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Introduction

Dans ce travail, ońetudie l’́equation d’Euler pour un fluide parfait incompress-
ible remplissant l’ext́erieur d’un borńe de R3. Plus pŕeciśement, onétablit un ŕesultat
d’existence locale en temps (Théor̀eme 2.1). Puis on prouve un critère d’explosion de
la solution (Th́eor̀eme 2.3).

L’existence locale a fait l’objet de nombreux travaux : C. Bardos et U. Frisch [3]
pour un ouvert quelconque (borné ou non) avec des données hlderiennes, R. Temam
[18] pour un ouvert borńe avec des données Sobolev, et plus récemment J.Y. Chemin
[9]. On pourra d’ailleurs consulter J.Y. Chemin [8] pour une bibliographie plus
compl̀ete.

En 1986, K. Kikuchi [16], établit un ŕesultat d’existence locale en temps, pour
l’ équation d’Euler, sur l’extérieur d’un ouvert borńe. Il le fait dansM1 δ (voir
définition au paragraphe 1) espace de Sobolevà poids, bien adapté à ce type de
probl̀eme.

En utilisant la ḿethode des caractéristiques de J.Y. Chemin (qui profite complète-
ment de la structure “champ de vecteurs” de l’équation), onétablit le m̂eme ŕesultat
dansM δ( ≥ 2) et on compl̀ete ainsi le th́eor̀eme de K. Kikuchi.

De manìere presque parallèle, l’étude des solutions maximales de l’équation
d’Euler, a ét́e, pendant de longues années, l’objet de recherches actives. Nous citerons
essentiellement J.T. Beale, T. Kato et A. Majda [4] et H. Bahouri et B. Dehman [2].
Ces auteurs montrent, dans leurs cadres respectifs, que c’est le tourbillon qui gouverne
l’existence ou l’explosion de la solution (tout au moins dans l’espace de régularit́e
consid̀eŕe).

Nous établissons dans ce travail un résultat analogue. La preuve repose sur une
étude pŕecise des champs de vecteursà coefficients dansM δ.

1. Préliminaires

1.1. Notations Dans tout le travail nous utiliserons les notations suivantes. Si
= ( 1 . . . ) est le point courant deR et α = (α1 . . . α ) ∈ N , on posera

|α| = α1 + · · · + α et ∂α = ∂|α|/∂ α. De plus△ désignera l’oṕerateur de Laplace
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habituel :△ =
∑

=1 ∂
2/∂ 2. D’autre part pour une fonction scalaire f, on notera

∇ = (∂ /∂ 1 . . . ∂ /∂ ), et si est un -vecteur, = (1 . . . ), ∇ désignera
la matrice (∂ /∂ )1≤ ≤ . En particulier, on d́efinit = ( ) commeétant la ma-
trice antisyḿetrique de∇ . Nous l’appellerons le tourbillon de . Dans le cas deR3,

est identifíe au vecteur rot =∇∧ .

1.2. Position du probl̀eme On se place dansR3 et on d́esigne par un ouvert
borńe ŕegulier, c’està dire, dont le bord∂ = est une hypersurface de classe
( assez grand), simplement connexe. On travaillera sur =R3\ , on notera ( ) la
normale ext́erieureà en un point ∈ .
Le mouvement des particules d’un fluide parfait (sans effets de viscosité) occupant
l’ouvert et non soumis̀a des forces extérieures est régi par le syst̀eme d’́equations
aux d́erivées partielles dite d’Euler

( ) :





∂ + ∇ = −∇
∇ = 0
| =0 = 0

| = 0

où ( ) = ( 1 2 3)( ) et ( ) repŕesentent la vitesse et la pression (intérieure)
au point à l’instant d’une particule du fluide,

∇ = div =
3∑

=1

∂

∂

et

∇ =
1
2
∇| |2+(∇∧ ) ∧

=
( 3∑

=1

∂

∂

)

=
( 3∑

=1

∂

∂

)

1≤ ≤3

1.3. Les espaces de Sobolev̀a poids. Dans toute la suite on travaillera dans
les espaces de Sobolevà poids dont la d́efinition est la suivante

DÉFINITION 1.3.1. Soient U un ouvert deR3, > 1, ∈ N et δ ∈ R, on pose

M δ( ) =
{
∈ D′( ); σδ+|α|∂α ∈ ( ) ∀|α| ≤

}

où σ = σ( ) =
√

1 + | |2 .
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Muni de la norme

| | δ=
∑

|α|≤
|σδ+|α|∂α |

c’est un espace de Banach.

Pour plus de d́etails sur ces espaces, on pourra consulter [6], [12] et [19].

Lemme 1.3.2. Soient un ouvert deR3, > 1 et δ > 0. Si σδ ∈ ( ) alors
∈ ( ) ∀ ∈](3 )/(δ + 3) ], de plus

| | ≤ ( δ )|σδ |

En particulier, pour un tel , M δ( ) s’injecte contin̂ument dans ( ).

Preuve. C’est une conśequence de l’ińegalit́e de Ḧolder.

2. Enonćes des ŕesultats et commentaires

On commence par le théor̀eme d’existence locale en temps.

Théorème 2.1. Soient > 3 1≤ δ < 2−3/ ≥ 2 et 0 ∈ M δ( ) tangentiel
à divergence nulle. Il existe > 0 et une unique fonction

∈ ∞
(

[0 ] M δ( )
)⋂

0
(

[0 ] M −1 δ( )
)

solution de( ).

Commentaires. 1) Ce th́eor̀eme est un analogue Sobolev au théor̀eme de
C. Bardos et U. Frisch [3] qui, lui, áet́e établi dans le cas des espaces de Hölder.
2) Il compl̀ete et ǵeńeralise celui de K. Kikuchi [16] (Th́eor̀eme 1.1).
3) On peut énoncer un th́eor̀eme identique pour un fluide soumis̀a des forces
ext́erieures, comme on peut aussiécrire le m̂eme ŕesultat sur l’ext́erieur d’un ouvert
borńe deR ( > 3), sous ŕeserve d’un bon choix de etδ (cf M. Cantor [6] et [7]).
4) La preuve du Th́eor̀eme 2.1 repose sur une méthode it́erative classique : On
linéarise l’́equation sur la vitesse et on intègre selon les lignes de champ. Cela justifie
la restriction sur l’indice de Sobolev,≥ 2.

Théorème 2.2. Soient > 3, 1≤ δ < 2− 3/ et ≥ 2. Notons ∗( ) le temps
maximal d’existence de la solution donnée par leThéor̀eme 2.1dansM δ( ), alors

∗( ) = ∗(2).
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Commentaires. 1) Ce th́eor̀eme indique l’ind́ependance du temps maximal
d’existence visà vis de l’indice de ŕegularit́e .
2) La preuve de ce th́eor̀eme utilise une ińegalit́e d’interpolation du type

| | δ≤
(
| | ∞ | | δ+| | δ| | ∞

)

qu’on d́emontrera en appendice (voir proposition [A])
On donne en fin un critère d’explosion pour l’́evolution de ce fluide :

Théorème 2.3. Soient > 3, 1 ≤ δ < 2 − 3/ , ≥ 3 et ∈
0
(

[0 ∗[ M −1 δ( )
)

la solution maximale de l’équation d’Euler ( ). Soit le

tourbillon de (ie = ∇∧ ) alors
- ou bien ∗ = +∞
- ou bien ∗ < +∞ et

∫ ∗

0

(
| ( )|Cα( )+| ( )| | 1−1/ ( )

)
= +∞

où α = (3− )/(2 ).

