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EQUATION D’EULER SUR UN DOMAINE EXT ERIEUR.
EXISTENCE LOCALE ET APPARITION DE SINGULARIT ES

Par MonavED JELLOULI
(Recu le 21 mai, 1997)

Introduction

Dans ce travail, orétudie I'équation d’Euler pour un fluide parfait incompress-
ible remplissant I'exérieur d'un boré deR3. Plus péci®ment, onétablit un Esultat
d’existence locale en temps (@teme 2.1). Puis on prouve un @it d’explosion de
la solution (Tleoreme 2.3).

L'existence locale a fait 'objet de nombreux travaux : C. Bardos et U. Frisch [3]
pour un ouvert quelconque (bd@mou non) avec des doees hlderiennes, R. Temam
[18] pour un ouvert bora avec des doraes Sobolev, et pluscemment J.Y. Chemin
[9]. On pourra d’ailleurs consulter J.Y. Chemin [8] pour une bibliographie plus
compkte.

En 1986, K. Kikuchi [16], établit un Esultat d’existence locale en temps, pour
I'équation d’Euler, sur I'edrieur d’'un ouvert bora. Il le fait dans Mg ; (voir
définition au paragraphe 1) espace de Sobdeyoids, bien adapta ce type de
probleme.

En utilisant la nethode des caramtstiques de J.Y. Chemin (qui profite corafa-
ment de la structure “champ de vecteurs” deqliation), onétablit le néme Esultat
dansMgé(s > 2) et on compite ainsi le teoeme de K. Kikuchi.

De maneére presque paréle, l'étude des solutions maximales deeduation
d’Euler, aéte, pendant de longues &@w®s, |'objet de recherches actives. Nous citerons
essentiellement J.T. Beale, T. Kato et A. Majda [4] et H. Bahouri et B. Dehman [2].
Ces auteurs montrent, dans leurs cadres respectifs, que c’est le tourbillon qui gouverne
I'existence ou I'explosion de la solution (tout au moins dans I'espaceédelarie
consicere).

Nous établissons dans ce travail udsultat analogue. La preuve repose sur une
étude pecise des champs de vectearsoefficients dang\1? ;.

1. Préliminaires

1.1. Notations Dans tout le travail nous utiliserons les notations suivantes. Si
x = (x1,...,x,) est le point courant d&®” et o = (as,...,a,) € N, on posera
la| = ag+---+a, et 9> = 91°//9x>. De plus A désignera l'ograteur de Laplace
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habituel : A = Y"'_,9?/0x?. D’autre part pour une fonction scalaire f, on notera
Vf=0f/0x1,...,0f/0x,), et siu est um -vecteuy =i, ...,u"), Vu désignera
la matrice Qu'/0x;)1<;,j<,. EN particulier, on @finit w = w() commeétant la ma-
trice antisynétrique deVu. Nous I'appellerons le tourbillon de . Dans le caskfg

w est identife au vecteur roty = A u.

1.2. Position du probBme On se place danR? et on designe parD un ouvert
borré régulier, c'esta dire, dont le bor®®D = T est une hypersurface de clasS&
(m assez grand), simplement connexe. On travaillerassurR3\:D, on noteran £ ) la
normale extrieurea Q en un pointc € T.

Le mouvement des particules d’'un fluide parfait (sans effets de vigtosttcupant
'ouvert Q et non soumisa des forces egtieures estégi par le sysme déquations
aux cerivees partielles dite d’'Euler

Ou+uNu=-Vp

Vu=0
E
RN
un|.=0

ol u(t, x) = @, u? ud(t, x) et p(t, x) repésentent la vitesse et la pression &ieure)
au pointx a linstantt d'une particule du fluide,

. ol
V.au=divu = Z 3

X
i=1 !

et

u.Vu %V|u\2+(v Au)ANu

3
(;“iai )“
3 0
u
i=1

i
(>
1.3. Les espaces de Sobolev poids. Dans toute la suite on travaillera dans
les espaces de Sobolavpoids dont la éfinition est la suivante

Ox; )1§j§3'

DEFINITION 1.3.1 Soient U un ouvert d®R3, p > 1, s € N et § € R, on pose

Mg 5(U) = {u eD'(U); ogu e LP(U) Vo < s}

ol o=o(x)=+1+|x]?.
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Muni de la norme

Lr

|M|p,s,6: Z ‘0_5+\a|6.au

lee|<s

c’est un espace de Banach.
Pour plus de dtails sur ces espaces, on pourra consulter [6], [12] et [19].

Lemme 1.3.2. SoientU un ouvert d®3, p > 1 et > 0. Sic’u € LP(U) alors
u € L"(U) Yh €](3p)/(6p + 3), p], de plus

lul,. < C(p. 8, h, U)|o’u

Ly

En particulier, pour un telh, M” 4(U) s'injecte contifiment dansL.”(U).

S,

Preuve C’est une comsgquence de l'iagali€ de Hblder.

2. Enonas des ésultats et commentaires

On commence par le doeme d’existence locale en temps.

Théoréme 2.1. Soientp >3,1<4§ <2-3/p,s > 2 etug € M/ ;(Q) tangentiel
a divergence nulle. Il exist& > 0 et une unigue fonction

we 110,71 M2 (@) () €°([0. 71, MY 5(2)
solution de(E).

Commentaires. 1) Ce tleoeme est un analogue Sobolev auedieme de
C. Bardos et U. Frisch [3] qui, lui, &t établi dans le cas des espaces d#der.
2) Il complete et @réralise celui de K. Kikuchi [16] (TRoeme 1.1).
3) On peuténoncer un thoeme identique pour un fluide soumi des forces
exterieures, comme on peut aussirire le néme Esultat sur I'exérieur d'un ouvert
borré deR"(n > 3), sous &serve d'un bon choix d@ &t (cf M. Cantor [6] et [7]).
4) La preuve du Teoeme 2.1 repose sur uneéthode iérative classique : On
linéarise lequation sur la vitesse et on &gire selon les lignes de champ. Cela justifie
la restriction sur 'indice de Soboley, > 2.

