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Abstract

We consider a class of quasilinear fuchsian operatorsQ of order m � 1, holo-
morphic in a neighborhood of the origin inCt �Cn

x, and having a simple character-
istic hypersurface transverse toS: t D 0. Under an assumption on the linear part of
Q, we construct solutions of the problemQuD v in spaces of ramified functions of
slow growth. The result is an extension of [15] to the quasilinear case.

1. Notations et résultat

Les coordonnées d’un point deC � Cn étant notées (t , x) D (t , x1, : : : , xn), les
dérivations ent et en x sont désignées parDl

t , l 2 N et D� D D�1
1 : : : D�n

n , � D
(�1, : : : , �n) 2 Nn. On pose, pour tout� D (l , �) 2 N � Nn,

D� D t (j�jC2�m)C Dl
t D� où (� )C D max(� , 0), j�j D l C j�j et j�j D nX

jD1

� j .

On considère un opérateur quasi-linéaireQ de la forme

(1.1)

Q(t , xI Dt , D)u D t A(t , xI Dt , D)uC B(t , xI Dt , D)u

C X
j�j�m

a� (t , x, D0u)D�u

où A (resp.B) est un opérateur différentiel linéaire, à coefficients holomorphes au voi-
sinage de l’origine deC � Cn, d’ordre m � 1 (resp.m� 1) de symbole principalgA

(resp.gB) avec gA( � I 1, 0)� 1,

D0u D (D
u)
20, 0 D f(l , �) 2 N � Nn ; l C j�j < mg,
n0 D Card0, y D (y
 )
20 2 Cn0 ,
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158 P. PONGÉRARD

chaquea� étant une fonction holomorphe au voisinage de l’origine deC � Cn � Cn0
vérifiant

(1.2) a� (t , x, 0)D 0 pour tout (t , x).

On observe queu � 0 est solution de l’équationQuD 0. On noteO0 D D0 � �0 un
voisinage ouvert de l’origine deC �Cn sur lequel les coefficients des opérateursA et
B sont définis et holomorphes.

Vérifions queQ est un opérateur de Fuchs. En posantL � t AC B et

(1.3) a(t , x, Dt ) � gA(0, xI 1, 0)t Dm
t C gB(0, xI 1, 0)Dm�1

t ,

on obtient

L(t , xI Dt , D) D a(t , xI Dt )C mX
lDp

bl (t , x)t (lC1�p)C Dl
t

C X
�D(l ,�)2N�Nn I j�j�m�¤(m,0), �¤(m�1,0)

c�(t , x)t (j�jC1�m)C Dl
t D�

où p D m � 1, les coefficientsbl et c� étant holomorphes au voisinage de l’origine
de C � Cn. De plus, on a (j�j C 1�m)C � (l C 1� p)C. En effet, sij�j D m, alors
l < j�j car � ¤ (m, 0), d’où l C 1 � p � j�j C 1 � m ; si j�j � m � 1, alors l <
m � 1 car � ¤ (m � 1, 0), d’où (j�j C 1 � m)C D 0 D (l C 1 � p)C. En outre, vu
que (j�j C 2� m)C � (l C 1� p)C pour tout� D (l , �) 2 N � Nn, il en résulte que
l’opérateurQ est de la forme

Q(t , xI Dt , D)u D a(t , xI Dt )u � f (t , x, ft (lC1�p)C Dl
t D�uglCj�j�m)

où f est une fonction holomorphe au voisinage de l’origine deC � Cn � Cn00 , n00 D
Cardf� 2 NnC1 ; j�j �mg. Autrement dit,Q est un opérateur différentiel non linéaire du
type de Fuchs, d’ordrem et de poidsp, au sens de Baouendi-Goulaouic ([1] et [2]). In-
diquons par ailleurs qu’un opérateur de poidsp se ramène simplement à un opérateur de
poids 0 (de la forme [2, (3.2)] ou [14, (1.1)] par exemple). Soit C(x, �) le polynôme ca-
ractéristique de la partie fuchsiennea(t , xIDt , D), on poseV DS �2N��p

fx 2�0 ; C(x,�)D
0g. Rappelons ([2]) que pour toutes fonctions (wh)0�h<p et v holomorphes au voisinage
de x D � � V et (t , x) D (0, �) 2 S respectivement, le problème de Cauchy

�
Q(t , xI Dt , D)u(t , x) D v(t , x),
Dh

t u(0, x) D wh(x) pour 0� h < p,

admet une unique solution holomorphe au voisinage de (t , x) D (0, �). L’existence et
l’unicité d’une solution pour ce type de problème est encorevraie ([14]) dans des classses
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de fonctions suffisamment différentiables par rapport à la variable fuchsienne et de classe
de Gevrey par rapport aux autres variables.

Nous supposons que le polynôme� 7! gA(0I� , 1, 0,: : : , 0) admet une racine simpleN� . On a donc

(1.4) D�gA(0I N� , 1, 0,: : : , 0)¤ 0

et le problème

(1.5)

8<
:

gA(t , xI 5k(t , x)) D 0,5k(0)D ( N� , 1, 0,: : : , 0),
k(0, x) D x1,

admet une unique solution holomorphe au voisinage de l’origine deC�Cn ; on peut donc
supposer que la fonctionk est définie et holomorphe surO0 et queD1k(t , x) ¤ 0 pour
tout (t , x) 2 O0. Ceci permet de définir une hypersurfaceK D f(t , x) 2 O0 ; k(t , x) D 0g
transverse àS. En notantT l’hyperplan deS d’équation t D x1 D 0, on a K \ SD�0 \ T : l’ensembleK est une hypersurface caractéristique simple issue deT et trans-
verse àS.

