

Title	Perfect categories. III. Hereditary and QF-3 categories
Author(s)	Harada, Manabu
Citation	Osaka Journal of Mathematics. 1973, 10(2), p. 357-367
Version Type	VoR
URL	https://doi.org/10.18910/11420
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Harada, M.
Osaka J. Math.
10 (1973), 357-367

PERFECT CATEGORIES III

(HEREDITARY AND QF-3 CATEGORIES)

MANABU HARADA

(Received July 24, 1972)

Recently the author has defined perfect or semi-artinian Grothendieck categories with some assumptions [8], as a generalization of categories of modules in [1].

Further he has generalized essential results in [6] to such categories [9]. This note is a continuous work to give a generalizations of results in [3], [4] and [5].

Let R be a ring with identity. R. M. Thrall defined a *QF-3* algebra in [3] and many authors defined *QF-3* rings and studied them (cf. [10]).

R is called right *QF-3* if R has a minimal a faithful right R -module and R is called right *QF-3*⁺ if the injective hull $E(R_R)$ is projective, (see [2]).

We generalize those concepts to semi-perfect Grothendieck categories \mathfrak{A} with generating set of finitely generated objects, (which are equivalent to group valued functor categories (\mathfrak{C}^0, Ab) by [8], Theorem 3).

We shall completely determin structures of hereditary (more weakly locally *PP*) and perfect *QF-3* (resp. *QF-3*⁺) or semi-perfect and semi-artinian *QF-3* (resp. *QF-3*⁺, however this is a case of *QF-3*) categories \mathfrak{A} . Furthermore, we shall show that \mathfrak{A} is equivalent to product of \mathfrak{A}_s and \mathfrak{A}_s is the full subcategory \mathfrak{M}_s^{+1} , where S is the ring of upper (resp. lower) tri-angular matrices of a division ring over a well ordered set I , almost all of whose entries are zero, such that if \mathfrak{A} is *QF-3* I has the last element (resp. if \mathfrak{A} is semi-artinian *QF-3*⁺, then I has the last element and hence, \mathfrak{A} is *QF-3*) and vice versa with some restrictions. Those results are generalizations of [4] and [5].

1. Preliminary results

Let \mathfrak{A} be a Grothendieck category with generating set of finitely generated objects. If every object (resp. finitely generated object) has a projective cover, then \mathfrak{A} is called *perfect* (resp. *semi-perfect*). On the other hand, if every non-zero object has the non-zero socle, \mathfrak{A} is called *semi-artinian*.

1) see §1.

If \mathfrak{A} is semi-perfect, then \mathfrak{A} has a generating set of completely indecomposable projective $\{P_\alpha\}_I$. Let $(\{P_\alpha\}^0, Ab)$ be the additive contravariant functor category of the pre-additive category $\{P_\alpha\}$ to the category Ab of abelian groups. Put $R = \sum_{\alpha, \beta \in I} \oplus [P_\alpha, P_\beta]$. Then R is called the *induced ring* from \mathfrak{A} by $\{P_\alpha\}$. By e_α we shall denote idempotents 1_{P_α} in R . Let \mathfrak{M}_R be the category of all right R -modules. By \mathfrak{M}_R^+ we denote the full subcategory of \mathfrak{M}_R whose objects consist of all M such that $MR = M$. Then

Theorem A ([8], Theorem 3). *Let \mathfrak{A} be as above. Then the following are equivalent.*

- 1) \mathfrak{A} is semi-perfect.
- 2) $\mathfrak{A} \approx (\{P_\alpha\}^0, Ab)$.
- 3) $\mathfrak{A} \approx \mathfrak{M}_R^+$.

In this note, we only consider a semi-perfect category \mathfrak{A} and hence, \mathfrak{A} will be identified with $(\{P_\alpha\}^0, Ab)$ or \mathfrak{M}_R^+ in the following. We note in this case $e_\alpha R$ corresponds to P_α and $e_\alpha R e_\beta \approx [P_\beta, P_\alpha]$.

We shall make use of same notations in [8] and [9] without further comments and categorical terminologies in [11]. Rings in this note do not contain identities in general.

2. Locally PP-categories

Let \mathfrak{A} be a semi-perfect Grothendieck category with generating set of finitely generated. If $\{P_\alpha\}$ and $\{Q_\beta\}$ are generating sets of \mathfrak{A} such that P_α and Q_β are completely indecomposable and projective, then P_α is isomorphic to some Q_β and vice versa by Krull-Remak-Schmidt's theorem. Let R be the induced ring from \mathfrak{A} by $\{P_\alpha\}$, $R = \sum \oplus [P_\alpha, P_\beta]$. If fR is projective in \mathfrak{M}_R^+ for any α and β any element f in $[P_\alpha, P_\beta]$, \mathfrak{A} is called a *locally (right) PP-category*, (we called it "partially" in [3]).

This is equivalent to a fact that every functor T_f in $(\{P_\alpha\}^0, Ab)$ defined by $T_f(P_\gamma) = fR e_\gamma$ is representative for every $f \in [P_\alpha, P_\beta]$. We define similarly a left PP-category.

We can easily see from the following lemma that right PP-categories are also left PP-categories and that this definition does not depend on $\{P_\alpha\}$.

Lemma 1. *Let \mathfrak{A} be a semi-perfect Grothendieck category with a generating set $\{P_\alpha\}$ as above. Then \mathfrak{A} is locally PP if and only if any $f \in [P_\alpha, P_\beta]$ is zero or monomorphic, (cf. [9], Proposition 3).*

Proof. We assume that \mathfrak{A} is locally PP and $0 \neq f \in [P_\alpha, P_\beta]$. Since $fe_\alpha = f$, $0 \leftarrow fR \xleftarrow{\times f} e_\alpha R$ is exact. Further, $e_\alpha R$ is indecomposable, and hence, $fR \xleftarrow{\times f} e_\alpha R$.