Théoreme 2.2. Soientp > 3, 1<J§ <2—-3/p ets > 2. NotonsT *(s) le temps
maximal d’existence de la solution dde par le Theoeme 2.1dans/\/l§”5(£2), alors
T*(s) = T*(2).
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Commentaires. 1) Ce tleoeme indique l'inépendance du temps maximal
d’'existence visa vis de l'indice de &gularié s.
2) La preuve de ce #toeme utilise une iagalie d'interpolation du type

|M'U|p,s,6S C(‘M|L°° |v|p,s.6+‘u|p,s,6|U‘L°°)‘

gu’on demontrera en appendice (voir proposition [A])
On donne en fin un cére d’explosion pour &volution de ce fluide :

Théoréeme 2.3. Soientp > 3, 1 < 6 < 2—-3/p, s > 3etu €
C°<[0, T*[,Mffl)é(SZ)) la solution maximale de &quation d’Euler(E). Soit w le
tourbillon deu (ie w =V Au) alors
- oubienT* = +00 .

- oubienT* < +00 et [ ([w(s, oy Hw(s. M.l yi-s/mmr)ds = +00
ol a = (3 p)/(2p).

Commentaires. 1) Il suffit, en vertu du Thoeme 2.2 detablir ce dernier
résultat pours = 3.
2) Ce tleoeme est analogue pour I'ouvert éxeura celui de J.T. Beale, T. Kato et
A. Majda [4] a donrees Sobolev, et celui de H. Bahouri et B. Dehmang2jonrees
Holderiennes, pour un fluide occupant tout I'espace.
3) Encore une fois le tourbillon apparait comme une quarg#rtinente qui gouverne
I' évolution d'un fluide parfait incompressible. En effet I'apparition de sing@arfour
la vitesse (au moins dans I’espaﬁﬂﬁé(ﬂ)) est liée I'explosion du tourbillon.
4) Ce tleoeme admet une version identique lorsque 3 .

3. Etude du flot d’'un champ de vecteursa coefficients dans
C(0, T], M2,4()

Soientu = ¢!, u? 1% un champ de vecteur coefficients dan§” ([O" , M7 (%)),
p > 3,5 > 1,6 > 0 tangentiela divergence nulleu( joue ledle de la vitesse
dans léquation d’Euler). L'objet de ce paragraphe esktablir quelques propgies
importantes des courbes &grales de ce champ. Commet! (Q) C W*?(Q) C
Cs~*(Q),0 < A < 1 - 3/p, (les injections sont afgbriques et topologiques voir
[1]), le champu admet un flot qui est solution de &quation

{ 2—7(1‘, x) = u(t, n(t, x))
7(0, x) = x.
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Si de pluss > 2, ce flot est unique etérifie

iy |[Jacn(t,x)|=1 Vte€[0,T] et x €.

N nt): Q@ — Q est unC? diffeomorphisme
iy, n~te CH[0, T], Id+ C*~ Q).

Pour plus de étails, on pourra consulter [2], [3], [5], [8] et [9].

Lemme 3.1. Soientp > 3,5 > 2,0 > 0,u € C([0, T], M? 4(R)), tangentiela
divergence nulle et) son flot alors pour toutr € [0, 7] et x € Q on a

1 < cr(n(t,x))
Vom,(t) —  ox)

o, m,(t) = 1+ [y lu(s, )|, ~ds.

< ﬁmu @)

Preuve On an(z, x) =x +e(f, x) ou e(t, x) = f(; u(s, n(s, x))ds. Par suite
1+[n(e, ) < 2(1+|x[*+[e(t, ).
D'ou

1+, x)?

1+ |xf?

(*) < 2(1+|8(t,x)\2),

ce qui implique

az(n(t,x)) ! 2
0'27()() S 2 <1+ </0 |I/t(S, .)Loods) )

< 2m(1).

On en @duit o (1, x)) < V2m, (1)

o(x)

Pour l'autre iegali&, on applique«) n~! au lieu den ete au lieu des, oll e vérifie
s, x) = x +e(t, x).

Lemme 3.2. Sous les hypo#ses du_.emme 3.1on a
t
SupV,n(t, x)|< exp{/ |Vu(s, .)ILoods} vt € [0, T].
xeQ 0

Preuve on écrit V,n(t,x) = Id + f(; Vu(s, n(s, x)).Vin(s, x)ds et on conclut
par le lemme de Gronwall.
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Lemme 3.3. Soientp > 3,5 > 2,1< s’ <s,§,5 >0, v un champ de vecteur
appartenanta C([O, T],Mf’(s(sz)) tangentiela divergence nulle ety son flot. Soit u
un champ deMy, 5 (<2) alors
) uonecC([0,T1], Mg’,’é,(Q))

i) Nuonly, s< Clvllrpss)lul, s

i) SiT' <T assez petit
el o< € (L4 C U sV il

ol C(M) est une fonction croissante en M [@t||7,, 5.5 = SURcpo 77 [u(t, )l , ¢ 5-

Preuve Pour i) on pourra consulter [7]. Oatablit iii) par ecurrence sur K
k < s’ et on ckduit ii) de cette @monstration. On rappelle que

|u o n(z, ')|p,k.6/: Z |U5/+‘°‘|5°‘ (u on(t, ))

o <k

Lp

Pourk =1

o u(n(t. )17, = / o @)u(n(t. )| dx

<"t 0 [ o7 (ate ) (ot ) e
Q
(d'apres le Lemme 3.1)

&’ nd’ ’ n
<2’ (1+||v||;,Loc.t)15 /M ()u(t, x)|"dx
Q

[P 4 5’ F
d'otl 0% (won(t, )], < V2 (L+][v]lirt)” [ul,q4-

Par ailleurs
0% I won)(t, )]s < / o) Vu (e, ) "V an(t, x)| dx
Q
s '
< \/517( +l)(l + ||v||,,Locl’)p(5 +1) «

t
exp{p/ [Vu(s, .)Loods} 69V u
0

P
Lp

(d’apres le Lemme 3.2), dip
’ &' +1 4
07 Vo n)(, ), < V2 (L [l rer)”

t
exp{/ |Vu(s, .)|Loods} 109 IV, )
0

Lr-

P S/ +1 §'+1
Par congquent [u(n(t, )], 15 < V2 (L+[vlln~t)’ " exp{l|Vollioct} [ul, 1 4-
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De plus il existeT; < T, tel que sur [071] on a

5'+1 1/2 1/2
a2 (14 ol T) (14 V0l T2) g

(14 C (ol ps. )T )l 1.7

IN

|u(7](t, )) ‘p,l,é’

IN

Supposons maintenant que le lemme est vrai jusqu’a l'okdre s’; c'est a dire |l
existe une constant€’* telle que pour taut M} () on a :

01l i € (14 C 0l )T ) it 15

Soitu € My, 5(S). Pour estimetu o n(t, )|, ;41 5 il suffit d'estimer[uon(z, )|, 5
et [V(uon)t, ), 541- OF u € M{5(S2), donc par hypotbse de &currence on a

||I/t o nHTl,P.,k-,ls/S Cte <1 + C(HUHTLP,S";)T]-) |M‘p.k+1,5"

