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Introduction

Let us consider a differential operator

(0.1) L = - ^ + fi(r) + C(r), r e ( 0 , oo) = J,

where for each r e / B(r) is a non-negative self-adjoint operator in a Hubert

space X with domain <D(B(r)) = D constant in r, and C(r) is a symmetric

operator with domain <D(C{r)) = D and s-lim C(r)# = 0 for any xGfl, L acts on

X-valued functions f(r) on /. By defining the domain of L appropriately L can

be regarded as a self-adjoint operator in L2(IyXydr). In the present paper we

shall develop a spectral and scattering theory for the self-adjoint operator L.

Ja"ger [3] constructs an eigenfunction expansion for L with C(r)x=0(r~3/2~z)

(£>0) for any X G O as r-^°o. He shows the existence of the "eigenoperator"

Γ(r, k) associated with L. T(r,k) is a bounded, linear operator on X for each

pair (r,Λ)e/x (Λ— {0}) such that

(0.2) - pr(r, k)x + Γ(r, ft)(5(r) + C(r))* = £2Γ(r, k)x

holds for any XGZ). The "generalized Fourier transforms" 2 ^ are defined by

(0.3) g ±/(Λ) = j r±(r, *)/(r)rfr, Γ±(r, A) =

3** transform L2(/, X, rfr) ίwίo i>2((0, oo), Xy dk) and satisfy for any Borel set

A in I

(0.4) E(A) = (SψX^j £F±,

where E(X) is the resolution of the identity associated with L, Xy/j is the

characteristic function of \ Z Δ = { ^ > 0 / A 2 G Δ } , and (2^)* are the adjoints of 2 ^
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in L2((0, oo), Xf dk). These results imply that the spectrum of L is absolutely

continuous on (0, °o). He has also shown that the spectrum of L is discrete on

(— oo, 0). Jager's methods are based on the fact that the principle of limiting

absorption holds for the operator L. For the notion of the principle of limiting

absorption see, for example, Eidus [2].

We shall treat in this paper the operator L with C(r)x = 0(r~1~2) (£>0) for

any x^D as r->oo. The other conditions imposed on B(r) and C(r) are the

same as those in Jager [3].

In [7] the author has justified the principle of limiting absorption for L

with C(r)x = 0(r~ι~*). The results in [7] will be summarized in § 1. These will

be used as main tools throughout in this paper. In §2 and §3 we shall give a

spectral decomposition of L using the generalized Fourier transforms £?*. In

our case the existence of the eigenoperator is not shown. But with the aid of

the results of Jager [3] we can construct ^ί± such that (0.4) holds good.

§4 and §5 are devoted to investigating the properties of L using the

techniques of stationary methods in perturbation theory. We shall make use

of some results given in Kato and Kuroda [6]. L will be considered to be the

perturbed operator of

(0.5) Lo = -&+B(r).

In §4 we shall define and study two families of operators {G±(λ)}λ>0 and

{iϊ±(λ)}λ>0. Roughly speaking, G±(λ) and i ϊ ± (λ) are defined by

(0.6)
* = lim (L0-z)(L-z)-\

The results obtained in §4 will be used in the following sections. We shall

show in § 5 that the generalized Fourier transforms 3± corresponding to L are

orthogonal, i.e., SF* transform L\I,X,dr) onto L2((0, °o), X, dk), under the

assumption that the generalized Fourier transforms 3!% associated with Lo are

orthogonal. We shall define the wave operators W±=W±(L, Lo) and study

their properties in §6. It will be shown that W± are complete and that we have

(0.7) W± = (3±Y3±.

As an application we shall consider the Schrόdinger operator — A + q(x) in

the whole Rn (n>3) in §7. In this case we have

(0.8)

X = L2(Snlλ

(.εί-1),
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where S""1 is the (n— l)-sphere and An is the Laplace-Beltrami operator on Sn~\
q(x) is assumed to behave like 0( |# | ~1~ε) (£>0). All the results obtained in
the preceding sections are valid for the Schrϋdinger operator — A + q(x). In
particular the spectrum of — A-\-q(x) on (0, °o) is absolutely continuous.

Throughout in this paper we shall follow Saitό [7] as to the notations.
Here we recall some of them.

X — a Hubert space with the norm | | and inner product ( , ).
Hβ(J, X) — the Hubert space L\Jy X, (1 + | r \ fdr) with the inner product

((/, g))βJ = j 7(/(r),g(r))(l +\r\ fdr

and norm

(0.10) 11/11, = [((/, /))„]"•

Here β is a real number and / is an open interval.
Cm(J, Y)—the set of all Y-valued functions on / having m strong continu-

ous derivatives. Here m is a non-negative integer, / is as above, and Y is a
subset of a topological vector space. In particular we set Cm(J, C) = Cm(J).

CS*(/, Y)—the set of all/(r)<=Cm(/, Y) with a compact carrier in/ .
C2'β(J, X)(Cζ'β(J, X))—the linear space spanned by the set of all <p(=C2

(/, X) having the form <p(r) = ψ(r)xy where x<^D, ty<=C\J) {ψ^Cl{J)\ and

(0.11) ^ { | ψ ' ( r ) | * + | ψ ( r ) | 2 ( l + \B(r)x\2)}dr<oo.

Here for each r^J B(r) is a non-negative operator in X with domain <£(B(r))
= D constant in r.

H1B(J, X)(Hi'B(Jy X))—the Hubert space obtained by the completion of
C2'B(J, X)(Cl'B{J, X)) using the norm

(0.12) \\φ\\Bj =

The inner product is given by

(0.13) ((/, g))Bj = J7{(f (r), g'

+ (f(r),g(r))}dr

)—the set of all linear, continuous functionals / on Hl'B(J, X).
is a Banach space with the norm

(0.14) | | |/ | | | 7 = sup{| </, φ> \ φς=CZ*(J, X), \\φ\\Bj = 1}.
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HJaiJ)—the subspace of CU(/) satisfying

(0.15) WWL.7 = sup{| </, (1+ \r\) *φ> | Ψ(ΞCtB(J, X), \\φ\\Bj

= 1}<OO.

'VaiJ) is a Banach space with the norm | | | |||α>/. Here a is a positive number.

loc Hβ(I, X)—the set of all X-valued functions/(r) on 7=(0, oo) such that
/ei/ β ((0, n), X) for every w= 1, 2, •••. Here 7 means the closure of /, i.e., / =
[0, oo).

loc HUB(I, X)(loc mB(I, X))—the set of all X-valued function/on / such
that ψJeIΓ*(I, X) {ψnfsΞHl *{I, X)) for every n= 1, 2 , - , where ψ , e C ' ( i )
satisfying 0ίS,,5Ξl and

1. Preliminaries

Let / = (0, oo). For each r e / B(r) and C(r) are operators in a Hubert space
X with its norm | | and inner product ( , ). The following conditions are
imposed on B(f) and C(r):

Assumption l.l.15 (B-l) For each r^I B(r) is a non-negative, self-adjoint
operator in X whose domain 3){B{f)) = D does not depend on r. We have
B(r)x<=C°(I, X) for any *eZλ

(B-2) Let x, y<=D. Then {B(r)x, y)<=C\I). For any compact interval Io

in / there is a constant cλ{I^) such that

(1.1) *>y) )* I)(\y \

for any r, ί E / 0 andy= 1, 2.
(B-3) There exist constants p > 0 and /S> 1 such that

(1.2) -jr(B(r)x,x)>^B(r)x,x)

holds for any x^D and any r > p.
(B-4) The natural imbedding

(1.3) HΪ>*((0, b)9 X) - H°((0, ft), X)

is compact for each

1) Assumption 1.1 is the same as Assumptions 1,1 and 1,2 in SaitO [7].



SPECTRAL and SCATTERING THEORY 467

(C-l) For each r e / C(r) is a symmetric operator with W(C(r)) = D. We
have C(r)x(=C\I, X) for any x(=D.

(C-2). For any compact interval Io in / there exists a constant c2(/0)>0
such that

(1.4)
d
TrC{r)x

for any
(C-3) There exist constants co> 0 and 0 <£ < 1 such that

(1.5)

holds for any Λ E U and any

Denote by 2l0 the set of all X-valued functions <p(r) on / satisfying the
following (i)^(iii):

' ( i ) <p(r)^D ( r e / ) .

(1.6) (ii) Ψ<ELC\I, X) Π C\I, X) and the carrier of φ is compact in /.

(iii) φ(ΞHlB(I, X) and Loφ^H°(I, X).

It is easy to see that we have

(1.7) Cl B{I, X)a%0<zHl'S(I, X).

