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LOCAL TRIANGULATION OF REAL ANALYTIC VARIETIES
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Introduction

In the recent study of real analytic varieties, one of the main pro-
blems is to decompose a given variety into some reasonable subsets. H.
Whitney proved that a real algebraic variety can be expressed as a
union of mutually disjoint manifolds of various dimensions [67], while A.
H. Wallace decomposed it into sheets (analytically connected sets) [4].
Later, Whitney and F. Bruhat extended Whitney’s result to the case of
so-called C-analytic varieties [7], and Wallace also generalized his result
to real analytic varieties in somewhat milder form [5]. In these studies,
local connectivity of real analytic varieties (see, for example, [7], Prop.
2) plays a fundamental role.

In our present paper, we first prove that a real analytic variety E
is locally triangulable with given subvarieties as subcomplexes (Theorem
1), from which local connectivity follows immediately, and as a conse-
quence of this Theorem, we show that a real algebraic variety is globally
triangulable into a finite number of simplexes (Theorem 2). Next, in a
global vein, we show that a real analytic variety admits, what we call,
pseudo-cell docomposition (Corollary to Theorem 3).

When we carry out the proof by induction, the main difficulty lies
in the fact that a (local) projection of E on a subspace (with respect to
a coordinate system) is not necessarily a variety, even though a coordinate
system is p-proper (see § 1) for the (local) complexification E* of E. The
most part of our proof is devoted to eliminate this difficulty. The idea
of our proof is to get a (local) triangulation of E as a subcomplex of a
bigger complex G which has a more convenient form than E itself. To
do so, we first construct two imbedding varieties E* and E* which locally
contain E in such a way that E* contains the real part of E* (Lemma
1). Next we introduce the notions of p-proper simplex and p-proper
complex (8§ 4 and § 5) and show that the triangulation of p-proper complex
can be extended to the whole neighborhood (Lemma 3). Taking the real
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part of £* we obtain a desired p-proper complex G for E. Lemma 3
and the property of Ex along with existence of proper coordinate system
(Lemma 2) for a family of varieties which appear in the course of the
induction enable us to complete the induction, where E is automatically
triangulated as a subcomplex of G with given subvarieities of E as sub-
complexes.

The finite global triangulation of a real algebraic variety A reduces
to the above case by considering the local triangulation of the associated
projective variety A° at the center of the projection. Here we again see
the finiteness property of algebraic varieties which distinguishes them
from general analytic varieties (cf., [6], Theorem 3, 4 and 5, and [4],
Theorem 15).

After defining cell and pseudo-cell decompositions (§ 8), we observe
that in the same way as we get local triangulation of E, we can obtain
(local) cell decomposition of E such that each cell is determined by real
analytic varieties (Lemma 4). We then consider some family of real analytic
varieties which we call scattered family of varieties (§9) and show that
it admits pseudo-cell decomposition (Theorem 3). In this proof by induc-
tion, Lemma 4 plays a substantial role, namely, the fact that each cell in
the (local) cell docomposition is determined by real analytic varieties
makes it possible to carry out the proof by induction. As a special case
of Theorem 3, we see that a real analytic variety in R” has a pseudo-
cell decomposition (Corollary to Theorem 3).

The present writer wishes to express his sincere gratitude to Professor
Andrew H. Wallace for his constant encouragement and valuable sugges-
tions during the preparation of this paper. Expecially the projective
method used in §7 is due to him.

1. Preliminaries”

Let M be a real analytic manifold of dimension #» and let M* be a
complexification (see, for example, [7], Prop. 1) of M. A coordinate
system @*=(z, :-+, 2,) in a neighborhood U* (in M*) of a point @ of M
is called real if every coordinate function z;(0) (1<j<#) takes on real
values if and only if & belongs to U=U*"M. Then U is a coordinate
neighborhood (in M) with the restriction ¢=(x,, ---, x,) of @* to U as a
coordinate system. Let E be a real analytic variety in M. Then, if U*
is sufficiently small, there exists the complexification E* of E in U*,
that is to say, E* is the smallest complex analytic variety in U* such

1) For the definitions and fundamental properties with respect to complex varieties, see
[1], [38]; for real varieties, see [2], [7]. Especially, [7] is our good guide.
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that E¥*NnM=EnN U*, the dimension of E* is equal to that of E at g,
its germ at a is the complexification of that of E at «, and the conjugate
variety of E* coincides with E*, provided that U* is invariant under the
conjugate operation.

Let E* be an irreducible component of E* in U*. Then, for sim-
plicity, we call E¥ "M an irreducible® component of E in U=U*NM.
For sufficiently small U*, we may consider that the germs of E' =E* "M
and E¥ at ¢ are irreducible components of those of E and E* respec-
tively and E* is the complexification of E’ in U¥*.

For 1<i < ---<i,<m, if j < ---<j,_, are the complement of i,, -+, Z,,
Ctrir denotes the subset of all the elements of C" (complex n-space)
whose j,-th coordinates are all zero ane 7., denotes the canonical
projection of C” onto C%i», For 0< p<m, we identify C*# with p-
space and write C? for C**? and =, for 7,..,,. Finally, for 0<j<<n—p,
we write C#7 for C“?2* and 7, ;, for @ ..,p ;.

2. Imbedding varieties

We use the same notations as above, and assume that U* is poly-
cylindrical with radii (y,, -, 7,) and that the coordinate system @* is
zero at a. Suppose that @* is p-proper® for E* at a (i.e., the first p
coordinates of a point which belongs to E* and distinct from ¢ are not
all zero). Then if the radii »;(1<i<#) are sufficiently small, we know
(see [3] and [7], pp. 137-138) that for j=1, ---, n—p, there exist dis-
tinguished pseudo polynomials Q;(W; z,, ---, z,) with vertices at the
origin and with coefficients defined in 7,(U*) such that

E* - E*

where E* is the imbedding variety of E* which is defined in U* by the
equations :

Q;(2pijs 21y 5, 2,) =0 j=1, -, n—p.

Now we assume that @* is real. Then, @; can be taken as real, i.e., all
the coefficients are real analytic.

A polycylindrical neighborhood V* of ¢ with radii (§,, -+, &,) such
that &,< 7, 1<<i<n) is called standardized for E* with respect to o™,
if for (z,, -+, 2,) €7 ,(V*), all the roots of Q; are smaller than &; (p<j<n)
in their absolute values. We know that there exists a fundamental

2) In the terminology of [7], this is called C-irreducible, Notice that any real analytic
variety is locally C-analytic.
3) See [7], p. 137,
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system of neighborhoods of ¢ each member of which is standardized®.