Quant V(uon) on I'écrit Vi on) = (Vu o n) + (Vu o n).Ve avec e(t,x) =
fé v(s, n(s, x))ds. Encore une autre fois I'hypo#ise de &currence donne

([Vu o 77||T1’],’k!5/+1§ c' (1 + C(Hv||T1.]7.S,5)T1) |“|p,k+1,5"
Pour Vu o n).(Ve) on a (cf [7]) et cette @rniere iregalié.

|(Vu o n).Ve(t, .)|p’k’6,

IN

C(1+C 0l pes)T3) 1l g o012 5

—= Cte (1 + C(||UHT1,17,S,5)T1) |u|p_k+1,5’C(||UHT1,]7,S,5)T1-

A

En effet, |e(z, )], < C([vll7.p.s6) T2 Vi €[0, T1]. En conclusion
19 ol pisns < C(L+CUnped)Ta) il +
€ (1+C (ol ps)T2) CIIr ) Tilt] o 5
< (14 CQ0lnped)T) lul, per e
Si de plusC ((v|7,,p.s,6)T1 < 2
IV oMl o o= 26 (14 CUv 13 i) T2 ) ] o o
d'ou le lemme.

Corollaire 3.4. Soient p,s,é donres comme ademme 3.3 (v,), une suite
bornée deC ([0, 7], M? () tangentiellea divergence nulle ef, le flot dew, . Alors
pour toutu € M? 5(%), la suite (u 0 7,), est borge dans le @me espace.
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4. Preuve du Theoreme 2.1

On commence par exprimer et estimer la pression en fonction de la vitesse. C’est
I'objet des deux @sultats suivants.

Lemme 4.1. Si(u, p) est solution de Bquation d’Euler(E), alors p \érifie

—Ap =tr(Vu)?

9 S i
—| = u'u/ 2L
pon |- sz:l Vel

ol ¢ est une fonction de pargrisation del" etyp;; = 0;;¢ (cf [18]).

Le linéari€ sur la vitesse de dguation (E) nous condu résoudrea v donré
dansC([O, 11, Mgé(Q)) tangentiela divergence nulle, le proline de Cauchy
) {8,u+v.Vu = —Vp(u,v)

ul =0 = uo

ou p(u, v) est solution du probme de Neumann exteur (P.N.Ext)

3
—Ap(u,v) = tr(Vu.Vv) = Y 0l 00" = f(u, v)

(P.N.Ext) . hi=1
ap i i
— :E u'v! == =g(u, v)
on r -1 ‘V@‘

Proposition 4.2. Pour p,s,d du Théoeme 2.1 il existe une constant€ > 0
telle que pour toutr,v € M? () le probeme (P.N.Ex} admet une unique solution
pu,v) € M}, 5_4(R). De plus:

C(|“|p,s,5|v\p,2,5+|“ ‘p,2,5‘v|p,s,5)

|Vp(u, v)|p,s,5 S
S C|u|p,s_§|v‘

D,S8,0

Preuve CommeVu, Vv € M?_, 5,,(Q) qui est une algbre de Banach (cf [7]),
alors f u,v) € Mf71,5+1(52) et g, v) € W—YPr(I"), il existe une unique solution
pu,v) € Mfﬂﬁfl(sz) de (P.N.Ext) (cf [6]) de plus, en utilisant la proposition [A]
(voir appendice)

|vp(u’ v)‘p,x,é S |p(l/l, v)|5+1,57l
C (|f(l/t, U)|p,s—l‘5+l + |g(M, v)|w.r—1/p.p(r)>

C (1l g 5121 05%10] 25101,.5)

IN

IN



EQUATION D’EULER 627

Lemme 4.3. Pour p,s,d etuo du Theome 2.1etv € C([0, T], M? 4(Q)) tan-
gentiel & divergence nulle, toute solution u dediuation(1) est tangentielled diver-
gence nulle.

Preuve. |l suffit décrire leséquations de la divergence de et @&/ selon
les lignes de champ de . ]

En revenant maintenantéquation (1), on a par une simple égration

u(t, x) =u0(77_1(t, x))— /0 Vp(u,v) (s, n(s. n~ 4, x)))ds
On pose : Fy(u)(t, x) =uo(n_l(t, x))— /0’ Vp(u, v) (s, n(s, 7, x)))ds

alors la solution de (1) n'est autre qu'un point fixe ig . D&pte Lemme 3.3 et la
Proposition 4.2, applique€ ([0, T], M ;(R2)) dans lui mme, de plus

(Fy(u) — Fy(u")(t, x) = —/ Vp(u—u',v)(s.n(s,n 1 x)))ds

et donc — E(), )\ < C(Iplly. s s)Tlu =l 5

ce qui montre que pour T assez petf, est contractante et admet un unique point
fixe u € C([0, T], M?;(2)) solution de (1). D'apes le Lemme 4.3u est en plus
tangentielled divergence nulle et via le Lemme 3.3, érifie

lully 5 < C(1+CUl7pe)T ) ol U7 )T il 5
Choisissons T tel qu€ ||¢]|7,p.s,5)T < 1, on obtient

1+ C(””||T,p.s,5)T |MO|
1= C([v||r.pss)T " P50

||u||T,1)'.§‘,5§ C,e

On ckfinit la suite {, ) dansC([0, 7], M?()) tangentiellea divergence nulle
comme suit :ug(t, x) = ug(x) et u,+1 solution de :

{ Orttn+1 + un.Vipsg = *VP(Mn’ Mn+1)

Mn+l|, -0 — Uo

Lemme 4.4. Pour T assez petitla suite (u,), est borree dans
([0, T], M? ().

Preuve PosonsM = R, ; et supposons quguyll, , s< M VO <k <n,
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alors

||u”+1||T 5 < 1+C(||Mn||T.p,s,5)T |uo| )
58 = T C(|unllz.ps)T 0P
1+C(M)T

=S 1-cnr

|M0|p.5,5S 2‘M0| 6E M

DS,

pour T < Ty, Ty est assez petit.

Lemme 4.5. Pour T assez petita suite (u,), est de Cauchy dans
c([o, 11, Mf_lﬁé(sz)).