We define differential operators M and Mo in H°(I, X) by

(1-8) d
( Moφ = L<ff> = -

and

= Sl
0

(! 9) d

{Mφ — Lφ = Loφ + C(r)φ = — -pep + B{r)φ + C(r)φ.

obviously Mo is symmetric and non-negative definite. It follows from (1.5) that

(1.10) \\C(.)φ\\l = j z\C(r)φ(r)\»dr ^ j c^\φ{r)\ + \B^(r)φ(r)\γdr

< 2c%\\φ\\% =

2) Here and in the sequel we put 11 11 β,r = 11 11 β and 11 11B,j = 11 11 ̂  for simplicity.



468 Y. SAITO

where a > 0 is arbitrary and we have used integration by parts. Hence M is
symmetric and bounded below. We denote by Ao and A the Friedrichs
extensions of Mo and M, respectively. Then we have

( Cl>B{I, X)ciZ)(A) = Hl'B(I, X) Π ${M$)aHl>B(I, X)
( ' } I Cl>B(I, X) c $){A) = Hl-*(

where M? and M* are the adjoints of Mo and M in i/°(/, X), respectively.
In the remainder of this section we state some results on the differential

equation (L — k2)v = f with a sort of radiation condition. These are proved in
[7] and will be used in the following sections. First we give the next

DEFINITION 1.2. Let / e ^ T ) , ueΞH' ψ, X)3) and k^C+ = {kjk^C, Im
Re AφO} be given. Then τ eloc HltB(I, X) is called the radiative function

for {L, ky ly u}, if the following three conditions hold:

(a) v-ueloc m *(ϊ, X).
(b) i/-ikve=H-1+\I, X) (the "radiation condition").

(c) Forall<peC0

2'*(/, X), we have

(1.12) ((v,(L-V)φ))0 = </,φ>.

We can prove under the assumptions (B-l)~(B-3) and (C-l)~(C-3) that
the radiative function for given {k, /, u}<=C+X HJ{I) X HltB(Iy X) is unique ([7],
Therem 2.2). We can also prove under Assumption 1.1 that for given {k, /, u} e
C+ X H]1+JJ) X HlfB(I, X) there exists a unique radiative function v = v{ , k, I, u)
for {L, ft, /, w} which belongs to H~λ~\I, X) Π loc HUB(I9 X), and that the
mapping

(1.13) Σ : C + xU + e(/)xff 1 > β (/, * ) Ξ > { £ , /, w}

-(I, X)f]loc Z/1'^/, X)

is continuous as a mapping from C+ X ΐ71+8(/) X'HUB(I, X) into ϋί"1"^/, X) and
is also continuous as a mapping from C+ X ΊJ^^I) X H1B(I, X) into loc i/1>jB

(/, X) ([7], Theorems 3.7 and 3.8). Under Assumption 1.1 an a priori estimate
for radiative functions is obtained as follows ([7], Lemma 3.4): Let v = v( , k, I)
be the radiative function for {L, k, /, 0}, where k belongs to a compact set K
in C+ and l^V^JJ). Then there exists a constant δ0, depending only on K
and L, such that

(1.14) INI-1

3) For the definition of ^ ( 7 ) and H^^IyX) see the list of the notations in the
Introduction.



SPECTRAL and SCATTERING THEORY 469

2. The resolvent kernel G{r, s, k) for A

We are ready to define the resolvent kernel G(r, s, h) for A, which satisfies

(2.1) (L-Jf)G(r,s,k) = 8(r-s),

where 8(r) is Dirac's distribution. To this end for ί G / and X G I we shall
introduce a linear functional l[sy x] on Ho'B(I, X) by

(2.2) </[*, * ] , a> = (*, u{s)) {u^mB{I, X)).

We can show that the inequalities

\φ(s)-φ(t)\^\s-t\)\φ\\%,

hold for any φ^Co'B(I, X) and any s, ί e / . 4 ) In fact we have

(2.4) \φ(s)-φ(t)\> =

Next, putting \φ(t) \ = min | φ(r) |, we have

(2.5) I φ{s) 12 ^ 2{ I φ(s)-φ(t) 12+ | φ(t) | 2

^ 2\\φ\\%.

Since Co

2'5(/, X) is dense in ffi B(I, X), it follows from (2.3) that HΪ'B(I, X) is
continuously imbedded in C°(/, X). Hence /[$, ΛJ] can be regarded as a linear
functional on HltB{I, X). Further, we can see from (2.3) that

(2.6)

which implies that

Lemma 2.1. L^ί us assume Assumption 1.1. L^ί v = v{ , ί, Λ, Λ:) be the
radiative function for {L, k, /[s, x], 0}, ̂ ^/-^ k^C+, s^I and X G I . ΓA^W for
any i?>0 /Aer̂  ^ΛJW^ a constant S2 = δ2(R, k)>0 such that we have

(2.7)

4) See Jager [3], p. 69.
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and

(2.8) m a x | v ( r ) | ^ V~2 82(ί +Sγ
l+*»2\x\.

82(Ry k) is bounded when R moves in a bounded set in I and k moves in a compact
set in C+.

Proof. Put / ^ ( O , R) and J2 = (0, R +1). It follows from Lemma 1.5 in
[7] that we have

(2.9) \\v\\BJl^c{\\v\\0j2+\\\/[syx]\\\}

with a constant c = c(Ry k)>0 which is bounded when the pair (R> k) moves in
a bounded set in / x C. Using (1.14) we have

(2.10) N | 0 , / 2 ^ ( l+Λ)< 1 + t * |MU_ f S W+R)cl+™\\\t[s, * ] | | | 1 + f

with a constant 80 = 80(k) which is bounded when k moves in a compact set in
C+. Hence we obtain from (2.9), (2.10) and (2.6)

(2.11) \\v\\BtI ^

which means (2.7) with 82 = χ/~2c{80(l+R.yl+Ό/2+l}. (2.8) follows from (2.7)
and (2.3). Q. E. D.

In view of the above lemma we can give the following definition.

DEFINITION 2.2. For each triple (r,s, k)^ϊxϊx C+ we define a bounded
linear operator G(r, s, k) on X by G(r, s, k)x = v(ry sy k, x)y where v(rf sy ky x) is
the radiative function for {L, ky l[sy x]y 0}. G(ry sy k) is said to be the resolvent
kernel for A.

For the properties of the resolvent kernel G(ry sy k) we can show almost the
same results as given in §6 of Jager [3].

Theorem 2.3. Let us assume Assumption 1.1. Let G(rysyk) be the resolvent
kernel for A. Then we have the following (i)^(v):

(i) G( ysyk)xtΞ\ocHϊB(ϊy X)ΠH~1-\Iy X)for s(=ϊ andxεΞX. G( , sy

k)x is continuous on IxC+xX both in loc Hl'B(Iy X) and in i/"1"^/, X). G(ry

sy k)x is a continuous X-valued function on IxϊxC+xXy too.
(ii) G(0,r,A) = G(r,0,Λ) = 0 for any rel.
(iii) For any (sy ky x)e,ϊx CxXG(-ysy k)x^C\I- {s\y D) and G( ysy k)x

satisfies the equation
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(2.12) (L- A2)G( , s, k)x = 0 in I- {s}.

(iv) Denote by R(z) = (A — z)~1 the resolvent of A. Then we have

(2.13) R(k2)f(r) = ^G(ry s, k)f(s)ds,

where k^C+, Im k>0 andf^H°(I, X) with a compact carrier in I.

(v) We have

(2.14) G(r,*,*)* = G(s,r, -k)

for any triple (r, s, fή^Ixϊx C+, where G(r, sf k)* is the adjoint ofG(r, s, k) in X.

Proof. Since we have from (2.2) and (2.3)

(2.15)

9 φ{t))\

we see that t[s, x] is a cϋ1+β(/)-valued continuous function on IxX. Hence (i)
follows from Theorem 3.7 in [7]. We obtain G(0, r, k) = 0 from the fact that
G( , r, Λ)^eloc Ho'B(I, X) for any j ίGX It follows from the uniqueness of
the radiative solution that G(r, 0, Λ) = 0. (iii) follows from the regularity theorem
in Jager [3] (Satz 3.1).

Next let us show (iv). It follows from (1.11) that we have

2 ί 6 )
1 ' j I ((R(k% (L-k*)φ))0 = ((/, φ)\ (^GCo2 β (/, X))y

where A E C + , I I Ϊ I U > 0 and/e£Γ°(/> X)- Hence ,R(&2)/ is the radiative function
for {L, k, /[/], 0}. Further, assume that the carrier of/is compact in / and is
contained in [0, R], Then we shall show that

(2.17) V(r) = \RG(r,s,k)f(s)ds
Jo
\R

Jo

is the radiative function for {L, k, /[/], θ}, too. In fact we can easily see for
B(I, X)

(2.18) ((V, (L-¥)φ))0 = \ dr(\RG(r, s, k)f(s)ds, (L-
JI Jo

= \Rds((G(. ,.s, k)f(s), ( L -
Jo

f(s), φ(s))ds
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The following estimate is sufficient to see that Fe/ί~ 1~ s(/, X):

(2.19) ( ( l + r ) - 1 - |Γ(r)|"Λ'

= \ (1 +r)-1-'dr [Rds \Rdt(G(r, s, k)f(s), G(r, t, k)f(t))
JI Jo Jo

5S 2 j*ώ j*Λ j^(1 + r ) — 8 { I G(r, *, A)/(») |2

+ \G(r,t,k)f(t)\*}dr

= 4R\R\\G( ,s,k)f(s)\\l1_,ds
Jo

where we have made use of (1.14) and (2.6). Similarly we can show that V—
ikVeΞH-1+\I,X). Therefore we have V(r) = R(k2)f(r) by the uniqueness
theorem of the radiative function (Theorem 2.2 in [7]), which completes the
proof of (iv).

