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Introduction

Let us consider a differential operator
d2
(0.1) L= —:+Br+Cr), r€(0, <)=1,

where for each r&1 B(r) is a non-negative self-adjoint operator in a Hilbert
space X with domain 9(B(r))=D constant in 7, and C(r) is a symmetric
operator with domain 9)(C(r))=D and s-lim C(r)x=0 for any x=D. L actson

X-valued functions f(r) on I. By defining the domain of L appropriately L can
be regarded as a self-adjoint operator in L*(I,X,dr). In the present paper we
shall develop a spectral and scattering theory for the self-adjoint operator L.

Jager [3] constructs an eigenfunction expansion for L with C(r)x=0(r"**"*)
(€>0) for any x= D as r—>oo. He shows the existence of the “‘eigenoperator”
I'(r, k) associated with L. T(r,k) is a bounded, linear operator on X for each
pair (r,k) 1 x (R— {0}) such that

d2
(0.2) — 7L (r, RJx+T(r, k)(B(r)+ C(r))x = k°T(r, k)x
holds for any x&D. The “generalized Fourier transforms” &* are defined by
(0.3) FEf(k) = SII‘“—“(r, R)f(r)dr, T*(r, k) = :I:ikx/ %I‘(r, +k).

G* transform L*(I, X, dr) into L*((0, ), X, dk) and satisfy for any Borel set
Ain ]
(0.4) E(A) = (F*)*Xy2 F=,

where E(\) is the resolution of the identity associated with L, X,/; is the
characteristic function of /A= {k>0/k*= A}, and (F*)* are the adjoints of F*
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in L¥(0, o), X, dk). These results imply that the spectrum of L is absolutely
continuous on (0, o). He has also shown that the spectrtum of L is discrete on
(—oo, 0). Jager’s methods are based on the fact that the principle of limiting
absorption holds for the operator L. For the notion of the principle of limiting
absorption see, for example, Eidus [2].

We shall treat in this paper the operator L with C(r)x=0(r"""%) (6>0) for
any x&D as r—>co. The other conditions imposed on B(r) and C(r) are the
same as those in Jaiger [3].

In [7] the author has justified the principle of limiting absorption for L
with C(r)x=0(r""""). The results in [7] will be summarized in §1. These will
be used as main tools throughout in this paper. In §2 and §3 we shall give a
spectral decomposition of L using the generalized Fourier transforms *. In
our case the existence of the eigenoperator is not shown. But with the aid of
the results of Jager [3] we can construct F* such that (0.4) holds good.

§4 and §5 are devoted to investigating the properties of L using the
techniques of stationary methods in perturbation theory. We shall make use
of some results given in Kato and Kuroda [6]. L will be considered to be the
perturbed operator of

2

(0.5) L, = —d—iE+B(r).

In §4 we shall define and study two families of operators {G*(M\)},s, and
{H*(\)}r>o- Roughly speaking, G*(\) and H*(\) are defined by
G*(\) = lim (L—2)(L,— =)™,

Z»A+i0

(0.6)
H*(x) = lim (L~ 2)(L—2)™".

The results obtained in §4 will be used in the following sections. We shall
show in §5 that the generalized Fourier transforms &* corresponding to L are
orthogonal, i.e., F* transform L*(I, X, dr) onto L*(0, o), X, dk), under the
assumption that the generalized Fourier transforms % associated with L, are
orthogonal. We shall define the wave operators W*=W=*(L, L;) and study
their properties in §6. It will be shown that W* are complete and that we have

(0.7) W* = (F)*F=.

As an application we shall consider the Schrodinger operator — A+¢(x) in
the whole R” (n>3) in §7. In this case we have

X = L¥(S"™)
(0.8) B(r) = ;;;{—Aﬁ(n—llﬁ},
C(r) = g(ro), (08",
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where S”7'is the (n— 1)-sphere and A, is the Laplace-Beltrami operator on S”7'.
g(x) is assumed to behave like O(|x| *"%) (6>0). All the results obtained in
the preceding sections are valid for the Schrodinger operator — A+g¢(x). In
particular the spectrum of — A+ ¢(x) on (0, o) is absolutely continuous.

Throughout in this paper we shall follow Saito [7] as to the notations.
Here we recall some of them.

X — a Hilbert space with the norm | | and inner product ( , ).

H¥(J, X) — the Hilbert space L*(J, X, (1+ ||)Pdr) with the inner product

(0.9) ((f, 8))e,s = s (), g(r))(1+ |7|)Pdr
and norm
(0.10) [1flle = [((f, £))e]”

Here @ is a real number and J is an open interval.
C™(J, Y)—the set of all Y-valued functions on J having m strong continu-
ous derivatives. Here m is a non-negative integer, Jis as above, and Yis a
subset of a topological vector space. In particular we set C”(J, C)=C"™(]).
C3(J, Y)—the set of all f(ryeC™(J, Y) with a compact carrier in J.
C*#(J, X)(C%*(J, X))—the linear space spanned by the set of all p=C?
(J, X) having the form @(r)=+r(r)x, where x D, & C*J) (Y= CE(J)), and

0.11) [ (@ + 1o 1+ | B D dr<oo.

Here for each r& J B(r) is a non-negative operator in X with domain 9)(B(r))
=D constant in 7.

H“E( ], X)(Hy®(J, X))—the Hilbert space obtained by the completion of
C*5(J, X)(C%#2(J, X)) using the norm
012)  ligllss = [ U@ O+ I BE0) 1+ | 9(0)Fdr]

The inner product is given by

(0.13) ((fs 8.7 = S AGO), g @)+ (BANfr), BHr)g(r)
+(f(r), g(r))}ar

U(J)—the set of all linear, continuous functionals / on Hg2(J, X). U(J)
is a Banach space with the norm

(0.14) WiZllly = sup{l <4, @> |5 e=C82( ], X), llpllss = 1}.
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U,(J)—the subspace of U(]) satisfying

(0.15)  [lllla,s = sup{l <4, A1+ |7])*p>|; e CTE(J, X), ll@lls,s
= 1} <o,

U,(J) is a Banach space with the norm ||| |||,,;. Here « is a positive number.

loc H¥(I, X)—the set of all X-valued functions f(r) on I=(0, o) such that
feHP((0, n), X) for every n=1,2, ---. Here I means the closure of I, i.e., [=
[O’ o).

loc H*3(I, X)(loc H}3(I, X))—the set of all X-valued function f on I such
that ., fe H' 21, X) (Vr.f € Hy2(1, X)) for every n=1, 2,---, where r,eC'(I)
satisfying 0=<,=<1 and
1 for 0<r<mn,
0 forr=n+1.

(0.16) ¥alr) = |

1. Preliminaries

Let I=(0, o). For each r&I B(r) and C(r) are operators in a Hilbert space
X with its norm | | and inner product ( , ). The following conditions are
imposed on B(r) and C(r):

Assumption 1.1.” (B-1) For each &1 B(r) is a non-negative, self-adjoint
operator in X whose domain 9(B(r))=D does not depend on r. We have
B(r)xe C°(1, X) for any x&D.

(B-2) Let x,yeD. Then (B(r)x, y)C*(I). For any compact interval I,
in I there is a constant ¢,(/,) such that

&7
(1.1) ‘W(B(S)x, y)‘ sa(I)(|x| + | B¥(r)x[)(|y] + | B(r)y|)

for any r, s&€l,and j=1, 2.
(B-3) There exist constants p>0 and 8> 1 such that

d g
(1.2) — (B, )= (B(r)x, )

holds for any x& D and any r>p.
(B—4) The natural imbedding
(1.3) HgE((0, b), X) — H((0, b), X)

is compact for each b 1.

1) Assumption 1.1 is the same as Assumptions 1.1 and 1.2 in Saito [7].
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(C-1) For each r&I C(r) is a symmetric operator with P(C(r))=D. We
have C(r)x C*(I, X) for any x& D.

(C-2). For any compact interval I, in I there exists a constant c,(1,)>0
such that

d
(1.4) }EC(r)x Sc,(L)(|x]| + | BY*(r)x|)
for any x= D. .
(C-3) There exist constants ¢,>0 and 0 <€<1 such that
(1.5) [C(r)x| Scf(1+7)7 (x| + | BY¥(r)x])

holds for any x& D and any r< 1.
Denote by ¥, the set of all X-valued functions @(r) on I satisfying the
following (i)~ (iii):
(i) o(r)eD (rel).
(1.6) {(ii) eeC(I, X)NCY(, X) and the carrier of @ is compact in I.
(i) peHyE(I, X) and Lpe H(I, X).