Pour tout Æ > 0, on poseDÆ D fz 2 C ; jzj < Æg et on noteRÆ le revêtement
universel du disque pointéPDÆ D fz2 C ; 0< jzj< Æg. Si v est une fonction holomorphe
ramifiée autour deK , on peut trouver un réelÆ > 0 et un voisinage ouvert connexe
O � O0 de l’origine deC � Cn tels quev soit de la forme

(1.6) v(t , x) D Qv(z, t , x)jzDk(t ,x)

où Qv est une fonction holomorphe surRÆ � O ; quitte à réduireO, on peut supposer
que jk(t , x)j < Æ pour tout (t , x) 2 O. La fonction (1.6) est alors définie et holomorphe
sur le revêtement universel deO � K .

On se propose de construire une solution de l’équation

(1.7) Q(t , xI Dt , D)u(t , x) D v(z, t , x)jzDk(t ,x)

sans hypothèse particulière sur l’opérateura(t , xIDt , D). On utilise ([15]) la partie fuch-
sienne d’ordre 1 et de poids 0

(1.8) b(t , x, Dt ) � D�gA(0, xI 5k(0, x))t Dt C gB(0, xI 5k(0, x))

à coefficients définis et holomorphes sur�0. On associe àb son polynôme caractéristique

P(x, �) D D�gA(0, xI 5k(0, x))�C gB(0, xI 5k(0, x)),

qui vérifie P(x, t Dt ) D b(t , x, Dt ), et on suppose que

(1.9) P(0, �) ¤ 0 pour tout � 2 N.
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NOTE. Il n’y a en général aucune relation entre (1.3) et (1.8) sauflorsquemD 1,
auquel cas, on aa(t , x, Dt ) D b(t , x, Dt ) et la condition (1.9) n’est autre que la condi-
tion usuelleC(0, �) ¤ 0 pour tout entier� � p.

En outre, cette construction nécessite comme dans [7] et [8]des hypothèses de
croissance que nous allons préciser.

Soient a 2 R, Æ > 0 et O un voisinage ouvert de l’origine deC � Cn. On note
Ha(RÆ � O) l’espace vectoriel des fonctions à croissance lente d’exposanta c’est-à-
dire des fonctionsu 2 H(RÆ �O) pour lesquelles il existec � 0 tel que

ju(z, t , x)j � cjzja pour tout (z, t , x) 2 RÆ �O.

D’autre part, on noteGa(RÆ �O) l’espace vectoriel des fonctionsu 2 H(RÆ �O) pour
lesquelles il existec � 0 tel que

8p 2 N, jD p
z u(z, t , x)j � cpC1 p! jzja�p pour tout (z, t , x) 2 RÆ �O.

REMARQUE 1.1. On aGa(RÆ � O) � Ha(RÆ � O) et, [8, Proposition 1.1],
Ha(RÆ �O) � Ga(RÆ0 �O) si Æ0 2 ]0, Æ[.

On définit un inverse à droite de l’opérateurDz en posant, pour toutu 2Ha(RÆ �
O) (resp.Ga(RÆ �O)),

D�1
z u(z, t , x) D Z z

0
u(� , t , x) d� D Z 1

0
u(sz, t , x)z ds

et on vérifie aisément queD�1
z u 2 HaC1(RÆ �O) (resp.GaC1(RÆ �O)). On considère

alors l’équation

(1.10) Q(t , xI Dt , D)[D1�m
z u(z, t , x)jzDk(t ,x)] D v(z, t , x)jzDk(t ,x).

Théorème 1.1. Soient a� 1, Æ > 0, O � O0 un voisinage ouvert de l’origine
de C � Cn et v 2 Ga(RÆ � O), alors il existeÆ0 > 0, O0 � O un voisinage ouvert de
l’origine de C � Cn et une solution u2 Ga(RÆ0 �O0) de l’équation(1.10).

REMARQUE 1.2. Dans ce théorème, on peut remplacer les espacesGa par les
espacesHa d’après le remarque 1.1.

REMARQUE 1.3. Lorsque les fonctionsa� sont identiquement nulles, alorsQ D
L est l’opérateur linéaire étudié dans [15] (qui peut être rapproché de [4], [9] ou [16]
et qui construit pour l’équationLu D v une solution ramifiée autour deK ) ; comme
expliqué dans [15], le problème [15, (1.6)-(1.8)] contientle problème [7, (2.6)-(2.7)].
En ce qui concerne [8], nous reprenons ici des outils qui s’y trouvent mais le problème
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[8, (1.7)-(1.8)] et notre équation (1.10) sont en général différents. Il est toutefois pos-
sible de les relier ; expliquons brièvement de quelle manière. Rappelons que l’opérateur
[8, (1.1)] s’écrit

P(t , xI Dt , D)u D X
�D(l ,�)2N�NnI j�j�m

A�(t , x, D0u)Dl
t D�u

où D0uD (Dl
t D�u)(l ,�)20, les fonctionsA� sont holomorphes au voisinage de l’origine

de C�Cn�Cn0 , la partie linéariséeA(t , xIDt , D)�P�D(l ,�)2N�NnIj�j�m A�(t , x, 0)Dl
t D�

vérifie (1.4) (en notant encoregA le symbole principal deA) et le problème (1.5) admet
une unique solutionk holomorphe au voisinage de l’origine deC�Cn. Considérons le
problème [8, (1.7)-(1.8)] :

(1.11)

�
P(t , xI Dt , D)[Dm�1

z u(z, t , x)jzDk(t ,x)] D w1(k(t , x), t , x),
u(z, t , x) � w0(z, t , x) D 0 pour t D 0,

dans lequel on peut supposer, pour simplifier, quew0 D 0. En posantC�(t , x, y) D
A�(t , x, y) � A�(t , x, 0), on a

P(tu) D t AuC D� Au

C X
�D(l ,�)2N�NnI j�j�m

C�(t , x, D0tu)(t Dl
t D�uC l D l�1

t D�u).