Finally we shall prove (v). If k<=C+ and Im k>0, then (2.14) follows
from (2.13) and the fact that R(k2)*=R(k?). Since G(r, s, k)x is continuous on
C+, (2.14) is also true for teC+, Im k = 0. Q.E.D.

Let Cy(r),y = l, 2, be operator-valued functions on / satisfying (C— 1)~
(C—3) in Assumption 1.1. We set

(2.20)

and we denote by Aj the Friedrichs extensions of Mj, j = \, 2. Gj(r, s, k),j =
1, 2, are the resolvent kernels for Aj. We shall show a formula involving G^r,
s, k) and G2(r, s, k) which will be used in §3.

Lemma 2.45). Let Ct(r) and C2(r) be as above. Let B(r) satisfy (B-l)—
(B-4) in Assumption 1.1. Let k^R— {0}. Then we have

(2.21) {{GJjr, s, k)-G2(r, s, -k)}x, y)

= ( J G ί̂, s, k)x, G2(t, r, kfryfat, s, k)x, ̂ G2(t, r,

+ Γ({C2(τ)- C^G^r, s, k)x, GJT, r, k)y)dτ,
Jo

5) Cf. Lemma 6.1 in Jager [3].



SPECTRAL and SCATTERING THEORY 473

where Λ I J G I , r, s^I, and *>max (r, s).

Proof. Let ψ e C\R) satisfying 0 ̂  ψ> ̂  1 and

(2-22) τ w u

Set 'ψn(τ)=='Ψ'nAτ)~ΛJr(n(τ~~t)) a n ( * ô—(0> * +1) Then we can see that

wherej = l, 2, ίG/, k€ΞC+ and J C G X Using integration by parts we rewrite
the relation

(2.24) ((Gi( , s, k)xy {Lx—tf)φ)\ = (Xy φ(s))

to obtain

(2.25) ((Gjζ , s> k)xy ^ ( )))β,/0+(((^Ί(*)"~" l ) ^ i ( # > ^ ^)^> 9?(*)))o,/o

 = (Λ:> ^W)

for any φ^ Co'B(Io, X)- Since both sides of (2.25) can be extended to bounded,
anti-linear functional on Hl'B(Ioy X) for fixed ίG/, A G C + , ^ G I , (2.25) holds
good for any φ^Hl'B(I0, X). Hence we can put φ = ψnG2(*j r, k)y in (2.25) to
see

(2.26) ((G,( , s, k)x, ψn( )G2( , r, k)y))BJo

+ (((C^)- l)G^9s9 k)x, ψn(-)G2(-yr, k)y))OJo

= (x, ΨJs)G2(s, r, k)y)

= (G2(r9s,-k)x,y)

for r, 5^(0, ί), x,y^X and k^R— {0}, where we used Therem 2.3, (v). Sim-
ilarly we obtain

(2.27) ((ψ.( )G,( , ,, k)x, G2( , r, k)y))BJo

i , s, k)x, {C,{ ) ~ 1)G2( , r, % ) ) β Λ

Combining (2.26) and (2.27), we have

(2.28) {{G^r, s, k)- G2{r, s, - k)}x, y)

= t' ψ -ωίίC^-C^G^T, ί, Λ)*, G2(τ, r,
Jo

+ J"^/(^{(G^T, *, %, ̂ G2(τ, r,

- ( ^ ( T , *, Λ)«, G2(τ, r, k

Noting that
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(2.29)

for

0 forτ>£,

as w-^oo, W e obtain (2.21) from (2.28). Q.E.D.

3. The spectral representation for A

This section is devoted to constructing a spectral decomposition for A
by means of a "generalized Fourier transform". We start with the results of
Jager [3]. The following theorem on the spectrum of A has been proved in Jager
[3], §4.

Theorem 3.1. Let us assume Assumption 1.1. (i) Then A is bounded below

with the lower bound /co^O. (ii) On (κ0, 0) the continuous spectrum of A is absent.

The negative eigenvalues, if they exist, are of finite multiplicity and are discrete in

the sense that they form an isolated set having no limit point other than the origin 0.

(iii) We have σe(A)d(0, o°), where cre(A) means the essential spectrum of A.

There exists no positive eigenvalue of A. If in addition there exists xo^D which

satisfies

(3.1) ( ' * β l = 1 (

I s— lim B(r)x0 = 0 ,

then we have <re{A) = [0, oo).

If we assume instead of (1.5) that we have for any x^D and any

(3.2) I c(r)x I ^ co(l + | r \ )-*'*-*<>( \x\ + \ B ^ ( r ) x \ )

with constants co>O> £ 0>0, then an eigenfunction expansion for A has been
obtained by Jager [3], §6. Jager's results are summarized as follows:

Theorem 3.2. Let us assume (B-l) (B-4) and (C-l), (C-2) in Assumption
1.1 and (3.2). Then for k^R— {0}, Γ G / and X G I the strong limit

(3.3) Γ(r, k)x = s-lim e~itkG{t, r, k)x

exists. T(r, k) is a bounded linear operator on X for each rξ=ϊ and k(ΞR— {0}.
The adjoint Γ*(r, k) of T(r, k) satisfies

(3.4)

r*(., k)χξΞcχi, x) n loc m B(I, X),
T*{.,k)x<=C\I,D),

{L-k*)T*(r,k)x = Q (re/),

Γ * ( 0 , % = 0 ,
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for #<Ξ X and k e R- {0}. Set

(3.5)

[β*f(k)=\r±(r,k)f(r)dr,

where/<= CS(/, -XT)-65 7^«ι ί ^ e L ^ O , °°), -X", <ί&) αwrf 5* W e wwî tte extentions
S± to H\I, X) which are bounded linear operators on H°(I, X) into L2((0, °o), χy

dk). Denote the resolution of the identity for A by E(\). We have for 0 <λ α <
\t£oo andf,

(3.6) ((E((\1,\2))f,g))o= J ((9*/Xft), (ff^X*)) Λ.
λ1<**<A2

Hence the spectrum of A is absolutely continuous on (0, ©o).

Let us assume (C-3) in place of (3.2) again. For each n — 1, 2, ••• we take
\I) satisfying 0 ^ Λ / T Λ ^ 1 and

(I forO<r<w,<3 7' + w ί ;!
^4M, n = l, 2, , denote the Friedrichs extensions of the operators Mn which are
defined by

= a,0

(3.8) d2

1 " r), CJr) = ψn(r)C(r),

respectively, We can easily see that for each n= 1, 2, •••, Crt(r) satisfies (3.2) and
that the sequence Cn(r) satisfies Assumption 4.1 in [7], For each n = l , 2, •••,
GM(r, j , *) is the resolvent kernel for An. ΓΛ(r, k), Γί(r, &), 5 ί , £Fί and £ r t (λ)
are defined as in Theorem 3.2.

L e m m a 3.3. We have

(3.9) ({Gn(ry s, k) - Gm(r, s, - k)}x, y) = 2ik(Γn(sy k)x, Ym{r, k)y)

(w, m = 1,2, •••),

k^R— {0}, r, ί G /

6) C§(/, X) denotes the set of all X-valued, continuous functions on / = [0, °o) with a
compact carrier in /.
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Proof. We obtain from Lemma 2.4

(3.10) ({GJr, s, k)- GJr, s, -k)}x, y)

= 2ik(GJt,s,k)x,GJt,r,k)y)

+ \\{CJτ)-CJτ)}GH(r, s, k)x, GJT, r, k)y)dτ
Jo

jtG^' s> k)χ-ikG"(t> *» k)x, GJt, r,

-(Gn(t,s,k)x,jtGJt,r,k)y-ikGJt,r,k)y^

First it follows from (1.5) that

(3.11) I {{CJT)- CJτ)}Gn(τ, s, k)x, GJr, r, k)y) \

^ 2(1 + τj-i-clIGn{τ, S, k)x\ + \B^{r)GJτ, s, k)x\)\ GJT, r, k)y \

^ 4(1 +τ)-'-\{21 GJT, S, k)x\>+2\B^(τ)GH(τ, r, k)x\*

+ \GJτ,r,k)y\*

where we have noted that GΛ( , s, k)x, Gm(',r, ^y^H'1''^, X) and Bι'\-)Gn

( , s, k)x(=H-1+*(I, X) by (1.14). Hence we have

(3.12) lim K2(t) = Γ({CM(τ)- Cm(τ)}Gn(τ, s, k)x, GJT, r, k)y)dτ

Since G (̂ , s, k)x-ikGn( ,sy k)x, G4( , r, k)y-ikGm( yr, k)y<=H~1+\I, X) and
Gn{ , sy k)x, Gm( , r, k)y G fl""1"'(/, X), we have lim K3(ty) = 0 along some

sequence {tj}, tj-^oo. Finally we see from (3.3)

(3.13) lim Kx{t) = lim 2ik(e-itkGn(t, sy k)xy e~itkGJt, r, % )

= 2Jk(Γn(s,k)x, Tm(r,k)y).