It is easy to see that we have

(1.7) C¥E(I, X)cU,c HyE(I, X).
We define differential operators M and M, in H%I, X) by
. DM, =¥,
(1.8) { 2
Mp = Lip = — z=p+B(r)p
and
DM) =¥,
(1.9) { a
Mo = Lp = Lip+C(r)p = — zzp+B(r)p+C(r)e.

obviously M, is symmetric and non-negative definite. It follows from (1.5) that
(1.10) [IcC)ells = | 1C0I00) 1% < | 19)] + 1 B()0tr) 1 ar

<24 [ (190)1"+ | BA()p() I ar

=< 2¢|l@llz = 2c5((Mop, @))o+2¢il| 2115

1 v
< d(aIM ol ~lpld) + 280> (PN,

2) Here and in the sequel we put || |ls,r=I|l llgand || |lgzr=I| |l5 for simplicity.
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where a>0 is arbitrary and we have used integration by parts. Hence M is
symmetric and bounded below. We denete by A, and A the Friedrichs
extensions of M, and M, respectively. Then we have

{ C33(I, X)c 9(A,) = H¥*(I, X)N DMF) < Hy*(I, X)

(1.11) C3E(I, X)c D(A) = H¥B(I, X)N DM*)c Hy3(I, X).

where M§ and M* are the adjoints of M, and M in H(I, X), respectively.

In the remainder of this section we state some results on the differential
equation (L —k*)v=f with a sort of radiation condition. These are proved in
[7] and will be used in the following sections. First we give the next

DerinrTioN 1.2, Let /eU(I), us H"2(1, X)® and keC* = {k[keC, Im
k>0, Re k+0} be given. Then veloc H*B(I, X) is called the radiative function
for {L, k, {, u}, if the following three conditions hold:

(a) v—uecloc H¥5(I, X).
(b) v'—ikveH (1, X) (the “radiation condition’).
(c) For all peC¥5(1, X), we have

(1.12) (0, (L—F)@))y = < 9.

We can prove under the assumptions (B-1)~(B-3) and (C-1)~(C-3) that
the radiative function for given {&, {, u} € C* x U(I)x H"2(I, X) is unique ([7],
Therem 2.2). We can also prove under Assumption 1.1 that for given {&, {, u}
C* XU, (I)x H3(1, X) there exists a unique radiative function v=1(+, k, 4, )
for {L, k, /, u} which belongs to H™* (I, X)Nloc H"5(I, X), and that the
mapping

(1.13) S 1 C* X U, o(I) x H*B(I, X)2 {k, £, u}
(-, k, 4, uye H*"*(I, X)Nloc H*3(I, X)

is continuous as a mapping from C*x U, (I) x H"5(I, X) into H™*"*(I, X) and
is also continuous as a mapping from C*X U, (I)x H"5(I, X) into loc H"B
(I, X) ([7], Theorems 3.7 and 3.8). Under Assumption 1.1 an a priori estimate
for radiative functions is obtained as follows ([7], Lemma 3.4): Let v=1(-, &, {)
be the radiative function for {L, %, {, 0}, where k& belongs to a compact set K
in C* and /e, ,(I). Then there exists a constant §,, depending only on K
and L, such that

(1.14) o]l -1—e 110" — o]y + IBD]| 1 S ol 1111

3) For the definition of U(I) and H''B(I,X) see the list of the notations in the
Introduction,
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2. The resolvent kernel G(r, s, k) for A
We are ready to define the resolvent kernel G(, s, k) for A, which satisfies
(2.1 (L—F)G(r, s, k) = &(r—3s),

where 8(r) is Dirac’s distribution. To this end for s/ and x&X we shall
introduce a linear functional {[s, x] on Hy'2(I, X) by

(2.2) s, x], wy = (x, u(s)) (veHy3(1, X)).
We can show that the inequalities

2.3) { lo(s)— @) I’ < |s—tllloll3,

lo(s)1*<2lloll%
hold for any o= CZ3(1, X) and any s, tL.® In fact we have
t t
(2:4) 26)—90)1 = || prari*< 5111 [ 10 a1
=ls—tlllolld

Next, putting [@(f)| = min |¢p(r)|, we have
SSr<s+1

25) 19(5)1* = 2{|9(s) = @(1) |*+ | (1) 1}
= 2{ls—tl[ Iy 1rar+ (o) 7ar)

< 2§:“{l<p'(r)|2+ | p(r) |} dr
< 2/loll3.

Since C§2(I, X)is dense in Hy'B(I, X), it follows from (2.3) that H35(I, X) is
continuously imbedded in C°%I, X). Hence {[s, x] can be regarded as a linear
functional on Hy'B(I, X). Further, we can see from (2.3) that

1[5, #]lll = sup|(x, @(s) | = |x|-sup|p(s)| =/ 2 | 2],

(2.6) i1ell 5=1 el z=1
L8, 2]lllise = /2 (1+5)*7 5],

which implies that I[s, x]e U, ().

Lemma 2.1. Let us assume Assumption 1.1. Let v=o(-, s, R, x) be the
radiative function for {L, k, {[s, x], O}, where ke C", sl and xX. Then for
any R> 0 there exists a constant 8,=38,(R, k)>0 such that we have

2.7) 2]l 5, co,ry=8,(1+ )97 | x|

4) See Jager [3], p. 69.
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and

A a+e)/2
(2.8) max lo(r)] =/ 28(1+5) |x].

8,(R, k) s bounded when R moves in a bounded set in I and k moves in a compact
set in C™.

Proof. Put I,=(0, R) and I,=(0, R+1). It follows from Lemma 1.5 in
[7] that we have

(2.9) lollg.r, = e{llollo,r, +1I<Ls, #]Il1}

with a constant ¢c=¢(R, k)>0 which is bounded when the pair (R, k) moves in
a bounded set in I X C. Using (1.14) we have

(2.10)  lollo,r, = A+R)™™ol| -, < 8(1+R)* ([ {[s, x]ll]y+e

with a constant §,=§,(k) which is bounded when 2 moves in a compact set in
C*. Hence we obtain from (2.9), (2.10) and (2.6)

(2.11) l2lle,r < ¢{8(1+R)" || s, %]ll|,+e + I £[s, %]1[1}
= {8 (1+R) ™A/ 2(1 49" x| +/2 2]}
= V2 {81+ R)*HOR 4 (14 5) DR (1 4 5) O+ 0% | |

< VT {81+ RO 1 1} (1 4+ 5)+07 | |

which means (2.7) with §,=+/2¢{3,(1+R)**+**+1}. (2.8) follows from (2.7)
and (2.3). Q.E.D.

In view of the above lemma we can give the following definition.

DrrFINITION 2.2.  For each triple (7, s, k)eIx Ix C*+ we define a bounded
linear operator G(z, s, k) on X by G(r, s, R)x=2(r, s, k, x), where o(r, s, k, x) is
the radiative function for {L, &, {[s, x], 0}. G(r, s, k) is said to be the resolvent
kernel for A.

For the properties of the resolvent kernel G(r, s, k) we can show almost the
same results as given in §6 of Jager [3].

Theorem 2.3. Let us assume Assumption 1.1. Let G(r,s,k) be the resolvent
kernel for A.  Then we have the following (i)~(v):

(i) G(-,s kxcloc H¥B(I, X)NH (1, X) for scI and x€X. G(-,s,
k)x is continuous on I X C+x X both in loc H¥3(I, X) and in H'"*(I, X). G(r,
s, k)x is a continuous X-valued function on Ix I x C+x X, too.

(i) G(O,r,k)=G(r,0,k)=0 for any rel.

(iii) For any (s, k, x)eIx Cx X G(-, s, kyxc C(I— {s}, D) and G(-,s, k)x
satisfies the equation
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(2.12) (L—F)G(-, s, k)x =0  inI—{s}.
(iv) Denote by R(z)=(A—z)"* the resolvent of A. Then we have
(2.13) R(E)f(r) = S,G(" s, k)f(s)ds,
where ke C*, Im k>0 and f& H'(I, X) with a compact carrier in I.
(v) We have
(2.14) G(r, s, k)* = G(s,, —F)

for any triple (r, s, Ry Ix Ix C*, where G(r, s, k)* is the adjoint of G(r, s, k) in X.
Proof. Since we have from (2.2) and (2.3)

215)  |<Ls, 5], (147 r@>— Ut a], (1) )]
= (1487, p(s)) — (1+*7(y, (1))
< V(L8 0E— (14898 x| [|pllp+ v/ Z(1 4+ 5=y ligl 5
A+ st ylllglls  (peCEA, X)),

we see that {[s, x] is a U,,,(I)-valued continuous function on Ix X. Hence (i)
follows from Theorem 3.7 in [7]. We obtain G(0, 7, ()=0 from the fact that
G(- ,r, k)xcloc HYB(I, X) for any x&X. It follows from the uniqueness of
the radiative solution that G(r, 0,k)=0. (iii) follows from the regularity theorem
in Jager [3] (Satz 3.1).

