlin [5], see also [4]: Generalized Whitney's congruence). If $F \subset M$ is characteristic,

$$e(M,F) + 2\chi(F) \equiv \sigma(M) \mod 4.$$

Theorem 1.2 can be extended to the general case in which the only assumption on M is its orientability; we need not assume that $H_1(M; Z) = \{0\}$ nor that M is closed. M can even be non-compact. In fact, we can prove the following.

Theorem 1.4. Let M be an oriented 4-manifold. A map which assigns $e(M,F)+2\chi(F) \mod 4$ to an embedding $F \subset M$ induces a Z_4 -quadratic map from $H_2(M;Z_2)$ to Z_4 . We will also call it q.

For immersions from F into M, we have the following.

Corollary 1.5. Let M be an oriented 4-manifold, F an closed surface immersed in M with only normal crossings. Then

$$e(M,F) + 2\chi(F) + 2\# self(F) \equiv q([F]) \mod 4,$$

where # self(F) is the number of self-intersection points of F.

After writing the first version of this paper, we were informed by Prof. B.-H. Li that he found a general formula which includes our theorem 1.4([3]). In fact, he works in (2n, n)-dimensional case. His proof is homotopy-theoretic, on the other hand, ours is geometric.

2. A Connected sum formula

For a given embedding $F \subset M$, assume that there is a connected sum decomposition of M:

$$M = M_1 \# M_2 = \operatorname{punc} M_1 \bigcup_{\partial} \operatorname{punc} M_2,$$

such that each embedding $F_i \subset \text{punc } M_i$ is proper (i.e., $F_i \bigcap \partial(\text{punc } M_i) = \partial F_i$), where punc M_i is M_i with an open 4-ball deleted, and $F_i = F \bigcap \text{punc } M_i$, for i = 1, 2. Here we assume that F intersects $\partial(\text{punc } M_i)$ transversely. The symbol \bigcup_{∂} on the right-hand side means disjoint union with boundary identified by an orientation reversing homeomorphism. Then

$$(\partial \operatorname{punc} M_1, \partial F_1) = (\partial \operatorname{punc} M_2, \partial F_2) \cong (S^3, L)$$

for a certain link L in S^3 .

Let S be a (connected) Seifert Surface for L in S^3 , and regard it as being in $S^3 = \partial B^4 : S \subset S^3 = \partial B^4 \subset B^4$. Let (M_i, \hat{F}_i) denote $(\text{punc } M_i, F_i) \bigcup_{\partial} (B^4, S)$, for i = 1, 2. Now, we have

Lemma 2.1 Connected Sum Formula. Let M_i , F, \hat{F}_i be as above. Then

$$e(M_1 \# M_2, F) = e(M_1, \hat{F}_1) + e(M_2, \hat{F}_2).$$

In particular,

$$e(M_1 \# M_2, F_1 \# F_2) = e(M_1, F_1) + e(M_2, F_2)$$

Proof. Let v be a non-zero, normal vector field over S in S^3 . We can take a transverse push-off F' of F in M such that $F' \cap (\partial punc M_1) = v(L)$. Then

$$e(M,F) = \sum_{p \in F \cap F'_1} sign(p) + \sum_{p \in F \cap F'_2} sign(p)$$
$$= \sum_{p \in F_1 \cap F'_1} sign(p) + \sum_{p \in F_2 \cap F'_2} sign(p),$$

where F'_i is $F' \bigcap \text{punc } M_i$, for i = 1, 2. On the other hand, if we regard $F'_i \bigcup_{\partial} v(S)$ as a push-off of \hat{F}_i in M_i , then

$$e(M_i, \hat{F}_i) = \sum_{p \in F_i \cap F'_i} sign(p).$$

Thus we have the lemma.

3. Proof of Theorem 1.2

The proof is devided into 3 steps. We are given an embedding $F \subset M$.

