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1. Introduction

In [6] and [4], the authors have studied a factorization of the double S'-
transfer map through the second stage of the chromatic filtration. In this
paper, I show that such a factorization exists for other double transfer maps.

Let a be an orientable vector bundle of fiber dimension a over a connected
finite complex X, and X denote the Thom space of «. Then we have a cofiber
sequence

(1.1) st xo 2, xuise 5ogent

where 7 is the inclusion to the bottom sphere. Then, by [7], the S'-transfer map
is stably homotopic to + when X=CP" and a=—§ for the canonical C-line
bundle £ over the complex projective space CP*. If X=3W a suspension of a
space W, then 7 is stably homotopic to the stable J-map J(a): X—S*. Thus,
generalizing the original meaning of transfer maps, we call = in (1.1) a transfer
map. Then the following stable map 7, is called to be a double transfer map.

(1.2) 7, =71A7: X%S° N\ YP|St— ettt |
where B is an orientable vector bundle of fiber dimension b over a connected
finite complex Y.

By Ravenel [11] a geometric realization of the chromatic filtration has
been given, and we shall denote the first two stages in it by

(1.3) - — 372N, §-ﬁ >IN, -s—i S°.

Here, the spectra are localized at a prime p, and there is some difference in our
treatment between the cases of an odd prime p and p=2. This difference is
caused by the use of K-theory, and thus we treat the K-spectrum K, which
denotes the complex K-spectrum K, localized at p in case of an odd prime p
and the real K-spectrum KO, localized at 2 in case of p=2. Then we shall
show the following:

Theorem 1.4. Let 7, be the double transfer map of (1.2), and N, the second
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stage of the chromatic filtration as in (1.3). If a and (3 are K -orientable and
Ki7(X*/S°; Q|Z)=0, then there is a factorization 1,~=8,8,8, by a map U,:
XU/S“/\ Yﬂ/sb_)zaH:Nz'

For the important case that p is an odd prime, X=Y=CP¥ and a=8=
—E, the theorem has been established in [6] and [4; Th. 5.2], and we show that
their method can be extended to obtain the theorem. Theorem 1.4 is a corol-
lary of Theorem 2.8 which makes a construction of %, clear, and §2 is devoted
to demonstrate Theorem 2.8.

Such a factorization as in Theorem 1.4 draws a clear strategy to understand
the double transfer image, as seen in [6], and some detailed formuals for #, are
required. In §3, we describe such formulas in the case of stunted projective
spaces. When X=Y=CP¥, a=m¥ and B=n¢ for integers m and », T, of
(1.2) is a double S'-transfer map for stunted complex projective spaces. By
Theorem 1.4, a factorization of such double S'-transfer map exists if p is an odd
prime. On the other hand, the double S*-transfer map has no such factoriza-
tion as in Theorem 1.4 if p=2 and both m and 7 are odd. In case of p=2, it
might be natural to consider the quaternionic projective space HP¥ instead of
CPY. Then 1, is called a double S*-transfer map, and it always has a factori-
zation by Theorem 1.4. For these S* and S*-transfer maps, formulas concern-
ing @, are given in Theorem 3.5 and 3.13, (3.7) and (3.15). The method to ob-
tain such formulas is attributed to Hilditch [6].

The author wishes ot express his heartfelt thanks to faculty members of
the University of Manchester for their kind hospitality during his recent visit
at the university, in particular, A. Baker, P. Eccles, N. Ray, G. Walker and
R. Wood.

2. Factotization

Let S(G) be the Moore spectrum for a group G, and put E*G=3*E A S(G)
for a spectrum E. Then, E¥—; G)={—, E*G} is the G-coefficient E-cohomo-

logy group. We have a cofiber sequence E*Z —lg E*Q Pz E*Q|Z, where [, is in-
duced from the inclusion of the ring Z of integers into the field @ of rational
numbers and p, is induced from the mod Z reduction.

Now, let @ be an orientable vector bundle over a connected finite complex
X. Since we work only in the stable category, it is convenient to assume that
a is a virtual vector bundle of dimension 0, and that cohomology groups are all
assumed to be reduced. Then we have a Thom class UY€H(X*; Z) of a in
the integral cohomology group. Let z¥(—) denote the stable cohomotopy group.
Then, the Hurewicz map 47: z3(X*; Q)—H%X*; @) is an isomorphism, and we
can put u=(h*)YUZX)€zY(X*; Q). u yields an element z€=(X*/S°; Q/Z)
which makes the following diagram stably homotopy commutative up to sign:
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So_l_, Xe __]_,Xu/So__Z_,Sl

N

2.1) H
5029, g0g P2, 50917 2 s,
This diagram generalizes the fundamental situation designed by Miller [8],
and 7 represents a transfer map as in §1. # is uniquely determined by the
equation j*(#)=p,(u).