Next let us show (iv). It follows from (1.11) that we have

{ RE)f e HY3(I, X)
(REY, (L=F)p)) = (i 2))e  (pECFAL, X)),

where ke C*, Im k>0 and fe H(I, X). Hence R(k*)f is the radiative function
for {L, k, {[f], 0}. Further, assume that the carrier of f is compact in I and is
contained in [0, R]. Then we shall show that

(2.16)

(2.17) V(r) = SRG(r, 5, B)f(s)ds

is the radiative function for {L, %, /[f], 0}, too. In fact we can easily see for
any pe C¢5(1, X)

@18) (7, L=l = | @[ G5 Ryf)s, (L—FIp(r)
= {Las((6(- 5, FE), E—FIa(-))
(e, psnas
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= (/s 2o

The following estimate is sufficient to see that Ve H™'"%(I, X):
(2.19) S,(l )| V(r) | dr
R R
= enar | “as| "auce, s mfe), Gt B

<2 S:ds Sfdt sl(l )G, s, R)F(5) |
+ |G(r, t, k)f(2) |} ar

R

= 4R ) NG(-, 5 B)f(s)I[2-ods

[114Ts, f()INIE +eds

0

< 4R$2 S
< 4RSE SR2(1 49| f(s) |7ds < oo,
1]

where we have made use of (1.14) and (2.6). Similarly we can show that V’—
tkVe H*(I, X). Therefore we have V(r)=R(F’)f(r) by the uniqueness
theorem of the radiative function (Theorem 2.2 in [7]), which completes the
proof of (iv).

Finally we shall prove (v). If keC* and Im k>0, then (2.14) follows
from (2.13) and the fact that R(k*)*=R(k?). Since G(r, s, k)x is continuous on
C*, (2.14) is also true for ke C*, Im k=0. Q.E.D.

Let Cj(r), j=1, 2, be operator-valued functions on I satisfying (C—1)~
(C—3) in Assumption 1.1. We set
dz
M; = — z+B(r)+Cr)
M) =¥,

and we denote by A4; the Friedrichs extensions of M;, j=1,2. Gj(r,s,k),j=
1, 2, are the resolvent kernels for 4;. We shall show a formula involving G,(r,

s, k) and G,(r, s, k) which will be used in §3.

(2.20)

Lemma 2.4, Let C\(r) and C(r) be as above. Let B(r) satisfy (B-1)—
(B—4) in Assumption 1.1. Let ke R— {0}. Then we have

(2.21)  ({Gy(r, s, k)-Gy(r, 5, -k)}x, ¥)
= (%Gx(t, s, k)x, G(t, 7, k)y>-<G1(t, s, k)x, %Gz(t, 7, k)y)

+ | (- CG (.5, B, Gy 7, Byyar,

5) Cf. Lemma 6.1 in Jéger [3].
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where x, ye X, r, s€l, and t>max (r, s).
Proof. Let yr& C'(R) satisfying 0<+<1 and

1 (r=0)

(2.22) vin) = { 0 (r=1).

Set Y (T) =4y «(7) =(n(7—1t)) and I,=(0, £+1). Then we can see that
(2‘23) ‘l"n(.)Gf(' ) k,)xEH&'B(Io) X);

where j=1,2, s&l, ke C* and x& X. Using integration by parts we rewrite
the relation

(2.24) (G- s 5, B)x, (Li—E)@))o=(x, p(s))
to obtain
2.25) (G- s 5 k)2, P(- )z, 1o+ ((Co(+)=1)G(+ » 5, B)%, 9(+)))o,1,= (%, P(5))
for any o= C3'5(I,, X). Since both sides of (2.25) can be extended to bounded,
anti-linear functionals on Hg'5(1,, X) for fixed s l, ke C*, xe X, (2.25) holds
good for any o= Hy'5(1,, X). Hence we can put @=+,G,(+, 7, k)y in (2.25) to
see
(2'26) ((Gl(' s Sy k)x’ ‘l"n(')Gz(" 7, k)y))B,Io
F(((C()= DG 5, B)x, Yo+ )G+, 75 R)Y))o,1,

= (%, Yu(5)Gy(s, 7, k)y)

= (Gy(r, s, —k)x, y)
for r, s€(0, t), x, y= X and ke R— {0}, where we used Therem 2.3, (v). Sim-

ilarly we obtain

(2'27) ((11/.”(.)G1(. » S k)x’ Gz(’: 7, k)y))B,Io
+ (("l"nGl( * S k)x’ (Cz( ')- 1)G2(° s s k)y))o,lo
= (Gy(r, s, k)%, y).

Combining (2.26) and (2.27), we have
(2.28) ({Gy(r, s, B)— G(r, s, —k)}x, y)
= | FuIACAN = CNG (.5, By, Gl 7, Ry
o d
+ { wd@{(Gir s Byw, Gutm 7, )

d
— (5:6.0,5, B, G, 7, iy ) .

Noting that
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1 for <t
(2.29) ¥al(m) = { 0 forr>t,
Y (1) > — (7 —1),
as n—>o0, we obtain (2.21) from (2.28). Q.E.D.

3. The spectral representation for A

This section is devoted to constructing a spectral decomposition for 4
by means of a “generalized Fourier transform”. We start with the results of
Jager [3]. The following theorem on the spectrum of 4 has been proved in Jiger

[3], §4.

Theorem 3.1. Let us assume Assumption 1.1. (i) Then A is bounded below
with the lower bound 1,<0. (ii) On (x,, 0) the continuous spectrum of A is absent.
The negative eigenvalues, if they exist, are of finite multiplicity and are discrete in
the sense that they form an isolated set having no limit point other than the origin 0.
(iii) We have o (A)C(0, <), where o,(A) means the essential spectrum of A.
There exists no positive eigenvalue of A. If in addition there exists x,=D which

satisfies ‘
(3.1) { Ixol‘
s—lim B(r)x, = 0,

then we have o ,(A)=[0, o).
If we assume instead of (1.5) that we have for any x&D and any re ]
(3.2) le(r)x] < & (1+ |7])~* " %(|x| + | B**(r)x])

with constants &,>0, £>0, then an eigenfunction expansion for 4 has been
obtained by Juger [3], §6. Jiager’s results are summarized as follows:

Theorem 3.2. Let us assume (B-1) (B—4) and (C-1), (C-2) in Assumption
1.1 and (3.2). Then for ke R— {0}, r& I and x< X the strong limit

(3.3) T(r, k)x = s—lim e **G(¢, r, k)x

exists. T\(r, k) is a bounded linear operator on X for each rel and ke R— {0}.
The adjoint T*(r, k) of T'(r, k) satisfies

(., kxe C%(I, X)Nloc H}E(1, X),

(., k)xe C*(, D),

(L—F)T*(r, k)x = 0 (rel),

T*(0, k)x =0,

34
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for x& X and ke R— {0}. Set

T*(r, k) = :L-«/ g—ikl‘(r, +k)
(3.5) |
(k) = Slr*(r, R)f(r)dr,

where f & CY(I, X).® Then G*fc Ly((0, ), X, dk) and G* have unique extentions
F* to H°(I, X) which are bounded linear operators on H°(I, X) into L,((0, o), X,
dk). Denote the resolution of the identity for A by E(\). We have for 0<\,<
A= co and f, g H(I, X) ‘

(3.6) (E((ns M) 8))o = S (F=A)k), (F=2)(K)) dk.

A<E“<A,
Hence the spectrum of A is absolutely continuous on (0, o).
Let us assume (C-3) in place of (3.2) again. For each n=1, 2, --- we take
Y, C(I) satisfying 0=<+,=<1 and
1 for 0<r=<m,
0 forr=n+1.

(37) V) = |

A4,,n=1, 2,.--, denote the Friedrichs extensions of the operators M, which are
defined by

DM,) =%,

(3.8) a
M, = = 2:+BO+Ca0),  Calr) = ¥ulr)CE),

respectively, We can easily see that for each n=1, 2, .-+, C () satisfies (3.2) and
that the sequence C () satisfies Assumption 4.1 in [7]. For each n=1, 2, -,
G,(r, s, k) is the resolvent kernel for 4,. T(r, k), Tx(r, k), G, a3 and E,(\)
are defined as in Theorem 3.2.

Lemma 3.3. We have

(3.9) ({G (7, s, k) — G,(r, s, —R)}x, y) = 26k(T (s, k)x, T (7, k)y)
+ So ({Com(7) = Cu(T}G (7, 5, k)%, Gp(T, 7, R)y)dT
(m,m =1,2,-.),

where ke R— {0}, r, s I and x, ye X.

6) CY(I, X) denotes the set of all X-valued, continuous functions on I=[0, ) with a
compact carrier in /. .
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Proof. We obtain from Lemma 2.4
(3.10) ({Gu(r, s, B)— Gp(r, s, —k)}x, )
= 2tk(G (L, 5, k)x, G(t, 1, k)y)
+ [ {Cu) = CurGo(r, 5, Ry, Gt 7, B

d
+ {(EGn(ty s, k)x_ian(t’ S, k)x’ Gm(t, r’ k)y)

_ (G,,(t, s, k), %G,,(t, r, Ryy—ikG (2, 1, k)y)}
= K,(t)+ K, (2)+ K (2).

First it follows from (1.5) that
G11)  [({Cu(r) = Cu(T}Gu(7; 5, )X, G (T, 7, K)Y) |

= 2(1+7)7 (| Gul(Ty 5, R)x| + | BA(T)G (7, 5, R)%1) | Gon(T, 1, R)y |

< 41+7)7 42| Go(T, 5, B)x |2+ 2| BY(T)G (7, 1, k)x|?