Commentaires. 1) Il suffit, en vertu du Th́eor̀eme 2.2 d’́etablir ce dernier
résultat pour = 3.
2) Ce th́eor̀eme est analogue pour l’ouvert extérieur à celui de J.T. Beale, T. Kato et
A. Majda [4] à donńees Sobolev, et celui de H. Bahouri et B. Dehman [2]à donńees
Hölderiennes, pour un fluide occupant tout l’espace.
3) Encore une fois le tourbillon apparait comme une quantité pertinente qui gouverne
l’ évolution d’un fluide parfait incompressible. En effet l’apparition de singularités pour
la vitesse (au moins dans l’espaceM δ( )) est líee l’explosion du tourbillon.
4) Ce th́eor̀eme admet une version identique lorsque> 3 .

3. Etude du flot d’un champ de vecteursà coefficients dans
C([0 T] M

p
s ( ))

Soient = ( 1 2 3) un champ de vecteur̀a coefficients dans ([0 ]M δ( )),
> 3 ≥ 1 δ ≥ 0 tangentiel à divergence nulle ( joue le rôle de la vitesse

dans l’́equation d’Euler). L’objet de ce paragraphe est d’établir quelques propriét́es
importantes des courbes intégrales de ce champ. CommeM δ( ) ⊂ ( ) ⊂

−1+λ( ) 0 < λ ≤ 1 − 3/ , (les injections sont alǵebriques et topologiques voir
[1]), le champ admet un flotη qui est solution de l’́equation

{ ∂η

∂
( ) =

(
η( )

)

η(0 ) =
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Si de plus ≥ 2, ce flot est unique et vérifie




i) η( ) : −→ est un 1 diff éomorphisme
ii) |Jac η( )|= 1 ∀ ∈ [0 ] ∈
iii) η η−1 ∈ 1

(
[0 ] + −1+λ( )

)

Pour plus de d́etails, on pourra consulter [2], [3], [5], [8] et [9].

Lemme 3.1. Soient > 3 ≥ 2 δ ≥ 0 ∈
(
[0 ] M δ( )

)
, tangentiel à

divergence nulle etη son flot, alors pour tout ∈ [0 ] et ∈ on a

1√
2 ( )

≤ σ
(
η( )

)

σ( )
≤
√

2 ( )

où, ( ) = 1 +
∫

0 | ( )| ∞

Preuve. On a η( ) = + ε( ) où ε( ) =
∫

0

(
η( )

)
. Par suite

1 + |η( )|2 ≤ 2
(
1 + | |2+|ε( )|2

)

D’où

1 + |η( )|2

1 + | |2
≤ 2
(
1 + |ε( )|2

)
(∗)

ce qui implique

σ2
(
η( )

)

σ2( )
≤ 2

(
1 +

(∫

0
| ( )| ∞

)2
)

≤ 2 2( )

σ
(
η( )

)

σ( )
≤
√

2 ( )On en d́eduit

Pour l’autre ińegalit́e, on applique (∗) η−1 au lieu deη et au lieu deε, où vérifie
: η−1( ) = + ( ).

Lemme 3.2. Sous les hypoth̀eses duLemme 3.1on a

Sup
∈
|∇ η( )|≤ exp

{∫

0
|∇ ( )| ∞

}
∀ ∈ [0 ]

Preuve. on écrit ∇ η( ) = +
∫

0 ∇
(

η( )
)
∇ η( ) et on conclut

par le lemme de Gronwall.
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Lemme 3.3. Soient > 3 ≥ 2 1≤ ′ ≤ δ δ′ ≥ 0, v un champ de vecteur
appartenantà

(
[0 ] M δ( )

)
tangentiel à divergence nulle etη son flot. Soit u

un champ deM ′ δ′ ( ) alors
i) ◦ η ∈

(
[0 ] M ′ δ′ ( )

)

ii) ‖ ◦ η‖ ′ δ′≤
(
‖ ‖ δ

)
| | ′ δ′

iii) Si ′ ≤ assez petit

‖ ◦ η‖ ′ ′ δ′≤
(

1 + (‖ ‖ ′ δ)
′
)
| | ′ ′ δ′

où ( ) est une fonction croissante en M et‖ ‖ δ = sup∈[0 ]| ( )| δ.

Preuve. Pour i) on pourra consulter [7]. Ońetablit iii) par ŕecurrence sur 1≤
< ′ et on d́eduit ii) de cette d́emonstration. On rappelle que

| ◦ η( )| δ′=
∑

|α|≤
|σδ′+|α|∂α

(
◦ η( )

)
|

Pour = 1

|σδ′
(
η( )

)
| =

∫
σ δ′ ( )|

(
η( )

)
|

≤
√

2
δ′ δ′ ( )

∫
σ δ′

(
η( )

)
|
(
η( )

)
|

(d’apr̀es le Lemme 3.1)

≤
√

2
δ′(

1 +‖ ‖ ∞

) δ′
∫

σ δ′ ( )| ( )|

|σδ′
(
◦ η( )

)
| ≤

√
2
δ′(

1 +‖ ‖ ∞

)δ′ | | 0 δ′d’où

Par ailleurs

|σδ′+1∇( η)( )| ≤
∫

σ (δ′+1)( )|∇
(
η( )

)
| |∇ η( )|

≤
√

2
(δ′+1)(

1 +‖ ‖ ∞

) (δ′+1)×

exp

{ ∫

0
|∇ ( )| ∞

}
|σδ′+1∇ |

(d’apr̀es le Lemme 3.2), d’òu

|σδ′+1∇( ◦ η)( )| ≤
√

2
δ′+1(

1 +‖ ‖ ∞

)δ′+1×

exp

{∫

0
|∇ ( )| ∞

}
|σδ′+1∇ ( )|

|
(
η( )

)
| 1 δ′≤

√
2
δ′+1(

1 +‖ ‖ ∞

)δ′+1
exp{‖∇ ‖ ∞ } | | 1 δ′Par conśequent
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De plus il existe 1 ≤ , tel que sur [0 1] on a

|
(
η( )

)
| 1 δ′ ≤ 4

√
2
δ′+1(

1 +‖ ‖ 1
∞ 1

)1/2(
1 +‖∇ ‖ 1

∞ 1

)1/2
| | 1 δ′

≤
(

1 + (‖ ‖ 1 δ) 1

)
| | 1 δ′

Supposons maintenant que le lemme est vrai jusqu’a l’ordre< ′; c’est à dire il
existe une constante telle que pour tout∈M δ′ ( ) on a :

‖ ◦ η‖
1 δ′≤

(
1 + (‖ ‖ 1 δ) 1

)
| | δ′

Soit ∈M +1 δ′( ). Pour estimer| ◦ η( )| +1 δ′ il suffit d’estimer | ◦ η( )| δ′

et |∇( ◦ η)( )| δ′+1. Or ∈ M δ′( ), donc par hypoth̀ese de ŕecurrence on a

‖ ◦ η‖
1 δ′≤

(
1 + (‖ ‖ 1 δ) 1

)
| | +1 δ′

Quant ∇( η) on l’écrit ∇( ◦ η) = (∇ ◦ η) + (∇ ◦ η) ∇ε avec ε( ) =∫
0 ( η( )) Encore une autre fois l’hypothèse de ŕecurrence donne