(Step 1) We will show the theorem for $M = mCP^2 \# nCP^2(m+n>0)$. We have a standard handlebody decomoposition of M:

$$M = H^0()(()_{i=1}^{m+n}H_i^2)()H^4,$$

where H^r is an *r*-handle, and fix an identification

$$h_i^2: D^2 \times D^2 \xrightarrow{\cong} H_i^2.$$

Y. YAMADA

Without loss of generality (by general position augument), we can assume the following.

- (1) $F \cap H^4 = \phi$.
- (2) $F \cap H_i^2 = h_i^2 (D^2 \times \{ \text{ finite points in int } D^2 \}),$

i.e., each component of $F \cap H_i^2$ is parallel to the core of H_i^2 .

We regard M as $S^4 \# M$ by $H^0 \bigcup (\bigcup_{i=1}^{m+n} H_i^2 \bigcup H^4) = B^4 \bigcup_{\vartheta} \text{punc } M$, and use the notation " $M_i, F_i, \hat{F_i}$ " as in the last section ($M_i = S^4, M_2 = M$). Note that F_2 consists of some proper disks, and F_1 is F with some open 2-disks deleted.

We orient all the components of F_2 , and take a Seifert surface S so that the orientation of S is compatible with that of F_2 . Note that $\hat{F}_2(=S \bigcup F_2)$ is an orientable closed surface.

In the situation above, we have the following equalities.

- (1) $e(M,F) = e(S^4, \hat{F}_1) + e(M, \hat{F}_2)$
- (2) $e(S^4, \hat{F}_1) + 2\chi(\hat{F}_1) \equiv 0 \mod 4$
- (3) $e(M, \hat{F}_2) + 2\chi(\hat{F}_2) \equiv e(M, \hat{F}_2) \equiv q([\hat{F}_2]) \mod 4$
- (4) $[\hat{F}_2] = [F]$ in $H_2(M; Z_2)$
- (5) $\chi(\hat{F}_1) + \chi(\hat{F}_2) \equiv \chi(F) \mod 2$

The first holds by the connected sum formula, the second by Theorem 1.1, the third follows from the orientability of \hat{F}_2 , and the others are easy to verify. Now the theorem in this case follows from these equalities.

(Step 2) We will prove the theorem for a simply-connected manifold. We use the following fact [7], [4: Fact (2)].

Fact. Let M be a simply-connected, closed and oriented 4-manifold. Then there exist integers $l,m,n \ge 0$ such that

 $M\#(l+1)\overline{CP^2} = mCP^2\#n\overline{CP^2}.$

For a given embedding $F \subset M$, we take a connected sum $M^{\sharp}(l+1)CP^{2}^{\sharp}\overline{|CP^{2}|}$ disjointly from the neighborhood of F. It is easy to see that e(M, F), $\chi(F)$ and q([F]) are unchanged by the connected sum. Thus the proof is reduced to the first step.

(Step 3) The general case $(H_1(M; Z) = \{0\})$. For a given embedding $F \subset M$, and an element γ of $\pi_1(M)$, we take an embedded circle c in M such that

- (1) c represents the element γ ,
- (2) $c \bigcap F = \phi$, and

188

(3) c bounds an immersed oriented surface G in M which satisfies the following condition: for each generator x of $H_2(M; Z)$, there is a representing surface T_x such that $G \circ T_x = 0$ and $G \circ F = 0$.

This is possible because of the assumption $H_1(M; Z) = \{0\}$ and $\partial G \neq \phi$. We do surgery on M along c, and repeat it till $\pi_1(M)$ becomes trivial. At each surgery, $e(M, F), \chi(F)$ and q([F]) remain unchanged. We see it as follows ([6]). Suppose that we get

$$M' = D^2 \times S^2 \bigcup_{\varphi \mid \partial} \{ M \setminus \operatorname{int} \varphi(S^1 \times D^3) \}$$

from M by surgery along c, where φ is a trivialization of a tubular neighborhood of c. Then the homology of M changes into

