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1. Introduction

In [6] and [4], the authors have studied a factorization of the double S1-
transfer map through the second stage of the chromatic filtration. In this
paper, I show that such a factorization exists for other double transfer maps.

Let a be an orientable vector bundle of fiber dimension a over a connected
finite complex X, and X* denote the Thorn space of a. Then we have a cofiber
sequence

(1.1) Sa^X*l* X*IS* ̂  5β+1,

where i is the inclusion to the bottom sphere. Then, by [7], the S^transfer map
is stably homotopic to τ when X=CP* and a=—ξ for the canonical C-line
bundle ξ over the complex projective space CP*. If X=ΣW a suspension of a
space W, then τ is stably homotopic to the stable /-map J(ά): X-*Sl. Thus,
generalizing the original meaning of transfer maps, we call τ in (1.1) a transfer
map. Then the following stable map τ2 is called to be a double transfer map.

(1.2) τ2 = rΛr: X*IS°/\ YηSb-»S'+M ,

where β is an orientable vector bundle of fiber dimension b over a connected
finite complex Y.

By Ravenel [11] a geometric realization of the chromatic filtration has
been given, and we shall denote the first two stages in it by

(1.3) - -̂  Σ-W2 i S-WZ i S°.

Here, the spectra are localized at a prime p, and there is some difference in our
treatment between the cases of an odd prime p and p=2. This difference is
caused by the use of j£-theory, and thus we treat the ^-spectrum K& which
denotes the complex ίΓ-spectrum K(P) localized at p in case of an odd prime p
and the real j£-sρectrum KO(2) localized at 2 in case of p=2. Then we shall
show the following:

Theorem 1.4. Let τ2 be the double transfer map of (1.2), and N2 the second



760 M. IMAOKA

stage of the chromatic filtration as in (1.3). If a and β are KA-orientable and

Q, then there is a factorization τ2— S1S2S2 by a map U2:

For the important case that p is an odd prime, X=Y—CPN and a=β=

—ξ, the theorem has been established in [6] and [4; Th. 5.2], and we show that

their method can be extended to obtain the theorem. Theorem 1.4 is a corol-

lary of Theorem 2.8 which makes a construction of H2 clear, and §2 is devoted

to demonstrate Theorem 2.8.

Such a factorization as in Theorem 1.4 draws a clear strategy to understand

the double transfer image, as seen in [6], and some detailed formuals for U2 are

required. In §3, we describe such formulas in the case of stunted projective

spaces. When X—Y=CPN, a=mξ and β=nξ for integers m and ny τ2 of

(1.2) is a double *Srl-transfer map for stunted complex projective spaces. By

Theorem 1.4, a factorization of such double Sx-transfer map exists if p is an odd

prime. On the other hand, the double ί^-transfer map has no such factoriza-

tion as in Theorem 1.4 if p=2 and both m and n are odd. In case of p=2, it

might be natural to consider the quaternionic projective space HPN instead of

CPN. Then τ2 is called a double *S3-transfer map, and it always has a factori-

zation by Theorem 1.4. For these S1 and 53-transfer maps, formulas concern-

ing U2 are given in Theorem 3.5 and 3.13, (3.7) and (3.15). The method to ob-

tain such formulas is attributed to Hilditch [6].

The author wishes ot express his heartfelt thanks to faculty members of

the University of Manchester for their kind hospitality during his recent visit

at the university, in particular, A. Baker, P. Eccles, N. Ray, G. Walker and

R. Wood.

2. Factotization

Let S(G) be the Moore spectrum for a group G, and put EkG=ΣkE/\S(G)

for a spectrum E. Then, Ek(~ G)— {— , EkG} is the G-coefficient £-cohomo-

logy group. We have a cofiber sequence EkZ-%>EkQ -4 EhQ\Z, where 1Q is in-

duced from the inclusion of the ring Z of integers into the field Q of rational

numbers and pz is induced from the mod Z reduction.

