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Abstract
The notion of the negative slope algorithm was introduced byS. Ferenczi,

C. Holton, and L. Zamboni as an induction process of three interval exchange
transformations. Then S. Ferenczi and L.F.C. da Rocha gave the explicit form of its
absolutely continuous invariant measure and showed that itis ergodic. In this paper
we prove that the negative slope algorithm with the absolutely continuous invariant
measure is weak Bernoulli. We also show that this measure is derived as a marginal
distribution of an invariant measure for a 4-dimensional (natural) extension of the
negative slope algorithm. We also calculate its entropy by Rohlin’s formula.

1. Introduction

The negative slope algorithm (n.s.a.) was introduced by S. Ferenczi, C. Holton,
and L. Zamboni [1] to discuss the structure of three-interval exchange transforma-
tions, see also [2] and [3]. It is a kind of multidimensional continued fractions al-
gorithm and some arithmetic properties were discussed in [1]. Recently, S. Ferenczi
and L.F.C. da Rocha [4] discussed its ergodic properties. Indeed, they showed the
existence of an absolutely continuous invariant measure, which is ergodic. In this pa-
per, we show that the n.s.a. satisfies conditions given by M. Yuri [7], which imply
Rohlin’s entropy formula and weak Bernoulli property with respect to the absolutely
continuous invariant measure. We also derive the absolutely continuous invariant mea-
sure given in [4] from a 4-dimensional representation of thenatural extension of the
n.s.a. and compute the explicite value of entropy of the n.s.a. by Rohlin’s entropy for-
mula and give the exponent constant of the denominator of then-th convergent of si-
multaneous approximations arising from the n.s.a. In§2, we give the definition of the
n.s.a. and some basic notions related to the n.s.a. Then, in§3, we explain some suf-
ficient conditions by [7] for multi-dimensional mapsT to be weak Bernoulli. In§4,
we prove Rohlin’s formula and the weak Bernoulli property ofthe n.s.a. by showing
a number of properties which implies that Yuri’s condition holds for the n.s.a. Final-
ly, in §5, we construct a 4-dimensional map, which is the natural extension of the
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n.s.a. and derive the absolutely continuous invariant measure for the n.s.a. as the mar-
ginal distribution. Then we calculate the entropy of the n.s.a. by Rohlin’s formula.

2. Basic notions of the negative slope algorithm

First we define a mapT on the unit square, which is called the negative slope
algorithm. For (x, y) 2 X = [0, 1]2 n f(x, y) j x + y = 1g, we define

T(x, y) =

8>>><
>>>:

�
y

(x + y)� 1
� � y

(x + y)� 1

�
,

x

(x + y)� 1
� � x

(x + y)� 1

��
if x + y > 1

�
1� y

1� (x + y)
� � 1� y

1� (x + y)

�
,

1� x

1� (x + y)
� � 1� x

1� (x + y)

��
if x + y < 1.

We put

n(x, y) =

8>>><
>>>:

�
y

(x + y)� 1

�
if x + y > 1

�
1� y

1� (x + y)

�
if x + y < 1,

m(x, y) =

8>>><
>>>:

�
x

(x + y)� 1

�
if x + y > 1

�
1� x

1� (x + y)

�
if x + y < 1,

and

"(x, y) =

��1 if x + y > 1
+1 if x + y < 1.

Then we put 8<
:

nk(x, y) = n(Tk�1(x, y))
mk(x, y) = m(Tk�1(x, y))"k(x, y) = "(Tk�1(x, y))

for k � 1. Then we have a sequence

(("1(x, y), n1(x, y), m1(x, y)), ("2(x, y), n2(x, y), m2(x, y)), : : : )
for each (x, y) 2 X. We note thatnk, mk � 1 for k � 1 and for any sequence (("i , ni , mi ),
i � 1), there exists (x, y) 2 X such that ("i (x, y), ni (x, y), mi (x, y)) = ("i , ni , mi ) unless
there existsk � 1 such that ("i , mi ) = (+1, 1) for i � k or ("i , ni ) = (+1, 1) for i � k.
By [1], we see that

f("k( � ), nk( � ), mk( � )), k � 1g
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separates points. Indeed, [1] showed that the sequence of digits separatesf(x + y, x �
y)g, which is equivalent to the above, i.e. if (x, y) 6= (x0, y0) 2 X, then there exists
k � 1 such that