We denote by K, the K-spectrum K,) for an odd prime p or KO, for p=
2, and we assume that a is K ,-orientable. 'Then we have a K -theory Thom
class UsaeKY(X®) of a. Let chy: Kj(—)—H*(—; Q) be the Chern character,
and h¥a: z¥(—)—K%(—) the K ,-Hurewicz homomorphism. Then the charac-
teristic class bhy(a) €1+ 350 H¥(X; Q) is defined by the equation chy(Uks)=
UZbh () (cf. [1]), where d=2 or 4 according as K=K, or KOy. We notice
that chy: K4Q(W; Q)= s HY(W; Q) is an isomorphism for W=X, or X<,
since X is assumed to be a finite complex. Then the following is deduced from
(2.1).

Lemma 2.2. For a K ,-orientable vector bundle o,
(1) kEs(u)=ULrch H(bhy(— ) in K{(X*; Q), and
(2) there is a unique element V,€ K4 (X*/S°; Q) which satisfies

pz(Va) = HEn@) and j¥(V,) = BEMu)—(lg)x(Ug») .

Proof. Apply ck, on both sides of the equation in (1). Then they both
become UZ, since chyh¥a(u)=h"(u) for the left hand side. Since ch, is an iso-

* %
morphism over K3(X*; Q), we have (1). Let K3(X*/S% G) 1> Ko(X*; G) 5>
K}\(S°; G) for G=Q or Q/Z be the exact sequence induced from the cofiber se-
quence as in (1.1). Then j* is a monomorphism, since K;}(S°; G)=0. We put
r=h"nu)—(lg)x(ULkr) €K, (X*; Q). Then i*(2)=0, and there is a unique ele-
ment V,e K (X%/S°; Q) with j*(V,)==z. V, is the required element of (2), be-
cause j¥(pz(Va)) = pz(%)=j* (A A()).

Let yp=+"—1: K,—K, be the stable Adams operation for a generator y of
the unit group in Z/p% and Ad the fiber spectrum of ». We assume that y=3
in cases of p=2. Thus we have a cofiber sequence
2.3) 46 S kcd ke
for G=2Z,), Q or Q|Z,. The Ad-theory plays an important role later.

Now, let @ be an orientable virtual vector bundle of dimension 0 over a
connected finite complex Y, and 1A7: X%/S'=X*/S°A S°—X*/S°A Y* the
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inclusion. For the element V, in Lemma 2.2, we have an extension # as follows:

Proposition 2.4. Assume that o and B are K ,-orientable. Then, there is
an element 4 K\(X?[S° N\ Y#; Q) which satisfies

(1) (1A B)=V,, and

(2) (@) EIm[(lg)x: Ky(X*[S'AYP)—>KA(X*/S'AY?; Q)].

Proof. Since chy: K3(X%/8%; Q)—)iso H(X*/S°; @) is an isomorphism, we
can write chy(V,)=3);5, a; for some a,€ H*(X*/S°; Q) and put A,=(ch,) Y(a;)
eK}(X?/S% Q). Then V,=3;5,4;, and y'4;=v""4;. Similarly, regarding
a Thom class Ufa€ K} (Y?) as an element of K (Y?; Q), we have Uga=31,5,B;
for some B, K}(Y?; Q) with 'B;=v"”B;. We put

(2.5) i=V,Q U;{A—;%o ', 4:Q®B,eK\(X*/S°AY?; @),

where Ty ;=(y"—1)/(y**D4?—1). Then, # satisfies (1), since *(U§s)=1 and
1¥(B;))=0. Using the definitions of 4; and B, it follows that

(2.6) (@) = Y (V)P (Ugs) .

By the second equation in Lemma 2.2 (2), we have j¥(yo(V,))=h*s(u)—
Y ((l)s(Ua®)—7*(Va)=—(lo)x(y(Ua4)), where j: X*—X=/S° and lo: K} Z—>
KSQ. But, there is an element w € K (X*/S°) with j*(w)=—(UZX), and thus
J*(1)x(@)=*(¥(V,)) in K3(X"; Q). Since j*: K3(X"/S’; Q)—K{(X*; Q) is a
monomorphism, we have yr(V,)=(lo)x(w), and thus # satisfies (2) by (2.6), which
completes the proof.

