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Fractal Multi-Grid Method for Ultra Large Scale Mechanical and

Thermal Simulations

MURAKAWA Hidekazu*, SERIZAWA Hisashi**, TEJIMA Motohiko*** and

TAGUCHI Katsuya***

The finite element method is a powerful tool for predicting welding residual stresses and
distortions. However, the phenomena in welding are three-dimensional in their nature. Generally,
the three-dimensional thermal-elastic-plastic FE analysis requires very long computational time
and large memory size. To overcome this problem, the idea of a fractal multi-grid method is
proposed. Its potential capability is demonstrated through application to very simple mechanical

and thermal problems.

KEY WORDS: (Fractal) (Multi-Grid) (Computational Time) (Degree of Freedom) (Ultra Large Scale)

(Finite Element Method)

1. Introduction

Welding is one of the essential processes for
assembling steel structures, such as ships and
automobiles. However, it is impossible to avoid residual
stress and the distortion due to the shrinkage produced in
the vicinity of the weld line through the welding thermal
cycle. The former may result in a reduction of the fatigue
strength. The latter creates various problems during the
assembly process, such as excessive gaps and
misalignment between parts to be welded. To prevent or
minimize these problems, the quantitative prediction and
the effective control of the welding residual stress and
deformation are necessary.

However, it is very costly and time consuming to
carryout experiments or mockup tests in cases of large
structures such as ships or pressure vessels. An
alternative approach is computational analysis using
finite element methods which is effective in solving
nonlinear problems*®. In general, the phenomena in
welding are three-dimensional nonlinear transient
problems which require very long computational times
to analyze using FEM.

There are basically two approaches to tackle this
problem. One is the elastic FE analysis using the concept
of inherent strain or eigen strain®. The other is to

develop a thermal-elastic-plastic FEM which can greatly
reduce the computational time. To improve the speed of
computation, we must take advantage of the
characteristics of the welding problem. Noting the fact
that the region which exhibits strong nonlinearity is
limited to a very small area compared to the size of the
model to be analyzed and the remaining part is mostly
linear, the problem is transformed into the combination
of a large linear problem and a small, but moving, strong
nonlinear problem. When the structure to be analyzed is
large, most of the computational time is used for solving
large linear or quasi-linear problems. Thus, the authors
developed a fractal multi-grid method which can solve
large scale problems with more than one million degrees
of freedom and its potential capability is examined.

2. Characteristics of Welding Phenomena

Most welded structures are plate structures.
Dimension-wise, the size of the structure is about the
order of 1 to 10 m and the thickness of the plate is in the
order between 1 mm and 20 mm. The size of the weld
pool which characterizes the local phenomena in the
weld zone is roughly 10 mm in width and length and 2 to
5 mm in depth. This means that the size of the element in
the weld joint should be in the order of 2 to 5 mm and
this requires more than 100,000 elements to model the
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Fig.1 Transient temperature at a point on the welding line.

structure to be analyzed.

The temperature at the point located on the weld line
changes with the movement of the welding torch as
shown in Fig.1. The temperature changes drastically
with the movement of the torch and its time rate is about
the order of 200 °C/s. If it takes 120 seconds for the torch
to travel from the starting end to the finishing end and
the maximum temperature increment to achieve the
convergence is 10 °C, (200/10)x120= 2400 steps are
required to complete the welding simulation. This means
that a simultaneous equation with many degrees of
freedom must be solved thousands of times to simulate
welding.

Another characteristic of the welding problem is that
the material properties such as the Young’s modulus and
the yield stress are temperature dependent and this is a
major cause of strong nonlinearity of the problem. Thus,
the welding can be considered as a problem with a
nonlinear region moving with the torch. However the
nonlinear region under high temperature is limited to a
very small area compared with the whole structure.

According to the standard FE solution procedure, the
whole system is solved as a nonlinear problem even
when the nonlinear region is very small. This is the
reason why unrealistically large computational time is
required. This limits the application of the nonlinear
welding simulation to practical problems in industry.