Put $K = \text{Ker } f$ and $i: K \rightarrow P_\alpha$. If $i \neq 0$, there exists P_γ and $h \in [P_\gamma, K]$ such that $0 \neq ih \in [P_\gamma, P_\alpha] \subseteq R$. Then $0 = fih = fe_\alpha ih$ and $e_\alpha ih \in e_\alpha R$. Hence, $ih = e_\alpha ih = 0$, which is a contradiction. Therefore, f is monomorphic. Conversely, if f is monomorphic, then a mapping $\psi: fR \rightarrow e_\alpha R (\psi(fr) = e_\alpha r)$ is isomorphic. Hence, fR is projective in \mathfrak{M}_R^+ .

As an analogy of Theorem 4 in [9], we have

Theorem 1 ([9]). *Let \mathfrak{A} be a semi-perfect Grothendieck category with generating set of finitely generated object. Then \mathfrak{A} is locally PP and perfect (resp. semi-artinian) if and only if \mathfrak{A} is equivalent to $[I, \mathfrak{A}_i]'$ (resp. $[I, \mathfrak{A}_i]'$)²⁾ with functors T_{ij} such that $\psi_{k,j}: T_{kj}(B) \rightarrow T_{ki}(P)$ for $k > j > i$ (resp. $k < j < i$) is monomorphic, for any minimal object B in $T_{ji}(P)$ and $P \in \mathfrak{A}_i$, where \mathfrak{A}_i 's are semi-simple categories with generating sets.*

Proof. We assume that \mathfrak{A} is locally PP and $\{P_\alpha\}$ is a generating set of completely indecomposable projectives. Making use of Lemma 1 and the proof of Theorem 4 in [9] we know that \mathfrak{A} is equivalent to $[I, \mathfrak{A}_i]'$ (resp. $[I, \mathfrak{A}_i]'$) and that $\{P_\alpha^{(i)} = \tilde{S}_i(P_{i\alpha})\}^{2)}$ (resp. $\{S_i(P_{i\alpha})\}$) is a generating set in $[I, \mathfrak{A}_i]'$ (resp. $[I, \mathfrak{A}_i]'$), where $\{P_{i\alpha}\}$ is a generating set of \mathfrak{A}_i and $P_{i\alpha}$ is minimal. Since $f \in [P_\alpha^{(i)}, P_\beta^{(j)}]$ is monomorphic by Lemma 1, we have the conditions in the theorem. The converse is also clear from the structure of $[I, \mathfrak{A}_i]'$ (resp. $[I, \mathfrak{A}_i]'$) and Lemma 1.

REMARK. If we replace a minimal objects B in the above condition by any finite coproduct of $B_{i\alpha}$, it is equivalent to the condition $(*)-1$ in Theorem 3 in [9]. Hence, this fact gives us the difference between semi-hereditary and locally PP. We have immediately from Lemma 1. [9], Propositions 3 and 5 and their proofs

Theorem 2. *Let \mathfrak{A} be as in Theorem 1 and $\{P_\alpha\}$ a generating set of completely indecomposable projectives. If \mathfrak{A} is locally PP, then the following are equivalent.*

- 1) All P_α are J -nilpotent.
- 2) $1L(P_\alpha) < \infty$ for all α .
- 3) \mathfrak{A} is semi-artinian.

Furthermore, the following are equivalent.

- 1) $rL(P_\alpha) < \infty$ for all α .
- 2) \mathfrak{A} is perfect, (cf. [9], Theorem 6).

3. QF-3 categories

Let \mathfrak{A} be a Grothendieck category with generating set of projectives $\{P_\alpha\}$. An object C in \mathfrak{A} is called *faithful* if for any non-zero morphism $f: P_\alpha \rightarrow P_\beta$, there exists $g \in [P_\beta, C]$ such that $gf \neq 0$. Let $\{Q_\beta\}$ be another generating set of projec-

2) see [8], §3.

tives and $f' \neq 0 \in [Q_\varepsilon, Q_\delta]$. Since $Q_\varepsilon \oplus Q_\varepsilon' = \sum_i \oplus P_\alpha$ and $Q_\delta \oplus Q_\delta' = \sum_{j'} \oplus P_\beta$, we have a non-zero morphism $f: \sum_i \oplus P_\alpha \rightarrow \sum_{j'} \oplus P_\beta$ such that $f|Q_\varepsilon = f'$ and $f|Q_\varepsilon' = 0$.

Hence, there exist α, β such that $(p_\beta f|P_\alpha) \neq 0$, where p_β is the projection of $\sum_{j'} \oplus P_\beta$ to P_β . Then we have $g' \in [P_\beta, C]$ such that $g'(p_\beta f|P_\alpha) \neq 0$. Hence, $g'p_\beta f \neq 0$. Let i_{Q_ε} and i_{Q_δ} be inclusions. Put $g'p_\beta i_{Q_\delta} = g \in [Q_\delta, C]$. Then $g'p_\beta f i_{Q_\varepsilon} = g'p_\beta i_{Q_\delta} f' = gf'$ and $\text{Ker } f = Q_\varepsilon'$. Therefore, $gf' \neq 0$. Thus, we have shown that the faithfulness of C dose not depend on generating sets of projectives.

Let (\mathfrak{C}, Ab) be the contravariant additive functor category, where \mathfrak{C} is the small pre-additive category $\{P_\alpha\}$. Then \mathfrak{A} is equivalent to (\mathfrak{C}, Ab) . Hence C is faithful if and only if the corresponding functor in the above is a faithful functor. Furthermore, (\mathfrak{C}, Ab) is equivalent to \mathfrak{M}_R^+ , where R is the induced ring from $\{P_\alpha\}$. Then faithful functors correspond to faithful modules in \mathfrak{M}_R^+ .

An object M is called a *minimal faithful* if M is faithful and every faithful object is a coretract of M . According to R.M. Thrall [13], we call \mathfrak{A} *QF-3* if \mathfrak{A} contains a minimal faithful object M or equivalently, if \mathfrak{M}_R^+ has a minimal faithful module.

From now on we shall assume that \mathfrak{A} is a Grothendieck category with generating set of small projectives P_α . Further, we shall assume that \mathfrak{A} is a locally *PP* and semi-perfect category and hence, we may assume that all P_α are completely indecomposable and $P_\alpha \not\approx P_\beta$ for $\alpha \neq \beta$.

Every object A in \mathfrak{A} has an injective hull of A in \mathfrak{A} (see [11], p. 89, Theorem 3.2). We denote it by $E(A)$. If $E(\sum_i \oplus P_\alpha)$ is projective, \mathfrak{A} is called *QF-3⁺* (see [2]).

