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Abstract 

 The finite element method is a powerful tool for predicting welding residual stresses and 
distortions. However, the phenomena in welding are three-dimensional in their nature. Generally, 
the three-dimensional thermal-elastic-plastic FE analysis requires very long computational time 
and large memory size. To overcome this problem, the idea of a fractal multi-grid method is 
proposed. Its potential capability is demonstrated through application to very simple mechanical 
and thermal problems. 
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1. Introduction 
 Welding is one of the essential processes for 
assembling steel structures, such as ships and 
automobiles. However, it is impossible to avoid residual 
stress and the distortion due to the shrinkage produced in 
the vicinity of the weld line through the welding thermal 
cycle. The former may result in a reduction of the fatigue 
strength. The latter creates various problems during the 
assembly process, such as excessive gaps and 
misalignment between parts to be welded. To prevent or 
minimize these problems, the quantitative prediction and 
the effective control of the welding residual stress and 
deformation are necessary. 
 However, it is very costly and time consuming to 
carryout experiments or mockup tests in cases of large 
structures such as ships or pressure vessels. An 
alternative approach is computational analysis using 
finite element methods which is effective in solving 
nonlinear problems1-3). In general, the phenomena in 
welding are three-dimensional nonlinear transient 
problems which require very long computational times 
to analyze using FEM. 
 There are basically two approaches to tackle this 
problem. One is the elastic FE analysis using the concept 
of inherent strain or eigen strain4). The other is to 

develop a thermal-elastic-plastic FEM which can greatly 
reduce the computational time. To improve the speed of 
computation, we must take advantage of the 
characteristics of the welding problem. Noting the fact 
that the region which exhibits strong nonlinearity is 
limited to a very small area compared to the size of the 
model to be analyzed and the remaining part is mostly 
linear, the problem is transformed into the combination 
of a large linear problem and a small, but moving, strong 
nonlinear problem. When the structure to be analyzed is 
large, most of the computational time is used for solving 
large linear or quasi-linear problems. Thus, the authors 
developed a fractal multi-grid method which can solve 
large scale problems with more than one million degrees 
of freedom and its potential capability is examined. 

 

 
2. Characteristics of Welding Phenomena 
 Most welded structures are plate structures. 
Dimension-wise, the size of the structure is about the 
order of 1 to 10 m and the thickness of the plate is in the 
order between 1 mm and 20 mm. The size of the weld 
pool which characterizes the local phenomena in the 
weld zone is roughly 10 mm in width and length and 2 to 
5 mm in depth. This means that the size of the element in 
the weld joint should be in the order of 2 to 5 mm and 
this requires more than 100,000 elements to model the 
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Fig.2  Basic idea of iterative substructure method. 
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structure to be analyzed. 
 The temperature at the point located on the weld line 
changes with the movement of the welding torch as 
shown in Fig.1. The temperature changes drastically 
with the movement of the torch and its time rate is about 
the order of 200 oC/s. If it takes 120 seconds for the torch 
to travel from the starting end to the finishing end and 
the maximum temperature increment to achieve the 
convergence is 10 oC, (200/10)×120= 2400 steps are 
required to complete the welding simulation. This means 
that a simultaneous equation with many degrees of 
freedom must be solved thousands of times to simulate 
welding. 
 Another characteristic of the welding problem is that 
the material properties such as the Young’s modulus and 
the yield stress are temperature dependent and this is a 
major cause of strong nonlinearity of the problem. Thus, 
the welding can be considered as a problem with a 
nonlinear region moving with the torch. However the 
nonlinear region under high temperature is limited to a 
very small area compared with the whole structure. 
 According to the standard FE solution procedure, the 
whole system is solved as a nonlinear problem even 
when the nonlinear region is very small. This is the 
reason why unrealistically large computational time is 
required. This limits the application of the nonlinear 
welding simulation to practical problems in industry. 
 