Now, put z;=x;++/—13; (=1, ---, n) and consider 7= ,'(7,(U*)" M) to
be a real {p+2(m—p)}-space in (%, =, X,y Xpisy =5 Xy Vpr1r =5 I)e
Then the equations:

Qj(xp+j+\/—_1yp+j; X1y xp) = 0 (j = 17 ) n——p)

define a real analytic variety in 7, (7 ,(U*)N M), which we denote by E,.
We have E*nn;} (7, (U "M)=E,. Let C****# be a copy of complex
{p+2(n—p)}-space whose points are written as (2, **, 2Z,, Wpiry ***, Wy)-
We identify a point of #;'(7,(U*)N\M) with a point in the real part of
C?**»=» and a point of U* with a point in =,(C?"7™#). Write
Q;( X+ —=1Y; x,, -, x,)=Q}(x,, -+, 2, X, V) +/ =10 (x,, -, %, X, ),
where @) and Q) are real and imaginary part of @, respectively, and
denote by E* the complex analytic variety at the origin of C?+*"-#
defined by the equations :

Q; (21, °tty zp’ zp+j7 wp+j) = 0 and

;I(zn *ty Zpy Rptjo wp+j) =0 j=1, -, n—p.

Since all the coefficients of @; vanish at the origin, @} and @}’ do not
have common factors for z,=---=z,=0. Because they are also factors
of (2,+;+/ —1w,,;)"i, where m; is the degree of @;. This shows that
if we choose a sufficiently small polycylindrical neighborhood U#%# in
C?+¥n-1 the coordinate system in U¥ is p-proper at the origin for E¥.
Hence, noticing that E* is invariant under the conjugate operation, we
see that there exist real distinguished pseudo polynomials P;(W ;2,, -+, 2,)
and P}(W; 2z, -+, 2,) (j=1, ---, n—p) such that

P}(Zp+j; Ris "ty zp) =0 and
Pi(wy ;s 20, - 2,) =0 on E* in sufficiently
small U%.

Let £* denote the complex analytic variety of dimension p in 7, (U*)
which is defined by the equations:

P}(zp+j; Ryy **% zp) =0 j = 1, sy, n—p.

Then, since W is a factor of Q} (z,, -+, 2,, Z, W), EXCE* in =,(U¥)
(we can, of course, assume that =, (UF)=U™*), and if (x,, -, X,, 25115 ***s )
belongs to E*, (x,, -+, Xy Xpi1s -**5 Z,) belongs to E*. Summarizing the above
results, we have

4) For details, see [7], §2 and [3]. For later convenience (see §5, (5.3)), in the state-
ment of the definition, we take the closure z,(V*) of zp(V*) instead of z,(V*).
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Lemma 1. Consider a veal analytic variety E in a real analytic
manifold M of dimension n and take a complexification M* of M. Let
a be a point in M and let U* be a polycylindrical neighborhood of a in
M* with a real coordinate system ¢*=(z,, -, z,). Suppose that @* is
D-proper at a for the complexification E* of E in U*. Then, if U* is
sufficiently small, there exist complex analytic varieties E* and E* in
U* which are defined by equations: Q;(2,.;; 2, -, 2,) =0 and
Pi (2,55 21, 5 2,)=0 (j=1, -, n—p) respectively, where Q;(W ;z,, -, 2,)
and P;(W; z,, -, 2,) are real distinguished pseudo polynomials in W
with vertices at the origin and with coefficients defined in = ,(U*), and the
following relations hold®>.

(2.1) EcCE*—E*—E* in U*.

(2~ 2) If (xn ) xprzp+1> "',Z,,) belongs to E*, (xly HR) xpr xp—Hy Tt xn)
belongs to E*, where x;(i=1, -, p) is rveal and x;(j=p+1, -+, n) is the
real part of z;.

Let E”* be the union of the irreducible components of E* of dimen-
sion strictly less than p and let D* be the set of zeros in 7,(U*) of the
product of the discriminants of P;(j=1,--,n—p). Put D¥(E*)=D* U= (E"*).
Since we may assume that P; does not have multiple factors, for suf-
ficiently small U*, D*(E*) is a complex analytic variety of dimension
<p—1in U*

REMARK 1. Since E*—E*, the set of zeros of the product of the
discriminants of @; is contained in D*.

3. Proper coordinate system for a family of subvarieties

Suppose that the dimension of E is p in U=U*nM. Let =(F,, -+, F,,)
be a (finite) family of subvarieties of E. For E and for each F;, we
consider the decompositions E=E’UE” and F;=F}UF}, where E’ and
F' are the unions of the irrsducible components of dimension p of E and
F; respectively and E” and F}’ are the unions of the irreducible com-
ponents of dimension strictly less than p of E and F; respectively (see
§1). Then an irreducible component of F'/ coincides with an irreducible

component of E’. Put F =D F’. Then the dimension of F is strictly

less than p. The couple (E, F) is called the reduced couple associated
with <F.

5) Since @; and P; are not unique, in a strict sense, it is not proper to use such nota-
tions as E*, E* and those which appear in later sections. But, since there are no confusions,
we use them without refering to the polynomials,
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We are goint to define proper coordinate system p*=(z,, -, z,) in a
polycylindrical neighborhood U* of a (€ M) for the couple (E; ). The
definition is done by induction on p. For p=0, any real coordinate system
is proper. Suppose that the notion is defined for <'p. Then a real
coordinate system @* is proper if it satisfies the following conditions :

(3.1) @* is p-proper for E at a®. Let (E, F) denote the reduced
couple associated with & and put:

D(E, F) = (D*(E*)um ,(F¥))nM
T(E, F) = EnU*n=,*(D(E, F))
E'(E, F) = E*nMn=;" (D(E, F))

We take U* so small that D, T and E' are real analytic varieties of
dimension <<p—1 in U=U*"M. Hence the following second condition
has meaning.

(3.2) @* is proper for (E'; (T, TnF,, ---, TNF,)).

We notice that by the definition of E*, = ,(E'(E, F))=D(E, F).
Now we prove the existence of proper coordinate system. Keeping
the same notations as above, we have

Lemma 2. Let F=(F,, ---, F,,) be a family of subvarieties of E and
suppose that E is of dimension p. Then for a point a€ M, a proper
coordinate system for (E; F) at a can be obtained by a linear transformation
of the given real coordinate system ¢*=(z,, ---, 2,) and shrinking the given
neighborhood of a, if mecessary. If @* is p-proper for E at a, the proper
coordinate system can be obtained by a linear transformation of the first p
coordinates, leaving the others fixed.

