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Abstract

We consider a class of quasilinear fuchsian opera@rsf orderm > 1, holo-
morphic in a neighborhood of the origin i@; x C}, and having a simple character-
istic hypersurface transverse ® t = 0. Under an assumption on the linear part of
Q, we construct solutions of the proble@u = v in spaces of ramified functions of
slow growth. The result is an extension of [15] to the quasdir case.

1. Notations et résultat

Les coordonnées d'un point d& x C" étant notéest(x) = (t, X1, ..., Xn), les
dérivations ent et enx sont désignées pab!, | € N et D* = DI*...D%, a =
(a1, ..., an) € N". On pose, pour toup = (I, @) € N x N",

n
DF =WP+2-M:pIp®  ou (e), =max(e,0), |B] =1 + |a] et || = Z“i'
j=1

On considére un opérateur quasi-linéaipede la forme

Q(t, x; D¢, D)u = tA(t, x; D¢, D)u + B(t, x; D¢, D)u
1.1 + Y a(t,x, D"u)D’u

[Bl=m

ou A (resp.B) est un opérateur différentiel linéaire, a coefficientsohnwrphes au voi-
sinage de l'origine deC x C", d'ordre m > 1 (resp.m — 1) de symbole principagja
(resp.gs) avecga(e;1,0)=1,
D"u = (D"U)yer, T={(, &) e NxN"; |+ |a| <mj,
n' = Cardl, y=(y,),er € C",
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158 P. PONGERARD

chaquea; étant une fonction holomorphe au voisinage de I'origine@e C" x c"
vérifiant

(1.2) ag(t, x, 0)=0 pour tout ¢, x).

On observe quel = 0 est solution de I'équatioQu = 0. On noteOy = Dy X o uN
voisinage ouvert de l'origine d€ x C" sur lequel les coefficients des opératedrst
B sont définis et holomorphes.

Vérifions queQ est un opérateur de Fuchs. En poshne tA + B et

(1.3) a(t, x, D) = ga(0, x; 1, 0xD{" + gg(0, x; 1, 0)D™ ™,

on obtient

m
L(t, x; D, D) = a(t, x: D) + Y _ by(t, )t =P+ p|
I=p
+ ) ca(t, AL pipe
e

ou p=m-—1, les coefficientsy et cs étant holomorphes au voisinage de l'origine
de C x C". De plus, on a|B|+1—m), > (1 +1— p),. En effet, si|f| = m, alors
| <|Bl carB#(mM0), doul +1—p=|Bl+1—m;si|f] <m-—1, alors| <
m—21carg#(mMm-1,0), dou (B|+1—-m), =0=( +1— p)+. En outre, vu
que (B +2—m). > (1 +1— p); pour toutB = (I, @) € N x N", il en résulte que
I'opérateurQ est de la forme

Q(t, x; Dy, D)u = a(t, x; Du — f(t, x, {t"+3P+ DI DU} 4 14)<m)

ou f est une fonction holomorphe au voisinage de I'origine@le C" x C"', n” =
Card 8 € N"*1; |8 < m}. Autrement dit,Q est un opérateur différentiel non linéaire du
type de Fuchs, d’ordren et de poidsp, au sens de Baouendi-Goulaouic ([1] et [2]). In-
diquons par ailleurs qu'un opérateur de pojalse raméne simplement a un opérateur de
poids 0 (de la forme [2, (3.2)] ou [14, (1.1)] par exemple)it$gx, 1) le polynbme ca-
ractéristique de la partie fuchsienaé, x; D¢, D), on poseV = U;:SN {Xx e Qo;C(x,A) =

0}. Rappelons ([2]) que pour toutes fonctionsfo<h<p €t v holorﬁorphes au voisinage
dex=a ¢V et (, x) = (0,a) € Srespectivement, le probléeme de Cauchy

Q(t, x; Dy, D)u(t, x) = v(t, x),
{Dthu(o- X) = wp(x) pour 0<h<p,

admet une unique solution holomorphe au voisinagetdeg) (= (0, «). L'existence et
I'unicité d’une solution pour ce type de probleme est encoage ([14]) dans des classses
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de fonctions suffisamment différentiables par rapport aakéable fuchsienne et de classe
de Gevrey par rapport aux autres variables.

Nous supposons que le polynébme— ga(0;z,1,0,...,0) admet une racine simple
7. On a donc

(1.4) D.ga(0;7,1,0,...,0)#0
et le probleme

galt, X; vK(t, X)) =0,
(1.5) vk©0)=(7,1,0,...,0),
k(0, X) = xq,

admet une unigue solution holomorphe au voisinage de limrigeC xC" ; on peut donc
supposer que la fonctiok est définie et holomorphe s, et que D1k(t, x) # 0 pour
tout (, X) € Og. Ceci permet de définir une hypersurfa€e= {(t, x) € Og; k(t, x) = 0}
transverse &. En notantT I'hyperplan deS d'équationt = x; = 0, on aK N S =
Qo N T : I'ensembleK est une hypersurface caractéristique simple issu€ é¢ trans-
verse aS.

