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The present paper is concerned with abstract differential equations
in a Panach space containing a small parameter in its coefficient

du(t)/dt + A(Dult) = f2). (0.1)
As €0 (0.1) degenerates to
duo(t)/dt +Ao(t)u0(t) = fo(t) ’ (0 2)

where A(#) is weaker than A.(¢), § >0, in the sense usually employed.
We shall be interested in the behaviour of the solution () of (0.1) as
€] 0, chiefly in the pointwise convergence of u.(f) to the solution u(?)
of (0.2). The main theorem of section 2 is concerned with a sufficient
condition in order that not only u.(¢) but also A.(#)u.(¢t) and du.(t)/dt
converge to their corresponding limits in the weak topology for each
fixed £. It is almost essential that the limit equation (0. 2) is well posed,
which should be admitted to be a restrictive assumption.

In section 3 an example to which the above theorem can be applied
is considered making frequent use of T. Kato’s results on maximal
accretive operators ([17], [2], [3]). This example is the initial-boundary
value problem for the equation with coefficients having a singularity
along x=¢

u %u u
T EZ T T = , b
ot o a—r el
or
ou_gou, & ou, u __ ¢ a<x<b

of ox x—tox (x—ty

with the boundary condition u(f, @)=u(¢, b))=0, and was first motivated
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240 H. TANABE

by the construction of an example to which the main result of [4] on
the initial value problem for the evolution equation

du(t)|dt + Au(t) = £(t) 0.3)

can be applied although A(#)* has a variable domain whenever a 0.
As a preparation a theorem on the unique solvability of the initial

value problem for (0. 3) is given in section 1 assuming among other things
that

A@Y-dA()/dt is bounded and continuous in £ (0. 4)
for some p~>0. This hypothesis which implies

-~ C

|2 0—a0r|= 5

makes it possible to weaken the smoothness assumption of A(f) as was
made in [4], namely it enables us to remove the Hoelder continuity of
dA(t)7'/dt. It is a little interesting to note that (0.4) with p=1 implies
the independence of the domain of A(¢) while if p<1 there exists a simple
example for which D(A(#)*) is not independent of ¢ whenever a >0
although (0.4) is true.

1. We begin with a variant of the main theorem of [4]. By D(A)
and R(A) we denote the domain and the range of an operator A.

Theorem 1.1. For each t€[0, T A(t) is a densely defined, closed

linear operator in a Banach space X. Let A(t) satisfy the following
assumptions :

(I) For each t€[0, T the resolvent set of A(t) contains a fixed closed
angulay domain
Z = {)': arghg (_00’ 00)}

where 0, is a positive number satisfying 0< 0,< =/2. The resolvent of
A(t) satisfies

A—A@) 7 = M/ |\ (1.1)
Sfor any t€[0, T] and M€, where M is a constant which is independent
of N and t;

(II) A(t)*, which is bounded by (1), is continuously differentiable in
t in the uniform operator topology;

(III)  There exists a positive number p<1 such that R(dA(t)™/dt)—
D(A(2)) and A(t)-dA(t)/dt is strongly continuous in t €[0, T]. Hence
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with some positive constant N independent of t we have

“ ey aw

<N. 1.2)

Then there exists a fundamental solution U(t, s), 0<s<t< T, tothe
equation

du(t)/dt + A(t)u(t) = f(t); (1.3)

if s<t, R(U{, s))=D(A(t)) and U(t, s) satisfies
(@/at)Utt, s)+ A@)U(t, s) = 0, 0<s<t< T, 1.4)
Us,s)=1. (1.5)

There exists a positive constant C, such that

C

P (1.6)

|8 v 9| = nawue, 911 =

I f(t) is strongly Hoelder continuous, then the unique solution of (1.3)
in s<t< T satisfying the initial condition u(s)=u is given by

ut) = UG, s)u+g: Ut, o) f(o)do . (1.7)

Proof. In what follows C,, C,, ---, C, denote constants which depend
only on 6,, M, p, N and 7. First we note that (III) implies

< C

ETSVON ESH

(1.8)

which is a consequence of the formula

@/t (A —At))™
= —AQ)—AQ@)) - dA()7 dt- AQ) (A — A(E) ™! (1.9)
= —A(t) P — A@®) - AW@PdAE) ™ dE- A() (v — A(E))

and the inequality
LA@) P (=A@ I = G/ N (1. 10)

Hence just as in [4], it is possible to construct the fundamental solution
by means of E. E. Levi’s method :