‖∇ ◦ η‖
1 δ′+1≤

(
1 + (‖ ‖ 1 δ) 1

)
| | +1 δ′

Pour (∇ ◦ η) (∇ε) on a (cf [7]) et cette d́ernìere ińegalit́e.

|(∇ ◦ η) ∇ε( )| δ′ ≤
(

1 + (‖ ‖ 1 δ) 1

)
| | +1 δ′ |ε( )| δ

≤
(

1 + (‖ ‖ 1 δ) 1

)
| | +1 δ′ (‖ ‖ 1 δ) 1

En effet, |ε( )| δ≤
(
‖ ‖ 1 δ

)
1 ∀ ∈ [0 1]. En conclusion

‖∇( ◦ η)‖
1 +1 δ′ ≤

(
1 + (‖ ‖ 1 δ) 1

)
| | +1 δ′ +

(
1 + (‖ ‖ 1 δ) 1

)
(‖ ‖ 1 δ) 1| | +1 δ′

≤
(

1 + (‖ ‖ 1 δ) 1

)2
| | +1 δ′

Si de plus (‖ ‖ 1 δ) 1 ≤ 2

‖∇( ◦ η)‖
1 +1 δ′≤ 2

(
1 + (‖ ‖ 1 δ) 1

)
| | +1 δ′

d’où le lemme.

Corollaire 3.4. Soient δ donńes comme auLemme 3.3, ( ) une suite
bornée de

(
[0 ] M δ( )

)
tangentielleà divergence nulle etη le flot de . Alors

pour tout ∈M δ( ), la suite ( ◦ η ) est borńee dans le m̂eme espace.
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4. Preuve du Th́eorème 2.1

On commence par exprimer et estimer la pression en fonction de la vitesse. C’est
l’objet des deux ŕesultats suivants.

Lemme 4.1. Si ( ) est solution de l’́equation d’Euler( ), alors v́erifie





−△ = (∇ )2

∂

∂

∣∣∣∣ =
3∑

=1

ϕ

|∇ϕ|

où ϕ est une fonction de paraḿetrisation de etϕ = ∂ ϕ (cf [18]).

Le linéariśe sur la vitesse de l’équation (E) nous conduit̀a ŕesoudreà donńe
dans

(
[0 ] M δ( )

)
tangentielà divergence nulle, le problème de Cauchy

(1)

{
∂ + ∇ = −∇ ( )
| =0 = 0

où ( ) est solution du problème de Neumann extérieur ( )

( )





−△ ( ) = (∇ ∇ ) =
3∑

=1

∂ ∂ = ( )

∂

∂

∣∣∣∣ =
3∑

=1

ϕ

|∇ϕ| = ( )

Proposition 4.2. Pour δ du Théor̀eme 2.1, il existe une constante > 0
telle que pour tout ∈ M δ( ) le probl̀eme (P.N.Ext) admet une unique solution

( ) ∈ M +1 δ−1( ). De plus :

|∇ ( )| δ ≤
(
| | δ| | 2 δ+| | 2 δ| | δ

)

≤ | | δ| | δ

Preuve. Comme∇ ∇ ∈ M −1 δ+1( ) qui est une alg̀ebre de Banach (cf [7]),
alors ( )∈ M −1 δ+1( ) et ( ) ∈ −1/ ( ), il existe une unique solution

( ) ∈ M +1 δ−1( ) de ( ) (cf [6]) de plus, en utilisant la proposition [A]
(voir appendice)

|∇ ( )| δ ≤ | ( )| +1 δ−1

≤
(
| ( )| −1 δ+1 + | ( )| −1/ ( )

)

≤
(
| | δ| | 2 δ+| | 2 δ| | δ

)
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Lemme 4.3. Pour δ et 0 du Théor̀eme 2.1et ∈
(
[0 ] M δ( )

)
tan-

gentiel à divergence nulle, toute solution u de l’équation(1) est tangentiellèa diver-
gence nulle.

Preuve. Il suffit d’́ecrire leséquations de la divergence de et de∇ϕ selon
les lignes de champ de .

En revenant maintenant l’équation (1), on a par une simple intégration

( ) = 0
(
η−1( )

)
−
∫

0
∇
( )(

η
(

η−1( )
))

( )( ) = 0
(
η−1( )

)
−
∫

0
∇
( )(

η
(

η−1( )
))

On pose :

alors la solution de (1) n’est autre qu’un point fixe de . D’après le Lemme 3.3 et la
Proposition 4.2, applique

(
[0 ] M δ( )

)
dans lui mme, de plus

(
( )− ( ′)

)
( ) = −

∫

0
∇
(
− ′ )(

η
(

η−1( )
))

∣∣∣ ( )− ( ′)( )
∣∣∣

δ
≤

(
‖ ‖ δ

)
‖ − ′‖ δet donc

ce qui montre que pour T assez petit, est contractante et admet un unique point
fixe ∈

(
[0 ] M δ( )

)
solution de (1). D’apr̀es le Lemme 4.3, est en plus

tangentielleà divergence nulle et via le Lemme 3.3, vérifie

‖ ‖ δ ≤
(

1 + (‖ ‖ δ)
)
| 0| δ+ (‖ ‖ δ) ‖ ‖ δ

Choisissons T tel que (‖ ‖ δ) < 1, on obtient

‖ ‖ δ≤
1 + (‖ ‖ δ)
1− (‖ ‖ δ)

| 0| δ

On d́efinit la suite ( ) dans
(
[0 ] M δ( )

)
tangentielle à divergence nulle

comme suit : 0( ) = 0( ) et +1 solution de :

{
∂ +1 + ∇ +1 = −∇ ( +1)

+1| =0 = 0

Lemme 4.4. Pour T assez petit, la suite ( ) est borńee dans
([0 ] M δ( )).

Preuve. Posons = 2| 0| δ et supposons que‖ ‖ δ≤ ∀0 ≤ ≤ ,
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alors

‖ +1‖ δ ≤
1 + (‖ ‖ δ)
1− (‖ ‖ δ)

| 0| δ

≤ 1 + ( )
1− ( )

| 0| δ≤ 2| 0| δ≡

pour ≤ 1 1 est assez petit.

Lemme 4.5. Pour T assez petit, la suite ( ) est de Cauchy dans(
[0 ] M −1 δ( )

)
.

Preuve. En effectuant la diff́erence deśequations on obtient

( +2− +1)( ) = −
∫

0
∇
(

+1; +2− +1
)(

η +1
(

η−1
+1( )

))

−
∫

0
∇
(

+1; +1−
)(

η +1
(

η−1
+1( )

))

−
∫

0

(
+1−

)
∇ +1

(
η +1

(
η−1

+1( )
))

oú η +1 désigne le flot de +1. D’après le Corollaire 3.4 et le Lemme 4.4, on en
déduit

‖ +2− +1‖ −1 δ≤ ( )
(
‖ +2− +1‖ −1 δ+‖ +1− ‖ −1 δ

)

‖ +2− +1‖ −1 δ≤
( )

1− ( )
‖ +1− ‖ −1 δ

ou encore

et pour ≤ 2 assez petit, la suite ( ) est de Cauchy dans ([0 ]M −1 δ( )).

Fin de la preuve du Th́eor̀eme 2.1. La suite ( ) converge vers dans
∞([0 ] M −1 δ( )

)
, et comme elle est bornée dans

(
[0 ] M δ( )

)
, cette

limite est en fait dans cet espace et via l’équation, ∈ 0
(
[0 ] M −1 δ( )

)
.