Now, let a be an orient able vector bundle over a connected finite complex

X. Since we work only in the stable category, it is convenient to assume that

a is a virtual vector bundle of dimension 0, and that cohomology groups are all

assumed to be reduced. Then we have a Thorn class U#^HQ(X*\Z) of a in

the integral cohomology group. Let τr*(— ) denote the stable cohomotopy group.

Then, the Hurewicz map hH: πl(X*\ Q)-*HQ(X*', Q) is an isomorphism, and we

can put u=(hHyl(UZ)<=π*(X«\Q\ u yields an element UζΞπQ

s(X*IS°;Q/Z)

which makes the following diagram stably homotopy commutative up to sign:
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X" -^ X«IS°

•I -ϊ(2.1)

This diagram generalizes the fundamental situation designed by Miller [8],
and T represents a transfer map as in §1. U is uniquely determined by the
equation j *(#) = ρz(u) .

We denote by KA the ^-spectrum K(p) for an odd prime p or KO(2) for />=
2, and we assume that a is ^-orientable. Then we have a ^-theory Thorn
class UZ^K°A(X*) of α. Let £/*Λ: K°A(-)-^H*(- Q) be the Chern character,
and hκ&: τrf(— )—>.£*(—) the j£A-Hurewicz homomorphism. Then the charac-
teristic class bhA(a)^l+Σi>oHdi(Xy Q) is defined by the equation chA(U%*)=
U#bhA(ά) (cf. [1]), where d= 2 or 4 according as KA=K(p > or KO(2). We notice
that chA: K°A(W; Q)-^Tn^Hdi(W\ Q) is an isomorphism for W=X+ or X*,
since Jί is assumed to be a finite complex. Then the following is deduced from
(2.1).

Lemma 2.2. For a KA-orientable vector bundle α,
(1) Λ*Δ(tt)= C/ί^ XίAΛί-α)) in K°(X Q), α/wί
(2) there is a unique element Va^K°lί(Xa/S0 Q) which satisfies

and j*(Va) = h^(u)

Proof. Apply chA on both sides of the equation in (1). Then they both
become U%y since chAh

κ^(u)=hff(u) for the left hand side. Since chA is an iso-
• Uς jlj

morphism over KXX ; Q), we have (1). Let K°A(X*/S°; G) ̂  Kl(X«; G) *-+
KΛ(S°; G) for G=Q or Q/Z be the exact sequence induced from the cofiber se-
quence as in (1.1). Then^* is a monomorphism, since ^ (̂5°; G)=0. We put
z=hκ^u) - (7β)φ( VI Λ) e JSΓK^ β) . Then »*(«) = 0, and there is a unique ele-
ment FΛeί:^(Z*/50; Q) with/*(Fβ)=*. Va is the required element of (2), te-

Let Λ/r=ψγ— 1 : KA-*KA be the stable Adams operation for a generator y of
the unit group in Zjp2, and ^4rf the fiber spectrum of i/r. We assume that <y=3
in cases ofp=2. Thus we have a cofiber sequence

(2.3) Ad°G -̂  K°AG ̂  ̂ G

for G=Z(p)y Q or Q/Z(P). The ^4rf-theory plays an important role later.
Now, let /3 be an orientable virtual vector bundle of dimension 0 over a

connected finite complex 7, and iΛί: X*ISQ=X*IS°/\SQ-+X"IS°/\ Yβ the
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inclusion. For the element Va in Lemma 2.2, we have an extension ΰ as follows:

Proposition 2.4. Assume that a and β are KA-orientable. Then, there is

an element «eίΓ^(Z'"/Sr<)Λ Yβ; Q) which satisfies
(1) (l/\i)*(n)=Va,and

(2) ψ(β)elm[(/β)*: KXX ISΆ Y^K^X'/S^ Y"; Q)].