Proof”. We prove this Lemma by induction on p. If p=0, Lemma
is trivial for any ». By a linear transformation of @*, we get® a real
p-proper coordinate system @'* for E at a. Since the dimension p, of
E'is <p—1, making a linear transformation of the first p coordinates

6) This means that ¢* is p-proper for the complexification E* of E. We sometimes use
the same expression later.

7) Cf., [7], Proof of Lemma 1.

8) If a complex analytic variety E* is of dimension <p, by a linear transformation, we
can always find a p-proper coordinate system at a point of complex manifold M* where E* is
imbedded (see [3]). In fact, this property is taken as the definition of the dimension in [3],
while, in [1], E* is of dimension <(p if each connected component of the set of its regular
points is a manifold of pimension <p. Furthermore, we can find a real coordinate system as
a p-proper coordinate system at a real point, if M* is a complexification of a real analytic
manifold M,
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of @*, we can get a real coordinate system which is p-proper for E and
(p—1)-proper for E' at a”. Repeating the same process, we get a real
coordinate system which is p-proper for E and p,-proper for E' at a.
Lemma follows from the assumption of the induction.

By repeating the construction leading from a couple (E ; &) to another
(see (3.1) and (3. 2)) and by picking up the first member (namely variety)
of each couple (E, E’, etc.), we get a finite family & of real analytic
varieties. Fix a proper coordinate system @* for (E; &) at a. Let G be
a real analytic variety of dimension » which belongs to £ Then ¢* is
r-proper for G at a. A polycylindrical neighborhood V* in U* is called
standardized for (E; F) with respect to ¢*, if it is standarized for each
member of £. Since £ consists of a finite number of real analytic varie-
ties, we see that there exists a standardized neighborhood and that such
neighborhoods form a fundamental system of neighborhoods of a.

4. Proper simplexes

Let M be a real analytic manifold of dimension # imbedded in its
complexification M* and let A” be a straight-linear »-simplex in a real
N-space RN with the dimension N sufficiently large whose points will be
denoted by £. We denote by A} the interior of A”. Suppose that we have
a continuous map f of A” into M. Then the combination &=(f(A"), f, A”)
is a singular r-simplex in M. We call f(A”) and A” the image of & (or
A") and the model of & (or f(A")) respectively.

Let U* be a real polycylindrical neighborhood in M* with a coordinate
system @*=(z, ---, 2,) whose restriction to U=U*"M is ¢p=(x,, -+, %,,).
Let &=(S, f, A”) be a singular r-simplex in M such that S=f(A") is
contained in U. Then f is represented by #» continuous functions
2, =f(#), -, x,=f,#) and we write f=(f, -+, fn). Suppose that
0<r<p<m. Then S=(S, f, A") is called p-proper r-simplex with respect
to @, if the following conditions are satisfied :

(4.1) There exist  functions f; , -, f;, with 1<¢,<7---<7i,<p such
that A” is homeomorphic onto the image S+~ (in =, .. (U)) of A" and
5 is analytically homeomorphic onto the interior Si i of Siri, by
X :fil(t)) Tty x£r=.fir(t)’ lezo, ) xjn_,:09 where {jl'"jn-r} is the com-
plement of {i,, ---, 7,}.

(4.2) Each f;,(1<<!/<n—r) depends on f;, -, f;, continuously on
A" and analytically on A%, in other words, fi,, considered as a function
on S#i, by the homeomorphism mentioned above (4.1), is continuous

9) Cf, [7], p. 138
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on S% and analytic on S in (x;, -+, x;,).

REMARK 2. For 0<lj<n—p, put f?" ==, ;of and S?*7=frri(A"),
Spi=fr*i(A7). Then A" is homeomorphic onto S?*7/ and A} is analytically
homeomorphic onto S3*/ by f?*/. Put &,.;=(S?*/, f#*i, A"). Then &,,;
is a p-proper simplex. We call &,,; the (p+j)-base of p-proper simplex
&=(S, f,A") and we say that © lies over ©,.;. [P =(f,, ", fp+i>0, =, 0)
and &,=6. If we restrict the projection 7 ,.; to S, it is a homeomorphism
of S onto S?*/ and an analytic homeomorphism of S, onto S3*/., We
denote this homeomorphism by = (S, S#*7).

Remark 3. For 1<(j<<u—p, we put f*» =m, ;of and also put
S =fLD(A"), S§#7>=f?(A7). Then the combination (S, f# A”)
is a p-proper simplex, which we denote by &, ;,. &, ;, is called (p, j)-
base of &=(S, f, A"), fLP=(f1, *, [, 0, =, 0, f:5,0,-,0) and &, ;,
lies over &, (Remark 2).

5. Proper Triangulations

We use the same notations as the previous section. Let K be a
straight-linear complex in RY and let f be a homeomorphism of K into
M. Then the combination =(f(K), f, K) is a complex in M or a
triangulation of f(K). f(K) and K are called the image of & and the
model of & (or f(K)) respectively. If f is analytically homeomorphic on
the interior of each simplex of each dimension which belongs to K, &
is called analytic or analytic triangulation of f(K).

Let V* be a polycylindrical neighborhood with radii (¢, -+, €,) such
that V*—U*. Put V=V*~M Let =(G, g, K) be a complex of
dimension p in M. Then we say that & is a p-proper complex with
respect to @ and V, if the following conditions are satisfies (5.1)-(5.6):

(5.1) G is contained in V and all simplexes which belong to & are
p-proper with respect to .

(5.2) Each simplex of & of dimension strictly less than p is a face
of at least one p-simplex of &.

The boundary o8 of R is the collection of all (p—1)-simplexes each
of which is a face of only one p-simplex of & and all their faces. oRf
is a subcomplex of & and is written as (3G, g, oK).

(5.3) Let (S, g A" (0<r<p—1) be a simplex of 98 and let
g=(g,, -+, &,). Then SI’CWP(V)—WP(V) (for S?, see Remark 2) and for
p<g<n, —&;<g;(t)<&; for t€ A”, where &; are radii of V*,
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(5.4) There exists a triangulation &,=(7,(V), g,, K,) of 7,(V) in
such a way that =, gives rise to a non-degenerate simplicial map of &
onto &,, that is to say, there exists a non-degenerate simplicial map h,
of K onto K,such that z,0g=g,°h,. We write =,& for (z,S, g,, h,A),
where &=(S, g, A) € &.

REMARK 4. If (S, g, A) is a simplex of &, it is equivalent to
(S, 71 (S, S?) o g,, hy(A)) and any simplex (S, g,, A’) of &, is equivalent
to the p-base (S?, g?, A) of a simplex (S, g, A’) of & such that S*=9".

(5.5) Let & be a (p—1)-simplex which does not belong to oOR.
Then there exist at least two p-simplexes & and &” of & which have
& as the common face, such that =,& and = ,&"” are different.