Ut s) = exp(—(F—s)AE)+ S' exp (—(t — ) AE)R(r, s)dr,  (L.11)
R(t, s)= —(0/ot+2/0s) exp (—(t—s)A(?));
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R, s) = zR ¢, s);
Rt )= | R(t Ry ¥, m =23, -

R(t, s) may also be expressed as

— — 1 —A(t—s)?__ _ -1
R s) = %Sre 2 - Aw)an,

where I' is a smooth path running in 3} from coe~* to coe’’. We have

C,

RGN = s IR = s (1.12)
Lemma 1.1. If s<t, we have
1 A(E) exp (—(t —)AW)— A(s) exp (~(t =AW = =55 (L13)

Proof. By (1.8)

IOv— @)~ (= A =S4,

hence the right member of (1.13) which is equal to

” o | A AW = (= A(s) “

is dominated by

G

C.(t— S)S 1-P,—(£-$)ReA s
I

Lemma 1.2. If 0<B<p and s<t, then A()PR(t, s) is bounded and

LAGPR(, $)| < = v (1.14)
Proof. First we show that
AP R N < = s » (1.15)

(1.15) is a consequence of

AWPR(, 9) = 51 SP R AP 2 (v A@)
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LA@)P@/at) M — AE) I
= [[A@)" PP (v — A[E) 7'+ AV dA®) T dE- AG) (N — A I < G/ IM|°F.

(1. 14) follows from (1.15), (1.12) and
APR(, 5) = AP Rt 5)+ || APR(E, DR, s)dr
According to the above two lemmas we may write

ADOUL, 5) = A(t) exp (—(t = 5)A()
+ [ {4 exp (—(t=na®) — A exp (—(t - DA Rz, S)dr

+ S‘ AP exp (—(f—)A(m)A()PR(r, s)d .

The inequality (1.6) is a simple consequence of (1.13), (1.14) as well as
the above formula. The remaining part of the proof is the same as the
argument of [4].

REMARK. The assumption (III) enables us to remove the Hoelder
continuity of dA(¢)~'/dt in ¢ which was used in [4] when we proved that
U(t, s) satisfies (1.4) in the strict sense.

2. Singular perturbation. Letting A(¢), 0<<¢<_7, be a family of
linear closed operators in X,

DEFINITION 1. #(#) is called a strict solution of

du(t)/dt + A{t)u(t) = f(t), s<t< T, 2.1)
u(s) = u (2.2)
in (s, T] if
(1) u(t) is strongly continuous in the closed interval [s, 7] and
strongly continuously differentiable in the left open interval (s, 7],

(2) for each t€(s, T, u(t) € D(A®)),
(3) u(t) satisfies (2.1)-(2.2);

DEeFINITION 2. u(t) is called a weak solution of (2.1)~(2.2) in (s, T]
if

(1) u(t) is weakly continuous in [s, T,

(2) wu(t) satisfies

[T, - arepnar+ (" (£, pendt+ p) =0
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for any function @(#) with values in X* satisfying

(i) for each t, o(t) € D(A*(%)),

(i) @), ¢(t)=dp(t)/dt and A*(#)p(t) are strongly continuous in
[s, T1

(ili) o(T)=0.
The above definition of weak solution is slightly different from the one

given in [4] where a weak solution was assumed to be strongly con-
tinuous.

Theorem 2.1. Suppose that X be reflexive. Let A,(t), 0=t<T,
0<EL6,, be a family of closed linear operators in X. Suppose that the
assumptions of Theorem 1.1 are satisfied by A(t), 0<t<7T, 0< <6,
with constants 0,, M, p and N which are independent of t and & We
assume also that letting A(t) stand for A,(t)

(@) D(A.t)=D(A(t)) and D(A¥(t))=D(A*{t)) do not depend on & if
0<e<é;;

(b) D(A(#)DD(A(t)) and D(AF(£)> D(A*(?));

(¢) for each @€ D(A*()) A¥{t)p— Af{t)p strongly in X* as €|0;

@) ABA@R), ABAR)?, AX@)A*@R) ™ and AF@)A¥(E)™ are all uni-
Jormly bounded with respect to & and t and are continuous in t for each
fixed € in the strong operator topology in X or X*.