Proof. Since cλΔ: K^X'/S* Q)^ 'Σi>9H
di(X ΊS'> Q) is an isomorphism, we

can write chJSya)=^li>aal for some ai<=Hdl(X*IS'i; Q) and put A,=(ch&)-\ai)
eKXX'IS0; Q). Then VΛ=^i>0 A,, and ψΆ^γWA,. Similarly, regarding
a Thorn class t^e^F") as an element of K^Y*; Q), we have U^=^j^Bj
for some B^K^Y"; Q) with ^B^^Bj. We put

(2.5) fl = V.® £7*A- Σ Γ», A®B/eKl(* /S0Λ F" Q) ,
*,/>0

where Γt,,=(7w/2-l)/(y(*-| '><'/2-l). Then, « satisfies (1), since i*(U^)=l and
i*(B;)=0. Using the definitions of A{ and By, it follows that

(2.6)

By the second equation in Lemma 2.2 (2), we have
.X*-+X*l& and 7,:̂ -̂

But, there is an element w<=K°A(X*/S°) with J*(^)== — Λ/r(C/f Δ), and thus

7*(W*(»)=J[*(Ψ(^)) in ̂ (̂ ί Q) Since;*: KQ

A(X«IS°; Q)-*K°A(X* Q) is a
monomorphism, we have <ψ»(FΛ)=(/Q)J|ί(eί;), and thus u satisfies (2) by (2.6), which
completes the proof.

We need to recall the geometric realization [11] of the chromatic filtration
as in (1.3). Let /,: E-+LfE be the Bousfield localization [5] with respect to the
^JBPjjj-homology for a prime p. Then the /-stage of the filtration is realized
by a spectrum N{ which is defined inductively, starting with ΛΓ0=*S°, by the
cofiber sequence

(2.7) N, M, = LM Nii+1

In particular, M0=S(Q) and N1=S(QIZ). Furthermore, by [5] or [12], it
is shown that there is a homotopy equivalence M1^=^Ad°Q/Z through which
II°.NΓ*MI is identified with the ^-theory Hurewicz homomorphism hAd:
SQQIZ-*Ad°QIZ. Here, spectra are assumed to be localized at py and Ad is
the fiber spectrum of the stable Adams operation <ψ =ψ»γ— 1 defined on K(p) if
p is odd and on KO(2) ifp=2. Thus, p^ Ml-^N2 is identified with p: Ad°Q/Z

->Ad°Q/Z for Ad=AdlSQ

(p}, and we have maps KiM^KlQfZ and z:N2~*
RI&IZ induced from *: AdQQIZ-*K°AQ/Z as in (2.3). Then Theorem 5.2 in
[4] is extended to the following form.
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Theorem 2.8. Assume that a and β are K^-orientabk and K±\X*IS° QjZ)
0. Then, we have elements w2e(M1)

0(^β/S°Λ Yβ) and ί^e(JV2)
0(J? /50Λ

which make the following diagram stably homotopy commutative up to sign:

x"ls° X IS°Λ y x*ιs°/\ Yηs'
u2\ *J

Ml -^ N2

Here, u2 can be taken to satisfy κ*(u2)= ρz(u) for u of Proposition 2.4.

Proof. We put W=X*ISQf\ Yβ. Then by Proposition 2.4 (2), ψ(pz(H))=
0 in K^(W\ Q\Z\ and thus we have an element u2^(M1)\W) satisfying (̂1/2)=

Pz(u). By Proposition 2.4 (1) and Lemma 2.2 (2), *„(! Λ 0* W=(l Λ 0*PzW=
^(ll)^(tt)y where ll\Nl-^Ml is the map as in (2.7). Since
KKX'IS*; QjZ) is a monomorphism by the assumption that

Q Q/Z)=0, we have

Then, # and M2 produce maps from the upper cofiber sequence in the diagram
to the second cofiber sequence Nι-^M1-^N2-^'ΣNι9 and thus we have the
required elements u2 and U2 which make the diagram commutative up to sign.