(1) ("k(x, y), nk(x, y), mk(x, y)) 6= ("k(x0y0), nk(x0, y0), mk(x0, y0)).
Now we introduce the projective representation ofT . We put

A(+1,n,m) =

0
� n n� 1 1� n

m� 1 m 1�m�1 �1 1

1
A

and

A(�1,n,m) =

0
� �n �n + 1 n�m + 1 �m m

1 1 �1

1
A

for m, n � 1. Then we see

A�1
(+1,n,m) =

0
� 1 0 n� 1

0 1 m� 1
1 1 n + m� 1

1
A

and

A�1
(�1,n,m) =

0
� 0 1 m

1 0 n
1 1 n + m� 1

1
A.

We identify (x, y) to

� �x�y�
�

for � 6= 0. ThenT(x, y) is identified to

A("1(x,y),n1(x,y),m1(x,y))

0
� x

y
1

1
A

and its local inverse is given by

A�1
("1(x,y),n1(x,y),m1(x,y)).

In this way, we get a representation of (x, y) by

A�1
("1,n1,m1) A

�1
("2,n2,m2) A

�1
("3,n3,m3) � � �
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and T is defined as a multiplication byA("1,n1,m1) from the left and acts as a shift on
the set of infinite sequence of matrices

�
A�1

("1,n1,m1) A
�1
("2,n2,m2) A

�1
("3,n3,m3) � � � �� "k = �1, nk, mk � 1 for k � 1

	
.

For a given sequence (("1, n1, m1), ("2, n2, m2), : : : , ("k, nk, mk)), we define a cylinder
set of lengthk by

h("1, n1, m1), ("2, n2, m2), : : : , ("k, nk, mk)i
= f(x, y) j ("i (x, y), ni (x, y), mi (x, y)) = ("i , ni , mi ), 1� i � kg.

For (x, y) 2 h("1, n1, m1), ("2, n2, m2), : : : , ("k, nk, mk)i, Tk(x, y) is expressed as

A("k,nk,mk) � � � A("1,n1,m1)

0
� x

y
1

1
A

and its local inverse9h("1,n1,m1),("2,n2,m2),:::,("k,nk,mk)i is expressed as

A�1
("1,n1,m1) � � � A�1

("k,nk,mk).

Since ��
y

(x + y)� 1
,

x

(x + y)� 1

�
: (x, y) 2 X, x + y > 1

�

=

��
1� y

1� (x + y)
,

1� x

1� (x + y)

�
: (x, y) 2 X, x + y < 1

�
= f(�, �) : � � 1, � � 1g,

we see that for anyf("k, nk, mk), 1� k � l g, "k = +1 or �1, nk, mk � 1, we have

(2) T l f(x, y) 2 X : "k(x, y) = "k, nk(x, y) = nk, mk(x, y) = mk, 1� k � l g = X a.e.

3. Multi-dimensional maps

In this section, we summarize results of [7], which we shall use in the following
section.

We consider a mapT of a bounded domainX of Rd onto itself with its countable
partiton Q = fXa : a 2 I g. We assume the following:
(i) Each Xa is a measurable and connected subset ofX with picewise smooth boudary.
(ii) There exists a finite number of subsets ofX, U0 (= X), U1, : : : , UN such thatU j ,
1� j � N are sets of positive measure and for anya1, : : : , an 2 I

Tn(Xa1 \ T�1Xa2 \ � � � \ T�(n�1)Xan ) = U j a.e.
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for some j , 0� j � N wheneverXa1 \ T�1Xa2 \ � � � \ T�(n�1)Xan is a set of positive
Lebesgue measure.
(iii) For any a 2 I , T jXa , the restriction ofT to Xa, is injective andC1.

We write

ha1, : : : , ani = Xa1 \ T�1Xa2 \ � � � \ T�(n�1)Xan

which we call a cylinder set (of lengthn). We only consider cylinder sets of positive
Lebesgue measure. From (iii), the restriction ofT to ha1, : : : , ani is injective, we can
define (T jha1,:::,ani)�1 of U j for some j , 0� j � N, onto ha1, : : : , ani, which we denote
by 9ha1,:::,ani. We fix a constantC � 1 and define the set of “Rényi cylinders” by

R(T) =

�ha1, : : : , ani : sup
x2Tnha1,:::,anijdetD9ha1,:::,ani(x)j
� C � inf

x2Tnha1,:::,anijdetD9ha1,:::,ani(x)j, n � 1

�
.