If the initial value problem
du(t)/dt + At)u(t) = f(t), 2.4)
u(t) = u, (2.5)

has only one weak solution which is also a strict solution when f(t) is
strongly Hoelder continuous in t, then the solution ut) of the equation

duz(t)/dt + Aa(t)ue(t) = fe(t) (2- 6)
converges to the solution of (2.4)-(2.5) in the following sense :

Sfor each t€(0, T u,t) - ut), AB)ut) — Au(?),
du(t)/dt — du(t)/dt all in the weak topology,
provided that

(1) #.(0)—>u, weakly,
(i1) f(t) is uniformly Hoelder continuous :

er(t)—-fe(S)HgFIf—Slm, F>Os a>0» (27)
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where F and a are independent of &,

(iii) fo(t) comverges to a strongly Hoelder continuous function f(t)
uniformly in the weak topology.

In this section we denote by C,, C,,, -~ constants which are dependent
only on 6,, M, p, N, T, F, a, sup |[#,(0)I| and sup || £(?)Il.
Proof. If
Udt, 5) = exp (—(t—)ALE) + Wilt, 5) 2.8)

is the fundamental solution of (2.6), then by Theorem 1.1 there exists
a constant C which is independent to ¢, s and & such that

2 U 9| = 140 US NI = 555, 2.9)

(g, 2) exp (——940) | < =5 (2.10)

§t exp (—(t—9AM)| < 5, 2.11)

Wit )| < g IADOW.G 9= =gy S @12)

1A«(8)" exp (—( —5)A))]] S(t ik 0=v=1. (2.13)

By the formula
u(t) = Uft, 0u 0+ | Ut, o)fioddo, (2.14)
2 wlt) = 2 Ult, 0u0) + || 2 exp (—(t—) AN (filo)—f£)do

+S (2+2) exp (—(t—o) Ao £(1) (2.15)

+ exp (—(t—)ADVSD+ | I Wt, f(o)ds

as well as (2.7)~(2.13) we immediately see that
|
@l =C, | S| =G IAOuOI=S. @16

If o(s) is an arbitrary function with values in X™ such that ¢(s) € D(A*(s))
for each s (recall that A(s)=A.(s)) and @(s), dp(s)/ds=q'(s), A*(s)p(s)
are all strongly continuous in 0<s<<7, then AX(s)p(s)=A¥(s)A*(s)*
X A¥(s)@(s) is also strongly continuous and for each ¢
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(), P) —(0), PO~ (o), #/(sNds o

+ S (u,(s), AX(S)P(s))ds = S’ (fis), P(s))ds .

For 1< p< co let L#(0, T; X) be the space of all measurable functions
with values in X in 0<¢<(T for which ||«(¢)||€ L?(0, T). By Theorem
5.7 of [6], (L?(0, T; X))*=L*(0, T; X*) where p—*+p' =1, hence
L?(0, T; X) is reflexive. Since {«.} is a bounded sequence in L?*(0, T'; X)
by (2.16), it contains a subsequence {.;} which converges weakly to
some function #€ L?0, T; X). Replacing & by & in (2.17) and then
letting i — o0, we get

lim (), PO~ 1y PO~ || @(s), 2/(5))ds
, ’ (2.18)
+So (u(s), A¥(s)p(s))ds = S (F(s), P(s))ds .

Choosing A*(s)'@ as @(s) in (2.18) with an arbitrary @€ X*, which is
possible by the assumptions, we conclude that lim,,. (#.(f), A*(#)" ')
exists. Since A*(#)'® is an arbitrary element of D(A*(¢)) which is dense
in X* and w.(f) is bounded by (2.16), it follows that u,(f) converges
weakly to some element v(¢) satisfying

I = €,
(O PO)— (o PO~ (s), /(5))ds (2.19)

+ [ @) aspsnas = [ (#s) pds
Clearly
(@), p(t))— (=), (7)) >0 as t—7—0, (2.20)
Choosing again @(s)=A*(s) ‘¢ and using (2. 20)
(@) —o(r), AX(7)'P) = (v(), A*(#)"'p)
—(@W(r), A¥")'P)—((@), A*E)'p—AN(r)'p) >0 as t—-r.