We need to recall the geometric realization [11] of the chromatic filtration
as in (1.3). Let [;: E-L;E be the Bousfield localization [5] with respect to the
v7'BP,-homology for a prime p. Then the i-stage of the filtration is realized
by a spectrum N; which is defined inductively, starting with Ny;=S8° by the
cofiber sequence

l.- i 8;
(2.7) N"‘>Mi=LiNi£’ i+1_+1’ 2N;.

In particular, M,=S(Q) and N,=8(Q/Z). Furthermore, by [5] or [12], it
is shown that there is a homotopy equivalence M,=~=Ad°Q|Z through which
L: Ny—M, is identified with the Ad-theory Hurewicz homomorphism A4¢:
S°Q[Z—>Ad°Q|Z. Here, spectra are assumed to be localized at p, and Ad is
the fiber spectrum of the stable Adams operation r=+"—1 defined on K, if
p is odd and on KOy, if p=2. Thus, p,: M,—N, is identified with p: 4d"Q/Z
—>Ad°Q|Z for Ad=Ad|S},, and we have maps x: M;—K3Q/Z and &: N,~
R%Q|Z induced from «: Ad°Q|Z—K%Q/Z as in (2.3). Then Theorem 5.2 in
[4] is extended to the following form.
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Theorem 2.8. Assume that a and B are K y-orientable and K;(X*|S°; Q|Z)
=0. Then, we have elements u,&(M,)"(X*/S°A\Y?) and #,c(N,)(X*S°A
Y?/S°) which make the following diagram stably homotopy commutative up to sign :

1A INj
X502 xo5o0 v2 2 xo50p 78150 LT 550080

T S

5
KQ M, P4 N, 22, SN,

‘| d
ke % Koz 5 gz

Here, u, can be taken to satisfy ry(u,)=pz(#) for @& of Propositior 2.4.

Proof. We put W=X*/S°AY®. Then by Proposition 2.4 (2), y»(p,(#))=
0 in K}(W; Q|Z), and thus we have an element u,& (M,)°(W) satisfying «(u,)=
pz(#). By Proposition 2.4 (1) and Lemma 2.2 (2), x4 (1 A2)*(u)=(1 Ai)*p, (%)=
pz(Vy)=hEa(B)=r(l))x(®), where [: Ny—M, is the map as in (2.7). Since
ey (M,)°(X*/S*)—K(X*/S° Q|Z) is a monomorphism by the assumption that
K;}(X*/S°; Q|Z)=0, we have

(AND)*(w) = (W)«(®)  in (M)Y(X®/S).

Then, # and u, produce maps from the upper cofiber sequence in the diagram
to the second cofiber sequence N;—>M;—>N,—>3N,, and thus we have the
required elements u, and #, which make the diagram commutative up to sign.

We notice that the assumption K3;}(X*/S°; @/Z)=0 in the theorem is satis-
fied if K$(X) is torsion free and K3}(X) is a torsion group. From (2.1) and the
commutativity of the upper right square in the diagram of Theorem 2.8, it fol-
lows that the double transfer 7,: X*/S°A Y?/S°—S? is factored through the
second stage N, as 7,==8,8,%,, and we have Theorem 1.4.

RemARK 2.9. For the canonical complex line bundle ¢ over CP?, (2m-1)E
is not KO-orientable for any integer m. By the same reason as in [6: Remark
3.2], there is no such factorization as in Theorem 1.4 in case of p=2, X=Y=
CPY, a=(2m-+1)£ and B=(2n+1)E.

3. Stunted projective spaces

Let C and H be the field of the complex and quaternionic numbers, and put
(F, d)=(C, 2) or (H, 4), respectively. We denote the N-th projective space over
F by FPY for N>0, and the canonical F-line bundle over FP¥ by £. Then,
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for a positive integer k, the Thom space of k£ is homeomorphic to the stunted
projective space FPy**=FPV+}FP*! by [2]. Thus, for any integer k, we
denote the Thom space of k¢ over FP¥ simply by FP,, since our results are
valid for any N and compatible with each N. Then, in the cofiber sequence

Sk 5 FP, EA FP, 5 Skl 1 represents a transfer map for k€, and we call this
+ a S )-transfer map. Thus, a double §~!-transfer map is given by

(.1) 2= 1AT: FPy  AFP,, — Simm+2

In this section, we are concerned with this 7,.

