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Introduction

T.T. Frankel [5] applied Morse theory to the classical groups using the
trace function. The critical sets turn out to be Grassmann manifolds. Frankel’s
results show how the classical groups can be obtained by ‘‘attaching” plane-
bundles over Grassmann manifolds. In this paper we apply Morse theory to
the classical groups using another elementary function, namely ‘“the length
function”. We think of the classical groups as imbedded in suitable euclidean
space [6], and use methods similar to those of R. Bott [3]. Finally using some
results on fixed point theory it is shown that the Morse inequalities are equalities.
This method is due to Frankel [5]. The CW-decomposition and the Poincaré
polynomials obtained in this paper, are, of course, well-known and have been
obtained by several different ways.

Preliminaries

Let F be the field R of real numbers, the field C of complex or Q, the
quaternions. Let U(n; F) be the group of unitary matrices of degree n over F,
ie., Um; F)={A: A A*=I,}, where ‘bar’ stands for complex or quaternionic
conjugation as the case may be. Thus U(n; R)=.SO(n), (instead of O(n) we take
SO(n)) U(n; C)=U(n), U(n; Q)=Sp(n). Let M(n; F) be the space of all

matrices of degree n over F. Let E=<2 é") Then the map of U(n; F)

AN . . XO0N\_ 4, o (0 XY!
x U(n; F)y=>M(2n; F) given by <O Y>—A AAA= vE: 0 ), where

X, YeU(n; F), induces an imbedding of U(n; F)= U(n; F)ZU(n; F) (here A is

the diagonal) into M(n;F). In this imbedding X< U(n; F) is sent into
XeM(n; F). See Kobayashi [6]. This is an imbedding of U(n; F) consider-
ed as a “‘symmetric space’’.

In Cartan’s theory symmetric spaces arise as follows—Let G be a compact,

*) This research was supported in part by NSF Grant GP-5874,
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connected Lie group with a left and right invariant Riemannian metric. Let
o : G—G be an automorphism of period 2 (i.e., an involution, o +identity). Let
K, be the identity component of the full fixed set of o. Then G/K, is a
symmetric space. If we take G=U(n; F)x U(n; F) and consider the involution

a(x, y)=(y, x), the fixed set is A={(x, x)|x= U(n; F)}. Thus Uln; F)Z Ulw; F)

is a symmetric space identified with U(n; F) by the correspondence
(%, y)—>xy™".
We use the identification Z(% F)z U F) U(n; F) to think of U(n; F) as

an orbit imbedded in M(n; F). Let L be a connected real non-compact Lie
group and [ its Lie algebra. Let K be a maximal connected compact subgroup
of L and f its Lie algebra. We take L=SO(n, n), U(n, n) and Sp(n, n). Then
K=U(n; F)x U(n; F), F=R, C, or Q.

We recall that SO(p, g) is the group of all matrices in SL(p+¢, R) which
leave invariant the quadratic form —x,> —x%- —x2+x2,,+--x2,, The
group U(p, g) is the group of all matrices in GL(p-+¢, C) which leave invariant
the Hermitian form

_2121—2222_ ot _Zpr—i"ZpAl-lZp{—l_{_ o +Zp+qZp+‘l
A similar definition can be given for Sp( p, ¢). The Lie algebras are

80(p, q) = {( X,, X, skew symmetric of orders p and g respectively
’ X! X X, arbitrary-all coeflicients real

w(p, g) — { Y Y Y., Y, skew symmetric of orders p and ¢ respectlvely}
’ Y, arbitrary-all coeflicients complex
f 7z Zo Z, matrice_s of orders_p and q respectively
3p(p,q) = l< Z2> Z,=—4} Z,=—Z;, quaternionic conjugation }

*  Z, arbitrary-all coefficients quaternions.

The element E=(? I(’)')Ep*) in each of the three cases and for the adjoint

action of K=U(n; F)x U(n; F) on p, the orbit of E is precisely U(n; F)z U(n; F)

=U(n; F). Thus U(n; F) is imbedded in M(n; F). The Cartan-Killing
form on [ restricted to p induces the invariant metric (X, Y)=Re tr XY* up to a
positive constant for X, Y& M(n; F), which agrees with the metric on U(n; F).
Thus the imbeddings are isometries. See Kobayashi [6].

The adjoint action of K on p becomes the action of U(n; F)x U(n; F) on
M(n; F) given by (X, Y)=»X B Y™!, B&M(n; F).

