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Introduction

Let G be a finite group,p a prime number which divides the orderGof , and
(K, O, k) a p-modular system, i.e() is a complete discrete valuation ring of charac-
teristic zero with maximal idealn), k(:= O/(x)) is the residue field of) of charac-
teristic p > 0, andK is the field of fractions of). R is used to denote eith&? or
k. All the RG-modules considered here aRe -free and finitely generated Rver

Let I'(RG) be the Auslander-Reiten quiver &G . For a connected compdfent
of I'(RG), we denote by®; the stable part 6f obtained frén by removing all
projective RG -modules and arrows attached to them. In [16], P. J. Webb showed that
the tree class 00, is either a Euclidean diagram or one of the infinite #ggsB..,

Coor Do @and AZ if the modules in® do not lie in a block of cyclic defect.

It was shown in [10] that ifG is ap -group an@G is of infinite representa-
tion type, and furthermore ifx) 2 (2) in the case whergp =2 and is the Klein
four group, then the stable part of the connected componeit @G) (containing the
trivial OG-lattice O has tree classA,,. The purpose of this paper is to show the
following.

Theorem. Let G be ap -group andA the connected component' @G) con-
taining the projectiveOG-lattice OG. Suppose thatOG is of infinite representation
type. Suppose further thét) 2 (2) in the case wherg =2 and G is the Klein four
group. Then the tree class of the stable part /of Aig.

It is known that the group ring?G of a finite p-groupG is of finite represen-
tation type if and only if one of the following cases arises: @) Cs (i) G = C3
and (3)2 (7%); (i) G= C,and (p) 2 (7?); (iv) G = C,2 and (p) = ), whereC)»
is the cyclic group of ordep” . See [4]. Also, it is known thatGf is the Klein four
group and £) = (2), then the tree class of the stable part of the connected component
of T'(OG) containing the projectivé)G-lattice OG is D4 (Proposition 3.4 of [5]).

In the rest of this papeG¢  will always be a finigg -group. In Sections 1, we con-
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sider the Auslander-Reiten sequence where the projeCiGelattice OG occurs. We
treat the middle term of the Auslander-Reiten sequence terminating in the tfl¢al
lattice Og in Section 2. In Section 3, the case where the projective-free fpart of
the connected componett  Bf OG) containingOG has tree classt is excluded.
Also, we exclude the case where the tree clas\pf Bjsor C,, in Section 4. In
Section 5, we show that the tree class of any connected compon&ntdf) r{ot con-
taining Og is not Euclidean. The proof of Theorem is completed in Section 6.

The notation is standard. For a non-projective indecomposible -médule , we
write A(W) for the Auslander-Reiten sequence0rW — M(W) — W — 0, wherer
is the Auslander-Reiten translation and we denotevby ( ) the middle terd(1).
It is known thatr = Q if R= O, andr = Q? if R=k, whereQ is the Heller operator
(see [13] and [1]). The triviaRG -module will be denoted ®; . ForR&  -module
W, W* means the duaRG -module HgmW( R ) 6V . FGIG-latticesV andW |,
set Hom,;(V, W) := Hompg(V, W)/PHomog(V, W), where PHompg(V, W) is the
subspace of How(V, W) of all projective maps from td¥V . Also, theG -module
W /zW is denoted byW. Concerning some basic facts and terminologies used here,
we refer to [12, 7, 2, 14].

1. Projective OG-lattices and Auslander-Reiten sequences

Let G be a finitep -group and :#F G) the Jacobson radical of the group ring
OG. ThenJ =10G +dec O(g — 1) is the unique maximabDG-submodule ofOG.
The following fact seems to be well-known, but we give an elementary proof here for
convenience.

Lemma 1.1. J is decomposable if and only {fr) = (|G|), i.e., G is the cyclic
group of orderp and(w) = (p).

Proof. Suppose thaf is decomposable. Consideririgza -decompodgition
O (D) +nd)/n] & Qe O — V) +n))/nJ = k¢ ® QUg, we have anOG-
decomposition/ =X @ Y such thatX = ks andY = Qkg. Since J ®p X* is
a maximal submodule oOG ®» X* (=¥ OG), it follows that J =~ J ®0p X* =
O @ (Y ®p X*). Thus we may assume that = Og. Then we see thak C OG,
where G = decgv which implies thatt C >°, ;O(g —1). Astle J=X+Y, we
haverl =rG +3_ . re(¢ — 1) for somer, r, € O. This forces thatr = r[G| and
(m) = (|G)).

Conversely, if §) = (|G|), then we see thal ©G &S, . O(g — 1). O

geG

Next, let

1:=0G +7 4G — |G|1)OG,
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where G = > ¢ec & Then! is the unique minimaDG-submodule ofk ®o OG con-
taining OG properly, sincer—1(G — |G|1) generates the simple socle of1OG /OG.

In this section we assume that)(2 (/G[), so J is indecomposable. Theh s
isomorphic toQ~1J (see, e.g., [11]), and the Auslander-Reiten sequea@® termi-
nating in I has the form 0—- J — M(I); ® OG — I — 0, whereM () is the
projective-free part ofM K[ ). Note thati(/) is the only Auslander-Reiten sequence
where OG occurs.