$$H_2(M';Z) \cong H_2(M;Z) \oplus Z\langle x \rangle \oplus Z\langle y \rangle,$$

where $x = [(D^2 \times *) \bigcup G]$ and $y = [* \times S^2]$. Thus the intersection form changes as

$$H_2(M';Z)\cong H_2(M,Z)\oplus \begin{pmatrix} * & 1\\ 1 & 0 \end{pmatrix}.$$

Under the isomorphism, the corespondence of $[F]_{old}$ and $[F]_{new}$ is:

$$[F]_{new} \leftrightarrow [F]_{old} + 0 + 0.$$

Thus q([F]) is unchanged, and the proof is reduced to the second step.

4. Proof of Theorem 1.4

This proof is devided into 3 steps. We are given an embedding $F \subset M$. If M is closed and $H_1(M; Z) = \{0\}$, then Theorem 1.2 applies. We will consider other cases step by step.

(Step 1) Suppose that M is closed but $H_1(M; Z) \neq \{0\}$. We perform surgery along embedded circles c which are disjoint from F and represent non-zero elements of $H_1(M; Z)$.

Suppose that two embedded surfaces $F_1, F_2 \subset M$ satisfy $[F_1] = [F_2]$ in $H_2(M; Z_2)$ and they are in general position. In Z_2 -coefficient chain complex, we can take a 3-chain Δ^3 whose boundary is $F_1 + F_2$. We will show that we can do surgery (along c to get M' from M) so that F_1 and F_2 also satisfy $[F_1] = [F_2]$ in $H_2(M'; Z_2)$.

Since Δ has boundary $F_1 + F_2$ with Z_2 -coefficient, the small normal circle of F_i intersects Δ at an odd number of points. If necessary, by connecting c with the small normal circle along Δ , we can choose c such that the geometric intersection number $\#(c \cap \Delta)$ is even and $N(c) \cap \Delta$ consists of an even number of 3-balls B,

where N(c) is a thin tubular neighborhood of c. Then in $D^2 \times S^2$ which is to be attached to $M \setminus int N(c)$, we can take { half as many proper arcs } $\times S^2$ whose boundary is the same as $(\partial N(c), \partial B)$. Then it is clear that $F_1 + F_2$ bounds a new 3-chain Δ' in M' with Z_2 -coefficient.

(Step 2) Suppose that M is compact but $\partial M \neq \phi$.

Let DM be the double of $M(DM = M \bigcup_{\partial} - M)$. The mapping q is already well-defind over DM by Step 1. Over M, the mapping is the composition $q \circ i_*$, where i_* is the homology homomorphism: $H_2(M; Z_2) \to H_2(DM; Z_2)$, induced by canonical inclusion *i*.

(Step 3) Suppose that M is non-compact. There is a sequence of countably many compact oriented 4-manifolds and inclusions:

$$M_1 \subset M_2 \subset M_3 \subset \cdots$$
 such that $\bigcup_{i=1}^{\infty} M_i = M$.

Since F is compact, there is a sufficiently large n such that $F \subset M_n$. We can apply the method in Step 2.

5. Proof of Corollary 1.5

We are given an immersed surface F in M with only normal crossings. For a crossing point p, we take a 4-ball neighborhood B around p. To remove the crossing at p, we cut out int $B \cap F$ from F, where $\partial B \cap F \subset \partial B$ is a Hopf link, and glue in an annulus $A \subset \partial B$. We call this new surface \tilde{F} . By the construction, $[\tilde{F}] = [F]$ in $H_2(M; \mathbb{Z}_2), \chi(\tilde{F}) \equiv \chi(F) \mod 2$ and $\# self(\tilde{F}) = \# self(F) - 1$.