We notice that the assumption K^l(X*IS°', Q/Z)=0 in the theorem is satis-
fied if K°jJ(X) is torsion free and K^\X) is a torsion group. From (2.1) and the
commutativity of the upper right square in the diagram of Theorem 2.8, it fol-
lows that the double transfer τ2: X*l$Q/\ Yβ/S°-»S2 is factored through the
second stage N2 as τ2~διS2U2, and we have Theorem 1.4.

REMARK 2.9. For the canonical complex line bundle ξ over CPN, (2m+l)ξ
is not XΌ-orientable for any integer m. By the same reason as in [6: Remark
3.2], there is no such factorization as in Theorem 1.4 in case of p—2> X=Y=
CPN, <x^(2m+l)ξ and β=(2n+l)ξ.

3. Stunted protective spaces

Let C and H be the field of the complex and quaternionic numbers, and put
(Fy d)=(C, 2) or (Hy 4), respectively. We denote the ΛΓ-th projective space over
FbyFPN for ΛΓ>0, and the canonical JP-line bundle over FPN by ξ. Then,
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for a positive integer k> the Thom space of kξ is homeomorphic to the stunted

projective space FP%+k=FPN+kIFPk-1 by [2]. Thus, for any integer k, we

denote the Thom space of kξ over FPN simply by FPk, since our results are
valid for any N and compatible with each N. Then, in the cofiber sequence

/ j T
Sdk -> FPk -*> FPk+i -+ Sdk+l, T represents a transfer map for kξ, and we call this

T a Sd "^-transfer map. Thus, a double Sd "^transfer map is given by

(3.1) τ2 = τ/\r:FPm+1/\FPn+l -> S«m+u>+2 .

In this section, we are concerned with this τ2.
In Theorem 2.8, KA=K(p) or KO^ according as the spectra are assumed

to be localized at an odd prime p or 2. Hereafter, we assume that p is odd

whenever we discuss S^-transfer maps, and that p=2 for S3-transfer maps.

Thus, (K±, FPN)=(K(p), CPN) or (KO(2)y HPN) according as p is an odd prime
or p=2. Then kξ over FPN is always ^Λ-orientable for any integer k. In
the below, we denote the coefficient group π{(KA) by (KA)i9 and the Bott gen-
erators by ΐ^K2 and gj^KO4i respectively.

In order to express a formula for u2 of Theorem 2.8 with respect to τ2 in
(3.1), the ^-Bernoulli numbers are necessary. Let eτ be the formal power
expansion of the exponential function on T, and sinh(T) that of the hyperbolic

sin function on T. We put (2sinh(v

/ϊϊ/2))2=Σy^o^/2Ίy+1, where all Sj are ra-
tional numbers and s0=l. Using these notations, we define the following:

DEFINITION 3.2. (1) Exp*Λ(— ) and Log*Ά(— ):

where a(j)=l (resp. 2) ifj is even (resp. odd).
(2) The ^-Bernoulli numbers Bκ*(m, k)

*, k)Tk.

Let Xκ=Γ1[l-ξ]^K\CPN) and Xκo=[l-ξ]ζΞKO\HPN) be the KA-
theory Euler classes of £, and x^Hd(FPN\Z) the Euler class which satisfies
chA(ξ)=ex or e^x-\-e~^x for CPN or HPN respectively. Then, for (Ey xε)=
(KA, XKΔ) or (H, x), we have an isomorphism E*(FPN)^E%[[xE]]l((xE)N+1), and
E*(FPk) is a free E*(FPN) module with a Thom class Z7fe as a generator. As in
[8], we can put Ukξ=(xE)k and (#£)l(#£)'=(#£)'~κ; for *'>& andj>0.