In this case, of course, 7,& and =,&” have #,& as the common
face.

(5.6) For 1<j<m—p, there exists a triangulation &, ; =
(n(ﬁ,p((;), &epir» Kepip) of ﬂcp,j)(é) in such a way that =, ;, gives rise to
a non-degenerate simplicial map of & onto &, ie. there exists a
non-degenerate simplicial map #4,; of K onto K. ; such that
Tip i 8=8cp.5° ey >

We call &, and R, ;, p-base and (p, j)-base of & with respect to @
and V respectively.

REMAK 5. &, is p-proper with respect to @ and V with itself as the
p-base and the (p, j)-base. And R, ;, is also p-proper with respect to ¢
and V with itself as (p, j)-base and for 1<<k<n—p, k==j, &, is the
(p, k)-base. The simplicial map k%1 of K., onto K, is defined by
hy=hEPohy, . 8, is also p-base of R, ;, with i =h{ ] again as the
simplicial map of K, ; onto K,.

Let G be a subset in V and let =(G, g, K) be as above. Then we
say that G is p-properly triangulated in & (or in G), if G contains G and
27(G) is a subcomplex (of K) (i.e., (G, g, g '(G)) is a subcomplex of &).

REMARK 6. Let &;=(S;, g,, A;) be a simplex of &,=(7,V), g,, K,).
Then 73 ((S)) N7, 7 (G) is the union lsU’n(S(’i, ), of the interiors (S, ;,), of
1=1

all the simplexes (S& 5, &p.5r» ‘A ) A<I<E(@, 7)) of K, which lies
over ©&; (see Remark 5, (5.4) and (5.6)). Put S% ,,={(x,, -+, x,, 0---0,
—&pjy 0-:0) [ (2, =+, ) €S} and SEHP = {(x,, -++, X, 0-++0, &4, 0--:0) |
(%,, ==, x,) €S;}, where (&, -+, &,) are radii of V*. Denote by (S0.;),
and (SK’;>*Y), the interiors of S%; and Sk*{*' respectively. Since
(S4.5)e (O<I<E(, j)+1) are mutually disjoint, we can naturally introduce
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an order in Cy ;,={Sk.»} (0<L1<k(, j)+1) by means of the (p+j)-th
coordinates : S¢, 5, < S, j<+++< SEHP < SEHPH
Keeping the same notations as above, we prove

Lemma 3. If =(G, g, K) is a p-proper complex with respect to @
and V such that the model K, of its p-base &,=(=,(V), g,,K,) is con-
tained in R™, V has an analytic triangulation "=V, f, K" which has
the following properties (5.a)-(5.c):

(5.a) K" is imbedded in R™*"~? in such a way that =, (acting on
R™"=?) yields a simplicial map of K" onto K,.

(5.b) The model K of the complex = (G, g, K) can be taken to be
a subcomplex of K", f is an extension of g, h, is a restriction of =, to
K and K, ;=7 ;(K) with h, j=m, ; (restricted to K).

(5.¢) For 1<j<mn—p, 7, ;(K"has a triangulation in such a way
that =, ;, is a simplicial map of K" onto m, ;(K") and =, ;,(V) has a
triangulation K2, ;5= 7, i V), flsir Zemp(K™) such that =, ;0f =
o 50 T > and R, 5, is an extension of K, ;, (i.e., [, is an extension of
&pj» and K, ;, is a subcomplex of K%, ;; =7, ;;(K™)).

Proof. First we arbitrarily fix order in all the vertices of &,:
Vs, &p> @), *+, (Us, &5, Ap). Suspose that o(; ;, 1<i<B, i<i<n—p,
0</<k(i, j)+1) (see Remark 6) has coordinate («, ---, x5, 0---0, x; 5, 0---0),
where (xi, -+, x,, 0---0) is ths coordinate of v;, and put Ci ;= {al 5}
where «f; ;, is a point in 7, ;(R™""?) which has the expression :

a(li.]) = (ti, Tty t;nv 0"'0, x(li.J)r 00)

where a, = (¢, -, th, 0---0).

Put

A= {we V|, yw) =vl5, 1<G<B, 1<j<n—p, 0<I<k(E, j)+1}

and
A= {'86 Rm+”<Pl7t(m,j>(‘8):a(li,J)7 1__<_Z£Bv 1_<_]_<_n_p7 Oélék (i, ])+1}'
Let B=(ti, -+, th, 31y, -+, xét32,,) € A’. Then the function f/ which maps
B to the point (xi, -+, x,, 2l 1,, -, x{z2,) of A is a one-to-one map of
A’ onto A. Let f{,;,, be the one-to-one map of ()= CJ Ci. j, onto

B
Ci= 'Ul Ci ;» such that @f; ;, corresponds to vf; ;5,. Then 7, ;o f' =f(, o7, i

42 z 0 5 ) ) 4 0
Let :80—(1'10, B tmo) x(%.l)r B x(%,rpb—p))r R Br:(tlr’ RS} tw:; x(li,.l)a R x(g,.'}az—p))

be »+1 different points of A’ such that
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i) v;,=7,8), -, v;,=m7,(8B,) are contained in a simplex A of K, and
5, < ---<i,. Put S=g,(A).

i) For 1<j<m—p, there exists a number ¢ (0<qg<<k(S, j)) such
that for 0<¢t<{7, f(,,°7cm j»(B;) belongs either S¥% ;, or S¥%}, and if, for
some £, f{,° %y ;,(B;) belongs to Sfs ;, £, 150 %im 7> (B:-,) belongs to S 5,
(if it belongs to both of them, we consider that it belongs to S, ;).
Then B,, ---, B, span a r-simplex in R™+"~? and all these simplexes form
a complex in R™"”"? which turns out to be the desired model of the
triangulation of V mentioned in the Lemma, and hence is denoted by K.
From the construction of K”, we see that =, yields a simplicial map of
K" onto K, and that =, ;;(K”) has a triangulation so that =, ; yields
a simplicial map of K" onto it. =, ;(K”*) with this triangulation is to
become the model of 7, ;,(V) mentioned in (5.c), and is denoted by

®.5. Let A be a simplex of K” with vertices 8,, -+, 8, such that
(B, -+, f/(B,) are the images of vertices of a simplex of complex &.
Then all these simplexes A form a subcomplex of K” which turns out
to be equivalent to the model of the given complex &, and hence is de-
noted by K. Also from the construction of K”, =, is a simplicial map
of K onto K,, and 7, ;,(K) is considered a subcomplex of K?,; such
that 7, ;, is a simplicial map of K onto it. =, ;,(K) with this triangula-
tion is naturally going to be the model of &, ;, and is denoted by K, ;.
Now by (5.4) and (5.6), the homeomorphisms g and g, ; of K onto G
and of K, ; onto n(p'j)(é) are naturally defined with the properties;
Ty 8 =80 Ty W5y E=Gp,»°%cm > AN 7,08, ;=g 07, s0 that (G, g, K)
is equivalent to the given triangulation of G, the given &, and
(75, (G, &cp.i>» Kep ) are its p-base and (p, j)-base respectively.