Preuve En effectuant la diffrence degquations on obtient
t
(u/1+2 - I/t,1+]_)(t, .X') == / VP (un+l; Up+2 — un+l) (S, 77n+l(sa ,’7,;%]_([’ x)))ds
0
t
—/ VP (tns1; thnes — tn) (5, musa (5, 0732, x)) ) ds
0

t
— /O (un+1 - un).Vu,1+1(s, Mo+l (s, 77’;11(;, x)))ds

ol n,+1 désigne le flot deu,.;. D'apres le Corollaire 3.4 et le Lemme 4.4, on en
deduit

||l4n+2 - un+1HT‘p’S_l,5§C(M)T <||un+2 - ””+1||T,p,s—l,6+||u"+1 — Up HT,p,.v—l,é)

ou encore
c(M)T
llutn+2 — un+1HT,p,S,1,5_m||un+1 —tnlly ps 15

et pourT < T, assez petit, la suitetf ,) est de Cauchy dahs , [OM]_, ().

Fin de la preuve du T@oeme 2.1 La suite ¢, ) converge vergs dans
L>([0,T], M!_, 4(R)), et comme elle est boee dansC([0, T], M! (%)), cette
limite est en fait dans cet espace et viéguation,u € C°([0,T], M!_, 4(92)).
Lunicité dans M7 ;(), (théome de K. Kikuchi [16]), assure celle de  dans
M 5(R). O

5. Preuve du Theoreme 2.2

Dans ce paragraphe ésignera un entiel 3, u la solution de Bquation d’Euler
(E) et on travaillera dans un intervalle de temps7T0 U @< T < T*(s). Soit |a| <
s, alors

1 _
19 0“u(t, x)|”=10%u(t, x)|” 28‘3“u(t, x).0%0u(t, x)
p Ot
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en multipliant paro?©®*lD et en faisant la somme sl < s, on obtient

pa Z oP D 0ou (e, x)|"= > o@D 9oy (¢, x)|P20%u(t, x).0“Ouu(t, x)

la|<s Jal<s

puis en remplacan®*d,u(z, x) par sa valeur danséguation £ ), on obtient

o P@*lal)| ga P— _
(2) pa %; |0%u(t, x)|"= —X(t, x) — Y (1, x)
ou X(t,x)= > PN 9% (z, x) [P 2% u(t, x).0% (u.Vu)(t, x)
| <s
et Y(t.x)= > o?CeDgou, x)|P720%u(t, x).0°V p(t, x).
o <s

Lemme 5.1. Il existe une constant€ > 0, indépendante du temps telle que
700 < Cllof a5

Preuve

/|Y(t x)|dx < Z /|05+|“‘8°‘u(t X))’ l|05+|a‘8°‘Vp(t x)|dx
|| <s

)/1 1/p

IN

/|06+‘0‘|80‘u(t x)|pd

|| <s
1
@,V POl 5

et d'apes la Proposition 4.2V p(t)|, ( ;< Clu(t)],  5u(®)|, 2 5-
ReprenonsX #(x ), laégle de Leibniz nous permet de Iéabmposer

/| Halgow p(r, x)|Pdx

IN

X(t, x) = Xo(t, x) + X1(t, x)
ol Xo(t, x)= Y a?CHeD|gou(, xX)|P20%u(t, x). (u.V) 9% u(t, x)

la|<s

(et) Xq(t, x) = Z Z Caﬁap(&\al)wau(t’ x)|p72X
lor| <5 0<|B]< ]|
o%u(t, x). (85u.V) 9 Pu(t, x).

Lemme 5.2. Il existe une constant€ > 0, indépendante du temps telle que

/ IXa(t, X)ldx < Clu(@)|?, Su()],, 15
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Preuve

/|X1(t,x)|dx <C Z Z /a”(5+“"|)|8°‘u(t,x)|p_l|(85u.V)8“_ﬁu(t,x)|dx
Q

o <s 0<|B|<|o| L2

Ia.g

i) Si|p|=1, alors
Inp < /\oéﬂo‘l@o‘u(t,x)|p_l|85u(t,x).05+“"|8"‘_6Vu(t,x)|dx,
Q

etVja|] <sona:

%u(t,.) € M_; 5,1(R) C L=(RQ)
oot ga=Byy(r, ) e LP(Q)

ce qui implique que

10%u(@).01*10° OV u()|, < €10 u(t) |00 Vu()|,,

C‘u(t)‘p.Z,é|u(t)|1),s,5

IN A

et on applique liegalie de Hbdlder avecp/(p — 1) et p.
iy Si|B]=2, alors

lop < /\a“\alaau(z,x)|1"1\05+235u(t,x).a\alfzaa*ﬂvu(t,x)|dx,
Q
etVie|<sona:

6+2903 P
{o u(r,.) € LP(RQ) donc,

1172000V u(t, ) € MY, 111 502 (R) C L

09*20Pu(r).011=20° =PV u(r)|,, < Clo®29%u(r)|, o' 720 PVu(r)|,

C‘u(t)‘p,Z,ﬁ|u(t)|1),.v,5

IN N

i) Si |8] =]«l, on fait comme i).

iv) Si |B] > 3 et|f] < |a| (dans ce cas bieniss > 4), on fait comme ii). D'a le
lemme.

Pour Xo(z, x), on I'écrit ;

( DD ) (al’<6+‘al>\aau(t,x)|1"28au(t, x).(u.V)aau(t,x))

|laj<s  |al=s

B(t,x) + A(t, x)

Xo(t, x)
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Lemme 5.3. Il existe une constant€ > 0, indépendante du temps telle que
/sz |B(z, x)|dx < Clu(r) ﬁ,s,6|”(t)|p,2.5~

Preuve

/\B(t,x)ux <> /al’<5+la‘>\aau(t,x)|1"2\aau(t,x).(u.v)aau(t,x)mx
Q Q

lal<s

et chacune des iagrales de la somme se majore par :

/\a5+\a|aau(t,x)l”’l\o5u(t,x)lla‘“'a"‘w(%x)|dx
Q

/p

IN

(r—1)/ 1
c| / o1 ouge, x)Pax]| T x| / lou(t, x)|7 01107 Vu(t, x)| dx
Q Q

C‘u(t)‘z,x,(s|u(t)|p,2,5'

IN

Par ailleurs,

3
2A(t, x) = Z Z o9 0%u(r, x)|”20; [|06”8“u(l, x)|2} u'(r, x) —

|ae|=s i=1

I(1,x)

3
Z Z lo®™ 0%u(r, x)|p72|8°‘u(t, x)\zui(t, x)8;020*)

|a]=s i=1

J(t,x)

Lemme 5.4. Il existe une constant€ > 0, indépendante du temps telle que

/Q Gt x)ldx < Cl@)]” 5w, 55

3
<> > / | 0%ue, x)|”210%u(t, x)lue, x)]10,0%¢*)|dx
Q

jaf=s i=1

D
<
=
=
=
=
=
A

IN

C Z / o P=20) 9%y (¢, x)|P |u(t, x)|o?+)Ldx
Q

lex|=s

Clu(®)] e (O} 5 5-

IN



632 M. JELLOULI

PourI ¢, x ), on l&crit :

1(,x)= < ZZ@[ o0 u(e, )| |l (r, %)

|a—sll

et par approximation d&°*9“u(z, x)|” par une suite de fonction§5°(R2) et en util-
isant le fait que diw #, x ) =0, on montre quf, I(t, x)dx =0 Vr € [0, T].