In Theorem 2.8, K \=K{,) or KO, according as the spectra are assumed
to be localized at an odd prime p or 2. Hereafter, we assume that p is odd
whenever we discuss S'-transfer maps, and that p=2 for S3-transfer maps.
Thus, (Ky, FPY)=(K(,;, CP") or (KO(y;, HP¥) according as p is an odd prime
or p=2. Then k& over FP¥ is always K,-orientable for any integer k. In
the below, we denote the coefficient group z;(K,) by (K,);, and the Bott gen-
erators by t€K, and g, KO,; respectively.

In order to express a formula for u, of Theorem 2.8 with respect to 7, in
(3.1), the K,-Bernoulli numbers are necessary. Let e’ be the formal power
expansion of the exponential function on 7, and sinh(7') that of the hyperbolic
sin function on T. We put (2sinh(\/T/2))*=31,5,5;T7*, where all s; are ra-
tional numbers and s,=1. Using these notations, we define the following:

DeriniTION 3.2. (1) Exp®A(—) and Log®a(—):
Exp(T)=¢t"'(1—e"") €(K+QQ)[[TT],
Exp®(T)=2 (—1) s(g;/a() T €(KOx®Q)[[T]],
Log®a(T)=(Exp*2)(T) €((Kn)+ Q) [[T]],

where a(j)=1 (resp. 2) if j is even (resp. odd).
(2) The K,-Bernoulli numbers BXA(m, k) (K )4 QQ:

T " J— K k
(Gprazy) — BE AT

Let X¥=¢t"[1—¢]eK*CP¥) and X¥°=[1—£]eKO*HP") be the K,-
theory Euler classes of &, and xcH*(FP¥;Z) the Euler class which satisfies
chy(E)=e" or e"*4e~v* for CPY or HPV respectively. Then, for (E, xF)=
(K4, X%a) or (H, x), we have an isomorphism E*(FPV)=E[[x*]]/((x)¥*!), and
E*(EPR,) is a free E*(FPY) module with a Thom class U§; as a generator. As in
[8], we can put Uf;=(xF)* and (xF)}(xF)/=(xF)"*/ for i >k and j >0.

Let fa(x)=1—¢" or —(2sinh\/x/2)? in H*(FP¥; Q) according as FP¥=
CPY or HPY. Then, we have the following:

Lemma 3.3. chy(X%8)=f\(x) and chy(Log¥a(X%n))=—x.
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Proof. Since chp E=d[2—f4(x), the first equation is clear. Let log(T’) be the
power series exapansion of the logarithm function on 7, and put (2sinh~(\/7T/2))?
=3Vi57;T7*'. Then, Log®(T)=—t""log(1—tT) and Log*%(T)=35(—1)’;
(g;la(y))T*. Since ch, is a ring homomorphism, we have the second required
equation.

Let ueri™(FP,; Q) and V,:cKy"(FP,.,; Q) be the elements as in (2.1)
and Lemma 2.2 respectively. Then, the following is a corollary of Lemmas
2.2 and 3.3.

Corollary 3.4. For any integer m,
Her(u) = (Logfa(XFR)" and  j*(V,ue) = (LogFa(X=n)"—(X%a)",
where j*: K4"(FP,,.,; Q)—K4"(FP,,; Q) is a monomorphism.

Proof. Asabove, U, s is taken to be (X*4)". In order to satisfy chn(Uf4)
=UFbh,(E) and bhy(§)E1+2)5 HY(FPY; Q), we must take Uf=—x instead
of %, because dly(X58) = f,(¥)—(—2) (fu(®)/(—x)) by Lemma 3.3. Hence, UZ;
=(—=x)" and bh,(mE)=(—fa(x)/x)". Then, it follows from Lemma 3.3 that

Logta(X®s) )"

ey (bhy(—mE)) = (LB

Thus we have the first required equation by Lemma 2.2(1), and the second
required equation by the first equation and Lemma 2.2 (2).