Now we define a homeomorphism f of K” onto V with the desired
properties as an extension of g. Let ¢=(t,, -+, t,,, Lpsrs = Lin-p) DE A
point of K” and let A be the minimal simplex of K, which contains
7 (t). For 1<j<m—p, let /A and /A be simplexes of K, ;, such that
7 (/A)=7,(/A)=A and such that if #'=(¢,, -, ¢,, 0---0, ¢,,,;, 0---0) and
t*'=(t,, -, t,, 0--:0, £2,,;, 0---0) are points of ‘A and A respectively,
by <ty ;<th.;, and no (m+j)-th coordinate of any other simplex A’
of K,,.; with =, (A)=A comes between ¢,,; and ¢,.;. Define
f@)=x=(x,, -+, Xy, Xpsy, -, X,) € V as follows: Let x..; and x2,; be
the (p+j)-th coordinates of g, ;(¢)) and g, ;,(¢*) respectively.

%) = &y Tu(t),

tm+'_t1 i

- Imty Tmtj o 2 1 : 2 1
xp+j“xm+j+t2 __tl A xm+j-xm+j)v 1f tm+j>tm+j)
m+J m+3j

and
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ol a2 : 2 _
Xprj = Xmij = Xpij, if tou; =1,

It is now easy to check all the properties (5.1), (5.2) and (5. 3) with all
we have constructed.

ReEMARK 7. For 0<i<n—p, =, (K" and =, ;(K) can be considered
as complexes such that 7z ,,; is a simplicial map of K” onto =, ;(K") and
of K onto =,,.;(K?), and =,.;(V) and 7r1,+,-((~;) have the natural triangula-
tions (7, /(V), fiisy T j(K™) and (7, (G), &pvj, T mi;(K?)) respectively,
where f}.; is defined as 7, ;0 f=f},;0m7,. ; and g,.; is the restriction
of f»,; to m,, (K). Then (7, (G), gy+;y Tm::«(k)) is a subcomplex of
(7 i j(V), f505, Tmi(K™) and consists of all (p-+j)-bases of simplexes of
(G, g, K). 1If G is p-properly triangulated in G, 7 ,.,(G) is also p-properly
triangulated in 7, ;(G).

6. Local triangulation of real analytic verieties

Theorem 1. Let E be a real analytic variety in a real analytic
manifold M and let F,, ---, F,, be a finite number of subvarieties of E.
Then for any point a of M, there exists a neighborhood V of a such that
ENV is triangulable and each F;nV (1<i<m) is a subcomplex of ENV
for the triangulation of ENV. ENV, considered as a complex, has a
model K in the Euclidean space of the same dimension as that of M.
The homeomorphism g of K onto EnV is analytically homeomorphic on
the interior of each simplex of each dimension of K.

Proof. We may assume that ¢ belongs to each F;(1<{i<m). Suppose
that the dimension of E and M are <p and » respectively, and M
is imbedded in a complexification M* of M. Let U* be a polycylin-
drical neighborhood of @ with real coordinate system o¢* = (z,, -, 2,)
whose restriction to U=U*"M is ¢=(x,, -+, x,). Suppose that ¢* is
proper for (E; (Fy, -+, F,,)) at @ and let V* be a standardized neighborhood
for (E; (F,, -+, F,,)) such that V¥ U*. Put V=V*~ M. Then we are
actually going to prove:

If such V is sufficiently small, there exists a p-proper complex
R=(G, g, K) with respect to @ and V such that EnV is p-properly
triangulated in &, K is imbedded in R™ and the model K, of p-base R,
of & is imbedded in m,(R").

The proof is carried out by induction: Since for p=0, Theorem is
trivial for any #, we fix n arbitrarily and prove for p under the assump-
tion that it is true for <p. Since @* is proper for (E'; (T, TnF,, -,
TNFE,)), V¥ is standardized for it and since the dimension p, of E' is
<p—1, by the assumption of the induction, there exists a p,—proper
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complex ®=(G,, 'g, 'K) with respect to @ and V such that E,.NV is p,-
properly triangulated in '® and TnV, TnF,AV, --., TNF,,nV are sub-
complexs of E'NV, and such that the model 'K, of p,~base '®, of '®
is imbedded in 7=, (R"). Hence, by Lemma 3, there exists an analytic
triangulation '®*=(V, 'f,'K") of V with the properties (5.a), (5.b) and
(5.c). We denote by '‘R;=(=,(V), 'f,, '"K©) the p-base of '®” (see Remark
7), which gives a triangulation of = ,(V).

Let ©=(S, 'f,, A) be a simplex of dimension p of '®; and let
(So» *fs, A,) be its interior. Since 7 (E')=D(E, F) is of dimension <p—1,
7, (E,)NS,=0 and especially S,nD*=0. Furthermore, since S, is simply
connected, n;’(So)r\(E*r\ V*) consists of connected components each of
which is homeomorphic to S, by =, (see Remark 1). Let S, be
one of the connected components. Then if S, is represented by
2y =u(t), -, Xp=uyt), Xp,==%,=0, S, is represented by x,=u,(f), ---,
Xy =uy(1), Zpir=Wyii(2), -+, 2,=w,(t), where w;(p<j<m) depends analy-
tically on u,, -+, u, on S,. Write w;(¢)=u;(!)++/—1v;(t) where u;(f) and

v;(t) are real and imaginary part respectlvely and consider an open 51m
plex S, which 1s represented by wu,(¢), -+, uy(t), 4,,(t), -+, u,(¢). Then S
is contained in E*N V (see (2.2)). If S0 is another open simplex derived
from S, as above and is represented by wu,(f), -, u,(¢), )., (), -+, ui(?),
for p<j<m, either u,;(t)=uj(¢) on A, or u,(¢) is distinct from #}(f) at any
point of A,, because S,ND*=0.

Denote by S the closure of §0 in V (therefore also in £*N V). Since
E'NnV is p,—properly (p,< p) triangulated, by the continuity of roots of
the distinguished pseudo polynomlals P; (1<j<m—p) which defines Ex*
and local connectivity of E* (see [1], [3]) we see that all u,(¢) (p<j<n)
have unique continuous extensions to A. Since, for 1<i<p, u?)
has already the extension to A as a representation function of 'f,,
u=u,, -+, 4,) defines a homeomorphism of A onto S and @’:(§, u, A) is
a p-proper p-simplex. Every face of & lies over a simplex of the same
dimension of 'R} and analytic (notice that the image of its p-base is
either contained in 7 ,(E") or the interior is disjoint from D¥*).