L’unicit é dansM1 δ( ), (théor̀eme de K. Kikuchi [16]), assure celle de dans
M δ( ).

5. Preuve du Th́eorème 2.2

Dans ce paragraphe désignera un entier≥ 3, la solution de l’́equation d’Euler
( ) et on travaillera dans un intervalle de temps [0 ] où 0< < ∗( ). Soit |α| ≤
, alors

1 ∂

∂
|∂α ( )| = |∂α ( )| −2

∂α ( ) ∂α∂ ( )
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en multipliant parσ (δ+|α|) et en faisant la somme sur|α| ≤ , on obtient

1 ∂

∂

∑

|α|≤
σ (δ+|α|)|∂α ( )| =

∑

|α|≤
σ (δ+|α|)|∂α ( )| −2

∂α ( ) ∂α∂ ( )

puis en remplacant∂α∂ ( ) par sa valeur dans l’équation ( ), on obtient

(2)
1 ∂

∂

∑

|α|≤
σ (δ+|α|)|∂α ( )| = − ( )− ( )

( ) =
∑

|α|≤
σ (δ+|α|)|∂α ( )| −2

∂α ( ) ∂α
(
∇
)
( )où

( ) =
∑

|α|≤
σ (δ+|α|)|∂α ( )| −2

∂α ( ) ∂α∇ ( )et

Lemme 5.1. Il existe une constante > 0, indépendante du temps telle que
∫
| ( )| ≤ | ( )| δ| ( )| 2 δ

Preuve.
∫
| ( )| ≤

∑

|α|≤

∫
|σδ+|α|∂α ( )| −1|σδ+|α|∂α∇ ( )|

≤
∑

|α|≤

[∫
|σδ+|α|∂α ( )|

]( −1)/ [∫
|σδ+|α|∂α∇ ( )|

]1/

≤ | ( )| −1
δ|∇ ( )| δ

et d’apr̀es la Proposition 4.2,|∇ ( )| δ≤ | ( )| δ| ( )| 2 δ.
Reprenons ( ), la régle de Leibniz nous permet de le décomposer

( ) = 0( ) + 1( )

0( ) =
∑

|α|≤
σ (δ+|α|)|∂α ( )| −2

∂α ( )
(
∇
)
∂α ( )oú

1( ) =
∑

|α|≤

∑

0<|β|≤|α|
α βσ

(δ+|α|)|∂α ( )| −2×(et)

∂α ( )
(
∂β ∇

)
∂α−β ( )

Lemme 5.2. Il existe une constante > 0, indépendante du temps telle que

∫
| 1( )| ≤ | ( )| δ| ( )| −1 δ
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Preuve.
∫
| 1( )| ≤

∑

|α|≤

∑

0<|β|≤|α|

∫
σ (δ+|α|)|∂α ( )| −1|

(
∂β ∇

)
∂α−β ( )|

︸ ︷︷ ︸
α β

i) Si |β| = 1, alors

α β ≤
∫
|σδ+|α|∂α ( )| −1|∂β ( ) σδ+|α|∂α−β∇ ( )|

et ∀|α| ≤ on a :
{
∂β ( ) ∈M −1 δ+1( ) ⊂ ∞( )

σδ+|α|∂α−β∇ ( ) ∈ ( )

ce qui implique que

|∂β ( ) σδ+|α|∂α−β∇ ( )| ≤ |∂β ( )| ∞ |σδ+|α|∂α−β∇ ( )|
≤ | ( )| 2 δ| ( )| δ

et on applique l’ińegalit́e de Ḧolder avec /( − 1) et .
ii) Si |β| = 2, alors

α β ≤
∫
|σδ+|α|∂α ( )| −1|σδ+2∂β ( ) σ|α|−2∂α−β∇ ( )|

et ∀|α| ≤ on a :

{
σδ+2∂β ( ) ∈ ( )
σ|α|−2∂α−β∇ ( ) ∈M −|α|+1 δ+1( ) ⊂ ∞ donc,

|σδ+2∂β ( ) σ|α|−2∂α−β∇ ( )| ≤ |σδ+2∂β ( )| |σ|α|−2∂α−β∇ ( )| ∞

≤ | ( )| 2 δ| ( )| δ

iii) Si |β| = |α|, on fait comme i).
iv) Si |β| ≥ 3 et |β| < |α| (dans ce cas bien sûr ≥ 4), on fait comme ii). D’òu le
lemme.
Pour 0( ), on l’écrit :

0( ) =
( ∑

|α|<
+
∑

|α|=

)(
σ (δ+|α|)|∂α ( )| −2

∂α ( )
(
∇
)
∂α ( )

)

= ( ) + ( )
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Lemme 5.3. Il existe une constante > 0, indépendante du temps telle que

∫
| ( )| ≤ | ( )| δ| ( )| 2 δ

Preuve.
∫
| ( )| ≤

∑

|α|<

∫
σ (δ+|α|)|∂α ( )| −2|∂α ( )

(
∇
)
∂α ( )|

et chacune des intégrales de la somme se majore par :

∫
|σδ+|α|∂α ( )| −1|σδ ( )||σ|α|∂α∇ ( )|

≤
[ ∫
|σδ+|α|∂α ( )|

]( −1)/
×
[ ∫
|σδ ( )| |σ|α|∂α∇ ( )|

]1/

≤ | ( )| δ| ( )| 2 δ

Par ailleurs,

2 ( ) =
∑

|α|=

3∑

=1

|σδ+ ∂α ( )| −2
∂
[
|σδ+ ∂α ( )|2

]
( )

︸ ︷︷ ︸
( )

−

∑

|α|=

3∑

=1

|σδ+ ∂α ( )| −2|∂α ( )|2 ( )∂ σ2(δ+ )

︸ ︷︷ ︸
( )

Lemme 5.4. Il existe une constante > 0, indépendante du temps telle que

∫
| ( )| ≤ | ( )| δ| ( )| 2 δ

Preuve.

∫
| ( )| ≤

∑

|α|=

3∑

=1

∫
|σδ+ ∂α ( )| −2|∂α ( )|2| ( )||∂ σ2(δ+ )|

≤
∑

|α|=

∫
σ( −2)(δ+ )|∂α ( )| | ( )|σ2(δ+ )−1

≤ | ( )| ∞ | ( )| δ
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Pour ( ), on l’́ecrit :

( ) =
2 ∑

|α|=

3∑

=1

∂
[
|σδ+ ∂α ( )|

]
( )

et par approximation de|σδ+ ∂α ( )| par une suite de fonctions∞
0 ( ) et en util-

isant le fait que div ( ) = 0, on montre que
∫

( ) = 0 ∀ ∈ [0 ]

Fin de la preuve du Th́eor̀eme 2.2. Les Lemmes 5.1. . . 5.4, montrent qu’il existe
une constante > 0 indépendante du temps telle que

∣∣∣
∫ (

( ) + ( )
) ∣∣∣ ≤ | ( )| δ

(
| ( )| 2 δ + | ( )| −1 δ

)

en int́egrant (2) entre 0 et ∈ [0 ], on obtient

| ( )| δ ≤ | 0| δ +
∫

0
| (τ )| δ

(
| (τ )| 2 δ + | (τ )| −1 δ

)
τ

et on en d́eduit par le lemme de Gronwall que

| ( )| δ ≤ | 0| δ exp

{ ∫

0

(
| (τ )| 2 δ + | (τ )| −1 δ

)
τ

}

En fin, une ŕecurrence sur ≥ 3, montre que| ( )| δ reste finie d̀es que| ( )| 2 δ

reste finie, ce qui achève la preuve.