Thus we obtain (3.9). Q.E.D.

Now we are in a position to show that Snf is a Cauchy sequence in loc L2

(/, X, dk) for any/eCS(/, X). Then E(\), the resolution of the identity for
A, will be represented by unique extensions <S± of ώ>± = lim Qi.

Theorem 3.4. Let us assume Assumption 1.1.
(i) Then for any / e CJ(Ϊ, X) there exist

(3.14) S*f= lim £}f in L2((a,β), X, dk),

where a and β are arbitrary numbers such that 0 < a < β < °°. For 0 < λx < λ2 <



SPECTRAL and SCATTERING THEORY 477

oo andf> g^ Co(/, X) we have

(3.15) ((E((Xly XM g)) =

where E(X) is the resolution of the identity for A. Hence Ω± are bounded, linear
operators from Cζ(I, X) contained in H°(I, X) into L2((0, oo), X, dk).

(ii) Let £?* be unique extensions of Q^ to H\I, X), respectively. Then for
Δ = (λj, λ2), 0^λ 1 <λ 2 ^°° we have

(3.16) E(A) =

where Xy/~J is the characteristic function of (χ/χ~l9 \Z\~2) and (3?*)* are the adjoints

of(3± acting from L2((0, oo); X, dk) into H\I, X), respectively.

The following corollary directly follows from (3.16).

Corollary 3.5. The spectrum of A is absolutely continuous on (0, oo).

For the proof of Theorem 3.4. we need

Lemma 3.6. We have

(3.17) ((£((λ1)λ2))/,^))o= j^jί^y /<ίr&({G(r,*,*)-G(r, ί, -k)f(s),g(r)),

where 0 < λ 1 < λ 2 < o o and /, g^H°(Iy X) with compact carriers.

Proof. Let us start with the well-known relation7^

(3.18) ((£(λ i ; λ2))/, g))0 = lim lim -*-, (λ2~"(({i?(λ + t »

-R(X-iμ)}f,g))odX.

Using (2.13), R(X + iμ)f can be represented by the resolvent kernel G(r> s, k).
Hence (3.18) becomes

(3.19)

= lim lim -ί-. f2 * ((( {G(-,s, Vx + I^)-G( ,s, Vλ^)}f(s)ds,
WO μψO 2,7Cl Jλj + i? JI

1 fλ2-
1» CRCR

= lim lim —-. I \ \ ({G(r, s, Vλ + iμ- G(r, s,y/\-iμ}f(s),
Ήo μψo 2πi Jλi+v Jo Jo

g{r))dsdrdXy

7) See, for example, Dunford &J>chwartz [1], p. 1202.
8) Here and in the sequel by \/~z is meant the branch of the square root of z with
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where R is taken so large that the carriers of/ and g are contained in [0, R].
Since G( ,ί, Vx±iμ)f(ή is the radiative function for {L, X±iμ, t[s,f(s)], 0},
we can apply Theorem 3.7 in [7] to show that G(r, s, \/\ + tμ)f(s) is uniformly
bounded for (r, s, λ, μ ) e [0, /?] X [0, i?] X [λ l f λ2] X [0, 1] and

(3.20) lim G(r, s, V\±ifi)f(s) = G(r, s, ± V D / W in X.

(3.17) follows from (3.19) and (3.20). Q.E.D.

Proof of Theorem 3.4. Since we have

(3.21)

in order to show that {Qnf}n =1 are Cauchy sequences in L2((\/λ7> λ/λ2)> -̂ >

it suffices to show

(3.22) lim ( ^ξ-\m(k), &f(k)dk = ({E(Xly \t))f, /))„.

Recalling (3.9) of Lemma 3.3 and (3.5), we have

(3.23) \%\m<k), &f(k))dk = YJL2dk J j drds{Ti{s, k)f(s),

TZ(r,k)f(r))

s, ±k)f{s),Tjr, ±k)f(r))

.ίr.ί, ±k)-GJr,s, Ψk)}f(s)J(r))

), Gm(τ,ry±k)f(r))dτ]

<%(r, s, k)],
JV λ i 17C

where we take R> 0 such that [0, R] contains the carrier of/. Let us show that
lim ϋΓ«i = 0and | ϋ Γ ^ r , j , ft) | is uniformly bounded for (r, s, ft)e[0, i?]x

[0, i?] X [\/λ̂ » V7λD and n, m= 1, 2 . Using (1.5) we estimate K™m(r, s, k) as

follows:

(3.24) IKS>m I ^ c 0 ^ Iψjτ)~ψm(r)I(1+τ)->-( | G,(τ, ,,

/ , r, ±k)f{r)\dτ

T, ,, ±k)f(s)-
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-G(τ, ,, ±k]f(s)\*+\GJτ, r, ±k)f(r)-G(τ, ,, ±k)f(r)\>
+ I G(r, s, ±k)f(s)12+ I G(τ, r, ±k)f(r)|2

+ \B1'\τ)Gn{r,s, ±k)f{s)\2}dr
8co[{||GΛ(.( ,, ±k)f(s)-G(., s, ±k)f(s)\\l1_t

+ \\Gm( ,r, ±k)f(r)-G(.,r, ±*)/(r)||?,_J

τ ) ί , ±k)f(s)\°+\G(τ,r, ±k)f{r)\*)dτ

;s, ±k)f(s)\\i1+t]

where we put ξ(m, n) = min(m, n). We see from (2.15) that ί[s,f(s)] is a
(/)-valued, continuous function on [0, R] such that

(3.25) Hlφ,/(*)] | | | 1 + I ^ v/T( l +*)£ 1 + t v*|/(*)I

Hence, applying Theorem 4.2 in [7], we see

(3.26) Qs^c(ξ(m, n ) Γ 2 V T ( l +sr+w \ f(s) \ - 0 (m, n

uniformly on (s, k) e [0, i?] X [x/λΓj, VλΓJ> where c is a positive constant.

Putting vn=Gn{-,s, ±k)f(s) and 4(j, A) = φ,/(ί)] (or Όm = Gm( , r,

and /w(r, A) = /[r, /(r)]) in (ii)of Theorem 4.3 in [7], we obtain

(3 m ί I|G"(''*' ±kW~G('> s> ±k)f(s)W-ι-*--°'
M-i-ε ^>

uniformly on (r, ί, A)e [0, Λ] X [0, JR] X [\/λi> \/X2]> which implies the uniform
convergence of βi-^O. It follows from (1.14) and (3.25) that Q2 is uniformly
bounded for (r, s, k)^. [0, Λ] x [0, R] X [\/λi, \Zλ2] and n, m= 1, 2, , and O 2 ^
0 as w, m-^oo. Thus we have shown that ΪChVm (*", ̂ , A) is uniformly bounded
and Kn%(r, s, k)->0 as n> m->°°. For KnVm(r, s, k) we obtain from (3.27)

(3.28) \\
Jo Jo

( Ύ r *' i * ) " ^ . *. *k)}f(s),f(r))drds

as n, m^oo uniformly for k^ly/x^ y/χ2]. Therefore with the aid of Lemma

3.6 we have

(3.29) limj^^(<2ϊf(k), S±f{k))dk
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which implies the congergence of {Q%ί}.

We define ^±/for/eCS(7, X) and 0<α</3<°o by

(3.30) £ ± / = l i m 8%S i n Lli<*> β), X> dk)

Then putting tn=n in (3.22), we have

(3.31) ((E(Xlt λ2))/,/))0

which implies that ί> ±/eL 2((0, oo), X, rf&) and

(3.32)

for/, g£ΞCξ(Iy X) and 0^λ 1 <λ 2 ^cx) . Thus (i) of Theorem 3.4 has been
proved, (ii) follows directly from (i). Q.E.D.

4. The operators G±(λ) and H£(Λ)

In this and the following two sections we study the property of A from the
standpoint of perturbation theory. Stationary methods9) are useful for our
purpose. In particular we shall make use of the results of Kato and Kuroda [6].
This section is a preliminary one. We shall define a family of operators GJ(λ),
H^{\) (λ>0, n= 1, 2, ) and study the properties of them.