3. Separating Problem into Linear and Nonlinear
Problems

As discussed, the welding is characterized as a large
problem with a small moving nonlinear region. If the
problem is separated into a large but linear problem and
a small moving nonlinear problem, the computational
time can be reduced. Based on this idea, the authors
developed an iterative substructure method® which may
be categorized as a domain decomposition method®. One
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Fig.2 Basic idea of iterative substructure method.

straight forward method is to cutout the nonlinear region
B from the structure A as the problem (b) in Fig.2. T is
the boundary between regions A-B and B. In this way,
the remaining linear region A-B changes its shape with
the movement of the nonlinear region B. This requires
the solving of a large linear problem with changing
stiffness matrix. To avoid this, whole model A’ is used
instead of A-B in the iterative substructure method as the
problem (c) in Fig.2. The model A’ is assumed to be
subjected to the same loading condition as A but it has
the stiffness of the whole model in the past and the
stiffness is kept unchanged until updated. Thus the
solution time can be saved if the matrix after the forward
elimination is stored and repeatedly used. The stiffness
of the model A’ is updated when it is necessary to
maintain good convergence of the solution.

4. Fractal Multi-Grid Method

Though the computational time is greatly reduced by
the iterative substructure method, the size of the problem
which can be handled is limited by that of available
memory. When Pentium 4 (3.8 GHz, 2 GB) is used,
20,000 elements is the upper limit of the problem which
can be handled. To analyze welding problems with
practical interest, such as weld joints in nuclear power
plants and those of automobiles, more than 100,000
elements are required to model the details of the
structure.

Noting that the size of the nonlinear region is small,
the key for improving computational speed is to solve
the large quasi-linear problem efficiently both in
computational speed and memory saving. There are
several possibilities, such as ICCG (Incomplete
Cholesky Conjugate Gradient) method, multifrontal
method” and multi-grid method®. All of the three
methods are superior to the skyline method in memory
saving. Also, parallel and grid computings are promising
possibilities.
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Fig.5 Procedure of computation.

Since the proposed method takes advantage of
solving the same matrix repeatedly, ICCG may not be
suitable. As one of the methods for solving large
problems, the authors developed a fractal multi-grid
method which may be categorized as a geometrical
multi-grid method and tested its potential capabilities for
two and three dimensional elastic problems, linear elastic
plate bending and three dimensional transient thermal
conduction. The idea of the fractal multi-grid method is
illustrated using a two dimensional simple elastic
problem shown in Fig.3. A square sheet is stretched at its
four corners. When the model is subdivided into 8x8
elements, the deformation and the stress are computed
by solving basic cells consist of 2x2 elements under the

prescribed displacements at four corners as shown in
Fig.4. Such a basic operation is repeated hierarchically
from the top level to the lowest level. In this process, the
continuity between the neighboring cells is ignored as
illustrated in Fig.5. The continuity of the displacement
can be recovered at the lowest level by interpolating the
displacements at two nodes sharing the same cell
boundary. In this way, the continuity of the traction is not
guaranteed. It is retained through the iteration. Since all
the governing equations and boundary conditions must
be satisfied at the lowest or the finest level, the error in
stress field is evaluated at the lowest level and it is
transferred to the upper level.
The detail of the scheme is the following.
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Fig.6 Convergence of norm of unbalanced nodal force.

Step-(1) Solve the cell at the 1st-level under the given
boundary condition, not necessarily prescribed
displacements at four corners.

Step-(2) Use the displacements at 9 nodes obtained for
the 1st-level as the prescribed displacements at
four corners, compute displacements of four
cells belonging to the 2nd-level.

Step-(3) Repeat the same computation as in Step-(2)
until the lowest level.

Step-(4) Force the continuity of the displacements at
four nodes on the edge of the cell in the lowest
level by interpolating the displacements at the
two nodes belonging to the two cells sharing
the same edge.

Step-(5) Compute the unbalanced force at the lowest
level.

Step-(6) Redistribute the unbalanced force at the four
middle nodes and one center node of the cell to
the four corner nodes according to the
following rule.