Moreover we put

Dn = fha1, : : : , ani : ha1, : : : , a j i =2 R(T) for 1� j � ng,
Dn =

[
ha1,:::,ani2Dn

ha1, : : : , ani,
Bn = fha1, : : : , ani 2 R(T) : ha1, : : : , an�1i 2 Dn�1g,

and

Bn =
[

ha1,:::,ani2Bn

ha1, : : : , ani.
Then we consider the following conditions:

(C.1) (T , Q) separates points, that is, for anyx, x0 2 X there existsn � 0 such that
Tn(x) and Tn(x0) are not the same elements inQ.
(C.2) For eachj , 0� j � N, there existsha1, : : : , asj i � U j such thatha1, : : : , asj i 2
R(T) and Tsj ha1, : : : , asj i = X.
(C.3) If ha1, : : : , ani 2 R(T), then hb1, : : : , bm, a1, : : : , ani 2 R(T) unlesshb1, : : : , bm,
a1, : : : , ani is a set of Lebesgue measure 0.
(C.4)

1X
n=1

�(Dn) <1
where� denotes d-dimensional Lebesgue measure.
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(C.4)� P1
n=1 �(Dn) � log n <1.

(C.5) For anyn � 1,

1X
m=0

 X
hk1,:::,kmi

�
sup

y2Tmhk1,:::,kmi\(
Sn

j =1 B j )
jdetD9hk1,:::,kmi(y)j�

!
< +1.

(C.6) ℄D1 <1.
(C.7) There exists a positive integerl such that for alln> 0 and allha1, : : : , ani 2 Dn,

supx2Tnha1,:::,anijdetD9ha1,:::,ani(x)j
infx2Tnha1,:::,anijdetD9ha1,:::,ani(x)j = O(nl ).

(C.8) logjdetDT( � )j is Lebesgue integrable.
(C.9) there exists a positive integerk0 such that ifha1, : : : , ani 2 Dc

n and ha2, : : : , ani 2
Dn�1, then

ha1, : : : , ani � k0[
j =1

B j .

Then we have the following.

Theorem 3.1 ([7]). (i) (C.1)–(C.4) imply that there exists an absolutely contin-
uous invariant probability measure� and (T , �) is exact, i.e.

1\
k=1

T�kB

is trivial, whereB denotes the set of Borel subsets ofX.
(ii) (C.1)–(C.8) imply Rohlin’s entropy formula:

h(T) =
Z

X
logjdetDT(x)j d�(x).

(iii) (C.1)–(C.9) with (C.4)� imply that (T , �, Q) is weak Bernoulli, that is, for any" > 0, there exists n0 > 0 such thatf1kg and f1l g are "-independent for any k� 1,
l � k + n, and n� n0, where f1kg and f1l g denote the sets of cylinder sets of length
k and l respectively and Two partitionsF1 and F2 are said to be"-independent if

X
A2F1

X
B2F2

j�(A\ B)� �(A)�(B)j < ".
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4. Ergodic properties of the negative slope algorithm

First of all, from (2), we can takefU0g as fU0, : : : , UNg in the previous section
(U0 = X). We show the following.

Theorem 4.1. There exists an absolutely continuous invariant probabilty measure� for T and (T , �) is exact.

REMARK 4.2. [4] discussed the explicit form of the density functiond�=d�,
which we will see later, and showed its ergodicity. The exactness implies not only
ergodicity but also mixing of all degrees.

To prove this theorem, we will show thatT satisfies the conditions (C.1)–(C.4).
We define the setR(T) by

R(T) = fh("1, n1, m1), ("2, n2, m2), : : : , ("k, nk, mk)i j ("k, nk, mk) 6= (+1, 1, 1)g.
In the sequel, we simply write1k for a cylinder set

h("1, n1, m1), ("2, n2, m2), : : : , ("k, nk, mk)i
if it is clear in the context. We put

A�1
("1,n1,m1) � � � A�1

("k,nk,mk) =

0
BB�

p(k)
1 p(k)

2 p(k)
3

r (k)
1 r (k)

2 r (k)
3

q(k)
1 q(k)

2 q(k)
3

1
CCA

for any sequence (("1, n1, m1), ("2, n2, m2), : : : , ("k, nk, mk)), k � 1. Then it is easy to
see thatq(k)

1 = q(k)
2 .