Let CJr\ Lny Any ΞF± etc. be as in §3. Let L o = —^Λ-Bir) and Ao be

a s i n § l . Starting with Lo, we can define the resolvent R0(z), the resolvent

kernel G0(r, s, k), and the generalized Fourier transforms ΞFf. In this section

we put C(r) = Coo(r), L=LOOi A = Aoo, R(z)=Roo(z) etc.

Let us set

(4.1) Cλ = C - ( - o o , 0], i.e., C, =

and

(4.2) C1Λ =

Then Rn(zyf) = Rn( , z,f) is defined as the radiative function for {Ln, \/~~z>
ί[f\> 0}> where z<=Clyf<=H1+2(I, X) and n = 0, 1, 2, , oo. By the regularity
theorem of Jager [3] (Satz 3.1) Cm(r)Rn(r, z,f) is well-defined for any fς=HUB

(/, X)f]Hw(Iy X), where ny m = 0, 1, 2, . , oo.

9) For the literature of stationary methods see Kato [5] and Kato and Kuroda [6].
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Lemma 4.1. Let us assume Assumption 1.1. Let K be a compact set in Cx.

Letf^HUB(Iy X)f]H1+ζ(Iy X) and z^K.

(i) Then there exists a constant δ 3 >0 such that

(4.3) l | C w i ? ^ , / ) | | 1 + ε ^ δ 3 | | / | | 1 + ε (n, m = 0, 1, 2 , - , <χ>),

where δ3 depends only on K.

(ii) CtJl^Zyf) is an H1+\I, X)-valued continuous function on both Clt+

and Clt_.

The proof is easy from Theorem 4.2 in [7] and we omit it.

It follows from Lemma 4.1 that the operator CmRn(zy •) from H1B(I, X)Π

H1+*(Ij X) into H1+S(I> X) is uniquely extended to a bounded linear operator

Qmtn{z) from i/1+ε(7, X) into tf 1+ε(7, X). Qm,^)f » an tf 1+ε(7, X)-valued

continuous function on both Clt+ and Clf_.

DEFINITION 4.2. For each w=l, 2, , oo and each z^C1 bounded linear

operators Gn(z)y Hn(z) from H1+\Iy X) into H1+2(Iy X) are denned by

In particular for λ > 0 we put

(4.5) G}(\) = Gn(\±i0) and H±(\) = Hn(\±i0).

Lemma 4.3. Let Gn(z) and Hn(z), n= 1, 2, , oo, be as above.

(i) Then we have for z<=C-R andf<=H1+*(Iy X)

(4.6) Gn(z)f = (An-z)R0(z)f and Hn(z)f = (Ao- z)Rn(z)f

(ii) For any n= 1, 2, , oo and any f<=H1+*(I, X), GH(z)f and HH(z)f are

H1+*(I, X)-valued, continuous functions on both Clt+ and Clt_.

(iii) Let ZEΞC^ Then we have

(4.7) Gn{z)Hn{z) = Hn(z)Gn(z) = 1 on H1+°(I, X) .

In particular we obtain for λ > 0

(4.8) G±(λ)#±(λ) = #±(λ)G±(λ) = 1.

(iv) ForanyfeH1+\I,X)wehave

(lira Gn(z)f=G^)f

I lim Hn{z)f = H^z)/

in H1+2(I, X) uniformly on any compact set in Cλ
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Proof. Since we have

(4.10) RH(z, f) = Rκ(z)f (»eC-R, /eiF+ I(/, X)),

it follows that

(4.11) Gn{z)f = {l + CnR0(z)}f = {l + ((An-z)-(Ao-z))Ro(z)}f

= (An-z)R0(z)f

Similarly we have Hn(z) = (L0-z)Rn(z) on H1+*(I, X). (ii) follows from (ii) of

Lemma 4.1. If z^C — R, (4.7) follows from (4.6). Taking account of (ii), we

can see that (4.7) is true for z = X>0. (iv) follows from (ii) of Theorem 4.3

in [7]. Q. E. D

Next we show some formulas involving Gn(z), Hn(z) and the radiative

solutions Rn(z, / ) . Let λ > 0 and n = 0, 1, 2, , oo. Then, according to Kato

and Kuroda [6], we introduce a bilinear form en{X\ , •) on i/1+8(7, X)xH1+\I,

(4.12) en{X'Jyg) = 2 ^

Since Rn(X±i0yf)ξΞH-1-*(Iy X), the right-hand side of (4.8) is well-defined.

We can easily see that en{ , •) is a continuous function on (0, oo)χ// 1 + ε(/ )

X)χH1+2(I, X). It follows from (3.18), (4.12) and the continuity in z of the

radiative function Rn(z, f) that we have e( ;/, ^^//((O, oo); dX) and

(4.13) ((En(A)f,g))0 = \ en(\;f,g) dX,

where Δ is a Borel set in (0, oo) and /, g^H1+*(I, X). The bilinear form

en(X;fy g) is called the spectral form for En(X).

Lemma 4.4. (i) Let z<=Clyf(=H1+*(I, X) andn=l, 2, , oo. Then we

have

(4.14) RH(z,f) = R0(z,Hn(z)f),

and

(4.15) R0{z,f) = Rn{z,Gn{z)f)

in H'lζ(Iy X). In particular we have for λ > 0

(RjK±iO,f) = R0(X±i0, m(X)f)
( 4 1 6 ) {R(X±i0f) R(X±i0Gί(X)f) m H {I'

(ii) Let X > 0 and let n = 1, 2, 3, , oo. Then the relations
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(λ # ί (λ)/, Gί(λfe) = eΛ(λ /, g)

hold for any pair of(f, g)(=H1+\I, X) X H1+t(I, X).

Proof. Let us prove (i). The both sides of (4.14) are H'ι'\I, X)-valued
continuous functions on H1+e(I, X), and hence it suffices to show (4.14) for

UB(I, X)ΠH1+*(I, X). For ̂ e C 0

2 β ( / , X) we have

(4-18) ((i?0(s, Hn(z)f), (Ln-z)φ))0

= ((R0(z, Hn(z)f), (L,-z+CH)φ))t

= {{Hn{z)f, φ))0 + ((CnRQ(z, Hn(z)f), φ)\

= ((GH(z)HH(z)f, φ)\

= (if, Φ))o,

i.e., R0(z, Hn{z)f) is the radiative function for {Lm VΊΓ, 4/]> 0} ^ follows
from the uniqueness of the radiative function (Theorem 2.2 in [7]) that we have
R0(z, Hn(z)f) = Rn(z, / ) . In a similar way we can prove (4.15).

Next let us prove (ii). For ZELC-R and/, g£ΞH1+*(I, X)Π HUB(I, X) we
have

(4.19) (({RM(z)-Rn(z)}Gn{z)f, Gn(z)g))0

= ((Rn(z)Gn{z)f, GH{z)g))0-((Gn(z)f, Rn(z)Gn(z)g))0

= ((R0(z)f, {l + CΛ(^}^)0-(({l + Cni?0^)}/,i?0(^))0

= (({R0(z)-R0(z))f,g))0

Here we have made use of (4.6) and the relation Qno(z)f = CnRo(z)f. Letting
z-*\ + iO in (4.19), we obtain

(4.20) en{X Gί(λ)/, Gi{\)g) = eo(λ /, g).

The both sides of (4.20) are bounded forms on #1+ε(/> X) X HX~\I, X\ and
hence (4.20) holds for all /, g(=H1+*(I, X). The other relations in (4.17) are
obtained similarly. Q.E.D.

Finally we shall show some formulas involving £FJ, ΈE&, G^(X) and H~{X).