On note alors que, sij�j < m, on a 1� (j�jC2�m)C et 0D ((l �1)Cj�jC2�m)C ;
on en déduit que les termes figurant dansD0tu sont de la formeD
u ou tD
u, 
 2 0.

Supposons que

(1.12) C�(0, x, y) D 0 pour j�j D m et pour tout x, y,

alors on peut écrireC� D ta� , a� étant holomorphe au voisinage de l’origine deC �
Cn � Cn0 ; donc, en multipliant part , on obtient pourj�j D m, les termest2Dl

t D�
et lt D l�1

t D� qui sont clairement de la formet (hCj�jC2�m)C Dh
t D�. Ces considérations

montrent quetu est solution de (1.11) siu vérifie l’équation (1.10) oùQ est de la
forme (1.1) avecL D t AC D� A. Pour cette équation, la condition (1.9) s’écrit simple-
ment D�gA(0I5k(0))(�C1)¤ 0 pour tout� 2 N, soit D�gA(0I5k(0))¤ 0 ; autrement
dit, la condition (1.9) est vide dans ce cas. Finalement, sous l’hypothèse (1.12), le
problème (1.11) est un cas particulier du problème (1.9)-(1.10). Par exemple, lorsqueQ
est simplement semi-linéaire, auquel cas on aC� � 0 pour j�j D m, alors le problème
(1.11), c’est-à-dire le problème [7, (2.8)-(2.9)], est un cas particulier du problème
(1.9)-(1.10) ; indiquons que dans ce cas, il est possible (quitte à adapter les calculs
qui vont suivre) d’établir le théorème 1.1 dans les espacesHa pour a > 0.
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2. Réduction

Posons

Fu D X
j�j�m

a� (t , x, D0u)D�u.

Pour expliciter l’équation (1.10), c’est-à-dire (L C F)[D1�m
z u(z, t , x)jzDk(t ,x)] Dv(z, t , x)jzDk(t ,x), on utilise le lemme suivant [10, Lemme 6.1].

Lemme 2.1. Soient M(t , xI Dt , D) un opérateur différentiel linéaire d’ordre m à
coefficients holomorphes dans un ouvertO de C � Cn et k : O 7! C une fonction
holomorphe. Il existe des opérateurs différentiels linéaires Mq(t , xI Dt , D), 0� q � m,
d’ordre � q à coefficients holomorphes dansO tels que, pour tout a2O et tout germe
u au point (k(a), a) 2 C �O, on ait

M(t , xI Dt , D)u(k(t , x), t , x) D mX
qD0

Mq(t , xI Dt , D)Dm�q
z u(z, t , x)jzDk(t ,x)

pour (t , x) voisin de a.

En outre, les coefficients de Mq sont des combinaisons linéaires de ceux de M dont
les coefficients sont des polynômes en les dérivées de k. Si g est le symbole principal
de M, le symbole principal de Mq, en tant qu’opérateur d’orde q, est donné par la
formule

(2.1) � (Mq)(t , xI � , � ) D X
hCj�jDq

Dh� D�� g(t , xI 5k(t , x))
� h��
h! �!

.

D’après ce lemme, on a

(2.2)

8>>>>><
>>>>>:

A(t , xI Dt , D)u(k(t , x), t , x) D mX
qD0

Aq(t , xI Dt , D)Dm�q
z u(z, t , x)jzDk(t ,x),

B(t , xI Dt , D)u(k(t , x), t , x) D m�1X
qD0

Bq(t , xI Dt , D)Dm�1�q
z u(z, t , x)jzDk(t ,x),

où les opérateursAq et Bq sont d’ordre� q ; vu (1.4) et (2.1), on constate queA0 D� (A0) D 0 et on en déduit que

L[D1�m
z u(z, t , x)jzDk(t ,x)] D m�1X

qD0

(t AqC1 C Bq)D�q
z u(z, t , x)jzDk(t ,x).
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En outre, d’après (2.1), on a

B0(t , x) D gB(t , xI 5k(t , x))

et

� (A1)(t , xI � , � ) D D�gA(t , xI 5k(t , x))� C nX
jD1

D� j gA(t , xI 5k(t , x))� j .

En utilisant la notation (1.8), il en résulte que

(t A1 C B0)(t , x, Dt , D) D b(t , xI Dt )C X
lCj�j�1

al ,�(t , x)t lC1Dl
t D�

où lesal ,� sont des fonctions holomorphes surO0. En notant, pour 1� q � m� 1,

AlCq
q D �

Bq si l D 0,
AqC1 si l D 1,

on obtient

L[D1�m
z u(z, t , x)jzDk(t ,x)] D

0
B�b(t , xI Dt )C X

lCj�j�1

al ,�(t , x)t1Cl Dl
t D�

C X
0�l�1

1�q�m�1

t l AlCq
q (t , xI Dt , D)D�q

z

1
CAu(z, t , x)jzDk(t ,x)

où l’ordre des opérateursAlCq
q est� l C q.

PosonsQ D fq 2 N ; 0 � q � m� 1g et pour toutq 2 Q, notons Rq l’opérateur
défini par

(2.3) Rq D
8>>><
>>>:

X
lCj�j�1

al ,�(t , x)t1Cl Dl
t D� si q D 0,

X
0�l�1

t l AlCq
q (t , xI Dt , D) sinon.