Pour touté > 0, on poseDs = {z € C; |z| < 8} et on noteRs le revétement
universel du disque point®; = {ze C; 0 < |z| < 8}. Si v est une fonction holomorphe
ramifiée autour deK, on peut trouver un réef > 0 et un voisinage ouvert connexe
O c Oq de l'origine deC x C" tels quev soit de la forme

(1.6) v(t, X) = l~)(Z, t, X)\Z=k(t,x)

ou v est une fonction holomorphe s@®; x O; quitte a réduire®, on peut supposer
que |k(t, x)| < & pour tout €, x) € O. La fonction (1.6) est alors définie et holomorphe
sur le revétement universel d@ — K.

On se propose de construire une solution de I'équation

x.7) Q(t, x; Dy, D)u(t, x) = v(z, t, X)|z=k(t.x)

sans hypothése particuliére sur 'opérate(ir, x; Dy, D). On utilise ([15]) la partie fuch-
sienne d’ordre 1 et de poids 0

(1.8) b(t, x, Dt) = D.ga(0, x; vk(0, x))t D¢ + gs(0, X; vk(0, X))

a coefficients définis et holomorphes $ky. On associe & son polynéme caractéristique
P(x, A) = D.ga(0, x; vk(0, x))A + gs(0, x; vk(O, X)),

qui vérifie P(x, tDy) = b(t, x, D), et on suppose que

1.9 P(0,1) #0 pour tout A € N.
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NoTE. Il n'y a en général aucune relation entre (1.3) et (1.8) $ansiquem = 1,
auquel cas, on a(t, x, D;) = b(t, x, Dt) et la condition (1.9) n'est autre que la condi-
tion usuelleC(0, A) # 0 pour tout entierr > p.

En outre, cette construction nécessite comme dans [7] etlg8] hypothéses de
croissance que nous allons préciser.

Soienta € R, § > 0 et O un voisinage ouvert de l'origine d€ x C". On note
H3(Rs x O) I'espace vectoriel des fonctions a croissance lente d'eapta c'est-a-
dire des fonctionsi € H(Rs x O) pour lesquelles il existe > 0 tel que

lu(z, t, X)| <clz|* pourtout g t,x)eRsxO.

D’autre part, on not&?(Rs x O) I'espace vectoriel des fonctionse H(R;s x O) pour
lesquelles il existee > 0 tel que

VpeN, |Dfu(z t,x)| <cPlp!|z2~P pour tout € t,x) e Rs x O.

REMARQUE 1.1. On aG¥(Rs; x O) C H?(Rs x O) et, [8, Proposition 1.1],
H3Rs x O) C G3(Ry x O) si & €]0, 4.

On définit un inverse a droite de I'opérateDy en posant, pour toui € H2(Rs X
0) (resp.G#(Rs x 0)),

1

Dz‘lu(z,t,x):/ u(a,t,x)da:/ u(sz t, x)zds
0 0

et on vérifie aisément quB;1u € H3 (R x O) (resp.G3 1(Rs x ©0)). On considére
alors I'équation

(1.10) Q(t, X; Dy, D)[D;™u(z, t, X)|z—kt ] = v(Z, t, X) 2kt x)-

Théoréme 1.1. Soient a> 1, § > 0, O C Op un voisinage ouvert de l'origine
de C x C" et v € G&(R;s x ), alors il existes’ > 0, O’ C O un voisinage ouvert de
l'origine de C x C" et une solution E G3(Ry x ') de I'équation(1.10).

REMARQUE 1.2. Dans ce théoreme, on peut remplacer les espatgsar les
espacesH? d'apres le remarque 1.1.

REMARQUE 1.3. Lorsque les fonctionag sont identiquement nulles, alof@ =
L est I'opérateur linéaire étudié dans [15] (qui peut étrepraghé de [4], [9] ou [16]
et qui construit pour I'équatiol.u = v une solution ramifiée autour d€); comme
expligué dans [15], le probléme [15, (1.6)-(1.8)] contiémtprobleme [7, (2.6)-(2.7)].
En ce qui concerne [8], nous reprenons ici des outils quirgyvent mais le probléme
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[8, (1.7)-(1.8)] et notre équation (1.10) sont en génértkints. Il est toutefois pos-
sible de les relier; expliquons brievement de quelle maniBappelons que I'opérateur
[8, (1.1)] s'écrit

P(t, x; D, D)u = > A4(t, x, D"u)D} DU
B=(,a)eNxN"; |B|<m

ol DT'u = (D{ D“U)q,wer, les fonctionsAg sont holomorphes au voisinage de 'origine
de CxC"xC", la partie linéarisée\(t, x: D, D) = Y41 wensnnijsi<m As(t, X, 0)D} D
vérifie (1.4) (en notant encor@, le symbole principal ded) et le probleme (1.5) admet
une unigue solutiokk holomorphe au voisinage de I'origine d&x C". Considérons le
probleme [8, (1.7)-(1.8)] :

(1.11) P(t, X; Dt, D)[DItu(z, t, X)|z=k¢.x] = wi(k(t, x), t, X),

' u(z, t, X) —wo(z, t, x) = 0 pour t =0,
dans lequel on peut supposer, pour simplifier, gque= 0. En posantCg(t, X, y) =
Ag(t, X, y) — Ag(t, x, 0), on a

P(tu) =tAu+ D Au

+ > Cs(t, x, D'tu)(tD}D*u + 1D 1D u).
B=(,a)eNxN"; ||<m

On note alors que, §B| <m, on a 1> (|| +2—m)+ et 0= (| = 1)+ || +2—m), ;
on en déduit que les termes figurant da?igu sont de la formeD”u outD”u, y €T.