Figure 1

190

We show $e(M, \tilde{F}) = e(M, F) \pm 2$. Let F' be a push-off of F. We can assume that F' is parallel to F near p and in particular $\partial B \cap F'$ gives a trivial framing for each component of $\partial B \cap F$ in $\partial B \cong S^3$. Then we can take an annulus A such that $\partial A = \partial B \cap F$ and $A \cap (\partial B \cap F')$ consists of two points whose signs are the same (Figure 1). Let A' be a push-off of A which is properly embedded in B^4 such that $\partial A' = \partial B \cap F'$. If we regard $(F' \setminus int B) \bigcup_{\partial} A'$ as a push-off of \tilde{F} , we have the claim.

We can repeat the above process till # self(F) becomes zero without changing both sides of the congruence. Thus we can reduce the corollary to Theorem 1.2 or 1.4.

6. Examples

In this section, we will give two examples for Theorem 1.2.

Example 1. ([2]) Let $M = mCP^2 \# n\overline{CP^2}(m+n>0)$, and identify its 2nd homology $H_2(M; Z_2)$ with $\bigoplus_{i=1}^m Z_2 \langle \xi_i \rangle \oplus \bigoplus_{j=1}^n Z_2 \langle \eta_j \rangle$. For an embedding $F \subset M$, such that $[F] \equiv \sum_{i=1}^k \xi_i + \sum_{j=1}^l \eta_j$,

$$e(M,F) + 2\chi(F) \equiv k - l \mod 4.$$

Example 2. Let $M = S^2 \times S^2$, and identify its 2nd homology $H_2(S^2 \times S^2; Z)$ with $Z\langle x \rangle \oplus Z\langle y \rangle$, where $x \circ x = y \circ y = 0$ and $x \circ y = y \circ x = 1$. Let $S^2(m) \subset S^2 \times S^2$ be an embedding of S^2 representing $1 \cdot x + m \cdot y$, which is for instance the graph of a degree *m* map $g_m: S^2 \to S^2$. Then

$$e(S^2 \times S^2, S^2(m)) = 2m.$$

As an element of $H_2(S^2 \times S^2; Z_2) \cong Z_2 \langle x \rangle \oplus Z_2 \langle y \rangle$,

$$[S^{2}(m)] \equiv \begin{cases} \underline{x} & \text{if } m \text{ is even} \\ \underline{x} + y & \text{if } m \text{ is odd} \end{cases}.$$

Thus we have

$$q([S^{2}(m)]) \equiv \begin{cases} 0 & \text{if } m \text{ is even} \\ 2 & \text{if } m \text{ is odd} \end{cases} \mod 4.$$

Example 2 shows that our main theorem is optimal in a sense.

Acknowledgement. The author would like to thank to Professor Bang-He Li for sending his preprint [3]. Also the author would like to express sincere gratitude to Professors Yukio Matsumoto and Mikio Furuta for their valuable advice and encouragement.

Y. YAMADA

References

- [1] R.C. Kirby: "The Topology of 4-Manifolds," Lecture Notes in Math. 1374, Springer, 1989.
- [2] Li Bang-He: Embeddings of surfaces in 4-manifolds (I)(II), Chinese Sci. Bull. 36 (1991), 2025–2033.
- [3] -----: Generalization of Whitney-Mahowald Theorem, preprint.
- [4] Y. Matsumoto: An elementary proof of Rochlin's Signature Theorem and its extension by Guillou and Marin, in "Progress in Math. 62," Birkhäuser Inc., 1986.
- [5] V.A. Rohlin: Proof of Gudkov's hypothesis, Funct. Anal. Appl. 6 (1972), 136-138.
- [6] C.T.C. Wall: Diffeomorphisms of 4-manifolds, J. London Math. Soc. 39 (1964), 131-140.
- [7] ------: On simply-connected 4-manifolds, J. London Math. Soc. 39 (1964), 141-149.
- [8] H. Whitney: On the topology of differentiable manifolds, in "Lectures in Topology," University of Michigan Press, Ann. Arbor. Mich. (1941), 101-141.

Department of Mathematical Sciences University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo, 113, Japan.