+ | Gul(T, 7, R)y|*
e L, dr),

where we have noted that G (- , s, k)x, G,(+, r, k)ye H*"*(I, X) and B”(-)G,
(+» s, k)xe H™**(1, X) by (1.14). Hence we have

(312)  lim K(t) = | ({Cu(r)= Cul}Gul(r, 5, By, Gon(r, 7, Riy)dr

Since GJ(+, s, R)x—1kG ,(+, s, R)x, Gn(+, 7, R)y—ikRG, (-, 7, k)yec H*"*(I, X) and
Gu(*) 8 R)%, G+, 7, Rlye H™'7%(1, X), we have lim K,(t;)=0 along some

sequence {t;}, £;—co. Finally we see from (3.3)

(3.13) lirB K,(t) = lim 2tk(e™**G (¢, s, k)x, e **G (8, 7, k)y)
= 2k(T (s, k)x, Tp(r, k)y).
Thus we obtain (3.9). Q.E.D.

Now we are in a position to show that G f is a Cauchy sequence in loc L,
(I, X, dk) for any fe C3(I, X). Then E(\), the resolution of the identity for
A, will be represented by unique extensions F* of §*=Ilim Gy.

7n.y00

Theorem 3.4. Let us assume Assumption 1.1.
(i) Then for any f< C(I, X) there exist

(3.14) G =1lim Gif  in L(a, B), X, dk),

where o and B are arbitrary numbers such that 0 <a <B<oo. For 0<n, <, <
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oo and f, g CY(I, X) we have

(3.15) (E((Ms M), 8)) =

where E(\) is the resolution of the identity for A. Hence G* are bounded, linear
operators from CY(I, X) contained in H'(I, X) into L,((0, o), X, dk).

(ii) Let F* be unique extensions of G* to H(I, X), respectively. Then for
A=y, Ay), 0N, <N, = 00 we have

(3.16) E(A) = (F*yXv 7T,

[V aa=rm), atear,

where X/ 7 is the characteristic function of (\/\,, \/\,) and (F*)* are the adjoints
of F* acting from L,((0, «); X, dk) into H°(I, X), respectively.

The following corollary directly follows from (3.16).

Corollary 3.5. The spectrum of A is absolutely continuous on (0, o).
For the proof of Theorem 3.4. we need

Lemma 3.6. We have

(317) (B ANe= [ | dras(G0, 5, =GO, s, — B0, 80)

where 0 <\, <\, < oo and f, ge H(I, X) with cdmpact carriers.

Proof. Let us start with the well-known relation”

(G18)  (BOw N o) = lim lim L (RO +in)
~ RO —iw)}, ).

Using (2.13), R(A +iu)f can be represented by the resolvent kernel G(z, s, k).
Hence (3.18) becomes

(3.19) ((BE((vas X)) 8))o
— lim thS“ ((S {G(-, 5, VN Fip)— G(» 8 VA= i)} f(s)ds,

n40 py0 271
£))dN,”
— lim 1im1—S”_"S S (G, s, /N Fip—G(ry 5 V/ A—ip} £s)
40 w30 277 JA +n Jo Jo ’ ot ’ e ’
g(r))dsdrdn,

7) See, for example, Dunford & Schwartz [1], p. 1202.
8) Here and in the sequel by \/ 2z is meant the branch of the square root of 2 with

Im v/ 'z =0.
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where R is taken so large that the carriers of f and g are contained in [0, R].
Since G(-, s, /A 1p)f(s) is the radiative function for {L, N xip, {[s, f(s)], 0},
we can apply Theorem 3.7 in [7] to show that G(r, s, /A +iu)f(s) is uniformly
bounded for (r, 5, A, p) [0, R] X [0, R] X [A1, A,] X [0, 1] and

(3.20) lr}?o] G(r, s, VA xip)f(s) = G(r, s, £/ N )f(5) in X.
(3.17) follows from (3.19) and (3.20). Q.E.D.

Proof of Theorem 3.4. Since we have
] V¥ + £ Ot f]2 _ VT2 + 2 V2 + 2
G20 (V2 1Ger—gaiak = (1) Gy 1k (V20 G k) 1k
V2, ., V72 "
= (V2% f k), Gafnar={ 3R, GifRar,
in order to show that {Gf}~_, are Cauchy sequences in L,((v/\,, V/A,), X, dk)
it suffices to show

(3.22) tim { V2%GEf(R), Gaf(R)dk = ((EOw, M), )

Recalling (3.9) of Lemma 3.3 and (3.5), we have

V2

(3:23)  [VAXGfR), Gf Rk = S‘\gjdk Slsldrds(I‘,%(s, R (),

Ta(r, k)f(r))

T2 0h2 R(R
- Sf/i 2% ar (" dras(0uls, £BF(), Tlr, £Rf))

A4 4 0ovJo . :
(Vi sk e ("("ara(1Gutr, 5, £B)— Gulr, s, FRIF6), 1)
. 2 1 Tt 0vJo
+ [T~ CutNGolry s, 2R, Gl 7, £BF ()]
(Ve kdk
= S\ﬁliﬁ
where we take R>0 such that [0, R] contains the carrier of f. Let us show that
lim K&,=0and |K&,(r, s, k)| is uniformly bounded for (r, s, k) [0, R] X

[,0, RIX[V/A,, VA, and n, m=1, 2.-.  Using (1.5) we estimate K%,(7, s, k) as
follows:

RCR
S X drds[K(r, s, R)+ K&u(r, 5, B)],

0Jo

(28)  IKZI S0 19l Ao (L)1 Golr, &, LR
L BADG(r, 5, £RF)])X |Gl 7, £RR)] d7
< 86 19um)— V(D (147 {1Golr, 5, 2R
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—G(7, s, £R)f($)?+ | G(T, 7, £R)f(r)—G(7, r, £R)f(r)|?
+1G(7, s, £R)f(s)I*+ | G(7, r, £R)f(r)|?
+ [ BADG,(r, 5, £R(S)|Far
= 860[{HGn(" P :tk)f(s)_G(°’ S :I:k)f(s)[|2_1_,_,
FUGw(es 1, £Rf(r)—G(-, 7, £R)f()IIZ,-}
0 A6 s, £RFO) G 7, R0 ar

+E(m) n)_zg”BI/z(')Gn(" S, :bk)f(s)“g—we]
= Ql+ Qz+Qar

where we put &(m, n)=min(m, n). We see from (2.15) that s, f(s)] is a U,
(I)-valued, continuous function on [0, R] such that

(3.25) L, M hve = V2 (1832 ()]
Hence, applying Theorem 4.2 in [7], we see
(3.26) O:=c(E(m, n))7*\/ 2 (1 +5)+2|f(s)| =0 (m, n—> o)

uniformly on (s, A)€[0, R]X[\/A 1» VA 2], where ¢ is a positive constant.
Putting v, =G,(+, s, £R)f(s) and 4(s, k) = s, f(5)] (or Vpm=GCGn(+, 7, LER)f(5)
and 4,(r, k)={r, f(r)]) in (ii) of Theorem 4.3 in [7], we obtain '

NGu(es 5, £Rf(5)=G(+, 5, £R)f()|-1oe >0, m—>o0,

(3.27) { HGm('» r, :l:k)f(f)“G(" 7, :i:k)f(r)“_l_‘\z -0, m—o>x

uniformly on (r, s, k) [0, R] X [0, R] X [\/A1, V2], which implies the uniform
convergence of Q,—0. It follows from (1.14) and (3.25) that Q, is uniformly
bounded for (7, s, k)[0, R] X [0, R] X [\/ 1y V' A2] and n, m=1, 2,---, and O,—
0 as n, m—oco. Thus we have shown that K2, (7, s, k) is uniformly bounded
and K%, (r, s, k)—0 as n, m—oo. For KiLu(r, s, k) we obtain from (3.27)

(3.28) SRSRK,‘»};.(r, s, k) drds
- S:S:({G(r’ s, £k)—=G(r, s, FR)}f(s), f(r))drds

as n, m— oo uniformly for k&[\/A,;, v/ Az]. Therefore with the aid of Lemma

3.6 we have
(29 lim (V2(G k), Gk

_ g{gi @ gfgfdrds ({G(r, s, )= G(r, s, =R} f(5),f(r))

= ((EO"I’ 7\'2)f’ f))o’
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which implies the congergence of {Gxf}.

We define G, f for fe C(I, X) and 0<a <B< oo by
(3.30) G*f=lim G f in L((a, B), X, dk)
Then putting m=n in (3.22), we have

. (V22 5y 2
(3.31) ((EOws XY, Mo = lim ) 271 G ) 2
V2z, oy
AN OIS

which implies that G* f& L,((0, ), X, dk) and

VI TIN +
(3.32) (B M) 5 8))o = S\/Tl(g'f (k), G*g(k))dk,
for f, geCY(I, X) and 0=<A,<A,<oco. Thus (i) of Theorem 3.4 has been
proved. (ii) follows directly from (i). Q.E.D.