Let Q be an injective envelope of R in \mathfrak{M}_R^+ and M a minimal faithful module in \mathfrak{M}_R^+ . Then M is a retract of Q and hence, M is injective. Furthermore, since R is faithful, M is also a retract of R . Therefore, M is projective, and injective and we may assume that M is a right ideal of R .

Since R is semi-perfect, $R = \sum_i \oplus e_\alpha R$ and $e_\alpha R e_\alpha$'s are local rings. In the proof of theorem 4 in [9], we considered indecomposable projective objects P in \mathfrak{M}_R^+ such that $[P, e_\alpha R] = 0$ for all $e_\alpha R \not\approx P$. We call such P *belonging to the first block*. Contrary, if $[e_\alpha R, P] = 0$, P is called *belonging to the last block*.

Lemma 2. *Let \mathfrak{A} be a locally *PP* and *QF-3* semi-perfect Grothendieck category and R the induced ring. Then a minimal faithful object is a coproduct of $e_{\alpha_i} R$'s which belong to the first block.*

Proof. Since M is injective and a retract of $\sum_i \oplus e_\alpha R$, $M = \sum_j \oplus e_{\alpha_j} R$ by [14], Lemma 2. Further, since $e_{\alpha_i} R$ is injective $[e_{\alpha_i} R, eR] = 0$ by Lemma 1 if $e_{\alpha_i} R \not\approx eR$. Hence, $e_{\alpha_i} R$ belongs to the first block.

Lemma 3. *Let \mathfrak{A} be as above and $\sum_j \oplus e_j R$ a minimal faithful ideal. Then for any $\delta \in I$ there exist $\varphi(\delta)$ in J such that $e_{\varphi(\delta)} R e_\delta \neq 0$.*

Proof. Let x be a non-zero element in $e_\delta R e_\delta$. Since $\sum_i \oplus e_i R = \sum_{j, i \in \alpha} \oplus e_i R e_\alpha$ is faithful, $e_{\varphi(\delta)} R e_\delta x \neq 0$ for some $\varphi(\delta)$.

Let e_i be as above. We put $R(i) = \{\gamma \mid i \in I, e_i R e_\gamma \neq 0\}$.

Lemma 4. *Let \mathfrak{A} be as above and further perfect. Then $R(i)$ contains the last element δ in $R(i)$ namely, $e_i R e_\delta \neq 0$ and $e_\delta R$ belongs to the last block.*

Proof. We assume that $R(1)$ does not contain the last element in $R(1)$. Put $N = \sum_{\gamma \in R(1)} \oplus e_1 R / (\sum_{\varepsilon \geq \gamma} e_1 R e_\varepsilon) \oplus \sum_{j \geq 2} \oplus e_j R$ and put $N_1 = \sum_{\gamma \in R(1)} \oplus e_1 R / (\sum_{\varepsilon \geq \gamma} e_1 R e_\varepsilon)$, and $N_2 = \sum_{j \geq 2} \oplus e_j R$. We shall show that N is faithful in \mathfrak{M}_R^+ . Let $x = \sum x_{\alpha\beta}$, $x_{\alpha\beta} \in e_\alpha R e_\beta$ and $x_{\alpha\beta} \neq 0$. If $\varphi(\alpha) \neq 1$, we take $0 \neq y \in e_{\varphi(\alpha)} R e_\alpha \in N_2$. Then $yx = \sum yx_{\alpha\beta} \in \sum \oplus e_{\varphi(\alpha)} R e_\beta$ and $yx \neq 0$ by Theorem 1, since $e_\delta R e_\delta$ is a division ring by Lemma 1. We assume $\varphi(\alpha) = 1$. Then $\alpha \in R(1)$ and there exists $y \in e_1 R e_\alpha$ and $0 \neq yx_{\alpha\beta} \in e_1 R e_\beta$. Hence, $\beta \in R(1)$. Since $R(1)$ does not have the last element, we obtain γ in $R(1)$ such that $\beta < \gamma$. Hence $\{y + (\sum_{\varepsilon \geq \gamma} e_1 R e_\varepsilon)\}x \neq 0$. Therefore, N is faithful and N contains a submodule N_0 which is isomorphic to $e_1 R$. Then $N_0 = nR \approx e_1 R$ and $ne_1 = n$. Since $e_j R e_i = 0$ for $j \geq 2$, $n \in N_1$. Let $n = \sum_{i=1}^n \bar{r}_{\gamma_i}$, $\bar{r}_{\gamma_i} \in e_1 R / (\sum_{\varepsilon \leq \gamma_i} e_1 R e_\varepsilon)$. Then $n(e_1 R e_\gamma) = 0$ for $\gamma = \max(\gamma_i)$. However, $e_1(e_1 R e_\gamma) \neq 0$. Which is a contradiction.

Theorem 3 ([4], Theorem 1). *Let \mathfrak{A} be a perfect or semi-perfect and semiartinian and locally PP-Grothendieck category with a generating set of small preprojectives $\{G_\gamma\}_I$. If \mathfrak{A} is QF-3, there exist non-isomorphic indecomposable and projective objects $\{P_\alpha\}_J$ (resp. $\{Q_\beta\}_J$) such that*

- 1) $\{P_\alpha\}$ (resp. $\{Q_\beta\}$) is an isomorphic representative class of the projectives in the first (resp. last) block,
- 2) $\sum_j \oplus P_\alpha$ is a minimal faithful and injective object and
- 3) each P_α contains the unique minimal subobject S_α which is isomorphic to Q_α . Hence $[S_\alpha : \Delta_\alpha] = 1$ and S_α is projective in \mathfrak{M}_R^+ where $\Delta_\alpha = [Q_\alpha, Q_\alpha]$ is a division ring. Furthermore, any indecomposable projective is isomorphic to a subobject in some P_α .