On peut alors écrire

L[D1�m
z u(z, t , x)jzDk(t ,x)] D

 
b(t , xI Dt )CX

q2Q Rq D�q
z

!
u(z, t , x)jzDk(t ,x).
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Considérons ensuite les opérateursD� , � 2 Nn. D’après le lemme 2.1, on a

D�D1�m
z u(k(t , x), t , x) D t (j�jC2�m)C j�jX

qD0

M�
q Dj�jC1�m�q

z u(z, t , x)jzDk(t ,x)

où les M�
q sont des opérateurs différentiels linéaires holomorphes sur O0 d’ordre q. En

posant

(2.4) Y� D t (j�jC2�m)C j�jX
qD0

M�
q Dj�jC1�m�q

z et Y0u D (Y
u)
20,

on obtient donc

(L C F)[D1�m
z u(z, t , x)jzDk(t ,x)]

D
 

b(t , xI Dt )CX
q2Q Rq D�q

z C X
j�j�m

a� (t , x, Y0u(z, t , x))Y�
!

u(z, t , x)jzDk(t ,x).

Étant donné quek(0, a) D a1 d’après (1.5), l’équation (1.10) sera a fortiori vérifiée si
pour (z, t , x) voisin de (a1, 0, a), on a

 
b(t , xI Dt )CX

q2Q Rq D�q
z C X

j�j�m

a�(t , x, Y0u)Y�
!

u D v.

Autrement dit, quitte à changer de notation, il suffit d’étudier une équation de la forme

(2.5) P(x, t Dt )u D
 X

q2Q Rq D�q
z C X

j�j�m

a� (t , x, Y0u)Y�
!

uC v.

D’après l’hypothèse (1.9), il existe [15, Lemme 2.3-a] un voisinage ouvert�1 � �0

de l’origine deCn et une constantec0 > 0 tels que :

(2.6) jP(x, k)j � c0(kC 1) pour tout x 2 �1 et tout k 2 N.

En outre, le polynôme� 7! P(x, �) étant d’ordre 1, on peut supposer qu’il existe une
constantec1 > 0 telle que

(2.7) jP(x, k)j � c1k pour tout x 2 �1 et tout k 2 N.

Pour tout R> 0, on pose

DR D ft 2 C ; jt j < Rg.
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Soient a 2 R, Æ > 0, R > 0 et � un ouvert deCn, on désigne parEa(RÆ � DR ��) l’espace vectoriel des fonctionsu 2 H(RÆ � DR � �) qui appartiennent à l’espace
Ga(RÆ � Dr ��) pour tout r 2 ]0, R[.

Lemme 2.2. Soit � � �1 un ouvert deCn. L’opérateur P� P(x, t Dt ) est une
bijection linéaire de l’espaceH(RÆ �DR��) (resp. Ea(RÆ �DR��)) sur lui même et

(2.8) (P�1u)(z, t , x) DX
k2N

tk

k!

Dk
t u(z, 0, x)

P(x, k)
;

de plus, les opérateurs P�1 et Dq
z commutent quel que soit q2 Z.

Preuve. Il est clair que l’applicationP : H(RÆ�DR��)!H(RÆ�DR��) est
linéaire. Étant donné que (t Dt )l tk D kl tk pour tout k, l 2 N, on a P(x, t Dt )u(z, t , x)DP

k2N(tk=k!) P(x, k)Dk
t u(z, 0, x). L’opérateur P est donc injectif d’après (2.6) ; son

inverse est formellement donné par la série (2.8). Soitu 2 Ea(RÆ�DR��), montrons
que Pu, P�1u 2 Ea(RÆ � DR � �) et que P Æ P�1u D u. Soient 0< r < s < R et
K un compact deRÆ � �. Si u 2 H(RÆ � DR � �), il existe c D c(s, K) � 0 tel
que j(tk=k!)Dk

t u(z, 0, x)j � c(r =s)k pour tout (z, t , x) 2 RÆ � Dr � �. Ceci prouve
que la série (2.8) converge dansH(RÆ � DR��) puisquej1=P(x, k)j � 1=c0 d’après
(2.6) ; (2.8) étant aussi une série entière det , son image parP est bien égale àu.
Les opérateursDq

z et P commutant dansH(RÆ � DR ��), il en est de même des
opérateursP�1 et Dq

z . Soit u 2 Ea(RÆ�DR��), il reste à montrer quePu, P�1u 2
Ea(RÆ � DR ��). D’après les inégalités de Cauchy et d’après (2.7), on a

���� tk

k!
P(x, k)Dk

t D p
z u(z, 0, x)

���� � cpC1 p!jzja�pc1k

� jt j
R

�k

pour tout (z, t , x) 2 RÆ � Dr ��.

Soit r 2 ]0, R[, la série
P1

kD0k(r =R)k étant convergente, ceci prouve quePu2 Ga(RÆ�
Dr ��). De même, en utilisant (2.6), on vérifie queP�1u 2 Ea(RÆ � DR ��), d’où
le lemme.

En remplaçantu par P�1u, on en déduit que l’équation (2.5) est équivalente à
(2.9)

uDAuCFuCv où ADX
q2Q Rq P�1D�q

z et FuD X
j�j�m

a�(t , x, Y0P�1u)Y�P�1u.

NOTE. Notre solution de l’équation initiale (1.7) est donc de la forme
(D1�m

z P�1u)(k(t , x), t , x).