Using (2.19) and (2.21) and noting that D(A*(+)) is dense we conclude
that o(¢) is weakly continuous in 0=<<¢ < 7. If @ is an arbitrary element
of L?(0, T; X*), then

(2.21)

S:(ugi(t)—v(t), pA)dt -0 as i— oo,

because of the measurability of the integrand and of the well known
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theorem on dominated convergence sequences. Thus # and » are both
a weak limit of {w,}, which implies that w(f)=uv(¢) is weakly continuous
in 0<s<7T and #(0)=wu,. When s >0, As)u.(s) is bounded by (2.16),
and so is Ay(s)u.(s) due to the assumed uniform boundedness of A (s)A«(s) .
It follows consequently that u(s)e€ D(Ays)) and

A (S)te(s) = AfS)u(s) » (2.22)
A (Yo (s) — Af(S)u(s) (2.23)
both in the weak topology. Next if @(s) is an arbitrary function with

values in X* such that o(s)€ D(A¥(s)) and @(s), @'(s), A¥(s)p(s) are all
strongly continuous in 0=<s< 7, then for any 6 >0, we have

(et PN~ (@e(3), PO)— || (wes), #/()ds
+ [ A ek, ps)ds = | (fuls), pls)ds.
Letting i— oo and then 8| 0, we get noting (2. 23)
((E), 1)~ (o, PO~ (W), /(s
+ [ @) arsptsnas = [ (£, pods,

which shows that u(¢) is a weak solution of (2.4)—(2.5), hence by the
assumption it is the unique strict solution of the same problem. There-
fore it follows that the original sequence {w,} itself converges to
weakly in L?(0, T'; X). We furthermore conclude that for each £ € (0, 7]
A(B)u(t)— Aft)u(t) in the weak topology of X, and hence also that
dug(t)/dt —du(t)/dt in the same sense.

3. Example. As an application of Theorem 2.1 we consider the
following example. Let — co<a<0< T<b< o and for each t€[0, T]

Vit) = {u € L¥a, b): %, 1 eL¥a, b), u(a) = u(d) = 0}

where the derivatives in the above as well as in what follows are in-
terpreted in the distribution sense. a.(¢; #, v) denotes a family of
sesquilinear forms on V(¢)x V(¢) defined by either of

e[l

. _ dudv  odu @ uv
@) a.(t; u, v)—g { dxdxJr dx x— Jr(x t)z} dx
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Ay(t) is an operator corresponding to a.(f; #, v) which is defined in the
following usual manner :

u€ V(t) belongs to D(A(t)) and A(t)u = f€L¥a, b)

if at;u v)=(f,v) for every wve V().

Thus A(t) is a differential operator

d*u 7
(A2)u)(x) = —Ew'k(x—_t)i or
d u & du u
(Ad)u)(x) = d v i—1 ﬂ+(x— 1)y

restricted to some class of functions satisfying #(a)=u(b)=0. In the first
case A(t) is positive definite while in the second case A((¢) is not self-
adjoint although it is regularly accretive in the terminology of Kato [1].
These two cases can be treated quite similarly and we shall confine
ourselves to the second case in what follows. The adjoint form a¥(; «, v)
of a(t;u,v) is

a(t;u o) = | (e D s D _1q1e

drdr Cdrz—1 }dx

(x t)z

which is also defined on V(¢)x V(£). As is easily seen we have
|Im a(t ; «, u)l.é_%Reae(t; u, u),

namely the index (Kato [1]) of a.(¢; u, v) does not exceed 4. Hence by
Theorem 2.2 of [1] any complex number A with |arg A|>>tan™'i be-
longs to the resolvent set of A.(#) and

(|Alsin (Jarg M| —tan™' §))7,
A=A = tan™' § <|arg M| < z/2+tan"' §,
N7,  larg M > w/24tan' .

Thus (I) of Theorem 1.1 is satisfied by {A#)} uniformly with respect
to £ and & The real part of a.t; u, v) is

et = (e 8e(118) 2o

its corresponding operator being denoted by H,(¢). It is also possible to
express the solutions of A (#)u.(t)=g, H(t)(t)=g and A¥{)w,(t)=g for
given g€ L*%a, b) explicitly all of which may be written below for the
sake of convenience :
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1
261+ 671

= =) gy —ay = T

vty ) = {jt (=) g(y)dy(t—x) =

+[ =y gyt —ar T i aa<y,
- Sb (=) g(9)dy(b—1) 2 (g — gy
t

+[ o=t T g (ana—tp )it <a=0;

1 ~/3+4s‘1+ I—Jm
Ve(t, x) = &/314c {S (t—=y) = g(ydyit—x)
t ? 1+~/3+4a'1
e R OV LR
‘JW ~/3+4e“‘+1
(e Teat-0" ) it aza<y,
1 ¥3 ‘““ E:/M
(¢, x) = &/3 146" {S (y—1) g(y)dy(x t)
? 1+ V3441
(o= ity -y

S(y t) 7 g(y)dy(x t) 1} if t<x<b;

1 g 1+e7141
sri . (=) T g ()

e

we(t’ x)=

—{" =gyt —ay T — )

L@yt -0 ") i aa<t,

1
261+ &7

e RO T 2 o Rl CR N
t

it 9= ([ =T g(pasa—ty

[ =TT e T it t<x=b.