Supposons que
(1.12) Cs(0,x,y) =0 pour |B] =m et pour tout X, Yy,

alors on peut écrir€€; = tag, az étant holomorphe au voisinage de l'origine @ex
C" x C"; donc, en multipliant pat, on obtient pour|8] = m, les termest?D} D¥
et ItD{~1D* qui sont clairement de la formgh+l«+2=m-phpe  Ces considérations
montrent quetu est solution de (1.11) si vérifie I'équation (1.10) ouQ est de la
forme (1.1) aved. = tA+ D, A. Pour cette équation, la condition (1.9) s'écrit simple-
ment D, ga(0; wk(0))(x + 1) # O pour toutx € N, soit D, ga(0; v7k(0)) # 0; autrement
dit, la condition (1.9) est vide dans ce cas. Finalements dthypothése (1.12), le
probléeme (1.11) est un cas particulier du probléeme (1.9)@)1 Par exemple, lorsqu@
est simplement semi-linéaire, auquel cas oBga= 0 pour|8| = m, alors le probleme
(1.11), c'est-a-dire le probleme [7, (2.8)-(2.9)], est uas gparticulier du probléme
(1.9)-(1.10); indiquons que dans ce cas, il est possiblétt¢ga adapter les calculs
qui vont suivre) d’établir le théoréme 1.1 dans les espat&spour a > 0.
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2. Réduction

Posons

Fu= Z as(t, x, D u)D u.

[Bl=m

Pour expliciter I'équation (1.10), cest-a-direL ¢ F)[DI™u(z, t, X)|—ka.x] =
v(zZ, t, X)jz=k(t,x)» ON utilise le lemme suivant [10, Lemme 6.1].

Lemme 2.1. Soient Mt, x; D¢, D) un opérateur différentiel linéaire d’ordre m a
coefficients holomorphes dans un ouvéttde C x C" et k: O — C une fonction
holomorphe Il existe des opérateurs différentiels linéaireg;(M x; Dy, D), 0<q < m,
d'ordre < q a coefficients holomorphes daéistels que pour tout ac O et tout germe
u au point(k(a), a) € C x O, on ait

m
M(t, x: Dy, D)u(k(t, X), t, X) = ) Mq(t, X; Dt, D)DFU(Z t, X)l=k(e
g=0

pour (t,x) voisin de a

En outre les coefficients de Msont des combinaisons linéaires de ceux de M dont
les coefficients sont des polynémes en les dérivées 8e ¢ est le symbole principal
de M, le symbole principal de W en tant qu'opérateur d'orde gest donné par la
formule

Thsa
hla!”

(2.1) o(Mg)(t, x:i7,§) = ) DIDEg(t, x: vK(t, X))
h+la|=q

D’aprés ce lemme, on a

m

A(t, x; Dy, D)u(K(t, X), t, X) = Y Aq(t, X; Dy, D)D" U(Z, t, X)|z=k(t,x).
gq=0
m-1

B(t, x: D, D)u(k(t, X), t, X) = Y Bqy(t, X: Dr, D)DFU(z, t, X)|z=k(t.x)»
q=0

(2.2)

ou les opérateurd\; et By sont d’'ordre< qg; vu (1.4) et (2.1), on constate qu =
o(Ag) = 0 et on en déduit que

m-1

L[D%‘mu(z, t, X)|z:k(t,x)] = Z(tAq+1 + Bq)DZ_qU(Z, t, X)|z:k(tyx).
q=0
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En outre, d'aprés (2.1), on a
Bo(t, X) = gs(t, X; VK(t, X))
et
n
O-('Al)(tv X; T, é) = DTgA(ti X; Vk(t, X))t + Z DéJ gA(tv X; Vk(t, X))é] .
j=1
En utilisant la notation (1.8), il en résulte que

(tAl + BQ)(t, X, Dt1 D) = b(t1 X; Dt) + Z al,a(t, X)tH—lD{ D«

I +]a|<1
ou lesa , sont des fonctions holomorphes 0. En notant, pour K g <m-—1,

B si | =0
l+q _ q !

on obtient

LD} ™u(z, t, X)|=kt0] = | bt, X: D)+ D a(t, )t Dy D”
I+]e|=1

+ > AL, x: Dy, DYDY fu(z t, X)le—kin

o<l<1
1=gq=m-1

ou l'ordre des opérateurA'q+q est<I +q.
PosonsQ = {g € N; 0 < g < m—1} et pour toutg € Q, notons R, I'opérateur
défini par
Z a o, X)t*'DID* si g =0,

I+]e|<1

> t'AA(t, x; Dy, D) sinon.