6. Preuve du Th́eorème 2.3

En vertu du Th́eor̀eme 2.2, on montrera ce dernier dans le cas = 3. Pour cela on
va raisonner par l’absurde, c’està dire on suppose que

∗ < +∞ et
∫ ∗

0

(
| ( )|Cα( )+| ( )| | 1−1/ ( )

)
= < +∞

et on montre qu’il existe une constante> 0 telle que| ( )| 2 δ≤ ∀ ∈ [0 ∗[
ce qui contredit la maximalité de la solution.

REMARQUE 6.1. D’apr̀es le Lemme 2.10 de K. Kikuchi [16], il existe > 0 telle
que | | 2 δ≤ |∇∧ | 1 δ+1 pour tout ∈ M2 δ( ) tangentielà divergence nulle; cela
signifie que les trois normes| | 2 δ |∇ | 1 δ+1 et |∇ ∧ | 1 δ+1 sont équivalentes sur
le sous espace deM2 δ( ) formé par les champs tangentielsà divergence nulle. Donc
pour estimer| ( )| 2 δ il suffit d’estimer | ( )| 1 δ+1= |∇ ∧ | 1 δ+1, pour cela, on
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revient à l’équation du tourbillon :

{
∂ + ∇ = ∇
| =0 = 0

Si on d́esigne parη le flot de , on en d́eduit

( ) = 0
(
η−1( )

)
+
∫

0
( ∇ )

(
η
(

η−1( )
))

| ( )| 1 δ+1≤ | 0
(
η−1( )

)
| 1 δ+1+

∫

0
| ∇

(
η
(

η−1( )
))
| 1 δ+1et donc

i) Estimation de| 0
(
η−1( )

)
| 1 δ+1

| 0
(
η−1( )

)
| 1 δ+1

=
∫

σ (δ+1)( )| 0
(
η−1( )

)
| +

∫
σ (δ+2)( )|∇

(
0
(
η−1( )

))
|

≤ (δ+1)( )
∫

σ (δ+1)
(
η−1( )

)
| 0
(
η−1( )

)
| +

(δ+2)( )
∫

σ (δ+2)
(
η−1( )

)
|∇ 0

(
η−1( )

)
| |∇η−1( )|

≤ (δ+2)( )

(
|σδ+1

0| +
R

0 |∇ ( )| ∞ |σδ+2∇ 0|
)

(pour cette dernière ińegalit́e (cf preuve du Lemme 1 de [2])), d’où

| 0
(
η−1( )

)
| 1 δ+1≤ δ+2( ) exp

{∫

0
|∇ ( )| ∞

}
| 0| 1 δ+1

ii) Estimation de| ∇
(

η
(

η−1( )
))
| 1 δ+1. On pose = ∇ , il vient

|
(

η
(

η−1( )
))
| 1 δ+1

=
∫

σ (δ+1)( )|
(

η
(

η−1( )
))
| +

∫
σ (δ+2)( )|∇

(
η
(

η−1( )
))
|

≤ (δ+2)( )

(∫
σ (δ+1)( )|

(
η( )

)
| +(∗)

exp

{ ∫
|∇ (τ )| ∞ τ

}∫
σ (δ+2)( )|∇

(
η( )

)
|

)



634 M. JELLOULI

≤ 2 (δ+2)( )

(
|σδ+1 ( )| + exp

{ ∫
|∇ (τ )| ∞ τ

}
|σδ+2∇ ( )|

)

Pour l’inégalit́e (∗), c’est encore le Lemme 1 de [2]. On a donc

| ∇
(

η
(

η−1( )
))
| 1 δ+1

≤ 2(δ+2)( ) exp

{∫
|∇ (τ )| ∞ τ

}
| ∇ ( )| 1 δ+1

et par la proposition [A], on obtient

(I)
| ( )| 2 δ ≤ δ+2( )

[
| 0| 1 δ+1 exp

{∫

0
|∇ (τ )| ∞( ) τ

}
+

∫

0
exp

{∫
|∇ (τ )| ∞( ) τ

}
| ( )| 2 δ

(
| ( )| ∞( ) + |∇ ( )| ∞( )

) ]

Pour achever la preuve, on a besoin des deux propositions suivantes.

Proposition 6.2. Sous les hypoth̀eses duThéor̀eme 2.3, pour tout
∈
]
(3 )/{(δ + 1) + 3}

]
, il existe ( ) telle que

| ( )| ( )≤ ( ) ∀ ∈ [0 ∗[

Preuve. On a

( ) = 0(η−1( )) +
∫

0
( ∇ )( η−1( ))

| ( )| ( )≤ | 0| ( ) +
∫

0
| ( )| ∞( )|∇ ( )| ( )et donc

Maintenant en prolongeant ( ) et ( ) surR3\ par 0, et en faisant comme dans
[8] (Paragraphe 3.2), on sait qu’il existe une constante> 0 telle que

|∇ ( )| ( )≤ | ( )| ( ) ∀ ∈ [0 ∗[

| ( )| ( )≤ | 0| ( )+
∫

0
| ( )| ∞( )| ( )| ( )D’où

et par le lemme de Gronwall, on déduit | ( )| ( )≤ | 0| ( ) ∀ ∈ [0 ∗[.

Proposition 6.3. Pour ∈ M2 δ( ) ( > 3, 1 ≤ δ < 2− 3/ ) tangentiel à di-
vergence nulle et = ∇∧ , il existe pour(3 )/{(δ + 1) + 3} < < 3 une constante
> 0 indépendante de telle que:

| | ∞( ) ≤
(
| | ∞( ) + | | ( ) + | | ( ) + | | | 1−1/ ( )

)
i)
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|∇ | ∞( ) ≤
[
1 + | | ( ) + | | ( ) +

(
| |Cα( ) + | | | 1−1/ ( )

)(
1 + Log

(
+ | | 2 δ

))]ii)

Preuve. Voir appendice.
Tenant compte de la Proposition 6.2, l’inégalit́e (I) devient

| ( )| 2 δ exp

{
−
∫

0
|∇ (τ )| ∞( ) τ

}

≤
[
| 0| 1 δ+1 +

∫

0
| ( )| 2 δ exp

{
−
∫

0
|∇ (τ )| ∞( ) τ

}(
| ( )| ∞( ) + |∇ ( )| ∞( )

)]

≤ | 0| 1 δ+1 exp

{∫

0

(
| ( )| ∞( ) + |∇ ( )| ∞( )

) }

≤ | 0| 1 δ+1 exp

{∫

0
|∇ ( )| ∞( )

}

Ce qui montre d’apr̀es les Propositions 6.2, 6.3 et les hypothèses, que

| ( )| 2 δ ≤ | 0| 1 δ exp

{
2
∫

0
|∇ ( )| ∞( )

}

≤ 1 exp

{
2
∫

0

(
| ( )|Cα( ) + | | | 1−1/ ( )

)
Log

(
+ | ( )| 2 δ

) }

≤ β exp

{
2
∫

0

(
| ( )|Cα( ) + | | | 1−1/ ( )

)
Log

(
β + | ( )| 2 δ

) }

où β = Max
(

1

)

On pose ( ) = Log
(
β + | ( )| 2 δ

)
, il vient alors que

( ) ≤
(
1 + Logβ

)
exp

{
2
∫

0

(
| ( )|Cα( ) + | | | 1−1/ ( )

) }

≤ 2 pour tout ∈ [0 ∗[

ce qui contredit l’hypoth̀ese de la maximalité de la solution.