Fin de la preuve du T@peme 2.2 Les Lemmes 5.1...5.4, montrent qu'il existe
une constante” > 0 indépendante du temps telle que

‘/ X(t, )+ Y (6, x))dx| < @) 5 (1), 05+ 10O, 1 5)

en ingégrant (2) entre 0 et € [0, T], on obtient

|I/t(l)|1) 5,0 < |M0 p.s.0 + C/ |M(T)‘p 5,0 |M(T)|p,2.5 + |u(7)‘p,571,5)d7_

et on en @duit par le lemme de Gronwall que

W@l s < uomexp{ / (u(T)|,,,2,5+|u(r)|p,s_1,5>dr}.

En fin, une ecurrence sus > 3, montre quelu()|, , s reste finie &s quelu(r), , s
reste finie, ce qui aéve la preuve.

6. Preuve du Theoreme 2.3

En vertu du Tkoreme 2.2, on montrera ce dernier dans le cas = 3. Pour cela on
va raisonner par I'absurde, c'eatdire on suppose que

T
T" <400 et /0 (|w(s, ea@Huwls, ‘)|F\W1,1/,,_,,(r)) ds =M < +c0

et on montre gqu'il existe une constante> 0 telle que|u(s, .)\ 2sSC Viel0, T
ce qui contredit la maximakt de la solution.

ReEmMARQUE 6.1. D’apes le Lemme 2.10 de K. Kikuchi [16], il exist€ > 0O telle
que [ul, , s< C|V Aul, 4 5, POUr toutu € M3 5($2) tangentiela divergence nulle; cela
signifie que les trois normelg|  , 5, [Vul, 1 5,4 €|V Aul,, 4,4 Sontéquivalentes sur
le sous espace dé1’ 2.5(€2) forme par les champs tangenti€isdivergence nulle. Donc
pour estimerju(t, .)|p’2.5 il suffit d'estimer |w(z, )|, 1 5.4= |V Aul, 1 5.1, POUr cela, on
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revienta I'équation du tourbillon :

{ Ow+uVw=wVu

w|t:0 = Wo

Si on dcesigne pam le flot deu, on en dduit

w(t, x) = wo(n_l(t, x)) +/ (w.Vu)(s, n(s, n Y, x)))ds
et donc |w(r,.)], 151< lwo(n~ Y, )| 1641 /\w Vu(s,n(s,n~ Y, )))‘p,1,5+1d5
i) Estimation defwo(n~(r, )|, 1541

|w0( e, ))p16+1

= [ PO uol~ e, ) P+
/Qa”(5+2)(x)|V(wo(n_1(t,x)))|pdx
< mf(5+l)(l)/ PO D (71, x)) [wo(n (2, x)) | dx+
i) [ 0D e ) Tl 6) 1,5
< Cm,f(5+2)(t) <o5+1w0|ip+ep fo|Vu(s,.)|l_mds|0_6+2vw0|ip)

(pour cette dermire iregalie (cf preuve du Lemme 1 de [2])), dio

1
\wo(n—l(t, )) \p 1511 Cm5+2(t) exp{/o |Vu(s, .)|Loods} \wo|p’1.5+1.
iy Estimation de|w.Vu(s,n(s, n~(, ')))|17,1,6+l' On poseg =w.Vu, il vient

|g(s, ”(s’ n~4, ))) $,1.5+1
- / P00 g (5. (s 72t x)) )P s+
Q

[ o7 s (5.7 0)) P
Q
(*) mp(5+2)(t) </ 01}(5+1)(X)|8(Sa (s, x)) " dx+
Q
exp{p/ |Vu(r, .)|Lood7'}/QUP(5+2)()C)|Vg(s,n(s,x))|pdx>
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t
<m?P0*2(r) <|06+1g(s, N7+ exp{p/ [Vu(r, .)Locdr} |02V g(s, .)

» )
Lr |-
Pour l'inégalig (), c’est encore le Lemme 1 de [2]. On a donc

|qu (S, 77(5, n_l(t’ ))) |p,l,6+1

1
< Cm5(5+2)(t) exp{/ |Vu(r, .)|Lood7} |lw.Vu(s, ‘)|1),1,6+l
et par la proposition [A], on obtient
t
lu(t, )05 < Cmy™(1) {|wop_1.5+lexp{ /O vu(r)|Lm<Q)dT} +

[ exa{ [ 19ulim@ } ), s (106~ 1T

Pour achever la preuve, on a besoin des deux propositions suivantes.

0)

Proposition 6.2. Sous les hypo#ises duTheoeme 2.3 pour tout
k € ](Bp)/{(6 +1)p +3}, p], il existe C(k) telle que

w(t, N pe< CK) Vi e [0, T7[.
Preuve On a
t
w(e,x) = woly e ) + [ T s, x)ds
0
t
et donc [w(t, < [wol pxq) +/0 [w(s, ) oo Vuls, )l pr(q)ds-

Maintenant en prolongeantz,( ) at,( ) SBP\Q par 0, et en faisant comme dans
[8] (Paragraphe 3.2), on sait qu’il existe une constante O telle que

[Vu(s, ‘)|Lk(9)§ Clw(s, ‘)|Lk(sz) Vs € [0, T*[.
D'ou [w(t, ) xS [wol iy +C /Orw(s, Moo wis, M pveyds
et par le lemme de Gronwall, oreduit [w(r, .)| g < [wol ke Vr € [0, T*[.
Proposition 6.3. Pour u € Mg,é(sz) (p >3, 1< <2-3/p) tangentiela di-

vergence nulle etv =V Au, il existe pour(3p)/{(d + 1)p + 3} < k < 3 une constante
C > 0 indépendante de telle que

i) |u|Loo g <C |w|LOO o T |w|Lk ot ‘w ey T ‘W\F‘W1,1/,,_,, IR
Q) (2) (2) (2) (r)
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Vit oo §C{l+w +

wo@) * Wik
(‘w‘ca(g) + |w\r|wlfl/1’-ﬂ(r)) (1 +Log (e + |”p.2,5))} :

Preuve. \oir appendice.
Tenant compte de la Proposition 6.2, &mali€ () devient

1
lu(t, ), 2.5 eXP{/O IW(T)ILm(sz)dT}
< C|:|w0|p,l,6+l +

/0 ‘”(S)|1,,2,5 eXp{_/o |v“(T)L°°(Q)dT} (‘w(s)|L°0(Q) + |Vu(s)|Loc(Q))]dS

IN

15
C‘w0|,,,1_5+1 eXp{/o (|w(5)|Loc(g) + |Vu(s)|L°°(Q))ds}

!
Cwo|p’1.5+1€Xp{/O |Vu(s)|Loo(Q)ds}.