0<I=<1

(2.3) Ry =

On peut alors écrire

L[D; ™U(z, t, X)|z=k(t,0] = <b(t, x; Dy) + Z RqDZq>U(Z, t, X)|z=k(t,x)-

qeQ
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Considérons enstuite les opératefi$, g € N". D'aprés le lemme 2.1, on a
18]
DD} ™u(k(t, x), t, x) = tlFIF2Me N " MEDPIHMay(z, t, X)] i)
gq=0

ou les Mﬁ sont des opérateurs différentiels linéaires holomorphe®)s d'ordre q. En
posant

Bl
(2.4) Yp = tUPHZmme A MDA et Yeu = (Y, U)yer,
q=0

on obtient donc

(L + F)ID} ™u(z, t, X)| =kt 0]

= <b(t, x; Dy) + Z RyD; 9 + Z ag(t, x, Yru(z t, x))Y,g>u(z, t, X)|2=kt,x)-

qeQ [Bl=m

Etant donné qué(0, a) = a; d’aprés (1.5), I'équation (1.10) sera a fortiori vérifiée si
pour (z, t, X) voisin de @y, 0,a), on a

(b(t, x; Dy) + Z RyD; 9 + Z ag(t, x, Yru)Y5>u = .
qeQ |Bl=m
Autrement dit, quitte & changer de notation, il suffit d’éudune équation de la forme
(2.5) P(x, tD)u = (Z RyD; 9 + Z ag(t, X, Ypu)Yﬂ>u + .
9eQ IBl<m

D'apres I'hypothese (1.9), il existe [15, Lemme ZBun voisinage ouverf2; C o
de l'origine deC" et une constantey > 0 tels que :

(2.6) |P(x, K)| > co(k +1) pour tout x € ; ettout ke N.

En outre, le polynémeé. — P(x, A) étant d’ordre 1, on peut supposer qu'il existe une
constantec; > 0 telle que

(2.7) [P(x, K)] < cik pourtout xe ©; ettout keN.

Pour toutR > 0, on pose

Dr={teC; |t| < R.
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Soienta € R, § > 0, R > 0 et  un ouvert deC", on désigne pat?(Rs x Dgr x
Q) I'espace vectoriel des fonctionse H(Rs x Dg x ) qui appartiennent a I'espace
G2%(Rs x Dy x Q) pour toutr € ]0, R].

Lemme 2.2. Soit 2 C ©; un ouvert deC". L'opérateur P= P(x, tD;) est une
bijection linéaire de I'espacé{(Rs x Dr x ) (resp £2(Rs x Dr x 2)) sur lui méme et

B tk Dku(z, 0, x)
1 _ i .
(28) (P u)(zl tl X) - — kl P(X, k) L]

de plus les opérateurs P! et D} commutent quel que soitgZ.

Preuve. |l est clair que I'applicatiof® : H(Rsx Drx Q) — H(Rsx Drx ) est
linéaire. Etant donné que ,)'tk = k'tX pour toutk,l € N, on a P(x,tD))u(z,t,x) =
> ken (/KD P(x, K)Dfu(z, 0, x). Lopérateur P est donc injectif d’aprés (2.6); son
inverse est formellement donné par la série (2.8). 8aitE3(Rsx Drx ), montrons
que Pu, P~lu e £3(Rs; x Drx Q) et que Po P~lu = u. Soient O<r <s < R et
K un compact deR; x Q. Si u € H(Rs x Dr x ), il existe c = c(s, K) > 0 tel
que |(tk/k) Dfu(z, 0, x)| < c(r/s)* pour tout ¢, t, X) € Rs x D; x Q. Ceci prouve
que la série (2.8) converge daf{R; x Dr x 2) puisque|l/P(x, k)| < 1/c, d'apres
(2.6); (2.8) étant aussi une série entiéretdeson image parP est bien égale a.
Les opérateurdD; et P commutant dans{(Rs x Dg x ), il en est de méme des
opérateursP~1 et D7. Soit u e £E3(Rs x Drx Q), il reste & montrer quéPu, P~1u e
E3(Rs x Dr x ). D'aprées les inégalités de Cauchy et d’apres (2.7), on a

tk t1\ ¥
o P(x. k)DFDRu(z, 0,%)| < cp“p!|z|“c1k(|—R|>
pour tout g, t, x) € Rs x Dy x Q.

Soitr €10, R[, la sérieY g k(r /R)¥ étant convergente, ceci prouve gqBe € G3(R; x
D, x Q). De méme, en utilisant (2.6), on vérifie gl u € £2(Rs x Dg x ), d’ol
le lemme. O

En remplacanu par P~'u, on en déduit que I'équation (2.5) est équivalente a
(2.9)
u=Au+Fu+v ot A=) RPTID;9 et Fu= Y ayt,x YrPlu)YsPMu.
qeQ B]<m

NoTE. Notre solution de ['équation initiale (1.7) est donc de larnfie
(D MPrU)(K(, X), t, X).