Lemma 4.5. (i) Let k>0 and n=l, 2, ••• (nφoo), Letf<=C%(ϊy X).
Then we have

and

(4.22) 3±{Gί{k*)f){k) = 3if(k).
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(ii) Let n = ί, 2, •••, oo and let A be a Borel set in (0, °o). Let f,

H1+t(I, X). Then we have

(4.23) ((£FiXv/Tff0

±/, g)\ = j Δ ^ λ ; Gί(λ)/,

= ( ea(\;f,Hί(X)g)d\,

where ^,-j is the characteristic function o

Proof. First let us prove (i). We prove (4.21) only, since (4.22) can be

shown similarly. Note that

(4.24) RΛ(z, g) = \Gn{r, s, VJ)g(s)ds (n = 0, 1, 2,.. ,oo,

hold for g^H°(Iy X) with a compact carrier in /, and that the carrier of H^

is compact in / for w = l, 2, •••, and/eC?(/, X), as can be seen from the fact

that Cn(r) = 0 for r^n+1. Then from the definition of 3"± and (4.16) of

Lemma 4.4 we see

(4.25)

t " * / ? ^ , k2±i0,f)]
zr '->°

= ±Jλik lim^-'^ί, k2±i0, m{
V π *•*"

= ±Jλik lim[e±itk[ G0(t, r, ±k)(H±(k2)f)(r)dr]

= ±Jldk \ Γ.(r, ±k)(m(k2)f)(r)dr

Next let us prove (ii). Obviously we may assume that Δ = (λ1, λ2), 0<Xx

< \ 2 < o o . Since we obtain from (4.5) and Theorems 4.2 and 4.3 in [7] that for

fixed/, g^H1+s(Iy X)en(X; Gw(λ)/, g) is uniformly bounded for X E Δ and n =

1, 2, •••, and en{\\ GJ(λ)/, ^)^^oo(λ; Gί(λ)/, g) as rc->oo, we may assume that

wφ oo. Both sides of (4.23) are bounded bilinear forms on H1+2(I, X)xH1+*

(I, X), and hence we may assume that/, ^ G C S ( / , X). Thus it suffices to show

(4.23) for rcφoo, A = (\1, λ2), 0 < λ 1 < λ 2 < o o , and/, /

Using (4.12) and the continuity of (({J

on {(λ, /χ)/λ 1^λ^λ 2, 0 ^ / Λ ^ 1 } , we have
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(4.26) f eJ[Xι Gϊ(\)f, g)d\

= ί -i-.((i?M(λ + /0, Gί(λ)/)-i?Λ(λ-/0, G±(X)f, g))odX

= lim—. f J(λ, At) dX,

where I(X, μ) = (({Rn(\+iμ)-Rn(\-iμ)}(G±(Λ)f), g)\. /(λ, μ) is calculated

as follows:

(4.27) I(\, μ) = \~(SF*{Rn(Λ+iμ)-Rn(Λ-iμ)}(GΪ(X)f){k), 3ig{k))dk

, 3ϊg(k))dk

J, g)\

where — oo<\ M χ ^ \ M 2 ^ . . . ^ \ M y<ς... <cθ are the eigenvalues of ^4rt and for

each/ φnj is the normalized eigenfunction of An associated with λΛty. Here we

have made use of the relation (2Γ±)*£Fί/+Σ(/> ψnj)ψnj=f ioτ f<=H\I, X)
j

(Theorems 3.1 and 3.4 in §3). Since we can easily show that /2(λ, //.)->(), μ->0,

uniformly in X6[X1? λ2], we have

(4.28) f en(X; G±(X)f, g)dX
J Δ

Noting that

πμ

we can change the order of integration to obtain

(4.30) ( en{\; Gϊ(\)f, g)d\
J Δ

- i 5s ί i
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where we have made use of (i) and the well-known relation100 for a continuous
function h(X)

(4.31) 1 lim Γ

From (4.8) and (4.17) we can easily see that en(X; GJ(λ)/, g) = eo(\;f, H±(X)g).
Thus we have proved (4.23) completely. Q.E.D.

5. The orthogonality of S*

The purpose of this section is to prove the orthogonality of the operators
S± which have been constructed in §3 under the assumption that SFf are
orthogonal. By the orthogonality of 3± we mean the relation 2Γ±(3 r±)* = 1 on
L2((0, oo), X, dk) or, equivalently, that 3 * transform H\I, X) onto L2((0, oo),
X, dk). For this we shall make use of the spectral representation for the
absolutely continuous part of a spectral measure with values in the set of
orthogonal projections in a Hubert space which has been given in Kato and
Kuroda[6], §1.

Put 2C = H1+2(I, X) and define the spectral form e for E(X), the resolution
of the identity associated with A, by

(5.1) e(\;f,g) = ^ ( ( * ( λ + *Ό,/)-*(λ-*Ό,/) ,*)) 0

Zπt

for each λ > 0 as in §4, where R(X±iO,f) is the radiative function for {L,

±V\> 4/L 0}. Let 3?(λ) be the set of all / with e(λ;/) = e(λ;/,/) = 0.

Then the quotient space 3£I3Ί(\) is a pre-Hilbert space with the inner product

induced by e(X ;•,•)• I t s completion is denoted by 3£(X) and the inner product

and norm in 3£(X) are denoted by ( , )λ and || | |λ. We denote by J(X) the

canonical map of X onto 3?/37(λ)cf£(λ). Let Δ be a Borel set in (0, oo).

Then a vector field F= {F(X)}^A^2C(A) = U3£(X) is said to be ^-measurable if

there is a sequence hn of quasi-simple functions on Δ to 3£ such that

(5.2) lim||F(λ)-/(λ)λM(λ)| |λ = 0 for a.e.λeΞΔ.

Here we mean by a quasi-simple function h a function of the form (finite sum)

(5.3) A(λ) = Σα,(λ)/*,

where fk^3£ and ak(X) is a measurable, bounded scalar function on Δ. <3M(A)

10) See, for example, Titchmarsh [8], p. 31.
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is the set of all ^-measurable elements F^3£(A) such that ||ίΊ|2jftCΔ) =

J l \F(λ)\Iλ^ < °° <3H(A) is known to be a Hubert space with the inner product
Δ

(5.4) (Fu

(Proposition 1.9 in Kato and Kuroda [6]). Then we see that there is a unitary

map Π(Δ) from E(A)H°(I, X) onto 3ί{A) which satisfies the following (a) and

(b) (Theorem 1.11 in Kato and Kuroda [6]):

(a) We have

(5.5) U(A)a(E)u = aΐl(A)u,

for MGjB(Δ)ff°(/, X) and a measurable, bounded scalar function a( ) on Δ,

where

(5.6) a(E) = [ a(\)dE(X).
J Δ

(b) For each/e 3? = Hι+\I, X) we have

(5.7)

Let£0(λ; , ) be the spectral form for Eo as in §4. In a similar way,

starting with *0(λ, , •) and 3C0 = H1+e(I, X), we define the null set 370(λ), the

quotient space 3£J3Ί0(\), the Hubert space 3:0(λ) with the inner product ( )λ>0,

the canonical map /0(^)> t n e £ 0-m e a s u r ability, the Hubert space <3tto{A) with the

inner product ( , )^o(Δ) and the unitary map Π0(Δ). Thus we have obtained

spectral representations for i?(λ) and E0(A). We denote by 3l'{A) (or c_5K6(Δ))

the set of all F ( λ ) G j ( Δ ) (or 3ίo{A)) of the foim F(\)= {/(λ)Λ}λeΔ(or F(λ) =

{/o(λWλeΔ), where A is a quasi-simple function. 3ί\A) and JHΌ(A) are dense

in 3ί{A) and ^ 0 ( Δ ) , respectively (Proposition 1.10 in Kato and Kuroda [6]).

We put G±(λ) = Gί(λ) and i/±(λ) = i/ί(λ), where Gί(λ) and Hί(\) are as in

§4. Define the operator G±(Δ) on JMί(A) into 3ί{A) and the operator H

on JH'{A) into JH0(A) as follows:

From (ii) of Lemma 4.4 we obtain

= *0(λ; H*(\)h) = e(X; h) =

and hence we have
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(5.10) {

DEFINITION 5.1. We define the operators G±(Δ) and H±(A) as unique

extensions G±(Δ) and H±(A), respectively. G^Δ) is an isometric operator on

c3ίo(A) into cJH(A). ^ ( Δ ) is an isometric operator on JM(A) into c3ίo(A).

We shall show that G±(Δ) and H±(A) are really unitary operators.

Lemma 5.2. Let A be a Borel set in (0, °o). Then G±(Δ) is a unitary

operator from c5Jίo(Δ) onto c_Sίί(Δ) and H±(A) is a unitary operator from

onto JM0(A). Further, we have

JG±(Δ)^(Δ) = l on3ί{A),
( ' ' ' «+'»^+Ά) = 1 on

Proof. It follows from (iii) of Lemma 4.3 that

(5.12)

holds for any quasi-simple function h and for any λ > 0. Similarly we have

(5.13) H±(A)G±(A)lJ0(\)h}keA = {/o(λ)A}λ6Δ.

(5.11) is obtained from (5.12) and (5.13). Hence G±(Δ) and ^ ( Δ ) are unitary

operators. Q.E.D.

Lemma 5.3. Let Abe a Borel set in (0, oo) and let ι3H0(A)> <3H(A)9 Π0(Δ),
Π(Δ) be as above. Then for /, g^H°(I, X) we have

(5.14) (((2*)*%^ 3tft g)\ = (G
= (Π0(A)E0(A)f, H±

where %^~ is the characteristic function of \/^={k>0/k2^ Δ}, and <Ξl± and ΞF&

are as above.