Now we denote by G the union of all these S and consider the
collection C of all simplexes obtained by the barycentric subdivision of
all these ©. Then the collection C gives an analytic triangulation
f=(G, g, K) of G. Remembering that E* is defined by distinguished
pseudo polynomials and that V* is standardized, it is easy to see that
& satisfies the condition (5.1)-(5.6), i.e., & is a p-proper complex with
respect to @ and V and its p-base is the barycentric subdivision of
1@;:(7{19(7)7 1fp» IK;) N L

From the construction of G, we see that En VG (see Lemma 1).



122 K. SaTo

Suppose x 3F; and 7,(x)¢=,(E"). Then =,(x)¢ D*(E*). Since, in this
case, ¥ is a regular point of both F¥* and E* (see, for example, [7],
p- 138), E* is expressed locally by z—p real analytic functions in
(21, -+, 2p) and E is locally real analytic manifold of dimension p ex-
pressed by the same functions restricted to real variables (x,, ---, x,) (see,
for example, [2], p. 92). Hence any simplex of G which contains x in
the interior is contained in F;. This shows that each F; is a subcomplex
of G and hence EnV is properly triangulated in =(G, g, K) in such a
way as stated above.

REMARK 8. It is easy to see that we can reconstruct the model K
of EnV in such a manner that for any vertex ¢ of K, x=g(¢) has the
same coordinate as that of #, preserving all other properties.

REMARK 9. In the above triangulation ® =(EnV, g, K); ENnoV is
a subcomplex of ENnV, where oV=V—-V.

7. Global triangulation of real algebraic varieties

We consider a real algebraic variety A in R” with an usual coordinate
system @=(x,, ---, ¥,). Suppose that A is defined by polynomials
fi(X,, -+, X,) with degrees 7; (1<<i<<m< o). Let fJ be a polynomial

in #+1 variables defined by f3(X,, X,, -, X,) =X f,-(%, . X") Then

Y X
1, -+, f5 defines a real projective variety A° in R"™ with a coordinate
system @,=(x,, %, -+, x,). We cell A° the projective variety associated

with A. Let H, and H, be the hyper-planes of R""' defined by X,=0
and X,=1 respectively. Then A° consists of a projective subvariety A}
in H, and all the lines which join the origin @ of R™ and a point of

1=A°~H,, where A9 is isomorphic to A by the canonical map of H, to
R™: (17 X1y o0t xn)__)(xla ) xn)'

Let F*, ---, F* be a finite number of algebraic subvarieties of A and
let (F¥) be the projective variety associated with F¢ (1<i<k). By
Lemma 2, there exists a proper coordinate system @}=(¥,, ¥, ***, ¥,) for
(A ((FM), -+, (F*), AY) at a. Since @) can be obtained from ¢, by a linear
transformation, ¢q is also a global coordinate system. Then by Theorem
1, there exists a neighborhood V of @ such that A°~V has a triangula-
tion 8=(A°"V, g, K) and such (F?)°~ ¥V and AN V are subcomplexes of
A°nV. Since, in Lemma 1, E* and E* can be taken to be symmetric
with respect to the orign, and A° and each (F?)° are symmetric with
respect to the origin for @§ (hence also for ¢,), we may assume that the
triangulation & is symmetric with respect to a for ¢} (hence also for ¢y).
Therefore, considering the projection of A°’NOV (see Remark 9) from a,
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we get a triangulation of A° (considered to be imbedded in projective

n-space P") each (F')° and A} are subcomplexes of A°. The model of

A°N3V can also be assumed as symmetric and the model K(A°) is ob-

tained from the symmetric model of A°~9V by the identification with

respect to the symmetry, the homeomorphism is the projection preceded

by g and by the form of A°"9V, we see the triangulation is analytic.
Summarizing the above results, we have

Theorem 2. Let A be a real algebraic variety in R" and let F*, ---, F'*
be a finite number of algebraic subvarieties of A. Let A° and (F*)° be the
projective subvarieties associated with A° and (F*)° respectively. Suppose
that A® and (F?)° are imbedded in projective n-space P" and consider that
A is a subset of A°. Then there exists a triangulation N=(A°, f, K(A"))
of A° such that each (F?) is a subcomplex of A° and A°— A is also a sub-
complex of A° imbedded in a hyperplane of P”*. The homeomorphism f
is analytic in the interior of each simplex of each dimension of K(A°).

8. Pseudo-cells and cells

If a real analytic manifold e¢ is analytically homeomorphic onto a
relatively compact domain D in R’, e is called analytic pseudo-cell or
simply pseudo-cell (since from now onwards, we are concerned only with
analytic case). The dimension of ¢ as a manifold is equal to » and we
say that pseudo-cell ¢ is of dimension » and write ¢” if it is necessary
to specify the dimension.

In the above definition if ¢, hence D, is homeomorphic to the interior
of a sphere, we call e cell.

Let X be a topological space and suppose that X is a union of
mutually disjoint pseudo-cells: X 29 ¢,. Then we say that X has a

pseude-cell decomposition {e,}, or X is a pseudo-cell complex, if for each
e,, there exist a relatively compact domain D, in R” and a homeomor-
phism f, of D, onto &,, and if each combination (e,, f,, D,) satisfies the
following conditions (8.1)-(8. 4):

(8.1) {e,} is locally finite.

(8.2) e, is written as a union of a finite number of pseudo-cells
in {e,}.

Each pseudo-cell of oe,=é¢,—e, is called a boundary pseudo-cell of e,.

(8.3) f, is analytic homeomorphism of D, onto e¢,. If ¢ is a
boundary pseudo-cell of ¢}, f;'(¢s) is an anlytic submanifold of the space
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R” which contains_ D, and f;'(es) is analytically homeomorphic onto ¢,
by f., and @2D=D—D=|] f;'(es), where the union is taken for all the
B

boundary pseudo-cells ¢; of e,.

(8.4) For any point @ of 9D, any neighborhood V(a) of @ in R”
contains a point of R”—D.

When X has a pseudo-cell decomposition {e,}, if each ¢, is a cell,
we say that X has a cell decomposition or X is a cell complex.