Lemma 4.3. For any sequence(("1,n1,m1), ("2,n2,m2), : : :, ("k,nk,mk)), "i =�1,
ni , mi � 1, 1� i � k, we see
(i) Tk(1k) = X,
(ii)

jdetD91k (x, y)j = 1�
q(k)

1 x + q(k)
2 y + q(k)

3

�3 .

Proof. It is an easy consequence of induction and calculation, respectively, see
also F. Schweiger [6], Proposition 2 for (ii).

From this lemma, it is easy to see the following.
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Lemma 4.4. If h("1, n1, m1), ("2, n2, m2), : : : , ("k, nk, mk)i 2 R(T), then

sup
(x,y)2X

jdetD91k (x, y)j � 33 inf
(x,y)2X

jdetD91k (x, y)j.
Therefore, R(T) is the set of Rényi cylinders.

Proof. Since

A�1
("1,n1,m1) � � � A�1

("k,nk,mk)

=

8>>>>>>>>>><
>>>>>>>>>>:

0
BB�

p(k�1)
1 p(k�1)

2 p(k�1)
3

r (k�1)
1 r (k�1)

2 r (k�1)
3

q(k�1)
1 q(k�1)

2 q(k�1)
3

1
CCA
0
� 1 0 nk � 1

0 1 mk � 1
1 1 nk + mk � 1

1
A if "k = +1

0
BB�

p(k�1)
1 p(k�1)

2 p(k�1)
3

r (k�1)
1 r (k�1)

2 r (k�1)
3

q(k�1)
1 q(k�1)

2 q(k�1)
3

1
CCA
0
� 0 1 mk

1 0 nk

1 1 nk + mk � 1

1
A if "k = �1

,

we see that�
q(k)

1 , q(k)
2 , q(k)

3

�

=

8>>><
>>>:

�
q(k�1)

1 + q(k�1)
3 , q(k�1)

2 + q(k�1)
3 , (nk�1)q(k�1)

1 + (mk�1)q(k�1)
2 + (nk + mk�1)q(k�1)

3

�
if "k = +1�

q(k�1)
2 + q(k�1)

3 , q(k�1)
1 + q(k�1)

3 , mkq(k�1)
1 + nkq(k�1)

2 + (nk + mk�1)q(k�1)
3

�
if "k =�1.

It follows by induction thatq(k)
1 = q(k)

2 for any k � 1. If 1k 2 R(T), thennk +mk �
3 or nk + mk � 2 when"k = �1 or +1, respectively. Thus we seeq(k)

i < q(k)
3 , i = 1, 2,

whenever1k 2 R(T). By Lemma 4.3, we have

1�
q(k)

1 + q(k)
2 + q(k)

3

�3 � jdetD91k (x, y)j � 1�
q(k)

3

�3 .

Hence we get

1�
3q(k)

3

�3 � jdetD91k (x, y)j � 1�
q(k)

3

�3 ,

which implies the assertion of this lemma.

Let’s define the following:

Dk = fh("1, n1, m1), ("2, n2, m2), : : : , ("k, nk, mk)i j
h("1, n1, m1), ("2, n2, m2), : : : , ("i , ni , mi )i =2 R(T) for 1� i � kg,
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Dk =
[

1k2Dk

1k,

Bk = fh("1, n1, m1), ("2, n2, m2), : : : , ("k, nk, mk)i 2 R(T) j
h("1, n1, m1), ("2, n2, m2), : : : , ("k�1, nk�1, mk�1)i 2 Dk�1g,

and

Bk =
[
1k2Bk

1k.

It is easy to see that

Dk = fh(+1, 1, 1),: : : , (+1, 1, 1)| {z }
k times

ig.
Now we will check the conditions of [7]. First of all, it is clear that the set of

cylinder sets separates points, see (1). Lemma 4.3 (i) and Lemma 4.4 imply (C.2)
and (C.3), respectively. We see the following.