Proof. Let fm and gm be sequences such that fm, gm<=H1+*(I, X) and,
fm-*f> gnΓ*g m H°(Iy X). Then it follows from Lemma 4.5 that

(5.15)

= (G±(Δ)Π0(Δ)£0(Δ)/m,
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where we have made use of (5.7). Let τw-̂ °c in (5.15). Then the left-hand side

of (5.15) tends to ( ( ( f f * ) * * ^ ^ / , g))0 and the right-hand side tends to (G±(Δ)

Π0(Δ)i?0(Δ)/, n(A)E(A)g)jHCA> From the unitarity of the mappings G^A) and

we obtain (G±(Δ)Π0(Δ)£0(Δ)/, U(A)E(A)g)^tCA, = (U0(A)E0(A)fy H^A)

Q.E.D.

Now we can show the orthogonality of Eί± assuming the orthogonality

of S ΐ .

Theorem 5.4. Let us assume Assumption 1.1. Let ΞF± and EFξ be as above.

Suppose that £Fo is orthogonal. Then £F+ is also orthogonal. Similar results hold

for ΞE~.

Proof. Let Δ = (0, oo) in Lemma 5.4. We put G+((0, oo)) = β±, #±((0,

oo))=^±, JK((O, oo))= taκ, JHO((O, oo))=jf0, Π((o, oo))=π, πo((o, o o ) ) = Π o

etc. It suffices to show that (3Γ+)*£F+/o = 0 and/0e£Ό(0, oo)H\I, X) imply/0 = 0

in H°(I, X), because 2o+ transforms H°(I, X) onto L2((0, oo); X, dk) and fff^

(0, oo)f = 3?$f. It follows from Lemma 5.4 that

(5.16) (G±ΠJO9 Ug)3ί = 0

for any ^e£((0, oo))H\I, X). Since Π(£((0, °°))H°(Iy X)) = 3ί we have

G±Π0/0 = 0. Hence we obtain from the unitarity of G± Π 0 / 0 =0 in 3ίω which

implies/0 = 0 in H°(I, X) by the unitarity of Πo. Q.E.D.

6. The wave operators W±(A)

In this section we shall investigate the wave operators W±(A) for A which

will be defined according to Kato and Kuroda [6]n). We shall see the ranges

of W±(A) to be equal to E(A)H°(I, X). We also discuss the invariance of the

wave operators W±(A).

To make use of the results of Kato and Kuroda [6], §5 and §7, we consider

the Cayley transforms U and Uo of A and AOy respectively. Set

U = (A-iXA + iy1 = CeiΘF(dθ),

UQ = (Ao-i)(Ao + i)~1 = eiθF0(dθ),
Jo

where F(θ) and F0(θ) are the resolutions of the identity on (0, 2π) associated

with U and Uo, and we have

11) In this section we assume Assumption 1.1 only. We do not assume the orthogonality
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(6.2)
I

= E(X(Θ)),

F0(θ) = E0(\(θ)),

\(θ) =
— sin θ

1—cos θ'

E(\) and E0(X) being the resolutions of the identity on ( —°°, °°) associated
with A and Ao. Let us define Rv{ζ) and i?c/0(£)> f e C , | ζ | Φ1 by

Ru(ξ) = (1-ζU*)-1 = U(U-ζ)-\
(6.3)

Then we have by simple calculations

(6.4)

and hence if we write f=re< β, f' = r"V9, we obtain for/ei/1 + e(/,

(6.5)
lim

cos

in H'1'*^, X). We obtain quite similar relations for #£/„(£•) and RUo(ζ') Since
we have

(6.6)

lim J-(([RυM-Rviζ'Ku, v))0 = -f((F(θ)u, v))0,
r t i Zπ do

lϊmU([RUo(ξ)-RUo(ζ')]u, v))0 = j

iovu, veH\I, X) and a.e. θ<=(*, 2τr)12) ((5.4) in Kato and Kuroda [6]), the
bilinear forms eυ and eUo on ίί 1 + 5(/, X) X H1+*(I, X) defined by

(6.7)

; /, ί) =

1

l-cos0

uM-Ruiζ'M g)

KMQ f.g)

hf,g) = j - Λ '
2π

1
l -cos0

12) Note that Λ(0) maps (π:, 2π:) onto (0, <^).
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are the spectral forms for F(θ) and F0(θ) for each 0e(τr, 2π), respectively. Put
3£u=3CUo=H1+t(I, X). Then we construct, starting with e^or eUo), the Hubert
space 2£u(θ) (or Ί£U(S(Θ)) with the inner product ( , ) β u (or ( , )β,Uo), the Hubert
space JMυ(T) (or JMUo(Γ)) for a Borel set Γ in (π, 2π) with the inner product
( > XafcCΓ) (or ( , W 0 (Γ)) and the unitary map Π^Γ) (or Πϋo(Γ)) as in §5.

For each f e C , |f| φ l , we put

Hv(ζ) = /^.(f)

Then by the definition of Ru(ζ) and RUo(ζ) we have

(6.9)

where

(6.10)

^ .

R0(z) = (A0-z)-\ We define the operators G%{θ) and

γ^β R0(i)CR(MΘ)±iQ, f),

which transform i/1+ε(/, X) onto itself. In fact we can see from (6.8) that the
relations

(6.11)

hold on H1+e (I, X). We can also see from (6.8) that we have the relations

eu{θ; G m f i G m g ) = eu°{θ; fi g)

> Hu{θ)g) - eviθ'f, g)
{ "

for θ<=(π,2π) and f,g(ΞH1+*(Iy X). Thus, as in Definition 5.1, the unitary
operators G^(Γ) and H^(T) are induced by G^{θ) and Hf}(θ)> respectively, i.e.,

(or H^(T)) are defined by unique extensions of the operators

1 3
(or HΪ(

Jv{θ) (or JUo{θ)) being the canonical map on Όβυ (or 3CUo) into 3Cu(θ) (or
)' G%(Γ) transform JHUo(T) onto ^ ^ ( Γ ) and ffv(τ) transform <3iv(Γ)
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onto <3HUo(Γ).

DEFINITION 6.1 Let Δ be a Borel set in (0, oo). Put Γ(Δ) = {0<Ξ(TΓ, 2π)/

λ(ί)GΔ}. Then the wave operators PF±(Δ) on H\I, X) are defined by

(6.14) W±(A)u = ΠZ>1(Γ(Δ))G&(Γ(Δ))ΠC7o(Γ(Δ))F0(Γ(Δ)>,

where G^(Γ) are defined as above.

Using the unitarity of G±(Γ) and H±(T) we can show

Theorem 6.2. Let us assume Assumption 1.1. Let W±(A) be as above.

Then W^A) are partial isometries with initial set E0(A)H°(I> X) and final set

E(A)H\I, X). In particular W^I) are complete. WΛ±(Δ) have the intertwining

property a(E)W±(A) = W±(A)a(E0) for any bounded measurable function a on A.

The proof is almost the same as the proofs of Theorems 2.3 and 2.4 in

Kato and Kuroda [6], and hence we omit it.

Now we turn to the problem of the invariance of W±(A). Since 3C=3C0 =

H1+*(I, X) is a Hubert space, we can apply Theorem 7.1 in Kato and Kuroda

[6] to our case.

Theorem 6.3. Let us assume Assumption 1.1. Let a be a real-valued

function on (0, oo) such that

(6.15) lim f ] I [**e-"»-i"«λί9»v(θ)dθ \2 = 0
f->°° fc=0 Jo

for every η^L2(0, 2π). Then we have

(6.16) s-lim

for all u<=H\I, X), where λ((9)=—sin (9/(1—cos (9) as given in (6.2). In

particulary we have

(6.17) W^A) = s-lim eitΛe'itΛoEo(A)

/->±°°

on H\Iy X).

Finally we represent IF ± (Δ) using <ΞE± and ΞFί

Theorem 6.4. Let us assume Assumption 1.1. Let A be a Borel set in

(0, oo). Then we have on H°(Iy X)

(6.18) ( 3

For the proof we need
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Lemma 6.5. Let G%(θ)y <9e(τr, 2π) be as in (6.10) and let G±(λ), λ > 0
be as in Definition 4.2. Then we have for j'e Co,B(I, X)

(6.19) Gh(θ)f= (A-i)-ιG±(MΘ))(Ao-i)f.

Proof. We have by an easy computation

(6.20) G

where ζ=reι\ r* 1. Since (A0-i)f^H1+\I, X), we obtain (6.19) from (6.20),
letting r \ 1 and r \ 1. Q.E.D.

Proof of Theorem 6.4. Let/, # e C\'B{I, X). Then it follows from Lemma
5.3 that

(6.21) > / ϊ

G 0"

= { e(X(θ); G±(\(6)Wo-i)f, (A + tT^—^dθ (Γ = Γ(Δ))
JΓ 1cosσ1-cos

= ί
Jr

where we have made use of — = and (6.7). On the other hand we see
dθ l-cos<9

from (6.7) and Lemma 6.5

(6.22) eu(θ;

= i-lim

= -L lim

= i- lim

= ea(θ;G%θ)f,g)

(6.21) and (6.22) are cooperated to give

(6.23)
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= (GUr)nϋo(r)Fo(r)f,

Here we used (6.13) and (6.14). Thus we have proved (6.23) on C%'B(Iy X).