Let E, (F,, -, F,,), », V be the same as appeared in the proof of
Theorem 1. We may always assume that @, E, F, (1<k<m) are defined
in some rectangular neighborhood U which contains V. Then just con-
sidering cells in place of simplexes, by the same method as used in the
proof of Theorem 1, we can prove the following

Lemma 4. Let E, (F,, ---, F,,), ¢, V be as above and suppose that E
is of dimension < p. Then, in addition to a triangulation AR:(E/\ V, g, K)
in a p-proper complex K= (G, g, K) which is constructed in the same way
as in the proof of Theorem 1, there exists a cell decomposition {e;} of V
which satisfies the following conditions (8.a)-(8.¢€):

(8.a) The triangulation of V constructed from R = (G, g, K) by
Lemma 3 is a subdecomposition of {e;}.

(8.b) G, EnV, and each F,nV A1<k<m) are subcomplexes of V
as cell complex.

(8.c) {m,(e)} gives a cell decomposition of =,(V) and for each
7 O<j<n—p), {7, (e} gives a cell decomposition of 7=, (V).

(8.d) For each cell = e;) of = ,(V), there exists a real analytic variety
H(w (e,)) defined in =, (U) (V=U) such that = ,(e;)H(w (e;)) and each
point of 7 (e;) is a simple point (i.e., in a neighborhood of the point, H
is a real analytic manifold of the same dimension as H) of H(= Je;)).

We say that H(w,(e;)) is attached to 7 ,e;). Put H,={H(7,e:))}
where 7,(¢;) ranges over all the cells of =, (V). Take He€ ., Then
7, (H) is a real analytic variety in U. Next, suppose that E* is defined
by P;=0 (j=1, --, n—p), where each P; is real (see Lemma 1). Then
for each subset {j,, -+, j,} of {l,.-,n—p}, we denote by Hj ., the
real analytic variety defined in U by P; =0, -, P;,=0. Now put
H=A{=,(H), =;'(H)NH},..;,, H; ..;,}, where H ranges over every element
of 4, and {j,, -+, j,} ranges over every subset of {1, .-, n—p}.
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(8.e) For each e;, theve exists a real analytic variety H(e;) in 9 such
that e;c=H(e;)) and each point of e; is a simple point of H(e;).

9. Scattered family of varieties in R”

We consider a combination (E, &, D), where D is a relatively compact
domain in R”, E is a real analytic variety defined in a domain D’ in R"
such that D—D’ and ¥=(F,, ---, F,,) is a finite set of subvarieties of E
defined also in D’. Let {(E,, % D,)} be a set of these combinations.
We call {(E,, &F* D,)} scattered family of varieties, if the set {D,} is
locally finite.

Let @ be a point in R" with usual coordinate system @=(x,, -+, X,,)
and let £ be a real analytic variety E defined in a neighborhood U of
a. Let & be a finite family of subvarieties (F,, ---, F,,) of E. R"is con-
sidered to be contained in complex #z-space C” with coordinate system
p*=(z,, --+, 2,) whose restriction to R” is @. U is also considered the
intersection of R” with a neighborhood U* of @ in C”. Suppose that we
have a proper coordinate system @'*=(z{, -+, 25) for (E; &) at « and let
@ =(x1, -+-, ) be the restriction of ¢* to U. Then we can consider that
@ is obtained by an affine transformation of ¢. Finally let V*( V¥ U*)
be a standardized neighborhood for (E; &) with respect to ¢’* which is
so small that triangulation of ENnV(V=V*NR") can be carried out in
the same way as in the proof of Theorem 1. In this case, we call
(E, &, ¢, V) normalized combination for triangulation at the center a and
if we wish to specify the center, we write (E, &, ¢/, V), for (E, &, ¢/, V).

Let {(E,, ¥° ¢% V,)} be a set of normalized combinations
(Eay F%, 9% V,)a, for triangulation at the center a,€ R". We call the
set {(E,, F° 9°, V,)} normalized scattered family of varieties, if the set
{(E,, F*, V,)} is a scattered family of varieties (i.e. if {V,} is locally
finite).

Lemma 5. Let {(E,, ¥% D,)} (a€ A) be a scattered family of varie-
ties, where by definition E, and each element F¢ 1<k<my,) of F* are
defined in a domain D/, such that D,=—>D,. Then there exists a normalized
Scattered family of wvarieties {(E, j, TP, P, Viy i))ace,j} (XEA; for
Sfixed a, 1<j<j,<oo) which satisfies the following conditions (9.1)-(9.2):

9.1) Eqp=E, and FP=F* 1<57<7,).
(9 2) a(m,j)eEwan and E«»/\ch U..;'zl I/(ats,j)’ Ujgl V(m,j)CD;-

Proof. We have only to remember that {D,} is locally finite and
for each @, E,NnD, is compact,
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10. Pseudo-cell decomposition of a scattered family of varieties

Theorem 3. Let {(E,, ¥F°* ¢* V, )} (o€ A) a normalized scattered
family of varieties in R*. Then E= UA(wa\ V.) has a pseudo-cell decom-
ag

position which satisfies the following conditions (10.1)-(10.2) :

(10.1) For each @ and each F2€ F* 1<k<m,). E,NV,and FinV,
are subcomplexes (as pseudo-cell complex).

(10.2) The decomposition of E,NV, is a subdivision of a cell de-
composition of E,NV, obtained along the line of Lemma 4.

Proof. By definition E, is defined in a domain U, such that U,DV,.

We may also assume that ¢ is defined on U, and U, is rectangular with

the center at the same q, as that of V,. We define: Dim E=Max dim E,,
acA

and prove this Theorem by imduction on the dimension p of E. For
p=0, the Theorem is trivial. Then we prove for p assuming that the
Theorem is true for < p. For each «, we have the imbedding varieties
E* and E* both of which are of dimension p (Lemma 1) and p-proper
complex G, which is obtained as the real part of E* in V,, and by
Lemma 4, we have a cell decomposition of V, which satisfies the condi-
tions (8. a)-(8.e).