IN

Ce qui montre d'aprs les Propositions 6.2, 6.3 et les hypsihs, que

t
u(®)] 25 < Clwol, 15 exp{Z/O v”(S)L”(Q)dS}

IN

1
C, exp{2/0 (Jw(s)lea(@) * lwy lwi-veery) LOG (€ + Iu(S)Ip,z,é)dS}

se{z ()

On posey () = Lod 3 + |u(t)|.2.5), il vient alors que

IN

co@ * Wi lwi-1ry) LOG (B + |u(s)|,,,2,5)ds}

ol 8 =Max(C,,e).

t
y(t) < (1+Logp) eXD{Z/O (Jw(s)lco(e) + |w|r|W11/P-V(F))dS}
< C, pourtout r €0, T*[
ce qui contredit I'hypothse de la maximaét de la solution. ]
7. Appendice

On rappelle touta bord la loi de Biot et Savart :
Etant don@ un champu défini sur R® & divergence nulle efb = rotu identifie la
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matrice
0 w3 wl
Q=| -ud 0 —w?
—wlt w? 0

alorsu =VE ®w = K *w, c'est dire
- 1 3 x/ =yl
u' = — ——=Q%(y)dy.
4#2/]1@3 lx — y[3 i)y
Dans une prengire étape, nous allons montrer leéttieme suivant :

Théoréme 7.1. On se donnep > 3,1 < § < 2 — 3/p et on posea =
(p — 3)/(2p), alors pour toutk €](3p)/{(6 +1)p + 3}, 3[, il existe une constant€’ >
0 telle que pour toutn € M7 4,,(R®), on a:

‘ﬁ|C1*a(R3) <C 1+ |a}|L*(R3) + |17)

L@y T Wlcamsy (1 +Log(e + |17)|Mg_6+1(n@3)))}
olu=VEQw.

Pour montrer ce #oreme, il suffit en fait d’estimer les semies normes

.
il e+ Vil s €t [W]a:?;opwu(x |};ll)|a V()|

Or, d'apes la &monstration de Beale, Kato and Majda [4], il existe une constante

C > 0 telle que
Vit e gy < C [1 [ Logesy + || oo gy (1 +L0g (|| ez, o) + e))] .

Lemme 7.2. Pour (3p)/{(6 +1)p +3} < k < 3, il existe une constant€ > 0
qui ne cepend que dé& telle que

|| oo ms) < C(‘{I)|L°°(R3) + |'7)|Lk(R3))-
Preuve Rappelons touta bord que siw € M, (R®), alorsw € LK(R®)

pour (pY{(6+1p+3} < k < p, et comme 1< § < 2 — 3/p, alors 1 <
(3p)/{(6 + 1)p + 3} < 3. En écrivant maintenant

ux)=xKxw+((1—-x)K xw
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ou y est une fonction de troncature gsr de l'origine, on obtient (aved&’ =
k/(k —1)> 3/2)

2y < € (IXK )] o 29 + 12 = 0K v s | ey )-

Le corollaire suivant, dont on aura besoin par la suite, est uneeqaeace du lemme
precadent.

Corollaire 7.3. Poury=1-3/p et (3p)/{(0 +1)p +3} < k < 3, il existe une
constanteC > 0 telle que

|t]cvms) < C<|'7)|L°o(R3) + (U] Lomsy + |E|Lk(R3))
Preuve Voir Hormander [13].

Pour achever la @monstration du Téoeme 7.1, on montre qu'il existe une constante
C > 0 telle que

[Vit],, < €[2[0l sy + [lcaesy (14 L0g (e + 1]y ) )] -

Soit h € R\ {0}, on se propose dtudier |Vu(x + 1) — Vu(x)|/|h|*.

On pose pour &< p < 1, la fonctiony,(x) = x(x/p) ol x est une fonctiorC> sur
R3 valant 1 sur{|x| <1} et 0 sur{|x| > 2}. Il vient alors

u=x,K+w+(1—x,)K*w=u1+uy.

Lemme 7.4. Pour a = (p — 3)/(2p) (€]0, 1/2[), Vi1 = x,K * Vw € C*, de plus
[Viila < Cp*|VwlLe

ol C ne cepend ni dew ni de p
Preuve.
Vi(o+ ) - Vint) = [ (0 + DG +) — 0K 0)) Vit — 1)dy
= [ (b KO R = (0K O)) Vit — y)dy +
[y1<2]h|
[y (0 BEG 1) = 0K () Vit ).
Or

/ 1/p' (f 1y )1/p' )

P vI<2lhl Tz’ 4Y SI |h| <p
xp(y)K(y)’ dy) < IyI=2in] \yll .

(f\y|§2p Wdy) si |n]>p

</|y§2h
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C|h|@=20V/r" = C|h2> si |n| <p
< —20"Y/p’ 2 i
Cpl=20/v" =cp?> si |h|>p

IN

de néme, on a

p, 1/p
(/ ‘Xp(y+h)K(y +h)’ dy)
Iy|<2ln|

’

IN

» 1/p'
</ ‘Xp(y+h)K(y +h)‘ dy)
|y+h| <3]n|

’ l/]’/
p
< ([ et
yi<ail 1YI%

C|h|*p°.

IA

D’ou

< Cln*p| v

‘ [ (ol # WK +h) = x,0)K0)) Vit — )dy
[y1<2]h|

72

Reste maintenant :
A= [ (K h) ~ G 0IK0)) Vi - dy
[y|>2|n]

on remarque quel x( ) est nulle i| > 2p, en effet dans ce cas, on a

{Iyl > 2|h| > 4p , doncx,(y) =0.
|y +h| > |y| = |h] > |h] >2p , doncx,(y+h)=0.

donc on peut supposer dadsx ( ) qu¢ < 2p, et dans ce cas cette éyrale vaut

aw = [ (s K ) 00K 0) T~ )iy
<|y|<4p

Lo b m(KO ) - KO)) Vit -y +
2|n|<|y|<4p

Lo KO0~ x0)) Vit - 3)dy
20h|<Iy|<4p

a(x) +b(x).