* the orthogonal complement of ¢ in [ with respect to an invariant metric,
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Length function and its critical set

Let M™ be an m-dimensional manifold differentiably imbedded in a
Euclidean space R”. Let peR*—M™. Let L, (x)=square of the distance
between x& M™ and the fixed point p. Then g M™ is a critical point for L (x)
if and only if the straight line pq is perpendicular to the tangent space M, of M
at g. For details, see [3] or [7].

We are considering U(n; F) as imbedded in M(n; F). If we take the

3
6 0

point p= then the orbit of p is Un; F);\( Un; F), A=S89X X8 (n
0 3n

copies) where d=0 if F=R, d=1 if F=C, and d=3 if F=0Q. Also A is

imbedded in U(n; F)x U(n; F) under the diagonal map. Here we are con-

sidering the action of U(n; F)X U(n; F) on M(n; F).

It can be verified that the tangent space to the orbit of p at p is Xp—pY,
all X, Yeu(n; F) the Lie algebra of U(n; F). If we choose p as in previous
paragraph, then the normal space to the orbit of p at p is Dg==all real diagonal
matrices in M(n; F). It is known that if a straight line is perpendicular toan
orbit at a point, then it is perpendicular to all the orbits it meets [4, p. 967].
Hence all real diagonal matrices of U(n; F) are in the critical set of L,. On the
other hand if ¢ € U(n; F)is a critical point for L, then the straight line po must
be in Dy since po must be perpendicular to the orbit of p. Hence all the
critical points of L, are all the diagonal matrices in U(n; F) i.e. diagonal
matrices with +1 or —1 along the diagonal. If F=R then there 2! such
matrices, because the determinant of such a matrix has to +1. If F=C or Q
then there are 2" such critical points. These critical points are isolated.

Non-degeneracy and index of the critical points

We briefly state the procedure to find the index of the critical points. The
full details and proofs can be found in [2], [3] or [7].

In general, let M™ be a manifold imbedded in a Euclidean space R”. Let
(%,, %, ,°++, x,,) be a system of co-ordinates for R” and let g(z) be a straight line
given by x;=p;+1q;,i=1,--,n. A wvariation of g(¢) will be a differentiable
family of straight lines

Vp, 1): x:p) = pilp)+19:(p); — o0 <p<o°

with p;(0)=p;, ¢:(0)=g;, i=1,---, n. The variational vector-field

o) = Ligp)| 4100

p=0
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induced by the variation V(p, ) is called a Jacobifield (J-field) along g. The
J-fields along g form a vector—space J, of dimension 2. If M™ is a manifold
imbedded in R”, if g is orthogonal to M at g, then a variation of g relative to M
is a variation V(p, t) of g such that 1) V(p, 0)M and 2) V(p, t) are orthogonal
to M at V(p,0). Let J (M) be the J-fields along g which are induced by the
variations of g relative to M. Then ] (M) is a sub-space of J, and dim J (M)
=n. For every point g(,) there is a restriction X, : J,(M)—>R,,,, where
R, is the tangent space to R” at g(t,). The segment s=(g(0) g(,)) is called a
focal segment of M of multiplicity » if dim ker X, =v>0. This kernel will be
denoted by A (M) and is called the focal kernel of s relative to M. 'The following
result shows how to compute the indices of the critical points.

Theorem [3, p- 311 Let M be a proper differentiable submanifold of R*.
Let ac=R", as M and let b M be a critical point of L,(x). Let v(t) be the
multiplicity of the focal segment ta-+(1—1t)b if this segment is a focal segment and
zero otherwise. Then the index of b———0<2‘,t<1v(t).

It is also known that along any segment S there can only be a finite number
of focal points. Also, if p is not a focal point of (M, g) for any g€ M, the
function L, has non-degenerate critical points.

We combine the method of Bott [2, 3] and theory of Bott and Samelson
[4] to find the indices of the critical points. Let 7= denote the adjoint action on
p. [See section 2]. Then = becomes the action of U(n; F)X u; F) on
M(n; F) given by (X, Y)=»XBY ™, X, YeU(n; F) and B€M(n; F).