Le théoréme 1.1 résulte finalement de la proposition suivant
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Proposition 2.3. Soient a> 1, § > 0, O C Op un voisinage ouvert de l'origine
de C x C" et v € G&(R; x ©), alors il existed’ > 0, O’ C O un voisinage ouvert de
l'origine de C x C" et une unique solution & G3(Rsy x ') de I'équation(2.9).

La démonstration de cette proposition repose sur le thémm@mpoint fixe dans
des espaces de Banach que nous allons maintenant définguand qu’il s’agit d'es-
paces analogues a ceux introduits dans [8].

3. Cadre fonctionnel et estimation des opérateurs linéaie.A et YzP~!

Nous utiliserons les variables = ZLl Xj et T = pt ou p est un parametre: 1.

DEFINITION 3.1. Soientae R, L,p,w>1, § >0 et¢ € R, {¢} une fonction
majorante de rayon de convergeneeR > O tel quews < R, on noteGg I'espace
vectoriel des fonctions holomorphes au voisinage d&; x {0} pour lesquelles il existe
¢ >0 tel que

(31) VpeN, VzeRs, Dfu(zt, x) < cLP|zl*PDPo(r + & + w|z).
II'est clair queG§ est un espace vectoriel et que la plus petite constarted pour
laquelle (3.1) a lieu est une norme sur cet espace vectomaée || o lga. Posons
n
O(R, p, ®,8) = {(t,x) € CxC"; plt| + Y |xj| < R—ws .
j=1

Lemme 3.2. Soit ue G§, alors u e H(R; x O(R, p, », 8)) et ue G4(R; x
O(s, p, w, §)) pour tout se Jws, R.

Preuve [7, Lemme 4.2]. On a
uz, t, x) < ullgslzl®d(z + & + wlz]) K cp(r + & +wd) ou ¢ = |ullgs.
Autrement dit, pour touth, o) € N x N", on a
Dy Du(z, 0, 0) < [[u]lgzp" D"l p(ws).
Louvert O(R, p,w, §) étant contenu dans le domaine de convergence de la forogen
jorante¢(r +£& + wd), on en déduit que la sérig(z, t, x) = Z(h]a)eNan(thxa/(h!a!)) X
D'D?u(z, 0, 0) converge normalement sur tout compactRiex O(R, p, 8, ) et que

u est holomorphe dan&;s; x O(R, p, 8, w). Soits € Jwd, R[, on a

IDPu(z, t, x)| < cLP|z|* PDP¢(s) pour tout g t, X) € Rs x O(S, p, », §)
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et il existec > 0 tel que|DP¢(s)| < cP*p!, d'oli u € G3(Rs x O(S, p, w, 8)), ce qui
prouve le lemme. O

Lemme 3.3. L'espaceG; est un espace de Banach

Preuve. Soit{,) une suite de Cauchy de I'espaGg. Il existe un entierN € N
tel que pour toun, " > N et toutz € R,

3.2) VpeN, DPun—up)(zt, x) K eLPZ2PDPo(r + & + wl|Z|).
Si K est une partie compacte d&; x O(R, p, w, 8), on a donc
mKaXIUn — U] < eCk
n
ou Ck = ma a t - est
U Cc = max [z ¢(p| |+ ,2—‘; Ixj] + w|z|) < +o0

car I'application ¢,t,x) = [z[°¢(p[t| +Y_]_; |X;| +@|2]) est continue suR; x O(R, p,
w, 8). Ceci prouve que la suitaif) est de Cauchy dans I'espagéRs x O(R, p, w, 8)),
elle converge donc uniformément vers une fonctioa H(Rs x O(R, p, w, 8)) sur tout
compact deR; x O(R, p, w, 8); a fortiori, pour toutz € R;s et tout (p, h, @) € N x
N x N", la suite (:)Z"Dth D%un(z, 0, 0)), converge versszDth D“u(z, 0, 0). On peut alors
passer a la limite sun’ dans la relation (3.2) et on en déduit que)(converge vers
u dansgjg. O

Lemme 3.4. L’application D, : g; — gg;& est linéaire continue de norms L.

Preuve. Soientie G5 et peN. On aD!u« ||u||g3LP+1|z|af(p+1)DP+1¢ c'est-
a-dire le résultat voulu,

DPD,u < LuflgaLP|z/**"PDPDg. O

Lemme 3.5. L'application D;* : Gds — G5 est linéaire continue de normg
max@L~t, w™Y).

Preuve. Soientie Gi, etpeN. Sip=1, ona

N
c
Il
O
No

U < |Jullgs, LP7YzPPDPg < 8L~ ullgs, LP|z/*PDPg.
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Supposons ensuitp = 0. Pour toutz € R; et tout , o) e N x N", on a

ID{'D“u(z, 0, 0) < |lullgg, |zI*p" D" "¢ (w|z])

d'ou
h h ! h
|D{D“D;'u(z, 0, 0) < |ullgs, |0 /O D"+ g (ws|2))|2| ds
< o ullgs, 121" D" p(w]2])
soit D;'u < w™H|ullgs,¢(t + & + wl|z|), ce qui prouve le lemme. O

Indiquons maintenant le choix d Rappelons ([17]) que $i désigne la fonction
majoranted(§) = > oo &"/(n + 1)%, il existe K > 0 tel qued? « K@ ; la fonction
majoranteg(£) = K10(£/R), R > 0, vérifie alors

p(0)=K™ et ¢? < ¢.