Le théorème 1.1 résulte finalement de la proposition suivante.
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Proposition 2.3. Soient a� 1, Æ > 0, O � O0 un voisinage ouvert de l’origine
de C � Cn et v 2 Ga(RÆ � O), alors il existeÆ0 > 0, O0 � O un voisinage ouvert de
l’origine de C � Cn et une unique solution u2 Ga(RÆ0 �O0) de l’équation(2.9).

La démonstration de cette proposition repose sur le théorème du point fixe dans
des espaces de Banach que nous allons maintenant définir ; indiquons qu’il s’agit d’es-
paces analogues à ceux introduits dans [8].

3. Cadre fonctionnel et estimation des opérateurs linéaires A et Y�P�1

Nous utiliserons les variables� DPn
jD1 x j et � D �t où � est un paramètre� 1.

DÉFINITION 3.1. Soienta 2 R, L, �, ! � 1, Æ > 0 et � 2 RCf�g une fonction
majorante de rayon de convergence� R > 0 tel que!Æ < R, on noteGa� l’espace
vectoriel des fonctionsu holomorphes au voisinage deRÆ�f0g pour lesquelles il existe
c � 0 tel que

(3.1) 8p 2 N, 8z 2 RÆ, D p
z u(z, t , x) � cLpjzja�pD p�(� C � C !jzj).

Il est clair queGa� est un espace vectoriel et que la plus petite constantec � 0 pour
laquelle (3.1) a lieu est une norme sur cet espace vectoriel,notéek � kGa� . Posons

O(R, �, !, Æ) D
(

(t , x) 2 C � Cn ; �jt j C nX
jD1

jx j j < R� !Æ
)

.

Lemme 3.2. Soit u 2 Ga� , alors u 2 H(RÆ � O(R, �, !, Æ)) et u 2 Ga(RÆ �
O(s, �, !, Æ)) pour tout s2 ]!Æ, R[.

Preuve [7, Lemme 4.2]. On a

u(z, t , x) � kukGa� jzja�(� C � C !jzj) � c�(� C � C !Æ) où cD kukGa�Æa.

Autrement dit, pour tout (h, �) 2 N � Nn, on a

jDh
t D�u(z, 0, 0)j � kukGa��h DhCj�j�(!Æ).

L’ouvert O(R,�,!,Æ) étant contenu dans le domaine de convergence de la fonctionma-
jorante�(�C�C!Æ), on en déduit que la sérieu(z, t , x)DP

(h,�)2N�Nn(thx�=(h!�!)) �
Dh

t D�u(z, 0, 0) converge normalement sur tout compact deRÆ �O(R, �, Æ, !) et que
u est holomorphe dansRÆ �O(R, �, Æ, !). Soit s 2 ]!Æ, R[, on a

jD p
z u(z, t , x)j � cLpjzja�pD p�(s) pour tout (z, t , x) 2 RÆ �O(s, �, !, Æ)
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et il existec � 0 tel quejD p�(s)j � cpC1 p!, d’où u 2 Ga(RÆ �O(s, �, !, Æ)), ce qui
prouve le lemme.

Lemme 3.3. L’espaceGa� est un espace de Banach.

Preuve. Soit (un) une suite de Cauchy de l’espaceGa� . Il existe un entierN 2 N
tel que pour toutn, n0 � N et tout z 2 RÆ,
(3.2) 8p 2 N, D p

z (un � un0)(z, t , x) � "L pjzja�pD p�(� C � C !jzj).
Si K est une partie compacte deRÆ �O(R, �, !, Æ), on a donc

max
K
jun � un0 j � "CK

où CK D max
(z,t ,x)2K

jzja�
 
�jt j C nX

jD1

jx j j C !jzj
!

est< C1
car l’application (z, t , x) 7! jzja���jt jCPn

jD1 jx j jC!jzj� est continue surRÆ�O(R,�,!, Æ). Ceci prouve que la suite (un) est de Cauchy dans l’espaceH(RÆ�O(R,�,!, Æ)),
elle converge donc uniformément vers une fonctionu 2 H(RÆ �O(R, �, !, Æ)) sur tout
compact deRÆ � O(R, �, !, Æ) ; a fortiori, pour toutz 2 RÆ et tout (p, h, �) 2 N �
N�Nn, la suite (D p

z Dh
t D�un(z, 0, 0))n converge versD p

z Dh
t D�u(z, 0, 0). On peut alors

passer à la limite surn0 dans la relation (3.2) et on en déduit que (un) converge vers
u dansGa� .

Lemme 3.4. L’application Dz : Ga� ! Ga�1
D� est linéaire continue de norme� L.

Preuve. Soientu2Ga� et p2N. On a D pC1
z u�kukGa� L pC1jzja�(pC1)D pC1� c’est-

à-dire le résultat voulu,

D p
z Dzu� LkukGa� L pjzja�1�pD pD�.

Lemme 3.5. L’application D�1
z : Ga

D� ! Ga� est linéaire continue de norme�
max(ÆL�1, !�1).

Preuve. Soientu 2 Ga
D� et p 2 N. Si p � 1, on a

D p
z D�1

z u D D p�1
z u � kukGa

D� L p�1jzjaC1�pD p� � ÆL�1kukGa
D� L pjzja�pD p�.
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Supposons ensuitep D 0. Pour toutz 2 RÆ et tout (h, �) 2 N � Nn, on a

jDh
t D�u(z, 0, 0)j � kukGa

D� jzja�h DhCj�jC1�(!jzj)
d’où

jDh
t D�D�1

z u(z, 0, 0)j � kukGa
D� jzja�h

Z 1

0
DhCj�jC1�(!sjzj)jzj ds

� !�1kukGa
D� jzja�h DhCj�j�(!jzj)

soit D�1
z u � !�1kukGa

D��(� C � C !jzj), ce qui prouve le lemme.