In general let z: KX N—N represent the action of K (a ¢ mpact group
of isometries of N)on N. Let M be a orbit of a pointin N. A g ~desic segment
s will be called transversal if its initial direction is perpendicular to the orbit of
its initial point. If p is the initial point of such a segment s, then J (M) will
be denoted by J,*. The focal kernel A (M) be denoted as A;. The Lie
algebra f of K determines a representation 7 of f by vector-fields on N. These

are called infinitesimal K- motions on N. By definition #(X) ngat_{n(exp tX) P}

(X<t, peN). If sis a transversal geodesic segment in NN, the variation V()
=n(exp a X) s(t) is a variation relative to M. Hence 7 followed by restriction
to s induces a map 7z,: £—J,*. The action of K on N via = is called variation-
ally complete if A7C n () for any transversal geodesic segment s. Let ¢(q),
gEN, be the subspace of f whose 7z-image vanishes at ¢g. Le ¢(s)Ct be the
kernel of z,. If sis transversal with end-point g, then variational completeness
implies

,
0 ¢(s) = () 2 AT =0

is exact. Hence
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dim A = dim ¢(g)—dim ¢(s) .

In our present situation r is the adjoint action of K on p. Bott and
Samelson [4] have proved that such action is variationally complete. If o is a
critical point and the point p&M(n; F) is chosen as already indicated, it can
verified that dim ¢(s)=0 if F=R, =n if F=C, =3n if F=(Q. Also the focal
points along op=s(t) are those real diagonal matrices in s(f) which have (for
0<t<1) 1) Zero (s) on the diagonal or 2) two elements on the diagonal, with
the same absolute value. These can be found easily and the dim ¢(q) can be
computed in each case.

The relationship between critical points and the homology groups can be
stated in terms of (weak) Morse inequalities, namely, b;(U(n; F))<c; where c;
is the number of critical points of index 7, b; is the ith Betti number of U(n; F)
with a field as coefficients. If F=R then we use Z, as coeflicients and in the
other two cases we use any field as coefficients.

Applications of fixed point theory

We show that the (weak) Morse inequalities are equalities. For this
purpose, we use Smith theory of fixed points of periodic transformations. The
method is similar to those of Frankel [5]. We use the following two theorems
(More general results and proofs can be found in [1].)

+1 0
0 %1
differentiable manifold M, if F is the fixed set, then >3 b(F; Z,)< 21b{(M; Z)).

Theorem I. If 1"=< ) ie, Z,X ...XZ, (n copies) acts on compact.

Theorem II. If a total group operates in a compact differentiable
manifold M, and if F is the fixed set, then

226:(F; K) < 316,(M; K)

where K=R or Z ,, p is prime.

Theorem I is applied to SO(n). For the adjoint action of T" on SO(z), the
fixed set consists of diagonal matrices with +1 or —1 on the diagonal. Since
such matrices must have determinant -1, the fixed set consists of 27" points.
Since the total betti numbers (with Z, as coefficients) must be no more than 2"7%,
the Morse inequalities for SO(z) have to become equalities.

Theorem II is applied to U(z) and Sp(n). The maximal torus T acts on
G(U(n) or Sp(n)) by adjoint action, i.e., tT: g—t g t'. A point g is fixed
under T if and only if g&T. Hence by Theorem II,



248 S. RAMANUJAM
=21b(T; K)< 236G K)

where n=dim 7, and K=R or Z,, p prime. Again as in previous paragraph,
the Morse inequalities for U(n) and Sp(n) become equalities. This also shows
that U(n) and Sp(n) have no torsion.

By an inductive argument, the well-known Poincaré polynomials of SO(n),
U(n) and Sp(n) can be obtained.

An example

As a concrete example consider U(2). The critical points for the functions

L (), P=<g (6)) are <(1) (1))’ ( 0 +1) <+1 —-O) and ( 0 —1

Critical Point o Focal Points on op Multiplicity Index of o

(19) 0
S I T
O I/t R T
™ .
ot (750) ! ¢
(_3/15 3/1(1)> 2
(05 !

REMARK 1. The results obtained can be stated in terms of diagram, roots,
etc. Also these methods can be applied to other orbits obtained by the action
of U(n; F)yx U(n; F) on M(n; F).

ReEmMARK 2. We have considered the pairs (L, K), L=SO(n, n), U(n, n)
and Sp(n, n) and K=U(n; F)XU(n; F), F=R, C or Q. Instead we could
have looked at the pairs (G, K), G=S0(2n), U(2n) or Sp(2n) and K as above.
The procedure will be exactly the same, except for a suitable modification of E.

UNIVERSITY OF WASHINGTON
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