249

3.1)

(3.2)

(3.3)
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Using (3.1), (3.2) and (3.3) as well as the following two inequalities in
p. 245 of [5]:

S: ybca=D (s: x® f(x)dx) dy < (_Tp—i> S: Frdx, (3.4)
S: x “””’(S: y""lg(y)dy) dx < (ﬁ%}p ' S: o¥dx | 3.5)

where a<1/p’ we can prove that if 0<(€<74/5
D(A(?)) = D(H{(#)) = D(A¥?))

- {ueLz(a, b): ‘;’ﬁ, xl tgz T t)zeLz(a, b), u(a) = u(db) = },

which shows that (a) and (b) of the assumptions of Theorem 2.1 are
satisfied where (A,(#)u)(x)=wu(x)/(x—t)* in the present case. Similarly we
can show that

du(t)
g eV,

'SW/S’; Zc%taa_x”'(t’ x)rdng\/?HgH, (3.6)
(% |uelts DI 7,

Vi alle 2) ' < Kilell, a7

|4 H ()"~ 1| < K\/'E, 3.8)

where K is a constant which does not depend on f and & By a general
result on sesquilinear forms ([1]) we get after an integration by part

‘ = Rea, (t ; % u(t), %uz(t))

dx +<1+§)Sb 1 oul® .

3 Buy" (3.9)

x—t ot

=<,

Differentiating both sides of

_ 8 u(t, x) _
a zu!(t x)+ t u!(t) x) ( t)z g(x)
in ¢ we obtain
g, & OOu, 1 Ou_ & Ou_ 2u,
ox* ot x—tox ot (x—t)y ot (x—tyox (x—1ty°

Multiplying both members of the above relation by 9w./of, and in-
tegrating the resulting equality by part over (@, b), and using the formula



SINGULAR PERTURBATION FOR ABSTRACT DIFFERENTIAL EQUATION 251
1 du 1
Re S adx = S

aX— t d 2

which holds for # € V(¢) and may be proved by integration by part, and
finally comparing the real parts of both sides of the relation thus derived,

2

“ | dx

x—1

we get
9 ou,l EN\ (%] 1 Ou,l?
& Oue SN(7|L 9%
S dx+(1+2)5 —tot| ¥ .10)
1  9u,ou. S u, Oou )
= —& _ e T
Re$ G177 ox ot Re) e -

It is not difficult to prove the above procedure rigourously noting for
example that if » € V(¢) we have

u(x)| = }gf%dy|gvm¢§f dul'gy,

Applying Schwarz inequality to the right of (3.10) and recalling (3.9)
we obtain
Sb

1 2u.|*
x—t ot

dx < HH (t)*/z e(t)l‘

b1 1 Ou,l? ue |* 1 Oou,l’
g(‘S\/Sa X—1fox dx+2W/Sa — iy dx) \/Sa x—10f
(3.6), (3.7) and (3.11) implies
51 1 Ou,l® —
A1 2 %) ar < K@+ vEgil. (3.12)

Combining (3.11), (3.12), (3.16) and (3.17) we get

b4

(3.13)

(3.7) implies [|A(8)H () "|<1+K\/ &, and hence by the generalization
of Heinz inequality by Kato [3] we conclude
|A8) P H ()| < e "1+ K\/ ).

It follows from (3.13) and (3.14) that (3.14)

which states that (III) of Theorem 1.1 holds for A.(t), 0< &<4/5, with
constants independent of & and £{. It is not difficult to prove that the

;.~(2«‘)"2 = " (1+KVEY'K2+VE),
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remaining part of the assumptions of Theorem 2.1 is satisfied by A(%),
0<&<4/5.

Remarkg. If B() is the multiplication operator

_u(x)
(B(#)u)(x) = G- £’

then we have D(A(#))—D(B(t)). Application of T. Kato’s generalization
of Heinz’s theorem ([3]) shows that D(A(t)’)=D(B(t)") for any p with
0<p<1, therefore any function belonging to D(A(#)°) must vanish at ¢
in some sense. Thus we conclude that D(A(¢)") is not independent of ¢
whenever p~>0. The same thing remains true in the first case as a
consequence of Heinz’s theorem itself.
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