Indiquons maintenant le choix de�. Rappelons ([17]) que si� désigne la fonction
majorante�(� ) D P1

nD0 �n=(n C 1)2, il existe K > 0 tel que �2 � K � ; la fonction
majorante�(� ) D K�1�(�=R), R> 0, vérifie alors

�(0)D K�1 et �2 � �.

Rappelons [17, Lemme 2.4] que, pour tout� > 1, il existe c D c(�) > 0 tel que�R=(�R� � ) � c�, d’où (�R=(�R� � ))� � c� et, par dérivation,

(3.3) 8p 2 N,
�R�R� � D p� � cDp�.

Pour tout R> 0, on pose

1R D n
x 2 Cn ; max

1� j�n
jx j j < R

o
.

On fixe une fois pour toutes� > 1 et R0 > 0 tels queD0 � �1 (� D0 � �0 D O0)
contienne le polydisqueD�R0 �1�R0. D’après (2.6) et les inégalités de Cauchy, on a

(3.4)
1

P(x, k)
� c�1

0

kC 1

�R�R� � pour tout R 2 ]0, R0] et tout k 2 N.

Il est clair queO(R,�,3,!) � DR�1R � D0��1. Voici alors une estimation deP�1.

Lemme 3.6. Il existe une constante c(D c�1
0 c(")) > 0 telle que : soient b2 R,

R 2 ]0, R0] et l 2 N, si u 2 Gb
Dl� , alors P�1u 2 H(RÆ �O(R, �, Æ, !)) vérifie

(3.5)

8p 2 N, 8z 2 RÆ,
D p

z P�1u(z, t , x) � ckukGb
Dl � L pjzjb�p

1X
kD0

� k DkCpCl�(� C !jzj)
(kC 1)!

.
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Preuve. Soitu 2 Gb
Dl� , alors d’après le lemme 3.2,u 2H(RÆ �O(R, �, !, Æ)). En

posant pour toutR> 0, �R D fx 2 Cn ;
Pn

jD1jx j j < Rg, on observe que

O(R, �, !, Æ) D [
r2]0,R�!Æ[ Dr =� ��R�!Æ�r .

D’après le lemme 2.2, on en déduit queP�1u 2H(RÆ �O(R, �,!, Æ)). En outre, on a

D p
z P�1u D P�1D p

z u DX
k2N

tk

k!

Dk
t D p

z u(z, 0, x)

P(x, k)
,

soit Dk
t (D p

z P�1u)(z, 0, x) D Dk
t D p

z u(z, 0, x)=P(x, k). Par ailleurs, d’après (3.1), on a

Dk
t D p

z u(z, 0, x) � kukGa
Dl � L pjzjb�p�k DkCpCl�(� C !jzj) pour tout k 2 N.

D’après (3.3) et (3.4), on en déduit

Dk
t (D p

z P�1u)(z, 0, x) � ckukGa
Dl � L pjzjb�p�k DkCpCl�(� C !jzj)

kC 1
pour tout k 2 N,

c’est-à-dire le résultat voulu.

Afin de contrôler les opérateursRq P�1, rappelons [14, Lemme 2.8] que

(3.6)
Dk�
k!

� Rl (l C 1)2
DkCl�

(kC l )!
pour tout k, l 2 N.

Dans les majorations qui vont suivre, toute constante qui dépend des paramètresc0,�, R0

déjà fixés, sera notéec, sauf mention expresse. Étant donné queD�R0 � 1�R0 � O0,
tous les coefficients des opérateursRq sont holomorphes et bornés surD�R0 �1�R0. Soit
R 2 ]0, R0], si b désigne l’un de ces coefficients, on a d’après les inégalitésde Cauchy

(3.7) b(t , x) � c
�R�R� (� C � )

.

Le lemme 3.6 de [15] prend ici la forme suivante.

Lemme 3.7. Il existe c> 0 tel que, pour tout R2 ]0, R0], l’opérateur Rq P�1

induise une application linéaire continue deGa� dansGa
Dq� de norme

kRq P�1k � �c��1 si qD 0,
c�q si q > 0.
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Preuve. Soitu 2 Ga� ; d’après le lemme précédent et vu (2.3),Rq P�1u 2 H(RÆ �
O(R, �, !, Æ)). Si q D 0, Rq est une somme finie de termes de la forme

b(t , x)t lC1Dl
t D�P�1 où l C j�j � 1.

Grâce à (3.4) et (3.7), nous pouvons faire abstraction du coefficient b(t , x). Vu (3.5),
on a pour toutp 2 N et tout z 2 RÆ,

D p
z (t lC1Dl

t D�P�1u) � ckuka���1
X
k�l

� kC1 k!

(k � l )!

DkCpCj�j�(� C !jzj)
(kC 1)!

.

Étant donné quej�j � 1, on a d’après (3.6),

DkCpCj�j�
(kC pC j�j)! � (4R)1�j�j DkCpC1�

(kC pC 1)!
.

On note que (4R)1�j�j � (4R0)1�j�j � c ; on remarque ensuite que

k!

(k � l )!

(kC pC j�j)!
(kC pC 1)!

� 1 pour tout k � l

car l C j�j � 1. Il en résulte que

D p
z (t lC1Dl

t D�P�1u) � ckuka���1
X
k�l

� kC1 DkC1Cp�(� C !jzj)
(kC 1)!

d’où le résultat voulu dans ce cas.
Lorsqueq est> 0, rappelons que l’ordre des opérateursAlCq

q est� l C q ; à nou-
veau, on en déduit qu’il s’agit de majorer les opérateurs

t l Dh
t D�P�1 où hC j�j � l C q, 0� l � 1.