4. The operators Gi(\) and Hi(\)

In this and the following two sections we study the property of A from the
standpoint of perturbation theory. Stationary methods” are useful for our
purpose. In particular we shall make use of the results of Kato and Kuroda [6].
This section is a preliminary one. We shall define a family of operators Giz(\),
Hi(A) (W>0,n=1, 2,--) and study the properties of them. .

d
Let Cu(r), L, A,, Fx etc. be asin §3. Let L= —P-i—B(r) and 4, be
asin §1. Starting with L,, we can define the resolvent R, (z), the resolvent

kernel G(r, s, k), and the generalized Fourier transforms 5. In this section
we put C(r)=C«(r), L=L.., A=A., R(z)=R.(z) etc.

Let us set
(4.1) C,= C—(—,0],ie, C, = {zeC/\/ zC"}
and
(4.2) C, . = {zeC/Im 2>0}, C,_ = {z=C,/Im 2<0}.

Then R,(2, f)=R,(-, 2, f) is defined as the radiative function for {L,, \/ z,
{f], 0}, where z=C,, fe H**(I, X) and n=0, 1, 2,--, co. By the regularity
theorem of Jager [3] (Satz 3.1) C,(r)R,(r, 2, f) is well-defined for any feH"2
(I, X)N H***(1, X), where n, m=0, 1, 2,-++, oo, '

9) For the literature of stationary methods see Kato [5] and Kato and Kuroda [6].
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Lemma 4.1. Let us assume Assumption 1.1. Let K be a compact set in C,.
Let fe H"3(I, X)N H"**(I, X) and z€K.
(1) Then there exists a constant 8,>0 such that

(4‘3) “CmRn(z) f)”l+s§83||f”1+e (n) m = 0, 17 2""1 oo))

where 8, depends only on K.
(i) C,Ru(z, f) is an H**(I, X)-valued continuous function on both C, .
and C, _.

The proof is easy from Theorem 4.2 in [7] and we omit it.

It follows from Lemma 4.1 that the operator C,,R,(2, *) from H"5(I, X)N
H'**(I, X) into H'**(I, X) is uniquely extended to a bounded linear operator
Opn(z) from H'™*(I, X) into H*™*(I, X). Q,, «(2)f is an H***(I, X)-valued
continuous function on both C, , and C, _.

DEerFINITION 4.2. For each n=1, 2,---, o and each 2=C, bounded linear
operators G,(2), H,(2) from H'**(I, X) into H'**(I, X) are defined by

Gu(2) = 1+ 0, (2),
Hn(z) =1- Qn,n(z)'

In particular for A >0 we put

(4.4) {

(4.5) G:(\)=G,(\+i0) and Hz(\) = H,(A%i0).

Lemma 4.3. Let G,(2) and H,(2), n=1, 2,--+, oo, be as above.
(i) Then we have for z€ C— R and f € H'**(I, X)

(4.6) Gu(2)f = (Au—2)R(2)f and H (2)f = (A,— 2)Ru(2)/.

(i1) For any n=1, 2,--+, oo and any fe H'**(I, X), G,(2)f and H ,(2)f are
H'**(1, X)-valued, continuous functions on both C, , and C, _.
(iii) Let 2C,. Then we have

4.7) G () H () = H,(2)G(z) =1  on H*(I, X) .
In particular we obtain for x>0
(4.8) Gi(WHEN) = HEV)GE() = 1.
(iv) For any feH*"*(I, X) we have
lim G(2)f =G.(=)f

4.9)
lim H,()f = H.(2)f

in H'**(1, X) uniformly on any compact set in C,
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Proof. Since we have
(4.10) R, (2, f) = R,(2)f (zeC—R, feH'"(I, X)),
it follows that

(#11)  Gu3)f = {1+ CR(} f = {1+ (4= 2)— (4= 2)R(2)} f
= (d—2)R()f  (feH™(, X))

Similarly we have H,(z)=(L,— 2)R,(2) on H'**(I, X). (ii) follows from (ii) of
Lemma 4.1. If zeC—R, (4.7) follows from (4.6). Taking account of (ii), we
can see that (4.7) is true for z=X>0. (iv) follows from (ii) of Theorem 4.3
in [7]. Q.E.D

Next we show some formulas involving G,(2), H,(2) and the radiative
solutions R,(z, f). Let A>0and n=0, 1, 2,-., co. Then, according to Kato
and Kuroda [6], we introduce a bilinear form e, (\; -, ) on H'**(I, X)x H**(I,
X) by

1
(4.12) es(N; [ 8) = 5, (Ra(A 410, f) = Ru(X —10, f), £))o-

Since R, (A £10, f)e H'7*(I, X), the right-hand side of (4.8) is well-defined.
We can easily see that e,(-; ¢, +) is a continuous function on (0, oo)x H***(I,
X)x H'**(I, X). It follows from (3.18), (4.12) and the continuity in z of the
radiative function R,(, f) that we have e(-; f, g) L'((0, o°); d)\) and

(*.13) (B, D = | esths £, 0) dn,

where A is a Borel set in (0, o) and f, g H***(I, X). The bilinear form
e.(\; f, g) is called the spectral form for E,(\).

Lemma 4.4. (i) Let 2C,, fe H**(I, X) and n=1, 2,--+, co. Then we
have

(4.14) R.(3, f) = Rz, Hu(2)f),
and
(4.15) R(2, f) = Ru(z, G.(3)f)

in H'°%(I, X). In particular we have for x>0

R, (A %10, f) = R(M 10, Hz(\)f) . |
(+.16) { R(A£0, f) = RANED, GI(Vf) H7, ).

(i1) Let >0 and let n=1, 2, 3,--+, co. Then the relations
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es(N; GE(N)f, GE(\)g) = ef(\; f, 8)
e(N; Hi(M)f, Gi(M)g) = es(Ns f, 8)
hold for any pair of (f, g)e H'**(I, X)X H'**(I, X).
Proof. Let us prove (i). The both sides of (4.14) are H*"*(Z, X)-valued

continuous functions on H'**(I, X), and hence it suffices to show (4.14) for
feHd"® 1, X)nNH**(I, X). For o= C¥5(I, X) we have

(4.18) (Ro(2 Hu(2)f)s (La—2)9))
= ((Ro(2 Ha(2)f), (Le—2+C)p))s
= ((H«(2)fs #))o+(CaRo(z Ha(2)f), P))o
= (GA()HA(2)f> #))o
= (/s #)o»

i.e., R(2, H,(2)f) is the radiative function for {L,, \/ z, {[f], 0}. It follows
from the uniqueness of the radiative function (Theorem 2.2 in [7]) that we have
Rz, H,(2)f)=Ru(2, f). In a similar way we can prove (4.15).

Next let us prove (ii). For 2eC—R and f, ge H'**(I, X)N H"5(1, X) we
have

(4.19) (({Ru(2) = R.(Z)}G u(2)f, Gu(2)8))s
= ((Ru(2)G(2)f, Ga(2)8))e— ((G(2)f, Ru(2)Ga(2)g))o
= (R(a)f, {1+ C.R(2)}£))y— (({1+ CaRy(2)} £, Ri(2)g))o
= ({R(2)—Ry(2)} £, &),

Here we have made use of (4.6) and the relation Q, ,(2)f =C,R,(2)f. Letting
2—>A+10 in (4.19), we obtain

(4.20) ex(M; Ga(M)f, Ga(Mg) = e(Ms f, 8)-

The both sides of (4.20) are bounded forms on H'**(, X)x H**(I, X), and
hence (4.20) holds for all f, ge H'**(I, X). The other relations in (4.17) are
obtained similarly. Q.E.D.

(4.17)

Finally we shall show some formulas involving &%, 5, Gi(\) and Hy(\).

Lemma 4.5. (i) Let k>0 and n=1, 2, --- (n£ ). Let feCyI, X).
Then we have

(4.21) s(Ha(R)f)(k) = Fxf(k)
and

(4.22) FHGa(K)f) k) = L5 £ (k).
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(i1) Let n=1, 2, -, co and let A be a Borel set in (0, ). Let f, g
H'*(I, X). Then we have

(4.23) (Fax 7 Fsf, o = | ealns GEOVS, g)an
- SAen(x; £, HE(\)g)dx
where X — is the characteristic function of \/ A = {k>0/R*c A}.

V4

Proof. First let us prove (i). We prove (4.21) only, since (4.22) can be
shown similarly. Note that

424) Rz, g) = SIG,,(r, 5,V 2)e()ds  (n=0, 1,20, zeC))

hold for g H(I, X) with a compact carrier in I, and that the carrier of H¥(\)f
is compact in I forn=1,2, -, and fe CS(I_, X), as can be seen from the fact
that C,(r)=0 for r=n+1. Then from the definition of &; and (4.16) of
Lemma 4.4 we see

(425)  Fifh) = | i, Hf o)
- :t«/ 2k hm[ei'”‘ G(t, 7, £R)f(r)dr]

ty»

_ i\/ 2k Lim[e**R,(t, K 10, f)]

tyoo

= _zk im[ei**R (, k*+10, Hz(k)f)]

tpo0

= id%ik lim[ei”"SIGo(t, r, £ R)(HzEE)f)(r)dr]

_ :i:,\/ %ik [ v, £RERE 0
= FF(HFE)f)(7).