Lemma 4.5 ((C.4)). We have

1X
k=1

�(Dk) <1
where� denotes the2-dimensional Lebesgue measure.

Proof. From the definition ofT and simple calculation, we see that

h(+1, 1, 1)i =

�
(x, y)

���� 0� y < 1� 2x, 0� y < 1

2
� 1

2
x

�

and, in general,

h(+1, 1, 1),: : : , (+1, 1, 1)| {z }
k times

i
=

�
(x, y)

���� 0� y < 1

k
� k + 1

k
x, 0� y < 1

k + 1
� k

k + 1
x

�
.

Hence we have

�(Dk) =
1

(k + 1)(2k + 1)

and get the conclusion of this lemma.



676 K. ISHIMURA AND H. NAKADA

This completes the proof of Theorem 4.1 by [7].
Next we show the following.

Theorem 4.6 (Rohlin’s formula). The entropy H�(T) of (X, T , �) is given by

H�(T) =
Z

X
logjdetDT j d�.

In the following, we show (C.5)–(C.8) in [7], which imply this theorem.

Lemma 4.7 ((C.5)).

Wk =
1X
l=0

X
1l2Dl

 
sup

(x,y)2(
Sk

j =1 B j )

jdetD91l (x, y)j
!
<1.

Proof. Since1l 2 Dl means

1l = h(+1, 1, 1),: : : , (+1, 1, 1)| {z }
l times

i,
91l is associated to

91l =

0
� 1 0 0

0 1 0
1 1 1

1
A � � �

0
� 1 0 0

0 1 0
1 1 1

1
A

| {z }
l times

=

0
� 1 0 0

0 1 0
l l 1

1
A.

Thus we see

(3) detD91l (x, y) =
1

(lx + ly + 1)3
.

On the other hand,

k[
j =1

B j = X n1k

and

min
(x,y)2Sk

j =1 B j

x + y =
1

k + 1
,



THE NEGATIVE SLOPE ALGORITHM 677

see the proof of Lemma 4.5. Hence we get

sup
(x,y)2(

Sk
j =1 B j )

jdetD91l (x, y)j = 1

((1=(k + 1))l + 1)3

� (k + 1)3
1

l 3
,

which implies the assertion of this lemma.

Lemma 4.8 ((C.6)).

℄D1 = 1.

Proof. This is ovbious.

Lemma 4.9 ((C.7)). We have

sup(x,y)2XjdetD91k (x, y)j
inf(x,y)2XjdetD91k (x, y)j = O(k3)

for 1k = h(+1, 1, 1),: : : , (+1, 1, 1)| {z }
k times

i.
Proof. This follows from (3).

Lemma 4.10 ((C.8)). The functionlogjdetDT j is integrable with respect to�.

Proof.Z
X

logjdetDT jd�
= � Z Z

X\fx+y>1g 3 log((x + y)� 1) dxdy� Z Z
X\fx+y<1g 3 log(1� (x + y)) dxdy.

Then, there existsK > 0 s.t.

Z
X

logjdetDT j d� < K
Z 2

0
log r dr <1.

This completes the proof of the Theorem 4.6.

Finally, we show the following.

Theorem 4.11. The negative slope algorithm with the absolutely continuous in-
variant probability measure� is weak Bernoulli.
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To prove this theorem we need the following two lemmas.

Lemma 4.12 ((C.4)�).
1X
k=1

�(Dk) � log k <1.

Proof. This is clear since�(Dk) = 1=((k+1)(2k+1)), see the proof of Lemma 4.5.

Lemma 4.13 ((C.9)). If h("1, n1, m1), ("2, n2, m2), : : : , ("k, nk, mk)i 2 Dc
k andh("2, n2, m2), : : : , ("k, nk, mk)i 2 Dk�1, then we haveh("1, n1, m1)i 2 B1, that is,

("1, n1, m1) 6= (+1, 1, 1).

Proof. This is an easy consequence of the definitions ofDk andBk.

SinceT satisfies (C.1)–(C.9) with (C.4)�, we can conclude the assertion of Theo-
rem 4.11.

5. Absolutely continuous invariant measure

In [4], it was shown that the density function of the absolutely continuous invariant
probabilty measure was given by

d�
d� =

1

2 log 2

1

x + y
.