7. Appendice

On rappelle tout̀a bord la loi de Biot et Savart :
Etant donńe un champ˜ défini sur R3 à divergence nulle et̃ = rot˜ identifié la
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matrice

˜ =




0 ˜3 ˜1

−˜3 0 −˜2

−˜1 ˜2 0




alors ˜ = ∇ ⊗ ˜ = ∗ ˜ , c’est dire

˜ =
1

4π

3∑

=1

∫

R3

−
| − |3

˜ ( )

Dans une première étape, nous allons montrer le théor̀eme suivant :

Théorème 7.1. On se donne > 3, 1 ≤ δ < 2 − 3/ et on poseα =
( − 3)/(2 ), alors pour tout ∈](3 )/{(δ + 1) + 3} 3[ il existe une constante >

0 telle que pour tout̃ ∈M1 δ+1(R
3), on a :

|˜|C1+α(R3) ≤
[
1 + |˜ | (R3) + |˜ | (R3) + |˜ |Cα(R3)

(
1 + Log

(
+ |˜ |M1 δ+1(R3)

))]

où ˜ = ∇ ⊗ ˜ .

Pour montrer ce th́eor̀eme, il suffit en fait d’estimer les semies normes

|˜| ∞(R3) |∇˜| ∞(R3) et
[
∇˜
]
α

= Sup
6=0

|∇˜( + )−∇˜( )|
| |α

Or, d’apr̀es la d́emonstration de Beale, Kato and Majda [4], il existe une constante
> 0 telle que

|∇˜| ∞(R3) ≤
[
1 + |˜ | (R3) + |˜ | ∞(R3)

(
1 + Log

(
|˜ |M1 δ+1(R3) +

))]

Lemme 7.2. Pour (3 )/{(δ + 1) + 3} < < 3, il existe une constante > 0
qui ne d́epend que de telle que

|˜| ∞(R3) ≤
(
|˜ | ∞(R3) + |˜ | (R3)

)

Preuve. Rappelons tout̀a bord que si˜ ∈ M0 δ+1(R
3), alors ˜ ∈ (R3)

pour (3 )/{(δ + 1) + 3} < ≤ , et comme 1≤ δ < 2 − 3/ , alors 1 <

(3 )/{(δ + 1) + 3} < 3. En écrivant maintenant

˜( ) = χ ∗ ˜ + (1− χ) ∗ ˜
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où χ est une fonction de troncature près de l’origine, on obtient (avec ′ =
/( − 1)> 3/2)

|˜| ∞(R3) ≤
(
|χ | 1(R3)|˜ | ∞(R3) + |(1− χ) | ′ (R3)|˜ | (R3)

)

Le corollaire suivant, dont on aura besoin par la suite, est une conséquence du lemme
préćedent.

Corollaire 7.3. Pour γ = 1− 3/ et (3 )/{(δ + 1) + 3} < < 3, il existe une
constante > 0 telle que

|˜|Cγ (R3) ≤
(
|˜ | ∞(R3) + |˜| (R3) + |˜| (R3)

)

Preuve. Voir Hörmander [13].
Pour achever la d́emonstration du Th́eor̀eme 7.1, on montre qu’il existe une constante
> 0 telle que

[
∇˜
]
α
≤

[
1 + |˜ | (R3) + |˜ |Cα(R3)

(
1 + Log

(
+ |˜ |M1 δ+1(R3)

))]

Soit ∈ R3 \ {0}, on se propose d’étudier |∇˜( + )−∇˜( )|/| |α.
On pose pour 0< ρ < 1, la fonctionχρ( ) = χ( /ρ) où χ est une fonctionC∞ sur
R3 valant 1 sur{| | ≤ 1} et 0 sur{| | ≥ 2}. Il vient alors

˜ = χρ ∗ ˜ + (1− χρ) ∗ ˜ = ˜1 + ˜2

Lemme 7.4. Pour α = ( − 3)/(2 )
(
∈]0 1/2[

)
, ∇˜1 = χρ ∗∇˜ ∈ Cα, de plus

[∇˜1]α ≤ ρα|∇˜ |

où ne d́epend ni de˜ ni de ρ

Preuve.

∇˜1( + )−∇˜1( ) =
∫ (

χρ( + ) ( + )− χρ( ) ( )
)
∇˜ ( − )

=
∫

| |≤2| |

(
χρ( + ) ( + )− χρ( ) ( )

)
∇˜ ( − ) +

∫

| |≥2| |

(
χρ( + ) ( + )− χρ( ) ( )

)
∇˜ ( − )

Or

(∫

| |≤2| |

∣∣∣χρ( ) ( )
∣∣∣

′
)1/ ′

≤





(∫
| |≤2| |

1
| |2 ′

)1/ ′

si | | ≤ ρ
(∫

| |≤2ρ
1

| |2 ′

)1/ ′

si | | ≥ ρ
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≤
{ | |(3−2 ′)/ ′

= | |2α si | | ≤ ρ
ρ(3−2 ′)/ ′

= ρ2α si | | ≥ ρ
≤ | |αρα

de m̂eme, on a

(∫

| |≤2| |

∣∣∣χρ( + ) ( + )
∣∣∣

′
)1/ ′

≤
(∫

| + |≤3| |

∣∣∣χρ( + ) ( + )
∣∣∣

′
)1/ ′

≤
(∫

| |≤3| |

|χρ( )| ′

| |2 ′

)1/ ′

≤ | |αρα

D’où
∣∣∣∣∣

∫

| |≤2| |

(
χρ( + ) ( + )− χρ( ) ( )

)
∇˜ ( − )

∣∣∣∣∣ ≤ | |αρα
∣∣∣∇˜

∣∣∣

Reste maintenant :

( ) =
∫

| |≥2| |

(
χρ( + ) ( + )− χρ( ) ( )

)
∇˜ ( − )

on remarque que ( ) est nulle si| | > 2ρ, en effet dans ce cas, on a

{ | | ≥ 2| | > 4ρ doncχρ( ) = 0
| + | ≥ | | − | | ≥ | | > 2ρ doncχρ( + ) = 0

donc on peut supposer dans ( ) que| | ≤ 2ρ, et dans ce cas cette intégrale vaut

( ) =
∫

2| |≤| |≤4ρ

(
χρ( + ) ( + )− χρ( ) ( )

)
∇˜ ( − )

=
∫

2| |≤| |≤4ρ
χρ( + )

(
( + )− ( )

)
∇˜ ( − ) +

∫

2| |≤| |≤4ρ
( )
(
χρ( + )− χρ( )

)
∇˜ ( − )

= ( ) + ( )