3. Separating Problem into Linear and Nonlinear 

Problems 
 As discussed, the welding is characterized as a large 
problem with a small moving nonlinear region. If the 
problem is separated into a large but linear problem and 
a small moving nonlinear problem, the computational 
time can be reduced. Based on this idea, the authors 
developed an iterative substructure method5) which may 
be categorized as a domain decomposition method6). One 

straight forward method is to cutout the nonlinear region 
B from the structure A as the problem (b) in Fig.2. Γ is 
the boundary between regions A-B and B. In this way, 
the remaining linear region A-B changes its shape with 
the movement of the nonlinear region B. This requires 
the solving of a large linear problem with changing 
stiffness matrix. To avoid this, whole model A’ is used 
instead of A-B in the iterative substructure method as the 
problem (c) in Fig.2. The model A’ is assumed to be 
subjected to the same loading condition as A but it has 
the stiffness of the whole model in the past and the 
stiffness is kept unchanged until updated. Thus the 
solution time can be saved if the matrix after the forward 
elimination is stored and repeatedly used. The stiffness 
of the model A’ is updated when it is necessary to 
maintain good convergence of the solution. 
 
4. Fractal Multi-Grid Method 
 Though the computational time is greatly reduced by 
the iterative substructure method, the size of the problem 
which can be handled is limited by that of available 
memory. When Pentium 4 (3.8 GHz, 2 GB) is used, 
20,000 elements is the upper limit of the problem which 
can be handled. To analyze welding problems with 
practical interest, such as weld joints in nuclear power 
plants and those of automobiles, more than 100,000 
elements are required to model the details of the 
structure. 

Fig.1  Transient temperature at a point on the welding line.

 Noting that the size of the nonlinear region is small, 
the key for improving computational speed is to solve 
the large quasi-linear problem efficiently both in 
computational speed and memory saving. There are 
several possibilities, such as ICCG (Incomplete 
Cholesky Conjugate Gradient) method, multifrontal 
method7) and multi-grid method8). All of the three 
methods are superior to the skyline method in memory 
saving. Also, parallel and grid computings are promising 
possibilities. 



 

 

 

 

 
Fig.3  Elastic sheet stretched at four corners. 

 Since the proposed method takes advantage of 
solving the same matrix repeatedly, ICCG may not be 
suitable. As one of the methods for solving large 
problems, the authors developed a fractal multi-grid 
method which may be categorized as a geometrical 
multi-grid method and tested its potential capabilities for 
two and three dimensional elastic problems, linear elastic 
plate bending and three dimensional transient thermal 
conduction. The idea of the fractal multi-grid method is 
illustrated using a two dimensional simple elastic 
problem shown in Fig.3. A square sheet is stretched at its 
four corners. When the model is subdivided into 8×8 
elements, the deformation and the stress are computed 
by solving basic cells consist of 2×2 elements under the 

prescribed displacements at four corners as shown in 
Fig.4. Such a basic operation is repeated hierarchically 
from the top level to the lowest level. In this process, the 
continuity between the neighboring cells is ignored as 
illustrated in Fig.5. The continuity of the displacement 
can be recovered at the lowest level by interpolating the 
displacements at two nodes sharing the same cell 
boundary. In this way, the continuity of the traction is not 
guaranteed. It is retained through the iteration. Since all 
the governing equations and boundary conditions must 
be satisfied at the lowest or the finest level, the error in 
stress field is evaluated at the lowest level and it is 
transferred to the upper level. 
 The detail of the scheme is the following. 

Fig.4  Basic cell consists of 4 elements. 
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Fig.5  Procedure of computation. 
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Fig.6  Convergence of norm of unbalanced nodal force. 
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Fig.7  Relation between degree of freedom and 

Step-(1) Solve the cell at the 1st-level under the given 
boundary condition, not necessarily prescribed 
displacements at four corners. 

Step-(2) Use the displacements at 9 nodes obtained for 
the 1st-level as the prescribed displacements at 
four corners, compute displacements of four 
cells belonging to the 2nd-level. 

Step-(3) Repeat the same computation as in Step-(2) 
until the lowest level. 

Step-(4) Force the continuity of the displacements at 
four nodes on the edge of the cell in the lowest 
level by interpolating the displacements at the 
two nodes belonging to the two cells sharing 
the same edge. 

Step-(5) Compute the unbalanced force at the lowest 
level. 

Step-(6) Redistribute the unbalanced force at the four 
middle nodes and one center node of the cell to 
the four corner nodes according to the 
following rule. 

  Middle node: Redistribute one half of the 
unbalanced force to the two corner nodes on the 
same edge. 