Next let us prove (ii). Obviously we may assume that A=A, A,), 0<A,
<A,<co. Since we obtain from (4.5) and Theorems 4.2 and 4.3 in [7] that for
fixed f, ge H'"*(I, X)e, (N ; G, (N)f, £) is uniformly bounded for A€ A and n=
1, 2, -+, and e,(X; Gr(MN)f, g)—e-(N; GE(N)S, g) as n—o0, we may assume that
n=co. Both sides of (4.23) are bounded bilinear forms on H'**(I, X)x H'**
(I, X), and hence we may assume that f, g& Cy(I, X). Thus it suffices to show
(4.23) for n=E oo, A=(n,, Ay), 0<A, <N, < o0, and f, g CY(I, X).

Using (4.12) and the continuity of (({R,(M +iu)—R,(A—ip)HGa(N)f), £)),
on {(A, p) A=A, 0= u <1}, we have
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(4.26) [ euns GEOVE,

_ SA 2_; (Ru(A+10, GE(N)f)— R, (A —i0, GE(N)f, £))dN

- lim~1—,s I ) dn,

#v0 277 Ja
where I(n, p)=(({R N +in)—R,A—iu)H(Gi(N)f), £))- 1IN, p) is calculated
as follows:
427) 10 ) = [ GEHROAim)— RAO— i} GEONNE), Figk))dk
+2(({RA N A+ i) = Ru(A = i) HGENS)s 2, 3))o( @, 8))o

I 21 +(+ +
_ S ﬁ:; (FR(GE(Nf)(k), Lag(k))dk

2 + k )
+,2 m (Ga(M)fs ‘Pn,J))o((‘Pn,n )

= 11(7\': IL)+12(7\') F‘))

where —oo <\, | SN, , < <A, ;<--<0 are the eigenvalues of 4, and for

each j @, ; is the normalized eigenfunction of 4, associated with x,, ;. Here we

have made use of the relation (F3)*F5f+2Xf, ®au,i)pai=f for fEeHYI, X)
7

(Theorems 3.1 and 3.4 in §3). Since we can easily show that I,(A, u)—0, p—0,
uniformly in A& [}, A,], we have

(+28) | ens GiOIS, )

IHOS ;S, (K — x) e o (Fx(Gx (N f)(R), Trg(k))dkdn

Noting that

29 |  |(FH(GFOIN(R), Fig(k) | drdx

F=ry
[ Gz l.anlgll <o,

we can change the order of integration to obtain

(4.30) SAe,.(x; GZ(N)f, g)an

= B im 1 + +
- So lms z (} 7\) T L (FE(GENf)(R), Fig(R))dndk

= | V2 @GR, Fig)ak
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Vi + + + —Chit+
= S\/Z (Fuf(k), Tig(R)dk = (FZ)*Xv/ 1D S, £)os
where we have made use of (i) and the well-known relation'® for a continuous
function A(X\)

#31)  Liim S" B hogdn = {0, if a&:(a, £)
T B0 m(a—h) +[la h(a), if ae(a’ C{).

From (4.8) and (4.17) we can easily see that e, (A ; GE(N)f, g)=e(N; f, Hi(\)g).
Thus we have proved (4.23) completely. Q.E.D.

5. The orthogonality of =

The purpose of this section is to prove the orthogonality of the operators
G* which have been constructed in §3 under the assumption that &g are
orthogonal. By the orthogonality of ¥* we mean the relation F*(F*)*=1 on
L*((0, o), X, dk) or, equivalently, that F* transform H%(I, X) onto L*(0, o),
X, dk). For this we shall make use of the spectral representation for the
absolutely continuous part of a spectral measure with values in the set of
orthogonal projections in a Hilbert space which has been given in Kato and
Kuroda [6], §1.

Put X =H"**(I, X) and define the spectral form e for E()), the resolution
of the identity associated with 4, by

(5.1 eni f,8) = 5o (R0, )= RO—10, ), )

for each A>0 as in §4, where R(A 10, f) is the radiative function for {L,
v/ ), {f], 0}. Let JI(\) be the set of all f with e(x; f)=e(X; f, f)=0.
Then the quotient space X/JI(\) is a pre-Hilbert space with the inner product
induced by e(x; -, ). Its completion is denoted by X(\) and the inner product
and norm in () are denoted by (, ), and || |[,. We denote by J(\) the
canonical map of X onto X/JIN)C X(N). Let A be a Borel set in (0, o).
Then a vector field F = {F(\)}es€ X(A) =A£IA3€’(X) is said to be e-measurable if

there is a sequence 4, of quasi-simple functions on A to X such that

(5.2) }'iLI}IIF()\) —JVE )L =0 for aenesA.

Here we mean by a quasi-simple function % a function of the form (finite sum)
(5.3) h(n) = ZaNfe

where f,e X and a,()\) is a measurable, bounded scalar function on A.  H(A)

10) See, for example, Titchmarsh [8], p. 31.
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is the set of all e-measurable elements Fe X(A) such that ||F|[>Sy, =
) S [IFO\)]RdN < oo. M(A) is known to be a Hilbert space with the inner product
A

(5:4) (Fy F)ess = | (L), FQOhdr

(Proposition 1.9 in Kato and Kuroda [6]). Then we see that there is a unitary
map II(A) from E(A)H*(I, X) onto H(A) which satisfies the following (a) and
(b) (Theorem 1.11 in Kato and Kuroda [6]):

(a) We have

(5.5) N(A)a(E)yu = all(A)u,

for ue E(A)H°(I, X) and a measurable, bounded scalar function a( )on A,
where

(5.6) «(E) = SAa(x)dE(x).
(b) For each feX = H'**(I, X) we have
(5.7) H(A)EA)f = {J(Mf}-

Let ey(n; «, +) be the spectral form for E, as in §4. In a similar way,
starting with e\, -, +) and X, =H"**(I, X), we define the null set JI(A\), the
quotient space X,/ (\), the Hilbert space () with the inner product (), o,
the canonical map J (), the e,-measurability, the Hilbert space <My (A) with the
inner product (, )oy a) and the unitary map II,(A). Thus we have obtained
spectral representations for E(\) and E(A). We denote by H'(A) (or SM(A))
the set of all F(\)& JH(A) (or M,(A)) of the form F(\)= {J(A\)h}rea(or F(N)=
{Js(XM)h}rea), where £ is a quasi-simple function. H/(A) and H¢(A) are dense
in M(A) and H(A), respectively (Proposition 1.10 in Kato and Kuroda [6]).
We put G*(A)=G=(\) and H*(\)=HZ()\), where GZ(\) and HZ(\) are as in
§4. Define the operator G*(A) on H§(A) into H(A) and the operator H*(A)
on JM'(A) into M,(A) as follows:

{ Gi(A): {Jo(x)h}AEA g {](X)Gi'(),)h},\EA
H=(A): {J(MBhea = {JNH=(N)} rea-

From (i1) of Lemma 4.4 we obtain

(5.9) { IJG=MEIR = e(n; GE(MR) = ef(Ns ) = (| J(AAIR o
' T VH=MAIR o = e(n; HE(MR) = e(N; B) = [|J(A)AIR,

(5.8)

and hence we have
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NGH(A) Jo( Al Heas = 11T o+ Yol SHocars
H=(A) J(- Al Hoca> = 1| J( )Pl Hcas-
DErINITION 5.1.  We define the operators G*(A) and H*(A) as unique

extensions G*(A) and H*(A), respectively. G*(A) is an isometric operator on
M(A) into H(A). H=(A) is an isometric operator on H(A) into Hy(A).

(5.10) {

We shall show that G=(A) and H*(A) are really unitary operators.

Lemma 5.2. Let A be a Borel set in (0, ). Then G*(A) is a unitary
operator from M,(A) onto M(A) and H*(A) is a unitary operator from M(A)
onto M(A). Further, we have
(5.11) Gx(A)H=(A) =1  on H(D),

) H=(A)GH(A) =1 on JH(A).

Proof. It follows from (iii) of Lemma 4.3 that

(5.12) GHAH(A){J(Mhhes = GHA){T(MH*(Nh}rea
= {JMG=MH*(Mhhes = {J(M)hes

holds for any quasi-simple function % and for any A >0. Similarly we have

(5.13) H*(A)G*(ANJ(Mhhes = (TN
(5.11) is obtained from (5.12) and (5.13). Hence G*(A) and H*(A) are unitary
operators. Q.E.D.

Lemma 5.3. Let A be a Borel set in (0, o) and let M(A), HM(A), [1(A),
TI(A) be as above. Then for f, g H(I, X) we have

(5.14)  ((F*X 5 F51, &) = (GHAI(A)E(A)S, TI(A)E(A)g)Hca>
= (TL(A)E(A)f, H(A)I(A)E(A)g) Hoca>-
where X /- is the characteristic function of \/'A = {k>0[F' & A}, and F* and F%

are as above.