Proof. We shall prove the theorem on the induced ring $R = \sum \oplus e_\alpha R$; $e_\alpha R \not\approx e_\beta R$ if $\alpha \neq \beta$. We know from Lemmas 2 and 3 that $\sum_j \oplus e_i R$ is a minimal faithful ideal, $e_i R$ belongs to the first block and $e_i R$ contains a submodule $e_i R e_{\gamma_i}$ where γ_i is the last element in $R(i)$. Since $e_{\gamma_i} R e_\varepsilon = 0$ for $\varepsilon \neq \gamma_i$, $\mathfrak{r}_i = e_i R e_{\gamma_i}$ is a right ideal. Put $\Delta_i = e_{\gamma_i} R e_{\gamma_i}$, then Δ_i is a division ring by Lemma 1. $e_i R$ is

indecomposable and injective. On the other hand, any Δ_i -submodule of \mathfrak{r}_i is a R -module. Hence, $[\mathfrak{r}_i : \Delta_i] = 1$ and \mathfrak{r}_i is the unique minimal subideal in $e_i R$. Since $\mathfrak{r}_i \approx e_{\gamma_i} R e_{\gamma_i} = e_{\gamma_i} R$, \mathfrak{r}_i is projective. Furthermore, $\mathfrak{r}_i \approx \mathfrak{r}_j$ if $i \neq j$, since $e_i R \ncong e_j R$ and $e_i R, e_j R$ are injective hull of \mathfrak{r}_i and \mathfrak{r}_j , respectively. Let $e_\delta R$ be in the last block. Then $e_{\varphi(\delta)} R e_\delta \neq 0$ and $\varphi(\delta) \in J$. Hence, $e_{\varphi(\delta)} R e_\delta = \mathfrak{r}_{\varphi(\delta)}$. Therefore, $\{e_{\gamma_i} R\}$ is an isomorphic representative class of projectives in the last block. Let $\varepsilon \in I - J$. Then $e_{\varphi(\varepsilon)} R e_\varepsilon \neq 0$ by Lemma 3. Hence, $[e_\varepsilon R, e_{\varphi(\varepsilon)} R] \neq 0$, which means that $e_\varepsilon R$ does not belong to the first block. Furthermore, $e_\varepsilon R$ is isomorphic into $e_{\varphi(\varepsilon)} R$ by Lemma 1.

Lemma 5. *Let R be the induced ring from a locally PP-Grothendieck category with generating set $\{P_\alpha\}$ as above. We assume that $\{e_i R\}_J$ is a set of injective objects such that $E = E(R)$ in \mathfrak{M}_R^+ is an essential extension of $\sum_j \bigoplus_i e_i R^{(K_i)}$. Then any $f \in [e_\beta R, E]$ is either zero or monomorphic, where $e_i R^{(K_i)} = \sum_{K_i} \bigoplus_i e_i R$ and e_β is any primitive idempotent.*

Proof. We assume $f \neq 0$. Then $\mathfrak{r} = f^{-1}(\sum_{i=1}^n e_{i,t} R) \neq 0$ for some $e_{i,t}$. Since $\sum_{i=1}^n e_{i,t} R$ is injective, $f \mid \mathfrak{r}$ is extended to $g \in [e_\beta R, \sum_{i=1}^n e_{i,t} R]$. Then g is monomorphic by Lemma 1. Therefore, f is monomorphic.

Theorem 4. *Let \mathfrak{A} be a perfect, locally PP-Grothendieck category with generating set of small projectives. Then \mathfrak{A} is QF-3⁺ if and only if every projective P_γ in the first block are injective and for any indecomposable projective P , there exists P_α in $\{P_\gamma\}$ that $[P, P_\alpha] \neq 0$. Hence, $\{P_\gamma\}$ is an isomorphic representative class of all projective and injective indecomposable objects.*

Proof. Let R be the induced ring from completely indecomposable projectives P_α . We assume \mathfrak{A} is QF-3⁺. Then $E = E(R)$ is isomorphic to $\sum_{j \in J} \bigoplus_i e_{\alpha_j} R^{(K_j)}$. It is clear that $e_{\alpha_j} R$ belongs to the first block from Lemma 1. For any projective $e_\beta R$, $E(e_\beta R) \subset E$. Hence, $[e_\beta R, e_{\alpha_j} R] \neq 0$ for some j , which implies $\{e_{\alpha_j} R\}$ consist of all projectives in the first block. Conversely, we assume that all projectives $\{e_i R\}_J$ in the first block are injective and have the property in the theorem. Since $[e_\beta R, e_i R] \neq 0$ for any $e_\beta R$, $E \supset \sum_{K_i, j} \bigoplus_i e_i R^{(K_j)} \supset R$ for suitable indices K_i . We assume $E \neq \sum_{K_j, j} \bigoplus_i e_j R^{(K_j)}$. Then there exists $g \in [e_\beta R, E]$ such that $\text{Im } g \not\subseteq \sum_{K_j, j} \bigoplus_i e_j R^{(K_j)}$. On the other hand, we obtain $g' \in [e_\beta R, E_0]$ such that $g' \mid g^{-1}(E_0) = g$ from the proof of Lemma 5, where E_0 is a finite coproduct of $e_j R$'s. Then $(g - g') \mid E_0 = 0$. Therefore, $g = g'$ by Lemma 5, which is a contradiction.

REMARK. The fact $[e_\beta R, e_{\alpha_j} R] \neq 0$ is equivalent to the validity of Lemma 3 for the above \mathfrak{A} .

Theorem 4'. *Let \mathfrak{A} be a semi-perfect, semi-artinian and locally PP-Grothendieck category with generating set of small projectives. Then \mathfrak{A} is QF-3⁺ if and only if \mathfrak{A} contains projectives P_α in the first block and all of such P_α are injective and for any indecomposable projective P , there exists P_α such that $[P, P_\alpha] \neq 0$. Hence, $\{P_\alpha\}$ consist of all projective and injective indecomposable objects. In this case \mathfrak{A} is QF-3, (cf. [2], Proposition 2 and [12], Proposition 3.1).*

Proof. We assume \mathfrak{A} is QF-3⁺. Let S be the socle of $E = E(R)$ and $S = \sum \bigoplus S_\gamma$, where S_γ 's are minimal objects in E . Then $E = E(S)$ and $E_\gamma = E(S_\gamma)$ is indecomposable and projective by the assumption. Hence, from [8], Corollary 1 to Lemma 2 $E_\gamma \approx e_\gamma R$, which belongs to the first block. Let $e_\beta R$ be any indecomposable ideal. Then $E(e_\beta R) \subset E$. Hence, $[e_\beta R, e_\gamma R] \neq 0$ by Lemma 1 and the proof of Lemma 5. Since each $e_\gamma R$ has the non-zero socle, \mathfrak{A} is QF-3 by the standard argument (cf. the proof of Lemma 7 below). The converse is similarly proved as in the proof of Theorem 4.