Rappelons [17, Lemme 2.4] que, pour towt> 1, il existec = c(n) > O tel que
nR/(MR— o) K cp, dou MR/(nR — e))¢p K c¢ et, par dérivation,

nR

(3.3) VpeN, DP¢ « cDPp.

Pour toutR > 0, on pose
AR = {x eC"; 1m.ax|xj| < R}.
=]=n

On fixe une fois pour touteg > 1 et Ry > 0 tels queDy x 21 (C Do x Qo = Op)
contienne le polydisqud®,r, x A,r,. D'aprés (2.6) et les inégalités de Cauchy, on a

1 Cal nR

(3.4) P(x,K) " k+1nR—¢

pour tout Re]0, Ry] ettout keN.

Il est clair queO(R, p, A,®) C Drx Ag C Do x ;. Voici alors une estimation d—.

Lemme 3.6. Il existe une constante €= c;'c(e)) > O telle que: soient be R,
Re]0, Rl etleN, siueGp,, alors Ptue H(Rs x O(R, p, 8, w)) vérifie
VpeN, VzeRs,

(3.5) (DM + wlz))
pp-1 p|,b—p k
DYPu(z t, x) K C||U||gg|¢|— || § :t (k + 1)!

k=0
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Preuve. Soiue gg.¢, alors d’aprés le lemme 3.2, H(Rs x O(R, p, w, §)). En

posant pour touR > 0, Qr = {x € C"; Z'j‘:l|xj| < R}, on observe que

O(R, p, , ) = U Dr/p X QR-wo—r-
r€]0, R—wd[

D’aprés le lemme 2.2, on en déduit qielu € H(Rs x O(R, p, », 8)). En outre, on a

t“ DEDLu(z, 0, x)

szp—lu = P_lDZpU = K W;

keN
soit D¥(DYP~tu)(z, 0, x) = D¥D}u(z, 0, x)/P(x, k). Par ailleurs, d’aprés (3.1), on a

DKDPu(z, 0, x) < ||u||ggl¢Lp|z|b’pkak+p+'¢(§ + w|z]) pour tout k € N.
D’apres (3.3) et (3.4), on en déduit

«DPHG(E + wl2])
k+1

D(DPP~tU)(z, 0, x) < C||u||g;|¢Lp|Z|b_p,0 pour tout k € N,

c'est-a-dire le résultat voulu. O

Afin de controler les opérateuR, P~1, rappelons [14, Lemme 2.8] que

Dk(P | ) Dk+l¢
(3.6) @ <RO+1D) T

pour tout Kk, I € N.

Dans les majorations qui vont suivre, toute constante qoeaé des parametres, n, Ry
déja fixés, sera notée sauf mention expresse. Etant donné duig, x A,r, C Oo,
tous les coefficients des opérateRs sont holomorphes et bornés ddyr, x A, r,. Soit
R €10, Ry], si b désigne I'un de ces coefficients, on a d'apres les inégal#é€auchy

n

Le lemme 3.6 de [15] prend ici la forme suivante.

Lemme 3.7. Il existe c> O tel que pour tout Re ]0, Ry], I'opérateur R,P~*
induise une application linéaire continue @& dansgg, de norme

_ cot si q=0,
P < :
I1Rq Ih= {C,oq si gq>0.
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Preuve. Soiu € G5; d'aprés le lemme précéedent et vu (2.8, P~lu € H(Rs x
O(R, p, w, 8)). Siq =0, Ry est une somme finie de termes de la forme

b(t, )t'*1D|D“Pt ou |+ |o| <1.

Grace a (3.4) et (3.7), nous pouvons faire abstraction dfficieat b(t, x). Vu (3.5),
on a pour toutp € N et toutz € R,

ki D"PHg(E + wlz))
DP('*D{D*P ! a,t k+1

Etant donné quéx| < 1, on a d’aprés (3.6),

Dk+p+\a\¢ k+p+1¢

I e e
Kt prl) SO T

On note que (R)* 1 < (4Ry)*"*/ < c; on remarque ensuite que

Kl (K+ p+ |a])!
(K= (K+ p+ 1)

<1 pour tout k>1

carl + o] < 1. Il en résulte que

DK Py (& + w|2))
(K + 1)!

sz(tH_lD,: D% P—lu) < C||U||3p_1 Z 'L'k+1
k=1

d’'ou le résultat voulu dans ce cas.
Lorsqueq est> 0, rappelons que l'ordre des opérate@t{ﬁ‘q est<I1+q; a nou-
veau, on en déduit qu'il s’agit de majorer les opérateurs

t'D'D*P! o0 h+|a|<l+q, 0<I<1.
Vu (3.5), on a

kI DKFPHElg(E + w|2z])
(k — h)! (k + 1)!