Proof. Let f,, and g,, be sequences such that f,, g,=H'*(I, X) and,
fuw—fs €n—g in H(I, X). Then it follows from Lemma 4.5 that

(515) (T3 Fi for 8o = | 603 GE N g)N

— | (JOIG=0) o TN

= (Gi(A){]o()")fm}AeA) {](x)gm})\EA)e%(A)
= (Gi(A)Ho(A)Eo(A)fm’ TI(A)E(A)g ) HMcass
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where we have made use of (5.7). Let m—oc in (5.15). Then the left-hand side
of (5.15) tends to (((F*)*X va Z5/, £)), and the right-hand side tends to (G=(A)
II,(A)E,(A)f, TI(A)E(A)g)Heay. From the unitarity of the mappings G=(A) and
H¥(A) we obtain (GXA)IL(A)E(A)f, THA)EQA))ues =((AE(A)f, H(A)
II(A)E(A)g) HMoca>- Q.E.D.

Now we can show the orthogonality of &* assuming the orthogonality
of 5.

Theorem 5.4. Let us assume Assumption 1.1. Let F* and S be as above.
Suppose that F§ is orthogonal. Then G is also orthogonal. Similar results hold
for F~.

Proof. Let A=(0, ) in Lemma 5.4. We put G*((0, =))=G*, H=((0,
o)) =H*, H((0, ))=H, H((0, )=y, TI((O, o))=I1, T((0, e))=TI,
etc. It suffices to show that (F)*F* f,=0 and f,& E (0, co)H°(I, X) imply f,=0
in H°(I, X), because 7§ transforms H°(I, X) onto L,((0, o); X, dk) and S3E,
(0, o) f=S5f. It follows from Lemma 5.4 that

(5.16) (G*ILf,, Tig)su = 0

for any g€ E((0, «))H(I, X). Since II(E((0, ))H(I, X))= M we have
G*II,f,=0. Hence we obtain from the unitarity of G* II,f,=0 in .%,, which
implies f,=0 in H°(I, X) by the unitarity of II,. Q.E.D.

6. The wave operators IW*(A)

In this section we shall investigate the wave operators W=*(A) for 4 which
will be defined according to Kato and Kuroda [6]'°. We shall see the ranges
of W*(A) to be equal to E(A)H°(I, X). We also discuss the invariance of the
wave operators W=(A).

To make use of the results of Kato and Kuroda [6], §5 and §7, we consider
the Cayley transforms U and U, of 4 and A4,, respectively. Set

U=(A—iA+i)" = S“ewF(de),
(6.1) o
Uy=(Ao—i)(Ao+i)™ = S ¢ (df),

where F(6) and F,(0) are the resolutions of the identity on (0, 2z) associated
with U and U,, and we have

11) In this section we assume Assumption 1.1 only. We do not assume the orthogonality

of Fi.
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—sin 6
1—cos 6’

(6.2) {F(") = E(\M9)), (6) =

F0) = E(M0)),

E(\) and Ey()\) being the resolutions of the identity on (—oo, o) associated
with A and 4,. Let us define Ry({) and Ry (8), €C, [¢|+1 Dby

63) i Ry() = (1=¢U¥™ = UU-§)7,
. Ryo(§) =(1-8U8)™" = U(U,— &)™
Then we have by simple calculations

_ 1 2 p(1+¢;
o {R@ e R

Ry (£) = 1i§ {1428 L5,

1-¢ U—-¢
and hence if we write { =re*, {’=r""¢*®, we obtain for f& H'**(I, X)
lim Ry(®)f = . f +-—— R(M(6) +i0, )
6.5) 741 1—¢€®"  i(1—cos )
) . 1 1 .
lim Ry (&) f = R(\(6)—10,
im Ry(¢')f 1—e""f+i(l—cos 5 (M6)—10, f)

in H'7%(1, X). We obtain quite similar relations for Ry () and Ry (£’). Since
we have

1 , _d
{ lim - ([Ro(6)~ Ro(t' ), ), = 55 (F(O), ©)
(6.6)

im ’ _4 U, v
13{?2_7;(([RU0(§)—RU0(§ )u, v)), = (Te((Fo(G) » 0))o

for u, ve H'(I, X) and a.e. 0 (n, 27)'” ((5.4) in Kato and Kuroda [6]), the
bilinear forms e and ey, on H***(I, X)x H'**(I, X) defined by

evlt; £, 8) = 5 lim (Ru(©) ~ Ru(t)1f: )

_ 1 .
(6.7) = 1 eosg ‘MO 1 8)

eal03 £, 8) = 5 lim ((Ru&) —RuE)]f: O

_ .
= (MO f,8)

12) Note that A(6) maps (z, 27) onto (0, ).
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are the spectral forms for F() and F (0) for each 0 (=, 2x), respectively. Put
Xy=Xy,=H"*(I, X). Then we construct, starting with e;(or ey, ), the Hilbert
space Xy(0) (or Xy (0)) with the inner product ( , )o,u (or ( , )o.,), the Hilbert
space My(T") (or My, (T")) for a Borel set T in (=, 27) with the inner product

(, )ﬂu(l‘) (or (, )j}tvo(l‘)) and the unitary map II;(T) (or I1y(T)) as in §5.
For each {=C, |{|=+1, we put

{ Gu(€) = Ru(£) "Ry, ()
Hy(£) = Ry,(£)" Ru(f)-
Then by the definition of Ry(¢) and Ry (¢) we have
Gult) = (1—EU(1—LUR)™ = 1—5(U*— UHRy, (&)

L2 oo (14E
=1+ R(z)CR0<1_Cz>
) = 1~ 2 RaCR(1 ),

where R(2)=(4—2)7", R(2)=(4,—2)"'. We define the operators G#(d) and
H%(0), 0 (n, 27) by

(6.8)

(6.9)

2ie’®

GoO)f = f+1_ % ROCRMO) =0, f)

6.10
( ) Zze

Hy0)f=f— R(HCR(M0) £10, ),

which transform H'**(I, X) onto itself. In fact we can see from (6.8) that the
relations

(6.11) SOHH6) = H50)G3H(0) = 1
hold on H'*® (I, X). We can also see from (6.8) that we have the relations
{ eu(0; G5(0)f, Gi(0)g) = ev (0 f, &)

ev)(0; Hy(0)f, Hy(0)g) = eu(0; 1, 8)

for 0= (n, 27) and f, ge H'**(I, X). Thus, as in Definition 5.1, the unitary
operators G#(T") and H¥(T') are induced by G#(0) and H#(6), respectively, i.e.,
#(T) (or H#(TY)) are defined by unique extensions of the operators

{ GH(T): {Juy(0)f}eer = {Ju(0)G5(6)f}oer
(or HH(T): {Ju(0)f}oer = {Ju,(0)H5(6)f}oer),

Ju(0) (or Jy,(0)) being the canonical map on Xy (or Xy,) into Xy(f) (or
Xy (). G3(T) transform Hy (T') onto HMy(T") and HEH(T') transform Hy(T)

(6.12)

(6.13)
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onto My (T).

DerINITION 6.1 Let A be a Borel set in (0, o). Put I'(A)={0& (=, 27)/
AMO)eA}. Then the wave operators W*(A) on H(I, X) are defined by

(6.14) W(A)u = I (T(A))GH(T(A)u(T(A)F(T(A))u,
where G#(T") are defined as above.
Using the unitarity of G*(T") and H*(T") we can show

Theorem 6.2. Let us assume Assumption 1.1. Let W*(A) be as above.
Then W*(A) are partial isometries with initial set E(A)YH(I, X) and final set
E(A)H(I, X). In particular W*(I) are complete. W=*(A) have the intertwining
property a(EYW*(A)=W*(A)a(E,) for any bounded measurable function o on A.

The proof is almost the same as the proofs of Theorems 2.3 and 2.4 in
Kato and Kuroda [6], and hence we omit it.

Now we turn to the problem of the invariance of W*(A). Since X=2X,=
H'**(I, X) is a Hilbert space, we can apply Theorem 7.1 in Kato and Kuroda
[6] to our case.

Theorem 6.3. Let us assume Assumption 1.1. Let o be a real-valued
function on (0, o) such that

(6.15) limé |Szne—iko—itm(xm)),}(@)de|z -0
0

t>® p=0
for every ne LX(0, 2z). Then we have
(6.16) s-lim e** B #EOE (Ayu = W(A)u

tyto

for all ue H(I, X), where (@)= —sin6/(1—cos ) as given in (6.2). In
particular, we have

(6.17) W(A) = s-lim e 4e#*4E(A)

on H(I, X).
Finally we represent W*(A) using ¥* and 5

Theorem 6.4. Let us assume Assumption 1.1. Let A be a Borel set in
(0, o). Then we have on H°(I, X)

(6.18) (=X, TFs = WHA).

For the proof we need
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Lemma 6.5. Let G#(0), 0= (r, 2x) be as in (6.10) and let G=(\), x>0
be as in Definition 4.2. Then we have for f = C§ 5(I, X)

(6.19) Go(O)f = (A—)7G=(MO(A.—1)f.
Proof. We have by an easy computation
(6.20) Gu(O)f = U (U—=E)U,—8)"'U,f
g _n1af1+E. s
— (A—i) G(1_§z>(Ao i,

where { =re®, r+1. Since (4,—%)f e H"**(I, X), we obtain (6.19) from (6.20),
letting 7t 1 and 7 | 1. Q.E.D.