Vu (3.5), on a

D p
z (t l Dh

t D�P�1u) � ckuka��h�l
X
k�h

� k�hCl k!

(k � h)!

DkCpCj�j�(� C !jzj)
(kC 1)!

.

Étant donné quehC j�j � l C q, on a�h�l � �q et, d’après (3.6),

DkCpCj�j� � cDkCp�hClCq� où cD RlCq�(hCj�j)
0 (l C q � (hC j�j)C 1)2.

On observe alors que

k!

(k � h)!

(k � hC l )!

(kC 1)!
� 1 pour tout k � h
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car 0� l � 1. On obtient donc

t l Dh
t D�P�1u � ckuka��q

X
k�h

� k�hCl Dk�hClCpCq�(� C !jzj)
(k � hC l )!

,

d’où le lemme.

Les lemmes 2.2 et 3.5 permettent d’en déduire immédiatementle corollaire suivant.

Lemme 3.8. Il existe c> 0 tel que, pour tout R2 ]0, R0], l’opérateurA induise un
endomorphisme continu de l’espaceGa� de norme�c

���1CPq2Q? (max(ÆL�1,!�1)�)q
��"1(L, �,!, Æ).

On peut ensuite établir le

Lemme 3.9. Il existe c>0 tel que, pour tout R2 ]0, R0], chaque opérateur Y
 P�1,
 2 0 (resp. Y�P�1, j�j �m) induise une application linéaire continue deGa� dansGa�
(resp. Ga�1� ) de norme� "1(L, �,!, Æ) (resp.� c

���1L CPq2Q?(max(ÆL�1,!�1)�)q
��"2(L, �,!, Æ)).

Preuve. Vu (2.4), sij�j D m, alors

Y� D M0t DzC t2M�
1 C

m�1X
qD1

t MqC1D�q
z où Mq D t M�

q pour qD 0, 2,: : : , m.

Pour j�j D m� 1, on a

Y� D t M0 C m�1X
qD1

Mq D�q
z où Mq D t M�

q , 1� q � m� 1.

Enfin, lorsquej�j � m� 2, on obtient (en remplaçantq par j�j C 1�mC q)

Y� D m�1X
qDm�1�j�j M�j�jC1�mCq D�q

z où m�1� j�j � 1 et j�jC1�mCq � q�1

soit

Y� D m�1X
qD1

Aq D�q
z

où Aq désigne un opérateur différentiel linéaire holomorphe surO0 d’ordre � q.
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Autrement dit,

(3.8) Y� est une somme finie d’opérateurs de la formeM0t Dz, Sq D�q
z , q � 0

et, vu quej
 j � m� 1 pour tout
 2 0,

(3.9) Y
 est une somme finie d’opérateurs de la formeSq D�q
z , q � 0.

On en déduit que l’opérateurY
 P�1 agit et se majore comme l’opérateurA ; le résultat
voulu est donc une conséquence du lemme 3.8.

Il est clair que l’injectionGa� ,! Ga�1� est linéaire continue de norme� Æ. Vu (3.8),

on en déduit qu’il suffit d’étudier l’opérateurt P�1Dz. Soit doncu 2 Ga� . D’après les
lemmes 3.4 et 3.6, on a

D p
z P�1(Dzu) � cLkukGa� L pjzja�1�p

1X
kD0

� k DkCpC1�
(kC 1)!

d’où

D p
z (t P�1Dzu) � c��1LkukGa� L pjzja�1�p

1X
kD0

� kC1 DkC1Cp�
(kC 1)!

ce qui permet de conclure.

Pour contrôler l’opérateurF , nous aurons besoin des lemmes qui suivent [8, Pro-
position 3.3 et 3.4].

Lemme 3.10. Soient a, b 2 R et (u, v) 2 Ga� �Gb� , alors uv 2 GaCb� où kuvkGaCb� �kukGa�kvkGb� .
Preuve. Soitp 2 N, on a

D p
z uv D pX

jD0

�
p
j

�
D j

zuDp� j
z v

� kukGa�kvkGb� L pjzjaCb�p

 
pX

jD0

�
p
j

�
D j�D p� j�

!
(� C � C !jzj)

et on conclut en dérivant�2 � � à l’ordre p, d’où le lemme.

Lemme 3.11. Soient f une fonction holomorphe et bornée par M sur le poly-
disque ouvert, centré à l’origine deCt � Cn

x � CN , de rayon�R, R > 0, � � 1 et
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u1, : : : , uN 2 G0� tels que Kkui k0� < R, alors v � f (t , x, u1, : : : , uN) 2 G0� et

kvk0� � cM
NY

iD1

R

R� kui k0�
où la constante c ne dépend que de�.

Preuve. Commeui 2 G0�, on a en particulier

8z 2 RÆ, ui (z, 0, 0)� kui k0��(!jzj) � kui k0��(R) D kui k0��(1).

On déduit de la relation�2 � K � que �(1)� K , d’où jui (z, 0, 0)j � Kkui k0� < R. La
fonction v est donc bien définie et holomorphe au voisinage deRÆ � f0g et on a

v D X
�2NN

f�(t , x)
NY

iD1

u�i
i

où les fonctionsf� sont holomorphes, bornées parM R�j�j sur le polydisqueD�R�1�R ;
elles appartiennent donc à l’espaceG0� et sont de norme� cM R�j�j où c D c(�) est la
constante figurant dans la relation�R=(�R � � ) � c�. D’après le lemme précédent,
u� 2 G0� et ku�k �QN

iD1 kui k�i , d’où f�u� 2 G0� et k f�u�k � cM
QN

iD1(kui k=R)�i . Il en

résulte que la famille (f�u�) est absolument sommable dans l’espaceG0� et que

kvk � cM
NY

iD1

R

R� kui k ,

ce qui prouve le lemme.