Poura (), il existe une constanté > 0 telle que pour touty| > 2|#| on a

K(y+h)— KO)| < c|'yh|'3



EQUATION D’EULER 639

et par suite

/ 1/p’
</2Ihlﬁly|§4p ’Xp(y +h)(K(y +h)— K@)) ‘p dy) 1

IN

, 1/p’
N
C ﬁdy
iviz2) Y17
+oo 1/p’
< C|hl / P23 gy
20|

< Clh| |h|C3/" = C|n 2>
< Clh|*p®

ce qui montre que

la(x)| < C|h[*p®

va}‘ .
Lr

Quanda b(x), on a

1/p’ |h‘ 4p 1/p’
</ (KO Ixp(y + 1) = xp, I dy) s </ re-er d’)
20l <|y|<ap p \ o
1-2c
h h
e = caee (21
p p

C|h|*p~ (car%| < 2)

IA

IA

d’ou

[b(x)| < Clh|"p® |V

Lr
et le lemme est @monte.
Passons maintenaat

uz(x) = (1—xp)K *w

= (L~ xp)K * B+ (L= )L~ X )K * D
=1+ 02

ol ¥(x) = x(2x). Pourv,, on a

Va(x) = (1 - Y)K *w
Dvy(x) = (1 — ¢)DK * w — (DY)K * w
et D?05(x) = (1 — ¥)(D?K) * w + (D*Y)K * w — 2(DY)(DK) * .

ce qui montrer queD?v, € L™ et

‘Dzig‘ < Clib|p=
LOO



640 M. JeELLouLI
et par suite
Va(x +h) — Via(x)| < Clhl|]pe.
Etudions maintenant
U1(x) = (1 — x,)K *
On a

Vv = w(lfxp)VK * W fw(pr)K * E)+V1/)(17XP)K * W
= a(x) — b(x) + c(x).

Commew € M’l”éﬂ(ﬂ@), p >3, alorsw € C*(R3) aveca = (p — 3)/(2p) < 1—-3/p
et on obtient : D’une part

N

la(x +h) — a(x)| < / PO) (1= xo0)) VK[ +h — y) — i(x — y)|dy
4

Clw]a|h|® }dr
r
p

(I@LJMQ(—Logg).

IN

IN

D’autre part

Ib(x +h) — b(x)| < Clirlalh]® / w(ynw(y)ﬁdy

IA

1 /%
CWMMP—/ dr

P Jp
Clw]a|h|®.

N

Pourc ), on a|V¢| < C|w|r~, ce qui montre que
e +h) — ()| < Clhl[@]g.
L A ~ o o p
< . — Lt
D'ou [Vvi]a < C(\w|L + [w]e. (1 Log 4) )
En fin :

Vi, < C[pIViD

] [zﬂa(l -C Lng)}

1/a

en choisissanp = 1 si |Vw|,, <1 etp=1/|Vw|/," si [Vw|,, > 1, on obtient ainsi

B -

(Vu] < C[1+\17;|Loo + [a}]a(1+c Log|Vw
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Preuve de la Proposition 6.3. Revenons maintedamte M’z”é(Q) tangentiela
divergence nulle eww = rat , alors pour exprimera I'aide dew , nous allons pro-
longer (comme Kikuchiw sur tout I'espace, puis retrouved I'aide de la loi de Biot
et Savart.

On sait quew = rat € MY ,,,() vérifit, divw = 0 et [ w.ndo = 0 et par suite, il
existeq, € W2P(D) (D =R%\ Q) solution de lequation

Ag, = dans D
0

i =wnl, sur T
on |

de plus il existe une constantg > 0 verifiant

|vq1|W1-p(D) < Clwl; |W1*l/11-n(r‘)-
Par ailleurs, il existe un champec W27(D) vérifiant
vl =0
Ov
- = -V
on | (w q)‘r

‘U|W2-1’(D) < C‘ (w — Vq) ‘F ‘Wl—l/p.p(l") < C| w|F ‘Wlfl/lw(r)

On posewp = Rot(Vy A v) — Vg € WP(D), alors |wo|wirp) < C| | [wi-vrsry-

w dans Q . . .

Le champw = appartienta M? ... (R3), diviwo =0 et on a les estima-
pw { wo dans p 2PP My 5 (R) v
tions suivantes :
. 3p
i Pour tout——— <k < p,
) (6+1)p +3 =P
|17)|Lk(R3) <C, (‘w‘Lk(Q) + | w\r ‘W171/p.,;(p)) .

i) @] ooy < C (Jwlroo@) + | wlp lwa-vinry) -
i) Wi, @ < Clwlame,, @
) -3
iv) Poura= p—,

2p

[W]ea@sy < C (lwlea + | Wik lwi-1/mm(ry) -

Maintenant, on pos& = VE @ w, il vient alors que dii = 0, rotu = w etu €
M} s(R3). Pour retrouver , onésout le prol#me de Neumann suivant

ANg,=0 dans

04,
on |

=un|p sur T
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qui admet une unique solution dadels s ,(Q) (puisque u.n|. € W2 1/7P(I)), de
plus on a la proposition suivante dont la preuve est éassla fin

Proposition 7.5. Soientp > 3 et g € W2~1/7.(I"), alors I'unique solution dans
M 5_1() du probkme de Neumann éxieur

Ng=0 dans Q

dq
—| = sur r
on | g

vérifie (aveca = (p — 3)/(2p))
) Valewag) < Clglerem)-
i) |vq‘Loo(Q) < C‘g|c°‘(r)‘

Cette proposition montre qu'’il existe une constagte- O telle que
IV@,|era(q) < Clitlerrams € [V, | 00(q) < Clit|ca s
En fin, on retrouve le champ par
u=1ulg—Vg,.
De plus on a

1) Pour (P Y{(0+1)p +3} <k <3 ona
|M‘L"°(Q) < |Zi|L°°(]R3) + ‘qu‘LOO(Q)
~ -3 _3
< Clu|cawsy avec o= P <= p

L,,(]Rs)) ; (voir Corollaire 7.3

< € (|0l * D]y + |0

<G (\W|Lw(sz) +|w| k@) + [wLr@) + | wlp |W171/,7.,,(F))
2) Vit ooy < [Vl oo ey T V@l crva (o
< |ut|era(rey
et on en é@duit, par le Teoeme 7.1 et les estimationsguedentes la Proposition 6.3.
O

Preuve de la Proposition 7.5. Comme le peshé de Neumann exteur

Ng = 0 dans Q
9q
on |

gewxYrrr) sur T
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admet une solution, alors cette solution s’exprime en potentiel de simple couche

a(x) = /F E(x — Nu(r)do(t)

et que

-1

S = 5 0+ 1) = 5 (1 + )t

ol Ju(z) = 2 [. VE(z—1).n(z)u(t)do(r) est un oprateur compact dé°(I") dansCo(T")
et deCH*(I") dansC**(I") (k € N et a €]0, 1) (cf [10] et [15]). Ce qui montre que
l'opérateur/ +/ est de Fredholm.