Since both (£F±)*%v/^£Ff and WΛ±(Δ) are bounded operators, (6.23) holds on

the whole H°(I, X). Q.E.D.

7. The Schrόdinger operator in Rn (n

The results obtained in the preceding sections can be applied to the

Schrϋdinger operator in the whole space Rn, n^3.

We set in this section

(7.1) X = LXS"-1),

where 5"1"1 is the (n— l)-sphere. Then there is a unitary operator V from

L\Rn) onto H\Iy X) defined by

(7.2) V : L\Rn) Ξ*F(y) - r^'1^ F(rω)^H°(I, X),

where j/eiΓ, r= \y\ and ω = ^-^Sn~\
r

Let us consider the Laplace operator in Rn

(7.3)

We obtain

(7.4)

where Λrt is the Laplace-Beltrami operator on 5 n - 1 . We put

<B{r) = U
(7.5) r*\ 4

^ = D.

Then it follows from (7.4) that we have for <peCofB(I, X)

(7.6) WΨWB = WV-tyl,

| | HJ being the norm of 3)\?(Rn), i.e.,
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Hence (7.6) holds on Hl'B(I, X). It is easy to see that B(r) satisfies ( B . l ) ^

(B.4) of Assumption 1.1. (B.4) is implied by the compactness of the imbedding

S}\^{Cί)-^L\Ω) for any bounded domain Ω in Rn. As is well known, the

spectrum of the non-negative self-adjoint operator — An is discrete. Let λ0 be

an eigenvalue of — Λw and let xo = xo(ω) be a normalized eigenfunction associated

with λn. Then we have
0.

(7.8) B(r)Xo = 1

in LXS"'1). Thus we have seen that the condition (3.1) is satisfied.

Define a symmetric operator To by

K ' ' [T0F= - Δ F .

It is well-known14) that To is essentially self-adjoint with a unique extension Ho.

Lemma 7.1. Let Ho be as above and let Ao be as in Definition 1.1. Then

we have

Proof. Noting that ^(ΓΓ 0 Γ" 1 )=FCj β (Λ")cSl 0 , we can easily see that

M0Z)VT0V~\ where Mo is as given in (1.9). Since T0 = H0

15\ VT,V~X is

essentially self-adjoint in H°(I, X). Therefore Mo is essentially self-adjoint in

H°(I, X). Thus we obtain

(7.10) VH.V-1 = VT.V-1 = VT^V-1 = Mo = Ao,

which completes the proof. Q.E.D.

Denote by q(y) a real-valued function on Rn. q(y) is assumed to satisfy the

following conditions:

(Q) q(y) is a real-valued function which is continuously differ entiable. Further,

q(y) behaves like O(\y\ ~1~8)(0<f <1) at infinity, i.e., there exist p>0, C > 0 and

0 < £ < l such that

(7.H) lίOOI^W1-

We define a symmetric operator T by

13) As usual $)ι

L2(Rn) denotes the Hubert space obtained by the completion of C™(Rn) in

the norm | I | 11.
14) See Kato [4].
15) T means the closure of T.
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(7.12) (
' \TF= -AF + q(y)F = TϋF+q(y)F

Since q(y)X is a bounded, linear operator and To is essentially self-adjoint, T
is also essentially self-adjoint163. We put T=H. On the other hand we define
an operatorvalued function C(r) on / by

<7.i3)

\C(r)f=q(rω)f(r).
We can easily see from (Q) that C(r) satisfies (C-l)~(C-3) in Assumption 1.1.
Let M be as in (1.10). Then, proceeding as in the proof of Lemma 7.1, we
have the following

Lemma 7.2. Let A be as in Definition 1.2. Then we have VHV~X-=A.

Let G0(r, s, k)y Γf(r, k) and SF& be as in §4. In order to show the orthog-

onality of iff, we have to calculate Γj(r, k). Denote by go(y, y', %){y, y'

— R ) the Green kernel for Ho. Then we have

o.
(7.14) go(y, y>, *) = ̂ J ^ ^ - x B^^VT I y-y' IΓ,

where H?\t) is the Hankel function of the first kind. G0(z, r, k) is represented

by go(y, y , z) as follows:

(7.15) GQ(s, r, k)x(ω) = s^Ύ"-1^ ί u^g0(sω9 rω\ k2 + iϋ)x(ω')dω'

where k>0 and x(ω)^L2(Sn 1). Thus by an easy computation we obtain

from (3.3)

(7.16) Γ0(r, k)x{ω) = lim e^G^s, r, k)

,C«-D/2V ~Z- 1 LCn-Ό/2 rn

2 A (2^)"/

where &>0 and we used the asymptotic formula

(7.17) H<1\t)

16) See Kato [5], p. 287 - p. 293.
17) See Titchmarsh [9], p. 79.
18) See, for example, Watson [10], p. 197.
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Hence we have

(7.18) Γf(r, k)x(ω) = -e-
c«/4χn-ΌikCn~ΌβrC"^/2 [ .. 1«"'* r c—'XωOέίω7.

On the other hand we have

= lΐm(Xl(.), e-<s*G0(r, s, k)x2( )).

As in (7.16) we have

(7.19) lim e-{skGlr, s, k)x2(ω)

~ ~ e Ύ 2 ft (27Γ)"2

whence follows for

(7.20) Γ0-(r, k)x(ω) = -^ikΓ0(r, -k)x(a>)

V(n-V,μun-V)μ Λ
= _β«/«c»-oί ^ _ _ eikr^ ^x{ω')dω'.

\Σκy J s

We see from (7.16) and (7.20) that EFf are essentially Fourier transforms, and

hence we have

L e m m a 7.3. ΞFf are orthogonal transforms.

By Lemmas 7.1^7.3 we can apply to H the results obtained in the

preceding sections.

Theorem 7.4. Let q(x) be a real-valued function on Rn

y n ]>3, satisfying

the conditions (Q). Let H be as above.

(i) Then H is bounded below. We have σe(H) = (0y oo) and the negative

eigenvalues, if they exsit, are of finite multiplicity. The spectrum of H on (0, oo)

is absolutely continuous.

(ii) Denote by EH(\) the resolution of the identity associated with H. Then

there exist unitary operators ΞF^{ = ̂ ±V)from EH((0, oo))L\Rn) onto L2((0, oo),

L^S"1"1), dh) such that we have for a Borel set A in (0, oo)

(iii) Let Δ be as above. Then there exist the wave operators Wχ(A) which

are partial isometries with initial set EHo(A)L\Rn) and finial set EH{A)L\Rn),
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where EHo(A) denotes the resolution of the identity associated with Ho. Wg(A)

have the intertwining property. We have

(7'.22) WH(A) = (£?«)*% /—ΞFrr*

where ΞF%0 = EFfV which are unitary operators from EHo((O, oo^L\Rn) onto

L2((0, oo), L^S""1), dk). For a real valued function a on (0, oo) which satisfies

(6.15) for every ης=:L2(Oy 2π) we have

(7.23) W%A)F = s-limj^Je-^xo'EH^F

for every F^L\Rn). In particular we have

(7.24) W^A) = s-lim eitHe-itHoEHo(A).

OSAKA CITY UNIVERSITY

References

[1] N. Dunford and J. Schwartz: Linear Operators, Part II, Interscience, New

York, 1963.

[2] D.M. Eidus: The principle of limit amplitude, Uspehi Mat. Nauk. 24 (1969),

91-156 (Russian). (Russian Math. Surveys. 24 (1969), 97-169).

[3] W. Jager: Ein gewohnlicher Differentialoperator zweiter Ordnung fur Funktionen

mit Werten in einem Hilbertraum, Math. Z. 113 (1970), 68-98.

[4] T. Kato: Fundamental properties of Hamiltonian operators of Schrδdinger type,

Trans. Amer. Math. Soc. 70 (1951) 195-211.

[5] : Perturbation Theory for Linear Operators, Springer, Berlin, 1966.

[6] T. Kato and S.T. Kuroda: Theory of simple scattering and eigenfunction expansions,

Functional analysis and related fields, ed. by Browder, F., Springer, Berlin, 1970,

99-131.

[7] Y. Saitδ: The principle of limiting absorption for second order differential equations

with operator-valued coefficients, Publ. Res. Inst. Math. Sci. 7 (1972), 581-619.

[8] E.C. Titchmarsh:, Introduction to the Theory of Fourier Integrals, Oxford,

1937.

[9] : Eigenfunction Expansions Associated with Second-Order Differential

Equations, Part II, Oxford, 1958.

[10] G.N. Watson: Theory of Bessel Functions, Cambridge, 1922.