DY(t' D D*P~u) < clluf3p"" Y £
k=h

Etant donné quér + || <1+ q, on ap™ < p9 et, d'apreés (3.6),
Dk+p+|a\¢ < CDk+p_h+|+q¢ ol c= R|O+Q*(h+\ot|)(| +q-— (h + |Cl|) + 1)2.
On observe alors que

ki (k—h+1)
k—h)! (k+ 1)

<1 pourtout k>h
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car 0<1 < 1. On obtient donc

kil Dk—h+|+p+q¢(§ + a)|Z|)

t' D"D*P~1u « c|u||2p? ,
: <clulze) T K=h+ D)

k>h

d’'ou le lemme. O
Les lemmes 2.2 et 3.5 permettent d’en déduire immédiatetaesdrollaire suivant.

Lemme 3.8. Il existe c> 0 tel que pour tout Re ]0, Ry], I'opérateur A induise un
endomorphisme continu de I'espagpde norme< c[p*1+ZqGQ,(max(8 L Lo Y)p)]=
e1(L, p, w, ).

On peut ensuite établir le

Lemme 3.9. Il existe c> 0 tel que pour tout Re]0, Ry], chaque opérateur YP~1,
y €T (resp YzP~1, |8] < m) induise une application linéaire continue @8 dansgj
(resp G5 1) de norme< e1(L, p, , 8) (resp < c[p™*L + Y o.(Max@L™, w™h)p)] =
82('-1 )01 CL), 6))

Preuve. Wu (2.4), sig| = m, alors

m-1
Yﬂ:MotDz+t2Mf+Zth+lDz‘q ol Mg =tM/ pour q=0,2,...,m
q=1
Pour || =m—1, on a
m—1
Yp =tMo+ Y MgD,% ou Mg=tM}, 1<q=m-1.
q=1

Enfin, lorsque|B| < m—2, on obtient (en remplacat par [8] +1—m +q)
m-1
Y= > Mg mD:% o0 m—1—|g|>1 et ||+1-m+g=<q-1
q=m-1—|B|
m—1
Yp =D AqD;"
q=1

ou Aq deésigne un opérateur différentiel linéaire holomorphe @pird’ordre < q.
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Autrement dit,
(3.8) Ygz est une somme finie d’'opérateurs de la formdotD,, §,D,;9 q=>0
et, vu que|y| <m—1 pour touty €T,
(3.9 Y, est une somme finie d’opérateurs de la fornfD,9, q > 0.

On en déduit que I'opératedt, P! agit et se majore comme I'opératedr; le résultat
voulu est donc une conséquence du lemme 3.8.

II'est clair que l'injectionGg — ;’;}*1 est linéaire continue de norn®es. Vu (3.8),
on en déduit qu'il suffit d’étudier 'opérateurP~1D,. Soit doncu € Gs. Dapres les
lemmes 3.4 et 3.6, on a

L L o0 ka+p+1¢
DYP™(D,u) < cLullgaLP|Z>*P > "t
k=0

(k + 1)!
d'ou
p 1 1 p|yja—1-p S k+1Dk+l+p¢
DJ(tP"D.u co “LjullgaL®|z]* _—_
ce qui permet de conclure. ]

Pour contréler I'opérateu#, nous aurons besoin des lemmes qui suivent [8, Pro-
position 3.3 et 3.4].

Lemme 3.10. Soient abeR et (u,v) € ggxgg, alors w € gg*b ou ||UU||g2+b <

lullggllvlige-

Preuve. Soitpe N, on a

p
DPuv = Z( '].O)D;uDZpiv

j=0

p
< ||U||g§||U||gg|-p|z|a+b_p<2( f)DJ¢>Dp-J¢>>(r +& + olz)

j=0
et on conclut en dérivanp?> < ¢ a l'ordre p, d’'oll le lemme. ]

Lemme 3.11. Soient f une fonction holomorphe et bornée par M sur le poly-
disque ouvert centré a l'origine deC; x C? x CN, de rayonyR, R> 0, n > 1 et
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Ug,...,UN € gg tels que K|u; ||g <R, alorsv = f(t, X, U, ..., UN) € gg et
N
R
Wl <eM ]| =————
¢ E R—luil9

ou la constante ¢ ne dépend que xle
Preuve. Commey; € gg, on a en particulier
VzeRs, Uiz 0,0 [luillgp(wlz]) < [luilgo(R) = [luil3e(d).