This was checked by Kuzmin’s equation

f (x, y) =
X

"=�1, n,m�1

f (9(",n,m)(x, y))jdet9(",n,m)(x, y)j
for f (x, y) = 1=(x + y).

In the sequel, we prove the same result by a different way, which is called a
“natural extension method” originally started by [5] for a class of continued fraction
transformations. We start with a 4-dimensional area. LetX = X � (�1, 0)2. For
(x, y, z, w) 2 X, we define a mapT on X by

T(x, y,z,w)

=

8>>>>>>><
>>>>>>>:

�
y

(x+y)�1
�n(x, y),

x

(x+y)�1
�m(x, y),

w
(z+w)�1

�n(x, y),
z

(z+w)�1
�m(x, y)

�
if x+y>1�

1�y

1�(x+y)
�n(x, y),

1�x

1�(x+y)
�m(x, y),

1�w
1�(z+w)

�n(x, y),
1�z

1�(z+w)
�m(x, y)

�
if x+y<1.
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Then it is easy to see thatT is bijective onX except for the set of (4-dimensional)
Lebesgue measure 0.

Proposition 5.1. The measure� defined by

d�
d� =

1f(x + y)� (z +w)g3
is an invariant measure forT , where� denotes the4-dimensional Lebesgue measure.

Proof. We put

h(x, y, z, w) =
1f(x + y)� (z +w)g3 .

It is enough to show that

h(T(x, y, z, w)) � jdetD(T(x, y, z, w))j � h�1(x, y, z, w) = 1,

which follows easily by simple calculation.
CASE i. x + y > 1

(4)

h(T(x, y, z, w)) � jdetD(T(x, y, z, w))j � h�1(x, y, z, w)

=
1

((y + x)=((x + y)� 1)� (w + z)=((z +w)� 1))3

� ���� 1

(x + y� 1)3(z +w � 1)3

���� �
�

1

((x + y)� (z +w))3

��1

= 1.

CASE ii. x + y < 1

(5)

h(T(x, y, z, w)) � jdetD(T(x, y, z, w))j � h�1(x, y, z, w)

=
1

(((1� y) + (1� x))=(1� (x + y))� ((1� w) + (1� z))=(1� (z +w)))3

� ���� 1

(1� (x + y))3(1� (z +w))3

���� �
�

1

((1� (x + y))� (1� (z +w)))3

��1

= 1.

(4) and (5) imply the assertion of this proposition.
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Corollary 5.2. The measure� defined by

d�
d� =

1

2 log 2

1

(x + y)

is an invariant probability measure for T.

Proof. It is easy to see that the projection of� to X is an invariant measure for
T . We have Z

(�1,0)�(�1,0)

1f(x + y)� (z +w)g3 dzdw =
1

2

1

(x + y)
,

which is the assertion of this corollary.

From this formula, we can compute the entropyH�(T) from Theorem 4.6.

Proposition 5.3.

H�(T) =
�2

4 log 2
.

Proof. From Theorem 4.6, we have

H�(T) = � 3

2 log 2

Z Z
fx+y>1g

1

x + y
log((x + y)� 1) dxdy

� 3

2 log 2

Z Z
fx+y<1g

1

x + y
log(1� (x + y)) dxdy.

The right side is equal to

� 3

2 log 2

�Z 2

1

2� t

t
log(t � 1) dt +

Z 1

0
log(1� t) dt

�

= � 3

log 2

�Z 1

0

1

1 + t
log t dt

�

=
�2

4 log 2
.

From this proposition, we can get the exponential divergence of q(k)
3 as k!1.

Proposition 5.4.

lim
k!1 1

k
log q(k)

3 =
�2

12 log 2

for �-a.e. (x, y).
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Proof. From the Shannon-MacMillan-Breiman theorem, we have

� lim
k!1 1

k
log�(1k) =

�2

4 log 2
�-a.e.

where1k is defined by ("i , ni , mi ) = ("i (x, y), ni (x, y), mi (x, y)) for 1 � i � k. We
take (x, y) so that (4) holds. Then we choose a subsequence ((lk) : k � 1) by

l1 = minfl � 1 j ("l (x, y), nl (x, y), ml (x, y)) 6= (+1, 1, 1)g
and

lk+1 = minfl > lk j ("l (x, y), nl (x, y), ml (x, y)) 6= (+1, 1, 1)g
for k � 1, which means that we choose all cylinders1l 2 R(T). Since1l is bounded
away from 0, there exists a constantC1 > 1 such that

1

C1
�(1lk) < �(1lk) < C1�(1lk ).