Lemma 6. *Let \mathfrak{A} be as in Theorem 3 (resp. Theorem 4') and $e_1 R$ in the first block. Let η be the last (resp. first) element in $R(1)$. Then $R(1) = C(\eta)$. If \mathfrak{A} is as Theorem 4, $R(1)^\eta \supseteq C(\gamma)$ for any $\gamma \in R(1)$ and for any δ and $\delta' \in (1)$ there exists ε in $R(1)$ such that $e_\delta R e_\varepsilon \neq 0$ and $e_{\delta'} R e_\varepsilon \neq 0$, where $R(1)^\eta = \{\alpha \mid \alpha \in R(1), \alpha \leq \gamma\}$ and $C(\eta) = \{\delta \mid \delta \in I, e_\delta R e_\eta \neq 0\}$.*

Proof. Let γ be in $R(1)$ and δ be in $(I - R(1))^\eta$. Then $e_{\varphi(\delta)} R e_\delta \neq 0$ and $\varphi(\delta) \neq 1$. We assume $e_\delta R e_\gamma \neq 0$. Then $e_{\varphi(\delta)} R e_\gamma \supset (e_{\varphi(\delta)} R e_\delta)(e_\delta R e_\gamma) \neq 0$ by Theorem 1. We take non-zero element x, y in $e_{\varphi(\delta)} R e_\gamma$ and $e_1 R e_\gamma$, respectively. Consider a mapping $\psi: xR \rightarrow yR$ such that $\psi(xr) = yr$. Then ψ is well defined and R -homomorphic by Theorem 1. Hence, $[e_{\varphi(\delta)} R, e_1 R] \neq 0$, which is a contradiction. Therefore, $R(1)^\eta \supset C(\gamma)$. Let x be a non-zero element in $e_1 R e_\gamma$. Then xR is a projective and indecomposable ideal in $e_1 R$ by the assumption.

Hence, $xR \not\approx e_q R$ for some q . Put $\psi(x) = e_q r$. Then $\psi(x) = \psi(xe_\gamma) = e_q r e_\gamma$. This implies $q \leq \gamma$ (resp. $q \geq \gamma$). Similarly, we have $q \geq \gamma$ (resp. $q \leq \gamma$). We assume $R(1)$ contains the last (resp. first) element η . Then $e_\gamma R e_\eta \approx x R e_\eta =$ (the socle of $e_1 R$) $\neq 0$. Hence, $R(1) = C(\eta)$. Let $\gamma' \in R(1)$. Then $e_\gamma R$ and $e_{\gamma'} R$ are monomorphic to $e_1 R$. Since $e_1 R$ is injective, their images have a non-zero intersection r . Hence, $r e_\varepsilon \neq 0$ for some ε . Therefore, $e_\gamma R e_\varepsilon \neq 0$ and $e_{\gamma'} R e_\varepsilon \neq 0$.

Lemma 7 (cf. [12]). *Let Δ be a division ring and I a well ordered set. Let $\{e_{i,j}\}_I$ be a set of matrix units. Put $R = \sum_{i \leq j \in I} e_{i,j} \Delta$. Then $e_{11} R$ is injective and hence, R is hereditary and QF-3 in \mathfrak{M}_R^+ . R is QF-3 if and only if I contains the last element.*

Proof. We first note that each $e_{i,j} R$ contains only right ideals of form $e_{i,j} R$ $i \leq j$ and $[e_{i,j} R, e_{11} R] \approx \Delta$. Let

$$\begin{array}{ccccc}
 0 & \longrightarrow & N & \longrightarrow & M \\
 & & \downarrow f & & \\
 & & e_{11}R & &
 \end{array}$$

be a given exact diagram in \mathfrak{M}_R^+ . We shall extend f to M by the standard argument. We obtain a maximal extension $f_0: N_0 \rightarrow e_{11}R$ such that $N_0 \supset N$ and $f_0|N=f$. If $M \neq N_0$, there exists m in M such that $me_{ii} \notin N_0$, since $\{e_{ii}R\}$ is a generating set. Put $M'=N_0+me_{ii}R$ and $\mathfrak{r}=\{x| \in e_{ii}R, mx \in N_0\}$. Then \mathfrak{r} is a right ideal in $e_{ii}R$. Hence, $\mathfrak{r} \approx e_{jj}R$ for some $j > i$. We define $g: \mathfrak{r} \rightarrow e_{11}R$ by setting $g(x)=f_0(mx)$ for $x \in \mathfrak{r}$. Then $e_{ii}|\mathfrak{r}$ and g are in $[\mathfrak{r}, e_{11}R] \approx e_{j1}\Delta \approx \Delta$. Hence, $g=\delta(e_{ii}|\mathfrak{r})$ for some δ in Δ , namely $g(x)=\delta e_{ii}x$ for any x in \mathfrak{r} . Therefore, we have an extension $f'_0: M' \rightarrow e_{11}R$ by $f'_0(n_0+mx)=f_0(n_0)+\delta e_{ii}x$. Hence, $N_0=M$. We know from [8], Lemma 7 and [9], Proposition 1 that R is perfect and $J(R)=\sum_{i,j \geq i+1} \oplus e_{ij}\Delta$. Since $J(R)$ is projective, R is hereditary by [9], Lemma 3. Therefore, R is QF-3⁺ by Theorem 4. If R is QF-3, $e_{11}R$ is a minimal faithful module by Theorem 3. Hence, I has the last element by Theorem 3. Conversely, I has the last element, then $e_{11}R$ contains the unique submodule $e_{11}R$. It is clear that $e_{11}R$ is faithful module. Let M be a faithful module in \mathfrak{M}_R^+ . Then there exists m in M such that $me_{11} \neq 0$. Hence, we have a monomorphism f of $e_{11}R$ to M by $f(e_{11}r)=me_{11}r$. Therefore, R is QF-3.