Par ailleurs, comme&2 ne contient aucune composante connexe, kadans kel(l +
J) = {0} et par suitel +/ est un isomorphisme EHI) et surC***(I"). Ce qui
prouve

p=—2(I+ J)_lg

et qu'il existe une constant€ > 0 vérifiant

plreory < Clglrem €t |plerary < Clglewaqr)-

Or, on sait (cf [10]) que le potentiel de simple couche éfidie par une dengty de
classeC®(I') estC(Q) et verifie

V4| @) < Clitlery < Clglexr)

ce qui montre le deuxiemme point de la proposition.
Pour montrer i), on @écompose la solutiog comme suit

g=vq+1—-1)g=q,+q,

ol 1 € C§°(R3) telle quey(x) =1 si|x| < R et 0 si|x| > 2R avecR un rayon assez
grand.
1) g, est une solution de

Ag, = (AY)g+2(VY).(Vg) dans  Q,, =QN B(0, 2R)
% ) g sur T
99, = 0 sur  C,, =C(0, 2R)
on Con

et par suite il existe une constanfe  qui repend que d&k et (cf [11]) telle que

9l c2rage,) < C (|(A¢)61|ca(gm) +(VY)-(Va)lca(,) * 18leraqr + W‘]|Loc(QZR))
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<C (‘6]|cl+a(9) +[glorraqm * |q|L°°(Q)) -
2) Pourg, = (1—1)q, elle est @finie sur toutR® et verifie
Ag, = (Mg — 2(VY)(Vq) = f € G5 (R)

et par suite

qz:E*f=/R3E(x—y)f(y)dy=C/ ! f)dy

y|<2R |x — |
d'ou

19,0 ®3) + [V, | Lo ®3) < C| f|Lom3)
Par ailleurs, on sait qu’il existe une constaiite> O (cf [10] et [17]) telle que

aiajqz(x) - aiaqu(y)‘

[0.9,4,].. = Sup

< C[f]. < Clqlere(ey-

XFy ‘x _y|a
et que
0? 1
0.0.q,(x =c/ ————dy +
i ]qz( ) - f(y)aylayj |x 7y| y

y Esupp(f )
0? 1
C[_\.Sl (f()’) - f(x)) M |x — y‘dy +’Y[.jf(x)

ou v, sont des constantes qui némendent que dé et de , ce qui montre que
10.0,0,|1~®3 < Clflea < Clg|cra(g).
En conclusion, il existe une constante> 0O telle que
|q]cz@y < C (lgleraey * 18leram + lg|Le(@) -
Or, d'une part
lg(x)| < /r |E(x —0)[|u(r)|do(r) < Clulrery < ClglLe(r)-

Et d'autre part, la formule de Taylor montre qu'il existe une constathte- O telle
pour toute > 0 et pour toutg € C2**(Q), on a

A
1—
q|crai@) < e gz * Tra 19| L(0)-
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Ce qui acleve la preuve. ]
On ceémontrea present l'iregalie d’interpolation.

Proposition A. Soientp > 1, s € N etJ € R, il existe une constant€ > 0,
telle que pour toutr, v € L>®(R") N M 5(R"), on a

0] 05 < C (1l 5101 + 10l e 01, 5)-

Preuve. Pour montrer cette proposition, on a besoin de la ésisatton des es-
paces M/ ;(R") suivante (cf [19]) : On pose&Ko = {x € R”;|x| < 2} et pour j
entier > 1, K; = {x € R, 271 < |x| < 2/*2}, On cksigne parZ I'ensemble des
suites (;);>o0 de fonctions erifiants :(; € C5°(K;),0 < (j(x) < 1 et ijo ¢i(x) =
1 Vx € R", de plus il existe pour toutr € N", une constante& of > 0 telle que
|D¢;(x)|< C(@)2771*l vx € R etVj € N. On montre ainsi que

17 5,67 Z 207 |ug; L"+Z Z 210D (ug;)

j>0 J >0 |a|=s

L= Ml 5
Soit u € M7 5(R"), alors

[lu]|? Pes = 2215170“(] Ll’+ Z 215p|Da(u<j LP)

j>0 ‘Oll—S

= > 2 (Jwe)@ )+ 1D (@)@ )1
>0 |a|=s

=20 )2 )y
j>0

Soient maintenani, v € M? ;(R"), alors

lwvlly o5 = D277 o) (27 iy,
j>0
2

> 2@t 3 2 o) Vi

j=0 >3

Cluv] ot D 277" v )@ )y
j>3

IN

Orpourj>3etxecR"ona:

j+2

(w¢)@x) = | Y @) | (@¢)@'x). dod

k=j—2
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j+2
|@u¢)@ s <C [ 1R ] D @)@ s +
k=j—2
j*2 _
@ el D @GR
k=j—2
j+2
<C [ olfoe Y 1@ ) 5nn @S N [u7 o
k=j—2
et par suite
j*2
D 20 v )2 e, <C [ 0l7 YD 2 ) ()],
Jj>3 j>3k=j—-2
Jul o> 277" (¢ )@ e
j>3
j*2
<C [ Plhed 0 N 29m G )@ ), +
j>3k=j—2

|u °°|| H[)S‘5

Et pourr € {-2,-1,1 2} on a :|(u¢;—)(2 )", < Cl¢;—)(2~")|h,..,, dou

j+2
DD DN e, < €Y 200" Z |G- )@ Ml
j>8k=j—2 j>3 r==2
2
<C Z Z 2i5112r5p2i/12r/1‘(uci)(zi.) (/]VS.l)
r=—2i>3—r
< Cllull} .5
|uvas5— (‘M <>°|| ||]755 Hu|ps6|v|£m)' L
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