Let/Δ(Λ?)=l-^ or -(2sinhχ/^/2)2 in H*(FPN;Q) according as FPN=
CPN or HPN. Then, we have the following:

Lemma 3.3. chA(XK*)=fA(x) and chA(LogK&(XK*))=—x.
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Proof. Since chAξ=d!2—fA(x), the first equation is clear. Let log(Γ) be the
power series exapaαsion of the logarithm function on T, and put (2sinh"1(\/J'/2))2

=Σy» rjT'+1. Then, Log*(Γ)= -r1 log(l-ίΓ) and Log^0(Γ)=Σ,so(-1)V,
(£jla(J))T*+l. Since c#Λ is a ring homomorphism, we have the second required
equation.

Let uGπ*8

m(FPm;Q) and Vm^Kf(FPm+l\Q) be the elements as in (2.1)
and Lemma 2.2 respectively. Then, the following is a corollary of Lemmas
2.2 and 3.3.

Corollary 3.4. For any integer m,

hκ*(u) = (Log*Λ(X*Λ)f and f(Vmξ) = (Log?^X**)f--(X**)m ,

where j*: Kd

A

n(FPm+1 Q)-*Kd*(FPm Q) is a monomorphism.

Proof. As above, U^A is taken to be (Xκ*)m. In order to satisfy chA(U**)

= UfbhA(ξ) and bhA(ξ)^l+^i>0H
di(FPN] Q), we must take E7f=-* instead

of Λ?, because chA(XK*)=fA(x)=(-x)(fA(x)l(--x)) by Lemma 3.3. Hence, C7^
—(—Λ?)W and bhA(mξ)=(—fA(x)/x)m. Then, it follows from Lemma 3.3 that

Thus we have the first required equation by Lemma 2.2(1), and the second
required equation by the first equation and Lemma 2.2 (2).

Now, we can show a formula for an element u2^(M1)
d(^m+n\FPm+1/\FPn) as

in Theorem 2.8. For a while, we put FP(k, ΐ)-=FPkf\FPt for brevity. Since
=Q and K%-l(FPΛ',QIZ)=ϋ, both **: (M^^
\FP(m+l,ri) ,QlZ} and (./Λl)*: Kd

A

m*«\FP(m+
l,ri)\QIZ)-+Kd

A

m*"\FP(m,n)\QIZ) are monomorphisms. Hence we shall
describe a formula for Kx(u^GK%m**\FP(m+l9 ri)\ Q\Z], regarding it as an
element of Kd^n\FP(m,n}\ QfZ) through (j'Λl)*. We shall represent
K*(FP(m,n) ,QIZ) as R{(X«^)m}®R {(¥«*)»} for R=K*(FP» Q\Z\ using
y^Λ to denote the ίΓΔ-theory Euler class of ξ for the second factor. Let γ be a
generator of the unit group in Zjp2, which is used in the definition of Ad before
(2.3). Then we have the following formula.

Theorem 3.5. In K«m+n\FPm+1ΛFPa; QjZ),

+ Σ Γ4.,fiΆ(-
*,/>0

where Γ».,=( yΛ/l-l)/(7'(*+<)/ϊ-l).
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Proof. By Theorem 2.8, we take u2 to satisfy κ*(u^=pz(u) for Λ given by

(2.5). Since ( Λ l)*(F«ί® U*Λ)=((Logκ*(Xκ*)ΓHXκ*T)®(YKA)n by Corol-

lary 3.4, all we need is formulas for Ak and El in (2.5). By Lemma 3.3 and
Corollary 3.4, we have

where [f&(x)m]j denotes the φ-dimensional part of /Δ(^)m On the other hand,
from Definition 3.2 ,it follows that

/
-)"=§ 8K*(-m, *

Applying chA on both sides of this equation and using Lemma 3.3, we have

AW = (-*

Then, we obtain

Similarly, B,=£κ*(-n, /)(Log*Λ(y*Δ))«+'. Thus, by (2.5), we have the re-
quired formula.