Middle node: Redistribute one half of the
unbalanced force to the two corner nodes on the
same edge.

Center node: Redistribute one fourth of the
unbalanced force to the four corner nodes of the
cell.

Step-(7) Spread the above unbalanced nodal forces to
the two nodes belonging to the cells sharing the
same edge according to the ratio of the
stiffness.

Step-(8) Compute the correction to the nodal
displacement of the cell using the redistributed
unbalanced force with the prescribed correction
displacements at the four corner nodes.

Step-(9) Repeat the Steps-(2) through (8) until the norm
of the unbalance force at the lowest level
becomes small enough.
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Fig.7 Relation between degree of freedom and
computation time.

The details of the computational scheme may be
different when the problem to be solved is different, such
as heterogeneous or nonlinear problems. If the problem
is a linear isotropic two or three dimensional problem
and the regular uniform mesh is used, the stiffness
matrix of all cells becomes the same. Therefore, it is not
necessary to save the stiffness matrixes of all cells. Once
the inverse of the stiffness matrix of a cell is computed,
it can be used repeatedly. From the aspect of memory
space, the required memory size is only three or four
times the degree of freedom.

5. Example Problems

Though further improvements are necessary for
practical application in welding problems, potential
capability of the proposed method is tested using very
simple mechanical and thermal problems.

5.1 Stretching of square elastic sheet

One of the example problems is the square elastic
sheet stretched at four corners as shown in Fig.3. Figure
6 shows the convergence of the norm of unbalance force
with the iteration for 6 cases in which the number of
hierarchy is 2, 3, 4, 5, 6 and 7. The number of degree of
freedom for 7-levels is 33,282. The rate of convergence
becomes slightly smaller as the number of hierarchy
increases but good convergence is observed generally.
The relation between the computing time and the degree
of freedom is summarized in Fig.7. The computing time
to achieve the relative error of 10 to 10 is plotted. The
error in this figure is the relative value which is
normalized by that of the first iteration. As seen from the
slope of the curve, the computational time increases
almost linearly with the degree of freedom n. In the case
of conventional direct solution method, the
computational time is proportional to n*° (for two
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Fig.9 Comparison of computational time between FMG and
Band method (2-D steady thermal conduction).

dimensional problem) or n*® (for three dimensional
problem).

5.2 Simple steady and transient thermal conduction

problem

The next example is a simple two dimensional
steady heat conduction problem as shown in Fig.8. The
model is a square plate where all surfaces are insulated
except for the right and left edges facing each other
where the temperatures are given. The temperature field
at the 1st step and the 3rd step in iteration are shown in
Fig.8. The mesh division in this case is 32 x 32. As seen
from the figure, the convergence is very fast. The
relation between the degree of freedom n and the
computational time is plotted in Fig.9. The same
problem is solved using the conventional direct method
(Band method) and plotted for comparison. In case of
two dimensional steady problem, the proposed FMG
method is superior to the Band method. The maximum
size of the problem which the Band method can handle is
200,000. It becomes 4,000,000 when FMG method is
used. The same comparison is made for three
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Fig.8 Convergence of temperature distribution with iteration.
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Fig.10 Comparison of computational time between FMG and
Band method (3-D transient thermal conduction).

dimensional transient thermal conduction problem. As
shown in Fig.10, the FMG method becomes faster than
the Band method when the degrees of freedom exceed
36,000.

6. Conclusions

As discussed in this report, the practical welding
problems are very large and highly nonlinear transient
problems. It is necessary to develop fast and memory
saving schemes to encourage the FEM simulation of
practical welding problems in industry. Noting that the
welding problem is a mostly linear problem with a small
nonlinear region moving with the torch, the problem can
be separated into large quasi-linear problem and small
but moving nonlinear problem. As a method to solve
large linear problem, the authors proposed a fractal
multi-grid method and demonstrated its potential
capability in both mechanical and thermal problems. As
discussed in this report, by relaxing the continuity, the
possible choice of the solution scheme can be greatly
expanded. It may be worthwhile to look into the
potential of such a method for solving large scale
welding problems.
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