On déduit de la relatio®? < K# quef(1) < K, d’ol |ui(z, 0, 0) < K|u; ||2 <R La
fonction v est donc bien définie et holomorphe au voisinageRdex {0} et on a

v= Y fi, x)]‘[u*'
AenNN

ou les fonctionsf; sont holomorphes, bornées gdR~1*' sur le polydisqueD,r x AR ;
elles appartiennent donc a I'espag$ et sont de normes cMR1* ot ¢ = ¢(n) est la
constante figurant dans la relatigiR/(nR — e ) < c¢. D'aprés le lemme précédent,
u* € G9 et Ut < [TL, [lui|*, d'ot fiu* € 69 et | fu*| < cM T (luill/R)™. Il en
résulte que la famille {,u*) est absolument sommable dans I'espégeet que

o]l _cMH |u T
I

ce qui prouve le lemme. ]

4. Preuve de la proposition 2.3

On pose
ft, x, 2) =) aslt, X, Zr)Zy
peB
ou
Z = (Zp)pen: ={BeN"; |B|<m} et Zr=(Z,)yer, T CB.

D’aprés (1.2), on peut écrire

ft, X, 2) = f(t, X, Z) = > Gpy(t, X, Zr, Z1)Z,(Zp — Z})

BeB
yell

+hg, (X, Zr, Z1)Zpeta(Z, — Z))
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ou les fonctionsgg,,, hs,, sont holomorphes au voisinage de l'origine @ex C" x
C" x C". On peut évidemment supposer ces fonctions holomorphesraéés sur le
polydisque ouvert de rayonR, centré & l'origine deC x C" x C" x C".

Soienta > 1, § > 0, O C Op un voisinage ouvert de l'origine d€ x C". On
choisit R € ]0, Ro] tel que D,r x A,r C O. Soitv € G3(Rs x ©), alors d’aprés les
inégalités de Cauchy, on a
VpeN, VzeR; DPv<cPtip |z|a’pL.

nR—(r + &)

Or, on sait quenR/(nR— o) K c(n)¢ et, d’apres (3.6),

D%

DP¢
! p!

¢ < RP(p + 1)2T < (4R)P

En prenant par exemple = 1+ c(4R), il en résulte quev appartient a I'espacey
associé aux parametres p, w > 1 eté’ €]0, §] tel que ws’ < R; sa norme étant une
constante £ cc(n)) indépendante dé'.

On pose

e =¢(L, p, w, §') = maxEi(L, p, w, §), ea(L, p, w, "))

ou lesgj sont les expressions figurant dans les lemmes 3.8 et 3.9t dané quelL
est> 1, on constate que

(4.1) £ < C|:plL + ) (maxg, a)l),o)q:|.

qeQ*

Soitr > 2||v||g$ etu, U’ appartenant a la boule ferm&0,r)={ue g;;; ||U||gg <r}
de I'espaces. Posons, pour toug € B,

Zg=YsP'u et Zp=YzP M.
Le lemme 3.9 montre que, si € I', alors
Z,,2,€Gy et |Z,]gllZ)llga <er;
I'injection g;; > gg est linéaire continue de norme §2, il en résulte que
Z,,2,eG) et 1Z,llg2:1Z} lgo < ers™.

Supposons

(4.2) Kers? <

N o
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de sorte que I'hypothese du lemme 3.11 soit vérifiée, ce qunga que les fonctions
Os,,(t, X, Zr, Z}.) ethg, (t, X, Zr, Z}.) appartiennent a I’espa@g et qu'elles sont de

norme < c.
D’autre part, pour toul € I' et tout8 € B, on a d’aprés les lemmes 3.9 et 3.10,

2,2y~ 24), 242, - 7)) € G 4, 2
12,(Zs — Zli s, 1Z(Z, — Z)) gz < % [u—Wllga.

L'hypothésea > 1 signifianta < 2a — 1, il est clair que I’injectioan‘*l > gg est
linéaire continue de norme 821 < §21 = ¢, Par conséquent, on a

Z,(Zs — 2}), Zy(Z, — Z) € G2, 2
1Z,(Zg = Zp)l gz, 1 25(Z, — Z))llga = cer [Ju—u']|ga.

En utilisant & nouveau le lemme 3.10, on en déduit que
Fu—Fu eGy ol ||Fu—Fulg <ce’r|lu—ug.
Vu que F(0) = 0, on a donc
Fuegy ol [Fullgs < ce’r|lullgs.

En notant7u = Au + Fu + v, on obtient finalement,

1
ITullga < (s + ce?r + §>r,

ITu—Tullgs = (e + ce?r)llu — ullgs.

(4.3)

Vu (4.1), il est alors possible de fixer> 1, w > 1 et 0< §' < min(s, R/w) satisfai-
sant a la condition (4.2), tels que+ ce?r < 1/2. D'aprés (4.3), on en déduit que
7T : B(0,r) —> B(0,r) est une contraction stricte, ce qui prouve l'existencend’u
solution u € gg; en choisissant urs € Jwd, R], cette solution appartient d'apres le
lemme 3.2 aG3(Rs x O') ou O = O(s, p, w, §). On a également l'unicité car, s
appartient 3G3(R;s x O’) et vérifie I'équation (2.9), on peut encore choisik(R < Ry
tel queu, U’ € G3 pour un certainL > 1, puisr > 2fvllga, p 21, @ =1 ets" >0 tel
qgue 7 soit une contraction stricte dar%(0,r), ce qui prouve quel’ = u. ]
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