Now, we can show a formula for an element u,&(M,)‘™*"(FP, ., AFP,) as
in Theorem 2.8. For a while, we put FP(k, [)=FP,A\ FP, for brevity. Since
Kim+m=Y(FP(m+1,n); Q/Z)=0 and K¢ '(FP,; Q/Z)=0, both wy: (M,)*™+"
(FP(m+1,n); Q/Z)—K4"+"(FP(m-+1,n); Q/Z) and (jA1)*: Ki"*" (FP(m-
1, n); Q/Z)—>K4"*"(FP(m,n); Q/Z) are monomorphisms. Hence we shall
describe a formula for wy(u,) €K{™* ™ (FP(m+1,n); Q/Z), regarding it as an
element of K4"+"(FP(m,n); Q/Z) through (jA1l)*. We shall represent
K¥(FP(m,n); Q/Z) as R{(X%»)"} QR{(Y*»r)"} for R=K¥(FPY;Q|Z), using
Y%a to denote the K ,-theory Euler class of £ for the second factor. Let vy be a
generator of the unit group in Z/p?, which is used in the definition of Ad before
(2.3). Then we have the following formula.

Theorem 3.5. In K4"*"(FP, ,AFP,; Q|Z),

k(1) = ((Log“a(X*8))"—(X*8)")@(Y*8)"
3, Iy, BXA(—m, k)BEs(—n, I) (Log¥s( XX )"+t @(Logka( YEa))+

where Ty, = (Y47 —1)|(y¢+DP 1),
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Proof. By Theorem 2.8, we take u, to satisfy «y(u,)=p,(#) for @ given by
(2.5). Since (JAL*(V@Uya)=((Log a(X* A))"—(X¥a)")Q(Y*4)" by Corol-
lary 3.4, all we need is formulas for 4, and B, in (2.5). By Lemma 3.3 and
Corollary 3.4, we have

ha(§*(Vut) = cha(Log"NX*8)"—chp(XE8)" = — S [fa(*) Tms »

where [fa(x)"]; denotes the dj-dimensional part of fy(x)". On the other hand,
from Dezfinition 3.2 ,it follows that

XA " KA(—m. 1 KA(XEn))F
(W) =§B ( m, )(LOg (X )) ¢

Applying ch, on both sides of this equation and using Lemma 3.3, we have
S = (=0"+5 cha(BE5(—m, k) (—ax)"*k.
Then, we obtain
Ay = chg(—[fa(®)"lnss) = —BEa(—m, k)(LogFa(X )™+,

Similarly, B,=B¥a(—n, l)(Log¥s(Y*a))**. Thus, by (2.5), we have the re-
quired formula.

We have not got any explicit formula for z.(#,) € K4"*" (FP,. ., ANFP,.1;
Q/Z). However, Theorem 2.8 shows
(3.7) (LA J)*Ra(B) =P xttn(th2) »
and thus the formula for x,(u,) in Theorem 3.5 describes #z4(%,) with indeter-
minacy Ker(1A j)*=(1A7)¥(KL" " (FP,+,; Q/Z)) and Ker(py)=hEa(zi"+"
(FPm+l/\FPn; Q/Z))'

Let MG be the Thom spectrum MU or MSp for the complex or symplectic
cobordism theory, respectively. We only consider these spectra in the case
that (MG, K,, FP,)=(MU, K(,), CP;) or (MSp, KO, HF,) according as p is an
odd prime or 2. Let p,; be a generator of the primitive part PMG ,(FP,)=Z
for k>1. The rest of this section is devoted to obtain a formula for «.(4,).(2;,;®
ps.1) using Theorem 3.5. Then it gives a formula for %4(%,)(2;,;® 2s.1) by (3.7).

Let 8;€ H,;(FP=; Z) be the dual of x‘, and 6¥° €H,,(MG) be the image of
B+ under the canonical homomorphism H ) (FP=; Z)—H;(MG; Z), for
i>0. We define a ring spectrum E to be F-oriented if there is an element ¥ &
E4(FP~) with E¥*(S?%)=<E, {1*(xF)}, where F=C or H and 7: S—>FP> is the in-
clusion map. Then, as is well known, there is a map ®*: MG—E associated
with % such that *(®PF) is a unit of z(E) for the unit ¢: S>>MG. Then we
have an element bf=®%(6¥°)eH(E; Z), and also an element BF €E,(FP*)
which is the dual of (xf). For an F-oriented spectrum E, the E-theory Bernoulli
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numbers as in [8] are defined as follows:

DEFINITION 3.8.
(1) Exp®(T)=33i b7 T*** €(H A E)4[[T]] and Log®(T)=(Exp*)™(T).
(2) The E-theory Bernoulli number BE(m, k) €(E4QQ)[[TT];

_r m___ BE(m. B\T*
<ExpE(T) ) §> (m, R)T* -

In case of a C-oriented E, Exp® is the exponential sequence related to the
formal group law over E, induced from ®=. Definition 3.2 coincides with this
definition if (E, x¥)=(K,, X%s). For later use, we put
(39) b = DY HE;Z) and BE(T) = 3 BT SELFR)T-

i>k

As for a generator p,, ,, of the primitive part PMG,,(FP,), an explicit formula is
given for MU by Segal [13] and for MSp by Baker [3]. They have described a
generator py & PH,,(FP~; Z)C P(H AMG),,(FP>), and their methods are im-
mediately applicable to stunted projective spaces. Let ¢(k, ) be the positive
minimal integer ¢ which makes c-[0¥¢]i_; an element of A#(MG,-p)) in
H4-»(MG; Q) for any i with I <i<k. Here [b€];_; is the d(k—7)-dimensional
part of (bM€)!. Then, using the methods in [13] and [3], we have the following:

Lemma 3.10. Let k>1.

(1) pri=c(ky 1) 2%.1[6"C1i_:BYC is a generator of PMG 4 (FP))=Z.

(2) When (MG, FP))=(MU, CP,)), c(k,1) is equal to the K-codegree cd%(k,l)
which is cited below.

ReMark 3.11.  The K,-codegree cd¥a(k, I) is defined as the minimal positive
integer ¢ such that the d(k—j)-dimensional part of c-bky(j€) is in H*(FP,; Z)
for I< j<k, that is, c-bh,(jE) is integral. Thus K,-codegrees are computable.
If the mod torsion Hattori-Stong conjecture for MSp (cf. [10], [9]) holds, then
we also have ¢(k, [)=cd®°(k, l) in the case of (MG, FP))=(MSp, HP;). 'This can
be seen by the method in [3]. In general, cd%9(k, I) is a factor of ¢(k, J).

Put pf ;=(DPF)y(p:,;) € PE,(FP;) for a F-oriented spectrum E. Then, by
Definition 3.8 (1), (3.9) and Lemma 3.10 (1), we have the following corollary.

Corollary 3.12. Let E be F-oriented. Then

E .
SEExp(T) = 3 Fias T

We obtain the following formula, using the technique due to Miller[8]
and Hilditch[6].
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Theorem 3.13. Let k,I1>1. Then, as an element of (K,)au+1(E; Q|Z),

’C*(uz)*(P£+k,m+l ®Pf+1,n+l) = C("l‘{"k, m—+- 1)6("-{-1, n+ 1) *
(BEs(—m, k)BE(—n, I)—T,,,BEs(—m, k)BEs(—n, 1))

for Ty,= ,ydz/z(,ydk/z__ 1) /(,yd(k+l)l2_ 1).

Proof. Let g(X*8)=3,5,a,(X*2)’ be an element of K¥(FP,; @), and put
b(T)=Exp¥s(Log®(T)). Then, by [8] or [6], it is shown that

(3-14) 2(XEN)(BE(T)) = g T)) (KA AE)@Q)ITI] -

Hence, it follows that ((XKA)f)*(/é\f(T))zb(T)f (resp. 0) if j >I (resp. j<I), and
((LogKA(XKA))"'-—(XKA)'")*(,é\ﬁ+1(T))=(LogE(T))”'—b(T)'”. Also, by Proposition
2.4 (1), Theorem 2.8 and Corollary 3.4, x*(uz)*(é,€+1(T)®S”)=((LogE(T))"'—
(H(T)"®S". Thus, we have

M*(“Z)*(BA£+I(EXPE( T))@,é\,ﬂl(ExpE(S))
= ,,;;, (BEs(—m, k)BE(—n, 1)—T, ,BEA(—m, k) BEA(—n, 1)) T™+kS"+ |

and the required equation by Corollary 3.12.
By (3.7), we have
(315) I?*(uz)*(Pﬁ-«»k,mn®pf+l,n+l) = P*'C*(“z)*(f’ﬁ:rk,mn@?fu,n+1) )

and Theorem 3.13 gives a formula for .y (%)x(Pn+s.m+1® Pr+1,a+1) With indeter-
minacy Ker(py)=h*s(z4+n(E; Q|Z)).
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