Pour ( ), il existe une constante> 0 telle que pour tout| | ≥ 2| | on a

∣∣∣ ( + )− ( )
∣∣∣ ≤ | |

| |3
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et par suite

(∫

2| |≤| |≤4ρ

∣∣∣χρ( + )
(

( + )− ( )
)∣∣∣

′
)1/ ′

≤
(∫

| |≥2| |

| | ′

| |3 ′

)1/ ′

≤ | |
(∫ +∞

2| |

2−3 ′

)1/ ′

≤ | | | |(3−3 ′)/ ′

= | |2α

≤ | |αρα

ce qui montre que

| ( )| ≤ | |αρα
∣∣∣∇˜

∣∣∣

Quand-̀a ( ), on a

(∫

2| |≤| |≤4ρ
| ( )| ′ |χρ( + )− χρ( )| ′

)1/ ′

≤ | |
ρ

(∫ 4ρ

2| |

2−2 ′

)1/ ′

≤ | |
ρ
ρ2α = | |2α

( | |
ρ

)1−2α

≤ | |αρα
(

car
| |
ρ
≤ 2
)

d’où

| ( )| ≤ | |αρα
∣∣∣∇˜

∣∣∣

et le lemme est d́emontŕe.
Passons maintenantà

˜2( ) = (1− χρ) ∗ ˜
= ψ(1− χρ) ∗ ˜ + (1− ψ)(1− χρ) ∗ ˜
= ˜1 + ˜2

oú ψ( ) = χ(2 ). Pour˜2, on a

˜2( ) = (1− ψ) ∗ ˜
˜2( ) = (1− ψ) ∗ ˜ − ( ψ) ∗ ˜

2˜2( ) = (1− ψ)( 2 ) ∗ ˜ + ( 2ψ) ∗ ˜ − 2( ψ)( ) ∗ ˜et

ce qui montrer que 2˜2 ∈ ∞ et
∣∣∣ 2˜2

∣∣∣
∞
≤ |˜ | ∞
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et par suite
∣∣∣∇˜2( + )−∇˜2( )

∣∣∣ ≤ | ||˜ | ∞

Etudions maintenant

˜1( ) = ψ(1− χρ) ∗ ˜

On a

∇˜1 = ψ
(
1− χρ

)
∇ ∗ ˜ − ψ

(
∇χρ

)
∗ ˜ +∇ψ

(
1− χρ

)
∗ ˜

= ( )− ( ) + ( )

Comme ˜ ∈ M1 δ+1(R
3), > 3, alors ˜ ∈ Cα(R3) avecα = ( − 3)/(2 ) < 1− 3/

et on obtient : D’une part

| ( + )− ( )| ≤
∫
ψ( )

(
1− χρ( )

)
|∇ ( )||˜ ( + − )− ˜ ( − )|

≤ [˜ ]α| |α
∫ 4

ρ

1

≤ [˜ ]α| |α
(
− Log

ρ

4

)

D’autre part

| ( + )− ( )| ≤ [ ˜ ]α| |α
∫
ψ( )|∇χρ( )| 1

| |2

≤ [˜ ]α| |α
1
ρ

∫ 2ρ

ρ

≤ [˜ ]α| |α

Pour ( ), on a|∇ | ≤ |˜ | ∞ , ce qui montre que

| ( + )− ( )| ≤ | ||˜ | ∞

[∇˜1]α ≤
(
|˜ | ∞ + [˜ ]α

(
1− Log

ρ

4

))
D’où

En fin :

[
∇˜
]
α
≤

[
ρα|∇˜ | + |˜ | ∞ +

[
˜
]
α

(
1− Logρ

)]

en choisissantρ = 1 si |∇˜ | ≤ 1 et ρ = 1/|∇˜ |1/α si |∇˜ | > 1, on obtient ainsi

[
∇˜
]
α
≤

[
1 + |˜ | ∞ +

[
˜
]
α

(
1 + Log|∇˜ |

)]
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Preuve de la Proposition 6.3. Revenons maintenantà ∈ M2 δ( ) tangentielà
divergence nulle et = rot , alors pour exprimerà l’aide de , nous allons pro-
longer (comme Kikuchi) sur tout l’espace, puis retrouver̀a l’aide de la loi de Biot
et Savart.
On sait que = rot ∈ M1 δ+1( ) vérifit, div = 0 et

∫
σ = 0 et par suite, il

existe 1 ∈ 2 ( ) ( = R3 \ ) solution de l’́equation





△ 1 = 0 dans
∂ 1

∂

∣∣∣∣ = | sur

de plus il existe une constante> 0 vérifiant

|∇ 1| 1 ( ) ≤ | | | 1−1/ ( )

Par ailleurs, il existe un champ∈ 2 ( ) vérifiant





| = 0

∂

∂

∣∣∣∣ =
(
−∇

)∣∣

| | 2 ( ) ≤ |
(
−∇

)∣∣ | 1−1/ ( ) ≤ | | | 1−1/ ( )

On pose 0 = Rot
(
∇ϕ ∧

)
−∇ ∈ 1 ( ), alors | 0| 1 ( ) ≤ | | | 1−1/ ( ).

Le champ˜ =

{
dans

0 dans
appartientàM1 δ+1(R

3), div ˜ = 0 et on a les estima-

tions suivantes :

Pour tout
3

(δ + 1) + 3
< ≤i)

|˜ | (R3) ≤
(
| | ( ) + | | | 1−1/ ( )

)

|˜ | ∞(R3) ≤
(
| | ∞( ) + | | | 1−1/ ( )

)
ii)

|˜ |M1 δ+1(R3) ≤ | |M1 δ+1( )iii)

Pourα =
− 3
2

iv)

|˜ |Cα(R3) ≤
(
| |Cα( ) + | | | 1−1/ ( )

)

Maintenant, on posẽ = ∇ ⊗ ˜ , il vient alors que diṽ = 0, rot˜ = ˜ et ˜ ∈
M2 δ(R

3). Pour retrouver , on résout le probl̀eme de Neumann suivant





△ 2 = 0 dans

∂ 2

∂

∣∣∣∣ = ˜ | sur
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qui admet une unique solution dansM3 δ−1( ) (puisque ˜ | ∈ 2−1/ ( )), de
plus on a la proposition suivante dont la preuve est laissée à la fin

Proposition 7.5. Soient > 3 et ∈ 2−1/ ( ), alors l’unique solution dans
M3 δ−1( ) du probl̀eme de Neumann extérieur





△ = 0 dans
∂

∂

∣∣∣∣ = sur

vérifie (avecα = ( − 3)/(2 ))
i) |∇ |C1+α( ) ≤ | |C1+α( )

ii) |∇ | ∞( ) ≤ | |Cα( )

Cette proposition montre qu’il existe une constante> 0 telle que

|∇ 2|C1+α( ) ≤ |˜|C1+α(R3) et |∇ 2| ∞( ) ≤ |˜|Cα(R3)

En fin, on retrouve le champ par

= ˜| − ∇ 2

De plus on a

Pour (3 )/{(δ+1) + 3} < < 3 on a1)

| | ∞( ) ≤ |˜| ∞(R3) + |∇ 2| ∞( )

≤ |˜|Cα(R3) avec α =
− 3
2

< γ =
− 3

≤
(
|˜ | ∞(R3) + |˜ | (R3) + |˜ | (R3)

)
;
(
voir Corollaire 7.3

)

≤
(
| | ∞( ) + | | ( ) + | | ( ) + | | | 1−1/ ( )

)

|∇ | ∞( ) ≤ |∇˜| ∞(R3) + |∇ 2|C1+α( )2)

≤ |˜|C1+α(R3)

et on en d́eduit, par le Th́eor̀eme 7.1 et les estimations préćedentes la Proposition 6.3.