On the other hand, there exists a constantC2 > 1 such that

1

C2q(l )
3

< �(1l ) < C2

q(l )
3

whenever1l 2 R(T), see Lemma 4.3. Thus we get

lim
k!1 1

lk
log q(lk)

3 =
�2

12 log 2

for �-a.e. (x, y). It is clear thatq(k+1)
3 = q(k)

3 if ("k(x, y), nk(x, y), mk(x, y)) = (+1, 1, 1).
Since the indicator function ofh(+1, 1, 1)i is ovbiously integrable with respect to�,

lim
k!1 lk � lk�1

lk
= 0

for �-a.e. (x, y). Hence we have

lim
l!1 1

l
log q(l )

3 =
�2

12 log 2

for �-a.e. (x, y), equivalently�-a.e.

REMARK 5.5. It is easy to see that 
p(k)

3

q(k)
3

,
r (k)

3

q(k)
3

!
,

 
p(k)

1 + p(k)
3

q(k)
1 + q(k)

3

,
r (k)

1 + r (k)
3

q(k)
1 + q(k)

3

!
,

 
p(k)

2 + p(k)
3

q(k)
2 + q(k)

3

,
r (k)

2 + r (k)
3

q(k)
2 + q(k)

3

!
,
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and  
p(k)

1 + p(k)
2 + p(k)

3

q(k)
1 + q(k)

2 + q(k)
3

,
r (k)

1 + r (k)
2 + r (k)

3

q(k)
1 + q(k)

2 + q(k)
3

!

are91k(0, 0), 91k(1, 0), 91k(0, 1), and91k(1, 1), respectively. Then it is also possible
to show that

lim
k!1 1

k

�
log q(k)

1 + log q(k)
2 + log q(k)

3

�
=

�2

12 log 2

for �-a.e. (x, y) by the same way. We note that these four sequences converge to (x, y)
because of (C.1). Suppose that

d(k, x, y) = diameter(h("1, n1, m1), ("2, n2, m2), : : : , ("k, nk, mk)i).
Then the convergence rate of the above four sequences to (x, y) is bounded by
d(k, x, y).

ACKNOWLEDGEMENT. The authors would like to thank the refree of this manu-
script for his careful reading.

References

[1] S. Ferenczi, C. Holton and L.Q. Zamboni:Structure of three interval exchange transformations
I, an arithmetic study, Ann. Inst. Fourier (Grenoble)51 (2001), 861–901.

[2] S. Ferenczi, C. Holton and L.Q. Zamboni:Structure of three-interval exchange transformations
II, a combinatorial description of the trajectories, J. Anal. Math.89 (2003), 239–276.

[3] S. Ferenczi, C. Holton and L. Q. Zamboni:Structure of three-interval exchange transformations
III, ergodic and spectral properties, J. Anal. Math.93 (2004), 103–138.

[4] S. Ferenczi and L.F.C. da Rocha:A self-dual induction for three-interval exchange transforma-
tions, preprint.

[5] H. Nakada: Metrical theory for a class of continued fraction transformations and their natural
extensions, Tokyo J. Math.4 (1981), 399–426.

[6] F. Schweiger: Multidimensional Continued Fractions, Oxford Univ. Press, Oxford, 2000.
[7] M. Yuri: On a Bernoulli property for multidimensional mappings withfinite range structure,

Tokyo J. Math.9 (1986), 457–485.



THE NEGATIVE SLOPE ALGORITHM 683

Koshiro Ishimura
Department of Mathematics
Keio University
3–14–1 Hiyoshi, Kohoku-ku, Yokohama
Japan
e-mail: koshiro@math.keio.ac.jp

Hitoshi Nakada
Department of Mathematics
Keio University
3–14–1 Hiyoshi, Kohoku-ku, Yokohama
Japan
e-mail: nakada@math.keio.ac.jp