We have not got any explicit formula for a^iz^e^**"' (.£?„+, A-F"P»+i;
QjZ). However, Theorem 2.8 shows

(3.7) (ίΛΛ***(βO=P*«*M>

and thus the formula for κ^(u2) in Theorem 3.5 describes %*(n2) with indeter-
minacy Ker(lΛ;)*=(lΛτ)*(^i( + )-1(ίy.+1;Q/Z)) and

Let MG be the Thorn spectrum MU or MS/> for the complex or symplectic
cobordism theory, respectively. We only consider these spectra in the case
that (MG, K^ FPk)=(MU, K(p)y CPk) or (MSp, KO(2hHPk) according as p is an
odd prime or 2. Let />M be a generator of the primitive part PMGdk(FPt)^Z
for k>l. The rest of this section is devoted to obtain a formula for κ*(u2)*(pitj®
pktί) using Theorem 3.5. Then it gives a formula for %*(vJ*(ptj®Pk.i) by (3.7).

Let βiGHΛi(FP—, Z) be the dual of *'', and ftf Ge£ΓΛ(MG) be the image of
βm under the canonical homomorphism Hd(i+1)(FP°°yZ)->Hdi(MG\Z)9 for
i>0. We define a ring spectrum E to be .F-oriented if there is an element XE&
E'(FP") with E*(Sd)s*E*ii*(xE)}, where F=C or H and i: Sd-+FP~ is the in-
clusion map. Then, as is well known, there is a map ΦE:MG-^E associated
with #* such that ι*(ΦE) is a unit of πQ(E) for the unit c: S°->MG. Then we
have an element όf=Φ|(άfc)eflr

Λ(£;Z), and also an element βf ^Edi(FP~)
which is the dual of (XE)*. For an ί^-oriented spectrum Ey the £"-theory Bernoulli
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numbers as in [8] are defined as follows:

DEFINITION 3.8.

(1) Exp*(Γ)=ΣUftf Γ' +1e(#Λ£)*[[Γ|] and
(2) The ^-theory Bernoulli number SE(m, k) e(E d k ®Q)[[T]]

In case of a C-oriented -E, Exρ£ is the exponential sequence related to the
formal group law over E* induced from ΦE. Definition 3.2 coincides with this
definition if (E, xE)=(KA, Xκ*). For later use, we put

(3.9) V = *Σbf&H*(E;Z) and fi

As for a generator pn^ of the primitive part PMGdn(FP0), an explicit formula is
given for MU by Segal [13] and for MSp by Baker [3]. They have described a
generator p?tQ^PHdn(FP°°',Z)c:P(H/\MG)dn(FP00), and their methods are im-
mediately applicable to stunted projective spaces. Let c(k, I) be the positive

minimal integer c which makes c [bMGr]k-i an element of h?(MGd(k-fl)) in
Hd(k-i)(MG\ Q) for any i with l<i<k. Here [iMG]*_; is the d(k—*)-dimensional
part of (bMGy. Then, using the methods in [13] and [3], we have the following:

Lemma 3.10. Let k>l.
(1) pktι=c(k91) Σ*./[ivc]*-f/8?G is a generator of PMGdk(FPt)^Z.

(2) When (MG, FPt)=(MU, CP,), c(k, I) is equal to the K-codegree cdκ(k, ΐ)
which is cited below.

REMARK 3.11. The ίΓΔ-codegree cdκ^(k, I) is defined as the minimal positive
integer c such that the d(k—y)-dimensional part of c bhA(jξ) is in Hk~*(FP0\ Z)

for l<j<k, that is, c bhA(jξ) is integral. Thus J£Δ-codegrees are computable.
If the mod torsion Hattori-Stong conjecture for MSp (cf. [10], [9]) holds, then

we also have c(k, l)=cdκo(k, I) in the case of (MG, FPi)=(MSp9 HP,). This can
be seen by the method in [3]. In general, cdκo(k, I) is a factor of c(k, I).