Proof of Theorem 6.4. Letf, g C§5(I, X). Then it follows from Lemma
5.3 that

621)  (F*%y 5%, O
= (T s3T5 A=), (A+)7),
= (CH(A)(A)E(AN A, —1)f; THAVE(A)A-+1)g) o
= | etvs GO0, —f, (4+i)g)an
= { O GOV A—f, (A+D) D)
T -COSs

= Speu(t‘) » GEMO)(Ao—9)f, (A+1)7g)do,

dd  (T=T(A))

where we have made use of a__ 1 .nd (6.7). On the other hand we see
df 1l-cos @

from (6.7) and Lemma 6.5

(6.22)  eu(0; G=(MONA—1)f, (A+1)78)
= _lim ([Ru(€) = RoE NG*(O) A=, (A+D"'8),
= oL lim ([Ro() — Ru(€))(A =) G*(MON A= £)

= L tim ((Ru(©)~ R NGEO)f, 8)e
= eol0; G5O, )
(6.21) and (6.22) are cooperated to give
(©2) (FX 5Fe, )
= | eot6; G301, 0120
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I
ey

{(GHD) o0}, Ju(O)h.0d0
= (Go(T)y(T)F(T)f, Mu(T)F(T)g)Ho(T)
= (FOIZT)CHTyy(T)F (T, £))o
= (W=(A)f, &)
Here we used (6.13) and (6.14). Thus we have proved (6.23) on C§%(1, X).

Since both (F*)*X, , 1 F5 and W*(A) are bounded operators, (6.23) holds on
the whole H°(Z, X). Q.E.D.

7. The Schrédinger operator in R” (n=3)

The results obtained in the preceding sections can be applied to the
Schrodinger operator in the whole space R”, n>3.
We set in this section

(7.1) X = L¥S"Y),

where S”7' is the (n—1)-sphere. Then there is a unitary operator V from
L*(R”) onto H(I, X) defined by

(7.2) V : L(R™SF(y) — r" V2 Fro)e H'(I, X),
where ye R”, r=|y| and o=2- 8",
r

Let us consider the Laplace operator in R”

(7.3) SN
=1 0x5
We obtain
. d 1 —1D(n-3
(7.4) -8y~ = =L L, (= D=d),

where A, is the Laplace-Beltrami operator on S”'. We put

{B(r) ( A (2= 12 =3) 1)(”“3)>,

(7.5) 4

D(B(r) = D(A,) = D
Then it follows from (7.4) that we have for o= C§5(1, X)

(7.6) llelle = IV ol
[l |l, being the norm of Pi(R"), i.e.,
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(2.7) 191 = § {33 o [ 1 e

Hence (7.6) holds on Hy'5(I, X). Itis easy to see that B(r) satisfies (B.1)~
(B.4) of Assumption 1.1. (B.4) is implied by the compactness of the imbedding
D;2(Q)—L*Q) for any bounded domain Q in R*. As is well known, the
spectrum of the non-negative self-adjoint operator —A,, is discrete. Let A, be
an eigenvalue of — A, and let x,=x,(®) be a normalized eigenfunction associated
with A,, Then we have

(7.8) B(r)x, = l{x +(-”:—1)£—”;3Q} %0  (r—>c0)

in L¥(S*7"). Thus we have seen that the condition (3.1) is satisfied.

Define a symmetric operator T, by

{ DT,) = C5(R"),

7.9
(7.9) T,F = —AF.

It is well-known'® that T, is essentially self-adjoint with a unique extension H,.

Lemma 7.1. Let H, be as above and let A, be as in Definition 1.1. Then
we have VH )V '=

Proof. Noting that Y(VT V) =VC7(R")c U, we can easily see that
M,DVTV™, where M, is as given in (1.9). Since T,=H/®, VT V™!
essentially self-adjoint in H°(Z, X). Therefore M, is essentially self-adjoint in
H(I, X). Thus we obtain

(7.10) VHV?=VIT,V*=VTJV* =M, = A,
which completes the proof. Q.E.D.

Denote by ¢(y) a real-valued function on R". ¢(y) is assumed to satisfy the
following conditions:

(Q) q(v) is a real-valued function which is continuously differentiable. Further,
q(y) behaves like O(|y| ' *)(0<EL1) at infinity, i.e., there exist p>0, C>0 and
0<&<1 such that
(7.11) lgy) I =clyl™*  (Iyl=p)

We define a symmetric operator T by

13) As usual 9}z(R") denotes the Hilbert space obtained by the completion of C3(R") in

the norm || ]1.
14) See Kato [4].
15) T means the closure of T.
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(7.12) {Q(T) = C5(R)

TF = —AF+q(y)F = T ,F+q(y)F
Since g(y) X is a bounded, linear operator and T, is essentially self-adjoint, T

is also essentially self-adjoint™®. We put T=H. On the other hand we define
an operatorvalued function C(r) on I by

{ D(C(r) = C,
Cf = q(ro)f(r).
We can easily see from (Q) that C(r) satisfies (C-1)~(C-3) in Assumption 1.1.

Let M be as in (1.10). Then, proceeding as in the proof of Lemma 7.1, we
have the following

(7.13)

Lemma 7.2. Let A be as in Definition 1.2. Then we have VHV ' = A.

Let G(r, s, k), T'5(r, k) and &3 be as in §4. In order to show the orthog-
onality of ¥, we have to calculate T'(r, k). Denote by gy, ¥/, 2)(¥, ¥y’ € R",
& C — R) the Green kernel for H,, Then we have
iz(”ﬂ)‘(l/z)

7.14 Y, 8= T
( ) g (y y 2’) 4(2”{y_y/|)(n/2)—1

HG (V2 1y-y' 1),

where H{V(t) is the Hankel function of the first kind. G(z, 7, k) is represented
by g«(v, ', 2) as follows:

(7.15)  Gys, r, B)x(w) = s<"-'>/2r<"-l>/2§ vor8o(50, 7o', K+ i0)x(e’)des’
S

SOy =DRpMR-1 S _IH((;/)z)_l(k I So—rw’ l )x(w,)dw/1
s" (2n | so—rew’ | )P

Z
4
where k>0 and x(w)eL’(S™"). Thus by an easy computation we obtain
from (3.3)

(7.16)  T'|(r, B)x(w) = lim e **°*G (s, r, k)

1 kDR

2k (2o

= —e MWHR- S le_ik'(‘"“”’)x(w')dw',
s"”
where £>0 and we used the asymptotic formula

(7.17) H;l)(t)~vztei<t(-ﬂ/4>(ZV+1)> (t — Oo)w)'
4

16) See Kato [5], p. 287 — p. 293.
17) See Titchmarsh [9], p. 79.
18) See, for example, Watson [10], p. 197.
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Hence we have

R D212

(7.18)  T(r, k)w(w) = —e Cx/on=ni e g,_le"k"”’""x(w’)dw'.
T S

On the other hand we have

(To(r, —R)xy(+), %)) = El_g} (G (s, 1, —R)xy(+), x(+))
= lim (3,(), € *4Gy(r, 5, R)(-)).

As in (7.16) we have
(7.19)  lim e 4G (r, s, k)x,(w)

; 1y~ 1)/2k(n— 1/2

Ty e

= — e (WHB-DI
whence follows for £>0

(7.20)  To(r, k)x(w) = —x/ gikl‘o(r, —k)x(o)

n—1)/2 ,(n—1)/2
We see from (7.16) and (7.20) that &7 are essentially Fourier transforms, and
hence we have

Lemma 7.3. <7 are orthogonal transforms.

By Lemmas 7.1~7.3 we can apply to H the results obtained in the
preceding sections.

Theorem 7.4. Let q(x) be a real-valued function on R", n =3, satisfying
the conditions (Q). Let H be as above.

(1) Then H is bounded below. We have o (H)=(0, o) and the negative
eigenvalues, if they exsit, are of finite multiplicity. The spectrum of H on (0, o)
is absolutely continuous.

(i1) Denote by E g(\) the resolution of the identity associated with H. Then
there exist unitary operators Fi{(=F*V) from E 4((0, o))L*(R") onto L*((0, o°),

L*(S™™"), dk) such that we have for a Borel set A in (0, o)
21 {EH(A) — (T T
Fa(Fa)* = 1.

(iii) Let A be as above. Then there exist the wave operators Wi{A) which
are partial isometries with initial set Ey(A)L*(R") and finial set E (A)L(R"),
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where E g (A) denotes the resolution of the identity associated with H, WiH(A)
have the intertwining property. We have

(7.22) WKL) = (Ta)*X, ) 3 F x5,

where 3, =F5V which are unitary operators from Ey((0, «))L(R") onto
L¥((0, o), L¥S*™*), dk). For a real valued function a on (0, o) which satisfies
(6.15) for every ne L¥0, 27) we have

. T o
(7.23) WiHAF = s-lim #*Eme **ExE , (A)F

t-yptoo
for every F L (R™). In particular we have
(7.24) WHA) = s-liin etHe it (A).
tptoo
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