Let ¢ be a cell of 7,(V,) of dimension <<p—1 (see (8.c)) and let
H(e) be the real analytic variety attached to e¢ (see (8.d.)). Define
H(e)zé*f\ U,n7;*(H(e)). Then H(e) is a real analytic variety of dimen-
sion <p—1 defined in U, (notice U,DV,). Put: H«»ZU H(e) and

EAF"’:{H(e)}, where ¢ ranges over all the cells of =,(V,) of dimension
<p-1

We fix a index « and for B€ A, we put E‘“Bz(ﬁi‘f\ U,,,)n(é;,"n Up).
Then Ewg is a real analytic variety defined in U,nUs;. Now suppose that
Emf, N(V,n Vg ==0. In this case we construct a normalized scattered

family {(Bia, F2% 937, Vid)y} (€L as follows:
1) £B=E§<H(UMHU5), éfi”pz{EAws}-

2) Ip is a finite set, for any /, algé€ E‘mﬂ N(V,n V) and
Eon(V,nV= U Vi, | ViecU,NU,.
l€lup U

3) @ is obtained from ¢® by making a linear transformation over
the first p coordinates of ¢, and next, making a translation of origin
from a, to alg, where a, is the center of V,. The existence of such a
family follows directly from the fact that E‘wﬂr\(Vwr\ Ve) is compact and
from Lemma 2,
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Now, again by Lemma 4, V/; has a cell decomposition which satisfies
the conditions (8.a)-(8.e). Fix indices «, B, / arbitrarily and let ¢’ be a cell
of #,(V%s) of dimension <<p—1. Let H(¢’) be the real analytic variety
attached to ¢ and consider that H(¢’) is defined in a rectangular domain

Uls such that Vig—Ul—U,NU,. Define H(¢') = Eian Ulynm; (H(e'))
and put G = {ﬁ(e’)} and Hl,= U H(¢'), where ¢ ranges over all the cells

of =, (Vi) of dimension <p—1.

We consider the set {(H,, *, V,), (Hs, Fe8, Vi|ae A, E,an(V,nTV,)
+0, /€ ,}. Asis easily seen, this set can be considered as a scattered
family of varieties. Hence by Lemma 5 there exists a normarized scat-
tered family of varieties {E}, &7, @1, Vi} (v€ A,) which satisfies the con-
ditions (9.1) and (9.2). Since the dimension E‘=ypA E; is <p—1, by the

assumption of the induction, E' has a pseudo-cell decomposition which
satisfies the conditions (10.1) and (10. 2).

For each a€ A, G, has a cell decomposition (see (8.b)). Let {e%
(1<i<i,) be the set of p-cells ¢, , on G, and let G denote the (p—1)-
skelton G,—\/i%,e?, ;. Since, for each H(e)e SAF", E' gives a pseudo-cell
decomposition to er\H(e), E' also gives psendo-cell decomposition to
G} which is finer than the original cell decomposition. Next for each
a, 3, I, we also have a cell decomposition of E}lsN V;B—E*AV;B Let
{et, s} 1<j<j(a, B, 1)) be the set of p-cells e,/ on Ex N Vigsuch
that e?,5,;,NG,==0. Then by the condition 3) for ¢}?, we see that
e e N Vy=nel, g, ,)r\G and that if G(,, s,» is the intersection of G, with
the (p—1)-skelton of Exn Vi, E* glves a pseudo-cell decomposition to
G(lm,ﬁ,l) Now put GZ=G;, U (U Glap,0) (Ewa\(V NVe) =0, [ €L,5). Then

G2 has a pseudo-cell decompos1t10n given by that of E' and from the

construction we see that each pseudo-cell of G2 is a boundary pseudo-

cell of a p-cell e?,;, or e?,,,;, and any pseudo-cell of dimension < p—1

of G2 is a _boundary cell of a (p—1)-pseudo-cell of G2. We consider the

open set G,—G?2 in G, and express it as the union of the connected

components &, (k€L): G,—G= ) ELIJ - Each &, is open in G, and
@

analytically homeomorphic to relatively compact domain 7 ,(é, ,,) in 7 ,(U,)
and hence is a p-pseudo-cell. Let e?~! be a (p—1)-pseudo-cell of G2.
Then e?~* has a neighborhood W in G, such that Wn(G:—e?)=0, and
if er~'—V,~V,, W—e?'is connected and if e?"*— V,, W—e?~" has a finite
number of connected components. Hence we see that if e?'—V,—V,,
there exists one and only one é., ,, whose boundary contains ¢?~’, and if
e?~'—V,, there exist a finite number of connected components of G,— G2
which have ¢?~! as a common boundary pseudo-cell. This shows especially
that the boundary of each é,, has a (finite) pseudo-cell decomposition
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with cells in G2 and that I, is a finite set. Now it is easy to see that
we get a pseudo-cell decomposition of G, by attaching a finite number
of p-pseudo-cells é, ,,(k€1,) to G2.

For each a € A, we consider a pseudo-cell decomposition of G, obtained
in the above manner. Let B8€ A be such that Emﬂr\(V N Vg)==0. We con-

sider again the cell decomposition of E ¥n Vi given by Lemma 4. Then, by
the condition 3) for ¢7#, using the similar argument as above we can obtain
a psendo-cell decomposition of E*r\( U VienV,) such that E,; and G, are
subcomplexes in U VisnV, where ( p 1)-skelton of G, r\( U Vien'V,)

I€eT, *B

is |J Glys. Applying the same discussion to 5, we have a pseudo cell
1€lyp

decomposition of E*r\( U Vi,N V) in such a way that Eﬁm (:E‘wﬁ) and
G, are subcomplexes in Lj Vi,N Vs Let E,},ﬂ be the (p—1)-skelton of

IEIB

E‘wr\( U VienV,). Then (ElvEL)N(V,nV,) has a pseudo-cell de-

composulon given by E'. Now attaching the connected components of
Epsn (Vo Vo) —(ELa U ES) N (VN V) to (ELNEL)N(V,AT,), we get a
new pseudo-cell decomposition of Ewﬁr\(V NnVy) and G,NGs is a
subcomplex. We denote by G., the (p—1)-skelton of G,NG,. Put

=G2|J (UGL). Then G2 has a pseudo-cell decomposition given by
E1 and we notlce that any pseudo-cell of dimension <_p of G »s Which
is not a boundary pseudo-cell of some p-pseudo-cell of G,NG; is already
contained in G2. Hence, by attaching the connected components of
G,—G? to G2, we obtain a pseudo-cell decomposition of G,. Suppose
that each G,(@€ A) has a pseudo-cell decomposition obtained in the above
manner. Then ngJAG‘” has a pseudo-cell decomposition, where each G, is

a subcomplex with the decomposition just mentioned above and E is also
a subcomplex with desired properties.

Let E be a real analytic variety in R” and let F,, ---, F,, be sub-
varieties of E. Then there exists a normalized scattered family
{(E,, ¥*, 9%, V,)} (@€ A) such that for any «, E,nNV,=EnV, and
g°*={E,, ---, F,,}. Hence, as a direct consequence of the above Theorem,
we have

Corollary. Let E be a real analytic variety in R* and let F,, ---, F,, be
a finite number of subvarieties' of E. Then E has a pseudo-cell decomposi-
tion in such a way that each F, (1<k<m) is a subcomplex.

OsakA UNIVERSITY
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10) Obviously, Corollary is also true for a locally finite family of subvarieties instead
of a finite number of subvarieties,
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