Lemma 8. *Let Δ be a division ring and $\{e_{ij}\}_I$ a set of matrix units. Put $S=\sum_I \oplus \Delta e_{ij}$ and $R=\sum_{i \geq j} \oplus \Delta e_{ij}$. Then*

- 1) *R is semi-hereditary.*
- 2) *R is semi-hereditary and QF-3 (or QF-3⁺) if and only if I has the last element.*
- 3) *R is hereditary and QF-3⁺ (or QF-3) if and only if I is finite, (cf. [12]).*

Proof. 1) Let \mathfrak{r} be a right ideal generated by $\{x_1, x_2, \dots, x_n\}$. Since $x_i=\sum_{\alpha} x_i e_{\alpha}$ and $x_i e_{\alpha} \in \mathfrak{r}$, we may assume that $x_i \in Re_{\alpha_i}$, where $e_{\alpha_i}=e_{\alpha_i \alpha_i}$. Let $\alpha_i=\max(\alpha_i)$. Considering Re_{α_i} as a Δ -vector space, we may assume x_1, \dots, x_t are linearly independent over Δ . If $\sum_{i=1}^t x_i r_i=0$ for $r_i \in R$ and $x_1 r_1 \neq 0$, then $r_1 e_{\varepsilon} \neq 0$ for $\varepsilon \leq \alpha_1$. Considering in S , we have $\sum_i x_i e_{\alpha_i} r_i e_{\varepsilon \alpha_1}=0$ and $e_{\alpha_1} r_1 e_{\alpha_1} \neq 0$. Therefore, $\sum x_i R=\sum \oplus x_i R$. Put $\alpha_2=\max(\{\alpha_i\}-\alpha_1)$. We consider a vector space V_2 generated by $\{\sum_1^t \oplus x_i Re_{\alpha_2}, x_j e_{\alpha_2}\}$. We may assume $V_2=\sum \oplus x_i Re_{\alpha_2} \oplus y_1 \Delta \oplus \dots \oplus y_s \Delta$, where $y_j=x_k e_{\alpha_2}$ for some k . We shall show that $\sum \oplus x_i R + \sum y_j R=\sum \oplus x_i R \oplus \sum \oplus y_j R$. We have already shown that $\sum y_j R=\sum \oplus y_j R$. Let $\sum x_i r_i=\sum y_j r'_j$; $r_i, r'_j \in R$. If $r'_1 \neq 0$, $r'_1 e'_{\varepsilon} \neq 0$ for some ε' . Then multiplying $e'_{\varepsilon' \alpha_2}$ in the above, we have $\sum x_i e_{\alpha_1} r_i e'_{\varepsilon' \alpha_2}=\sum y_j e_{\alpha_2} r'_j e'_{\varepsilon' \alpha_2}$ and

$e_{\alpha_1}r_i e_{\varepsilon'}_{\alpha_2} \in Re_{\alpha_2}$, $\delta_1 = e_{\alpha_2}r'_1 e_{\varepsilon'}_{\alpha_2} \neq 0$. Hence, $\sum y_i \delta_i = \sum x_i e_{\alpha_2}r_i e_{\varepsilon'}_{\alpha_2} \in \sum x_i Re_{\alpha_2}$, which is a contradiction. On the other hand, $x_i R \approx e_{\alpha_1}R$, $y_j R \approx e_{\alpha_2}R$. Repeating this argument, we show that \mathbf{r} is projective.

2) We assume that I has the last element α . We shall show that $e_{\alpha\alpha}R$ is injective as an analogy of Lemma 7. Let \mathbf{r} be a right ideal in some $e_{\beta\beta}R$. Put $R(\mathbf{r}) = \{\gamma \in I, \mathbf{r}e_{\gamma\gamma} \neq 0\}$. If $R(\mathbf{r})$ contains the last element δ in $R(\mathbf{r})$, then $\mathbf{r}_\delta = \sum_{\delta' \leq \delta} e_{\beta\beta}R e_{\delta'\delta'} \approx e_{\delta\delta}R$. Let ε be the least element in $I - R(\mathbf{r})$. If ε is not a limit element, $R(\mathbf{r})$ contains the element. We assume ε is limit. Then $\mathbf{r} = \bigcup_{\varepsilon' < \varepsilon} \mathbf{r}_{\varepsilon'}$.

We shall show $[\mathbf{r}, e_{\alpha\alpha}R] \approx \Delta e_{\alpha\alpha}$. Let $f \in [\mathbf{r}, e_{\alpha\alpha}R]$ and put $f'_\varepsilon = f|_{\mathbf{r}_{\varepsilon}} \in [\mathbf{r}_{\varepsilon}, e_{\alpha\alpha}R] \approx [e_{\varepsilon'\varepsilon'}R, e_{\alpha\alpha}R]$. Then $f'_{\varepsilon'} = \delta_{\varepsilon'} e_{\alpha\alpha}$ for some $\delta_{\varepsilon'} \in \Delta$. For $\varepsilon' \varepsilon''$ we have $\delta_{\varepsilon'} e_{\alpha\varepsilon''} = f'_{\varepsilon'}(e_{\alpha\varepsilon''}) = f(e_{\alpha\varepsilon''}) = f'_\varepsilon(e_{\beta\varepsilon''}) = \delta_{\varepsilon''} e_{\alpha\varepsilon''}$. Hence, $\delta_{\varepsilon'} = \delta_{\varepsilon''}$. If we put $\delta = \delta_{\varepsilon'}$, $f = \delta e_{\alpha\beta}$. Thus, we have prepared necessary facts to use the proof of Lemma 7. Therefore, $e_{\alpha\alpha}R$ is injective in \mathfrak{M}_R^+ and R is $QF-3^+$ and $QF-3$ by Theorem 4'. The converse is clear from 1) and Theorems 3 and 4'.