PutpftJ =(ΦE)^(pij)^PEdi(FPj) for a jF-oriented spectrum E. Then, by
Definition 3.8 (1), (3.9) and Lemma 3.10 (1), we have the following corollary.

Corollary 3.12. Let E be F-oriented. Then

We obtain the following formula, using the technique due to Miller[8]

and Hilditch[6].
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Theorem 3.13. Let k, 1^1. Then, as an element of (K^+^E; QjZ),

«*(«2)*(ί5+*.« +ι®ί»+/.«+ι) = c(m+k,m+l)c(n+l,n+l)

(B^(-m, k)fr(-n, /)_rί>fβΆ(-», k)S«*(-n, I))

for rtJ=7di/2(7dk/2_ i)/(7ί<*+ί)/2_ l).

Proof. Let g(Xκ^)='Σi^aai(XκJ<.γ be an element of K*(FPn; Q), and put

b(T)=Έxpκ*(Logε(T)). Then, by [8] or [6], it is shown that

(3.14) g(X**Uβ*(T)) = ̂ Γ))€E((*:ΔΛ£)*<g><?)[m]

Hence, it follows that ((X* *)')*(/) 'f(T))=b(Ty (resp. 0) if ;^/(resp.;</), and

((LogK^XK^)m-(X^)m)^+1(T))=(LogE(T))m-b(T)m. Also, by Proposition

2.4 (1), Theorem 2.8 and Corollary 3.4, **(M2)*(/3

(b(T))m)®Sn. Thus, we have

= Σ (£**(-», k)SE(-n, l)-Tktβ
κ*(-m,

*,/>0

and the required equation by Corollary 3.12.

By (3.7), we have

(3.15)

and Theorem 3.13 gives a formula for κ^(ϊi2)^(pm+k,m+ι®pS+ι,n^ι) with indeter-
minacy KeiL(p*)=hκ*(πd(k+l}(E\ Q/Z)).

References

[1] J.F. Adams: On the groups J(X)-Π, Topology 3 (1965), 137-171.

[2] M.F. Atiyah: Thorn complexes, Proc. London Math. Soc. 11 (1961), 291-310.

[3] A. Baker: The Adams-Novikov spectral sequences for protective spaces, preprint,

1981.
[4] A. Baker, D. Carlisle, B. Gray, S. Hilditch, N. Ray and R. Wood: On the iterated

complex transfer, Math. Z. 199 (1988), 191-207.

[5] A.K. Bousfield: The localization of spectra with respect to homology, Topology

18(1979), 257-281.

[6] A.S. Hilditch: On calculating the compelx double transfer in homotopy, Ph. D.

thesis, Manchester University, 1986.

[7] K. Knapp: Some applications of K-theory to framed bordism: e-invariant and

transfer, Habilitationsschrift, Bonn, 1979.

[8] H.R. Miller: Universal Bernoulli numbers and the Sl-transfer, Can. Math. Soc.

Conf. Proc. 2 (1982), 437-439.

[9] R. Okita: On the MSp Hattori-Stong problem, Osaka J. Math. 13 (1976), 547-



DOUBLE TRANSFER MAPS 769

566.
[10] N. Ray: Some results in generalized homology, K-theory and bordism, Proc. Camb.

Phil. Soc. 71 (1972), 283-300.
[11] D.C. Ravenel: A geometric realization of the chromatic resolution, Proc. J. C.

Moore Conf., Princeton (1983), 168-179.
[12] D.C. Ravenel: Localization gith respect to certain periodic homology theories, Amer.

J. Math. 106 (1984), 351-414.
[13] D.M. Segal: The cooperations of MU^CP09) and MU^HP09) and the primitive

generators, J. Pure and Appl. Alg. 14 (1979), 315-322.

Department of Mathematics
Wakayama University
930 Sakaedani, Wakayama 640,
Japan