4. Preuve de la proposition 2.3

On pose

f (t , x, Z) DX
�2B a�(t , x, Z0)Z�

où

Z D (Z�)�2B, B D f� 2 Nn ; j�j � mg et Z0 D (Z
 )
20, 0 � B.

D’après (1.2), on peut écrire

f (t , x, Z) � f (t , x, Z0) DX
�2B
20

g�,
 (t , x, Z0, Z00)Z
 (Z� � Z0�)

C h�,
 (t , x, Z0, Z00)Z0�eta(Z
 � Z0
 )
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où les fonctionsg�,
 , h�,
 sont holomorphes au voisinage de l’origine deC � Cn �
Cn0 � Cn0 . On peut évidemment supposer ces fonctions holomorphes et bornées sur le
polydisque ouvert de rayon�R0 centré à l’origine deC � Cn � Cn0 � Cn0 .

Soient a � 1, Æ > 0, O � O0 un voisinage ouvert de l’origine deC � Cn. On
choisit R 2 ]0, R0] tel que D�R � 1�R � O. Soit v 2 Ga(RÆ � O), alors d’après les
inégalités de Cauchy, on a

8p 2 N, 8z 2 RÆ, D p
z v � cpC1 p! jzja�p �R�R� (� C � )

.

Or, on sait que�R=(�R� � ) � c(�)� et, d’après (3.6),

� � Rp(pC 1)2
D p�
p!

� (4R)p D p�
p!

.

En prenant par exempleL D 1C c(4R), il en résulte quev appartient à l’espaceGa�
associé aux paramètresL, �, ! � 1 et Æ0 2 ]0, Æ] tel que!Æ0 < R ; sa norme étant une
constante (� cc(�)) indépendante deÆ0.

On pose

" D "(L, �, !, Æ0) � max("1(L, �, !, Æ0), "2(L, �, !, Æ0))
où les"i sont les expressions figurant dans les lemmes 3.8 et 3.9 ; étant donné queL
est� 1, on constate que

(4.1) " � c

"
��1L C X

q2Q?(max(Æ0, !�1)�)q

#
.

Soit r �2kvkGa� et u, u0 appartenant à la boule ferméeB0(0,r )D fu2Ga� ; kukGa� � r g
de l’espaceGa� . Posons, pour tout� 2 B,

Z� D Y�P�1u et Z0� D Y�P�1u0.
Le lemme 3.9 montre que, si
 2 0, alors

Z
 , Z0
 2 Ga� et kZ
 kGa� ,kZ0
 kGa� � "r ;

l’injection Ga� ,! G0� est linéaire continue de norme� Æ0a, il en résulte que

Z
 , Z0
 2 G0� et kZ
 kG0� ,kZ0
 kG0� � "r Æ0a.

Supposons

(4.2) K "r Æ0a � R

2
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de sorte que l’hypothèse du lemme 3.11 soit vérifiée, ce qui garantit que les fonctions
g�,
 (t , x, Z0, Z00) et h�,
 (t , x, Z0, Z00) appartiennent à l’espaceG0� et qu’elles sont de
norme� c.

D’autre part, pour tout
 2 0 et tout� 2 B, on a d’après les lemmes 3.9 et 3.10,

(
Z
 (Z� � Z0�), Z0�(Z
 � Z0
 ) 2 G2a�1� ,kZ
 (Z� � Z0�)kG2a�1� , kZ0�(Z
 � Z0
 )kG2a�1� � "2r ku � u0kGa� .

L’hypothèsea � 1 signifiant a � 2a � 1, il est clair que l’injectionG2a�1� ,! Ga� est

linéaire continue de norme� Æ0a�1 � Æa�1 D c. Par conséquent, on a

(
Z
 (Z� � Z0�), Z0�(Z
 � Z0
 ) 2 Ga� ,kZ
 (Z� � Z0�)kGa� , kZ0�(Z
 � Z0
 )kGa� � c"2r ku � u0kGa� .

En utilisant à nouveau le lemme 3.10, on en déduit que

Fu � Fu0 2 Ga� où kFu� Fu0kGa� � c"2r ku � u0kGa� .

Vu queF (0)D 0, on a donc

Fu 2 Ga� où kFukGa� � c"2r kukGa� .
En notantT u D AuC FuC v, on obtient finalement,

(4.3)

8><
>:
kT ukGa� �

�" C c"2r C 1

2

�
r ,

kT u � T u0kGa� � (" C c"2r )ku � u0kGa� .

Vu (4.1), il est alors possible de fixer� � 1, ! � 1 et 0< Æ0 < min(Æ, R=!) satisfai-
sant à la condition (4.2), tels que" C c"2r � 1=2. D’après (4.3), on en déduit que
T : B0(0, r ) ! B0(0, r ) est une contraction stricte, ce qui prouve l’existence d’une
solution u 2 Ga� ; en choisissant uns 2 ]!Æ, R], cette solution appartient d’après le
lemme 3.2 àGa(RÆ � O0) où O0 D O(s, �, !, Æ0). On a également l’unicité car, siu0
appartient àGa(RÆ �O0) et vérifie l’équation (2.9), on peut encore choisir 0< R� R0

tel queu, u0 2 Ga� pour un certainL � 1, puis r � 2kvkGa� , � � 1, ! � 1 et Æ00 > 0 tel

que T soit une contraction stricte dansB0(0, r ), ce qui prouve queu0 D u.
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