3) If I is finite, R is a hereditary and $QF-3$ artinian ring by [4], Theorem 3. We assume that R is hereditary and $QF-3$ or $QF-3^+$. Then I has the last element by Theorem 4. We assume that I contains a limit number α . Consider $J(e_\alpha R) = \sum_{\alpha < \gamma} \bigoplus e_{\alpha\gamma} \Delta$. Let $x = \sum_{i=1}^n e_{\alpha\gamma_i} \delta_i$. Then $x = \sum e_{\alpha\gamma_{i+1}} \delta_i e_{\gamma_i+1\gamma_i} \in J(e_\alpha R) J(R) \subseteq J^2(e_\alpha R)$. Hence, $J(e_\alpha R) = J^2(e_\alpha R)$, which implies $J(e_\alpha R)$ is not projective by [8], Proposition 2. Therefore, I does not contain the limit number, but contain the last element. Hence, I is finite.

From the above proof and [9] Lemma 3 we have

Corollary. *Let R be as above. Then R is hereditary if and only if $|I| \leq \aleph_0$ and does not contain the last element.*

Theorem 5. *Let \mathfrak{A} be a perfect or semi-perfect and semi-artinian, and locally PP-Grothendieck category with generating set of small projectives. If \mathfrak{A} is $QF-3^+$ or $QF-3$, then \mathfrak{A} is equivalent to $\Pi \mathfrak{A}_\alpha$, where \mathfrak{A}_α 's are of the same type as \mathfrak{A} and \mathfrak{A}_α is not expressed as a product of full subcategories.*

Proof. Let R be the induced ring from \mathfrak{A} and $\sum e_i R$ the coproduct of projectives in the first block. We shall show $e_\varepsilon R e_{\varepsilon'} = 0$ for either $\varepsilon \in R(i)$, $\varepsilon' \in R(i)$ or $\varepsilon \notin R(i)$, $\varepsilon' \in R(i)$. If $\varepsilon \in R(i)$, $e_\varepsilon R$ is monomorphic to a submodule of $e_i R$. Hence, $e_\varepsilon R e_{\varepsilon'} = 0$ if $\varepsilon' \notin R(i)$. Next, we assume $\varepsilon' \in R(i)$. If $e_\varepsilon R e_{\varepsilon'} \neq 0$ for $\varepsilon \notin R(i)$, $0 \neq e_\varepsilon R e_\varepsilon e_\varepsilon R e_{\gamma_i} \subset e_\varepsilon R e_{\gamma_i}$ for some $\gamma_i \in R(i)$ (or the last (resp. first) element in $R(i)$) by Lemma 1, which contradicts to a fact $R^{\gamma_i}(i) \supset C(\gamma_i)$. Put $R_i = \sum_{\varepsilon, \varepsilon' \in R(i)} e_\varepsilon R e_{\varepsilon'}$. Then $R = \sum \bigoplus R_i$ as a ring by Theorems 3, 4 and 4'. It is clear that each R_i is $QF-3^+$ or $QF-3$ and directly indecomposable. Hence, we have the theorem.

From the above theorem, we may restrict ourselves to a case of indecomposable categories if \mathfrak{A} is as in the theorem.

Theorem 6. *Let \mathfrak{A} be an indecomposable semi-perfect Grothendieck category with generating set of finitely generated objects. Then we have*

1) \mathfrak{A} is perfect, (semi-) hereditary and $QF-3^+$ (resp. $QF-3$) if and only if \mathfrak{A} is equivalent to $[I, \mathfrak{M}_\Delta]^r$, where I is a well ordered set (resp. with last element).

2) \mathfrak{A} is semi-artinian, hereditary and $QF-3^+$ (or $QF-3$) if and only if \mathfrak{A} is equivalent to $[I, \mathfrak{M}_\Delta]^l$, where I is a finite set

3) \mathfrak{A} is semi-artinian, semi-hereditary and $QF-3^+$ (or $QF-3$) if and only if \mathfrak{A} is equivalent to $[I, M_\Delta]^l$, where I is a well ordered set with last element. Where Δ is a division ring and functors T_{ij} in $[I, \mathfrak{M}_\Delta]$ are equal to $1_{\mathfrak{M}_\Delta}$, (cf. [2'], Theorem 3.2).

Proof. $[I, \mathfrak{M}_\Delta]^r$ is perfect, hereditary and $QF-3^+$ by Lemma 7 and [9], Theorem 3. We assume that I contains the last element. $[I, \mathfrak{M}_\Delta]^r$ is $QF-3$ by Lemma 7. If I is finite, $[I, \mathfrak{M}_\Delta]^l$ is semi-primary, hereditary and $QF-3^+$ (and $QF-3$) by Lemma 8. Finally, $[I, \mathfrak{M}_\Delta]^l$ is semi-artinian, semi-hereditary and $QF-3^+$ ($QF-3$) by Lemma 8 and [9], Proposition 1. Next, we assume that \mathfrak{A} is one of the forms in the theorem. Let R be the induced ring: $R = \sum_I \bigoplus e_i R$.

Then $e_1 R$ in the case 1) and $e_\alpha R$ in cases 2) and 3) are in the first block by Theorems 4 and 4', respectively, where α is the last element in I . Since, \mathfrak{A} is indecomposable, $e_1 R e_\gamma$ (resp. $e_\alpha R e_\gamma$) $\neq 0$ for any $\gamma \in I$ by Theorem 5, Lemma 3 and Remark. Let \mathfrak{A} be hereditary (cases 1) and 2)). If $[e_1 R e_\gamma : \Delta_\gamma] \geq 2$ (resp. $[e_\alpha R e_\gamma : \Delta_\gamma] \geq 2$) for any $\gamma \in I$, there exist linearly independent elements x, y over $\Delta_\gamma = e_\gamma R e_\gamma$. Then $xR + yR = xR \oplus yR$ by [9], Theorem 3, which contradicts to the indecomposability of $e_1 R$ and $e_\alpha R$. Let a, b be non-zero elements in $e_1 R e_\gamma$. As the proof of Lemma 6, a mapping $\psi: aR \rightarrow bR$ such that $\psi(a) = b$ gives a R -homomorphism. Furthermore, ψ is extended in $[e_1 R, e_1 R] = \Delta$. Hence $b = \delta a$ for some $\delta \in \Delta_1$. Therefore, $[e_1 R e_\gamma : \Delta_1] = 1$. Similarly, we obtain $[e_\alpha R e_\gamma : \Delta_\alpha] = 1$. Next, we assume \mathfrak{A} is semi-hereditary and $QF-3^+$ (case 3)). Then $e_\alpha R$ is in the first block and injective. Let x, y be non-zero elements in $e_\alpha R e_\gamma$. Then $xR + yR$ is a projective right ideal in $e_\alpha R$. Since $e_\alpha R$ contains