Preuve de la Proposition 7.5. Comme le problème de Neumann extérieur





△ = 0 dans
∂

∂

∣∣∣∣ = ∈ 2−1/ ( ) sur
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admet une solution, alors cette solution s’exprime en potentiel de simple couche

( ) =
∫

( − )µ( ) σ( )

et que

∂

∂

∣∣∣∣ ( ) =
−1
2

(
µ( ) + µ( )

)
=
−1
2

(
+
)
µ( )

où µ( ) = 2
∫
∇ ( − ) ( )µ( ) σ( ) est un oṕerateur compact deC0( ) dansC0( )

et deC +α( ) dansC +α( ) ( ∈ N et α ∈]0 1[) (cf [10] et [15]). Ce qui montre que
l’opérateur + est de Fredholm.
Par ailleurs, comme ne contient aucune composante connexe borné, alors ker

(
+)

= {0} et par suite + est un isomorphisme surC0( ) et sur C +α( ). Ce qui
prouve

µ = −2
(

+
)−1

et qu’il existe une constante > 0 vérifiant

|µ| ∞( ) ≤ | | ∞( ) et |µ|C +α( ) ≤ | |C +α( )

Or, on sait (cf [10]) que le potentiel de simple couche définie par une densité µ de
classeCα( ) est C1( ) et vérifie

|∇ | ∞( ) ≤ |µ|Cα( ) ≤ | |Cα( )

ce qui montre le deuxiemme point de la proposition.
Pour montrer i), on d́ecompose la solution comme suit

= ψ + (1− ψ) = 1 + 2

où ψ ∈ C∞0 (R3) telle queψ( ) = 1 si | | ≤ et 0 si | | ≥ 2 avec un rayon assez
grand.
1) 1 est une solution de





△ 1 = (△ψ) + 2(∇ψ) (∇ ) dans 2 = ∩ (0 2 )

∂ 1

∂

∣∣∣∣ = sur

∂ 1

∂

∣∣∣∣
2

= 0 sur 2 = (0 2 )

et par suite il existe une constante qui ne dépend que de etα (cf [11]) telle que

| 1|C2+α( 2 ) ≤
(
|(△ψ) |Cα( 2 ) + |(∇ψ) (∇ )|Cα( 2 ) + | |C1+α( ) + |ψ | ∞( 2 )

)
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≤
(
| |C1+α( ) + | |C1+α( ) + | | ∞( )

)

2) Pour 2 = (1− ψ) , elle est d́efinie sur toutR3 et vérifie

△ 2 = (△ψ) − 2(∇ψ) (∇ ) = ∈ C1+α
0 (R3)

et par suite

2 = ∗ =
∫

R3

( − ) ( ) =
∫

| |≤2

1
| − | ( )

d’où

| 2| ∞(R3) + |∇ 2| ∞(R3) ≤ | | ∞(R3)

Par ailleurs, on sait qu’il existe une constante> 0 (cf [10] et [17]) telle que

[∂ ∂ 2]α = Sup
6=

|∂ ∂ 2( )− ∂ ∂ 2( )|
| − |α ≤ [ ] α ≤ | |C1+α( )

et que

∂ ∂ 2( ) =
∫

| − |≥1
∈supp( )

( )
∂2

∂ ∂

1
| − | +

∫

| − |≤1

(
( )− ( )

) ∂2

∂ ∂

1
| − | + γ ( )

où γ sont des constantes qui ne dépendent que de et de , ce qui montre que

|∂ ∂ 2| ∞(R3) ≤ | |Cα ≤ | |C1+α( )

En conclusion, il existe une constante> 0 telle que

| |C2+α( ) ≤
(
| |C1+α( ) + | |C1+α( ) + | | ∞( )

)

Or, d’une part

| ( )| ≤
∫
| ( − )||µ( )| σ( ) ≤ |µ| ∞( ) ≤ | | ∞( )

Et d’autre part, la formule de Taylor montre qu’il existe une constante> 0 telle
pour toutε > 0 et pour tout ∈ C2+α( ), on a

| |C1+α( ) ≤ ε1−α| |C2+α( ) +
ε1+α
| | ∞( )
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Ce qui ach́eve la preuve.

On d́emontreà pŕesent l’ińegalit́e d’interpolation.

Proposition A. Soient > 1, ∈ N et δ ∈ R, il existe une constante > 0,
telle que pour tout ∈ ∞(R ) ∩M δ(R ), on a

| | δ ≤
(
| | δ| | ∞ + | | ∞ | | δ

)

Preuve. Pour montrer cette proposition, on a besoin de la caractérisation des es-
pacesM δ(R ) suivante (cf [19]) : On pose 0 = { ∈ R ; | | < 2} et pour
entier ≥ 1, = { ∈ R ; 2 −1 < | | < 2 +2}. On d́esigne par l’ensemble des
suites (ζ ) ≥0 de fonctions v́erifiants : ζ ∈ ∞

0 ( ) 0 ≤ ζ ( ) ≤ 1 et
∑

≥0 ζ ( ) =
1 ∀ ∈ R , de plus il existe pour toutα ∈ N , une constante (α) > 0 telle que
| αζ ( )|≤ (α)2− |α| ∀ ∈ R et ∀ ∈ N. On montre ainsi que

| | δ≃
∑

≥0

2 δ | ζ | +
∑

≥0

∑

|α|=
2 (δ+ ) | α( ζ )| = ‖ ‖ δ

Soit ∈ M δ(R ), alors

‖ ‖ δ =
∑

≥0

2 δ
(
| ζ | +

∑

|α|=
2 | α( ζ )|

)

=
∑

≥0

2 δ +
(
|( ζ )(2 )| +

∑

|α|=
| α

(
( ζ )(2 )

)
|
)

=
∑

≥0

2 δ + |( ζ )(2 )|

Soient maintenant ∈M δ(R ), alors

‖ ‖ δ =
∑

≥0

2 δ + |( ζ )(2 )|

=
2∑

=0

2 δ + |( ζ )(2 )| +
∑

≥3

2 δ + |( ζ )(2 )|

≤ | | +
∑

≥3

2 δ + |( ζ )(2 )|

Or pour ≥ 3 et ∈ R on a :

( ζ )(2 ) =




+2∑

= −2

(ζ )(2 )



(

( ζ )(2 )
)

d’où
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|( ζ )(2 )| ≤


|( ζ )(2 )| ∞ |

+2∑

= −2

( ζ )(2 )| +

|( ζ )(2 )| |
+2∑

= −2

( ζ )(2 )| ∞




≤


| | ∞

+2∑

= −2

|( ζ )(2 )| +|( ζ )(2 )| | | ∞




et par suite

∑

≥3

2 δ + |( ζ )(2 )| ≤


| | ∞

∑

≥3

+2∑

= −2

2 δ + |( ζ )(2 )| +

| | ∞

∑

≥3

2 δ + |( ζ )(2 )|




≤


| | ∞

∑

≥3

+2∑

= −2

2 δ + |( ζ )(2 )| +

| | ∞‖ ‖ δ




Et pour ∈ {−2 −1 1 2} on a : |( ζ − )(2 )| ≤ |( ζ − )(2 − )| , d’où

∑

≥3

+2∑

= −2

2 δ + |( ζ )(2 )| ≤
∑

≥3

2 δ +
2∑

=−2

|( ζ − )(2 − )|

≤
2∑

=−2

∑

≥3−
2 δ 2 δ 2 2 |( ζ )(2 )|

≤ ‖ ‖ δ

‖ ‖ δ≤
(
| | ∞‖ ‖ δ+‖ ‖ δ| | ∞

)
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