  Center node: Redistribute one fourth of the 
unbalanced force to the four corner nodes of the 
cell. 

Step-(7) Spread the above unbalanced nodal forces to 
the two nodes belonging to the cells sharing the 
same edge according to the ratio of the 
stiffness. 

Step-(8) Compute the correction to the nodal 
displacement of the cell using the redistributed 
unbalanced force with the prescribed correction 
displacements at the four corner nodes.  

Step-(9) Repeat the Steps-(2) through (8) until the norm 
of the unbalance force at the lowest level 
becomes small enough. 

 The details of the computational scheme may be 
different when the problem to be solved is different, such 
as heterogeneous or nonlinear problems. If the problem 
is a linear isotropic two or three dimensional problem 
and the regular uniform mesh is used, the stiffness 
matrix of all cells becomes the same. Therefore, it is not 
necessary to save the stiffness matrixes of all cells. Once 
the inverse of the stiffness matrix of a cell is computed, 
it can be used repeatedly. From the aspect of memory 
space, the required memory size is only three or four 
times the degree of freedom. 
 
5. Example Problems 
 Though further improvements are necessary for 
practical application in welding problems, potential 
capability of the proposed method is tested using very 
simple mechanical and thermal problems. 
 
5.1 Stretching of square elastic sheet 
 One of the example problems is the square elastic 
sheet stretched at four corners as shown in Fig.3. Figure 
6 shows the convergence of the norm of unbalance force 
with the iteration for 6 cases in which the number of 
hierarchy is 2, 3, 4, 5, 6 and 7. The number of degree of 
freedom for 7-levels is 33,282. The rate of convergence 
becomes slightly smaller as the number of hierarchy 
increases but good convergence is observed generally. 
The relation between the computing time and the degree 
of freedom is summarized in Fig.7. The computing time 
to achieve the relative error of 10-4 to 10-8 is plotted. The 
error in this figure is the relative value which is 
normalized by that of the first iteration. As seen from the 
slope of the curve, the computational time increases 
almost linearly with the degree of freedom n. In the case 
of conventional direct solution method, the 
computational time is proportional to n2.0 (for two 

             computation time. 
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Fig.8  Convergence of temperature distribution with iteration. 
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Fig.10  Comparison of computational time between FMG and

dimensional problem) or n2.3 (for three dimensional 
problem). 
 
5.2 Simple steady and transient thermal conduction 

problem 
 The next example is a simple two dimensional 
steady heat conduction problem as shown in Fig.8. The 
model is a square plate where all surfaces are insulated 
except for the right and left edges facing each other 
where the temperatures are given. The temperature field 
at the 1st step and the 3rd step in iteration are shown in 
Fig.8. The mesh division in this case is 32 x 32. As seen 
from the figure, the convergence is very fast. The 
relation between the degree of freedom n and the 
computational time is plotted in Fig.9. The same 
problem is solved using the conventional direct method 
(Band method) and plotted for comparison. In case of 
two dimensional steady problem, the proposed FMG 
method is superior to the Band method. The maximum 
size of the problem which the Band method can handle is 
200,000. It becomes 4,000,000 when FMG method is 
used. The same comparison is made for three 

dimensional transient thermal conduction problem. As 
shown in Fig.10, the FMG method becomes faster than 
the Band method when the degrees of freedom exceed 
36,000. 
 
6. Conclusions 
 As discussed in this report, the practical welding 
problems are very large and highly nonlinear transient 
problems. It is necessary to develop fast and memory 
saving schemes to encourage the FEM simulation of 
practical welding problems in industry. Noting that the 
welding problem is a mostly linear problem with a small 
nonlinear region moving with the torch, the problem can 
be separated into large quasi-linear problem and small 
but moving nonlinear problem. As a method to solve 
large linear problem, the authors proposed a fractal 
multi-grid method and demonstrated its potential 
capability in both mechanical and thermal problems. As 
discussed in this report, by relaxing the continuity, the 
possible choice of the solution scheme can be greatly 
expanded. It may be worthwhile to look into the 
potential of such a method for solving large scale 
welding problems. 
 

         Band method (3-D transient thermal conduction). 
Fig.9  Comparison of computational time between FMG and

        Band method (2-D steady thermal conduction). 
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