the unique minimal module and R is semi-perfect, $xR + yR \xrightarrow{\psi} e_\alpha R$ for some $\delta \in I$. Put $\psi^{-1}(e_\alpha) = z$, then $z \in e_\alpha R e_\delta$ and $x = zr, y = zr'$ for $r, r' \in R$. Hence, $r = \delta$ and $x = z e_\delta r e_\delta, y = z e_\delta r' e_\delta$. Therefore $[e_\alpha R e_\gamma : \Delta_\gamma] = 1$. Similarly to the above, we can show $[e_\alpha R e_\gamma : \Delta_\alpha] = 1$. Thus, in any cases $e_1 R e_\gamma$ (resp. $e_\alpha R e_\gamma$) is a simple Δ_γ -module. Hence, if $e_\epsilon R e_\gamma \neq 0$, $e_1 R e_\epsilon \otimes e_\epsilon R e_\gamma \subset e_1 R e_\gamma$ implies $[e_\epsilon R e_\gamma : \Delta_\epsilon] = [e_\epsilon R e_\gamma : \Delta_\gamma] = 1$ from Theorem 1. Let $x \neq 0 \in e_i R e_j$. Then Δ_i is isomorphic to Δ_j by $\xi: \delta_i x = x \xi(\delta_i)$. First we choose non-zero elements m_{1j} in $e_1 R e_j$. Then $e_j R$ is monomorphic to $\sum_{k \geq j} m_{1k} \Delta$ by the multiplication of m_{1j} from the left side. Hence, we can choose m_{jk} in $e_j R e_k$ such that $m_{1j} m_{jk} = m_{1k}$ (if $e_j R e_k \neq 0$). Then

$m_{1i}(m_{ij}m_{jk})=m_{1j}m_{jk}=m_{1k}=m_{1i}m_{ik}$. Therefore, $m_{ij}m_{jk}=m_{ik}$ if $m_{ij}\neq 0$ and $m_{jk}\neq 0$. Thus, R is a subring of $\sum_{i\leq j}\oplus e_{ij}\Delta$ (resp. $\sum_{i\geq j}\oplus e_{ij}\Delta$) such that all of elements of some (i, j) -entries may be equal to zero, where $\Delta\approx\Delta_i$. We assume $e_iRe_j=0$ (in cases 1) and 2)). Then $i\neq 1$ (resp. $i\neq\alpha$) and there exists γ from Lemma 6 such that $e_iRe_\gamma\neq 0$, $e_jRe_\gamma\neq 0$. Put $e=e_{11}+e_{ii}+e_{jj}+e_{\gamma\gamma}$ (resp. $e=e_{11}+e_{ii}+e_{jj}+e_{\alpha\alpha}$). Then $eRe=e_{11}\Delta\oplus e_{ii}\Delta\oplus e_{jj}\Delta\oplus e_{\gamma\gamma}\Delta\oplus e_{ii}\Delta\oplus e_{i\gamma}\Delta\oplus e_{j\gamma}\Delta\oplus e_{\gamma\gamma}\Delta$ is hereditary by [9], Corolalry to Lemma 2 if R is hereditary. However, we can easily see that eRe is not hereditary (cf. [6], Theorem 1). Therefore, $R=\sum_{i\leq j}\oplus e_{ij}\Delta$, (resp. $R=\sum_{i\geq j}\oplus e_{ij}\Delta$). Finally, we assume that R is semi-hereditay (case 3)). Let $\gamma<\delta$ be in I . Then since $m_{\alpha\gamma}R+m_{\alpha\delta}R$ is projective, $m_{\alpha\gamma}R+m_{\alpha\delta}R=zR$ as before, where $z\in e_\alpha Re_\delta$. Hence, $zR=m_{\alpha\delta}R\supset m_{\alpha\gamma}R$. Therefore, $0\neq m_{\alpha\gamma}=m_{\alpha\delta}e_\delta er_\gamma$ implies $e_\delta Re_\gamma\neq 0$. Thus, \mathfrak{A} is equivalent to $[I, \mathfrak{M}_\Delta]^t$. The remainimg parts are clear from Theorems 3, 4 and 4' and Lemma 8.

OSAKA CITY UNIVERSITY

References

- [1] H. Bass: *Finitistic dimension and a homological generalization of semi-primary rings*, Trans. Amer. Math. Soc. **95** (1960) 466–488.
- [2] R.R. Colby and E.A. Rutter: *Semi-primary QF-3 rings*, Nagoya Math. J. **32** (1968) 253–257.
- [2] ———: *Generalization of QF-3 algebras*, Trans. Amer. Math. Soc. **153** (1971), 371–386.
- [3] M. Harada: *On semi-primary PP-rings*, Osaka J. Math. **2** (1965), 154–161.
- [4] ———: *QF-3 and semi-primary PP-rings*, I ibid. **2** (1965), 357–368.
- [5] ———: *QF-3 and semi-primary PP-rings* II, ibid. **3** (1966), 21–27.
- [6] ———: *Hereditary semi-primary rings and tri-angular matrix rings*, Nagoya Math. J. **27** (1966) 463–484.
- [7] ———: *On categories of indecomposable modules* II, Osaka J. Math. **8** (1971), 309–321.
- [8] ———: *Perfect categories* I, Osaka J. Math. **10** (1973), 329–341.
- [9] ———: *Perfect categories* II, Osaka J. Math. **10** (1973), 343–355.
- [10] J.P. Jans: *Projective injective modules*, Pacific J. Math. **9** (1959), 1103–1108.
- [11] B. Mitchell: *Theory of Categories*, Academic Press, New York and London, 1965.
- [12] H. Tachikawa: *On left QF-3 rings*, ibid. **32** (1970) 255–268.
- [13] M.R. Thrall: *Some generalizations of quasi-Frobenius algebra*, Trans. Amer. Math. Soc. **64** (1948) 173–183.
- [14] R.B. Warfield: *Decomposition of injective modules*, Pacific. J. Math. **31** (1969), 263–276.