Lemma 1.2. Suppose thafr) 2 (IG]). Then the short exact sequenggél) ob-
tained from A(/) by reducing each term mo¢) is the direct sum of the standard
Auslander-Reiten sequene— Qk; — RadkG )YSockG )& kG — Q ks — 0 and a
split sequencd — kg — kg ® kg — kg — 0.

Proof. See [11]. Note that the argument in the proof of Theorem 9 of [11] holds
if J is indecomposable. ]

Now let us define ar®G-submoduleM ofK ®» OG as follows:

M :=70G +Y (g - 1)0G +71G - |G[1)OG.
geG

We shall show that is isomorphic to the projective-free pdrtl ; ( ) of the middle
term M (I ) of the Auslander-Reiten sequendé¢l) except the case whel&| = p and

(m) = (p).

Lemma 1.3. Suppose tha(r) 2 (|G|). Then we have thatl =~ kg @ kg ©
Rad¢G )/SockG )

Proof. AsG—|G|1€ mMNY ;O (g — 1), we haveM = (O - (w1) +xM)/xM
A 4ec O (8 — 1) +7M)/mM&(O - 7~ YG — |G|1) +7M)/7M ask -space. It is eas-
ily seen that Q - (1) +7M)/mM = k. Note that

ZO'(g_l):QOG

g€eG

and

QO /(Q0c N TM)

1R

(Zcf) (g - 1)+7TM) /mM

geG

QO /(70 +O - (G — |G|1)).
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Since QO /10 = RadkG ) and
(O - (G — |G|1) +1Q0s) /7Q0¢ = SocO¢ /7R0OG),

we see that X:geGO-(g—l)+7TM)/7rM is isomorphic to Rad{G /SockG). To
complete the proof, it suffices to show tha® (7~(G — |G|1) +7M)/xM is a kG -
submodule ofM. Let x be any element o . Then (G —|G|1)x =7 1(G—|G|x) =
4G —|G|1) +71|G|(1 — x). Sincenr!|G| € (x) by our assumption, it follows that
7 YG - |G|1)x € O -7 YG — |G|1) + 7M. O

Lemma 1.4. Let G be a finitep -group, and suppose thai) 2 (|G|). Suppose
that M’ is an OG-submodule off which containg as a maxintG-submodule.
ThenM’' =M or M’ = OG as OG-lattices.

Proof. Suppose that’ # M. Note that! =J +©O-1+0 -7 G — |G|1) asO-
modules. SinceM’ # M, M’ contains an element := lar (G — |G|1) for some
a€ 0. ThenM'=mOG+J =mOG +3_, ;0 (g —1)+0O - (r1) asO-module. Let
x be any element oG . Them x(— 1) = (1— o|G|m })(x — 1) andx — 1 € mOG
since|G|r~1 € (r) by our assumption. Also, we see that = mm —a) . cqlg—1)€
mOG. Thus we have thaM’ = mOG. As rankyM’ = |G|, it follows that M’ = OG.

O

Proposition 1.5. Suppose that(r) 2 (|G|). Then M is isomorphic to the
projective-free partM (1), of the middle termd (1) of the Auslander-Reiten sequence

A(I). In particular, A(I) has the form0 —J - M & OG — I — Q.

Proof. Since rankM(I), = |G| = rankoI, an irreducible map fromM I(,;) to
I is a monomorphism. Hence we may regard thiat: OG C I C K ®0o OG and
M), C 1 C K®» OG. Note thatOG and M () are maximalDG-submodules of
I, and sol/OG = kg = I/M(I),. Here we claim thatM I(;) Z OG: Indeed, if
M(I); C OG, the maximality forces thaM I(;) ©G. However, Lemma 1.2 implies
that M(I), = k¢ @ k¢ © RadkG )/SockG ), a contradiction.

Now since OG S OG + M(I), € I and I is the unique minimaDG-submodule
of K ®» OG containing OG, we have thatOG + M(I), = I. Thus it follows that
OG/OGNMI)s = (OG+MUI);)/M(I)s = I/M(I); = kg. ThereforeOG N M(I),
is a maximalOG-submodule ofOG and we getOG N M(I); = J. Also, it follows
that M (I /OGN M(I), = (M(I); + OG)/OG = I/OG = kg. HenceJ is a maximal
OG-submodule ofM [ 9 and the result follows by Lemma 1.4. ]
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2. Trivial OG-lattices and Auslander-Reiten sequences

Let G be a finite p -group and; the trivial OG-lattice. Then_End,(Og) ¥
0/(|G)) and 7~1G| - ide, is a generator of Soc(Epg(Og)). The Auslander-Reiten
sequenced(Og) terminating inOg is constructed as pullback of the projective cover
of Og along7~1G| - ide, (see [13, 15]):

0 —— Q0O —— M(O(;) Oc 0 . A(O(;)
H l pull back Jfl\c\.idoa
00— Q0¢ — OG = O¢ 0 : projective cover

where ¢ is the augmentation map. Her® Of) = {(x,y) | x € Og, y €
OG, 7 YGlx = e(y)} C Og @ OG. Hence we see thal ) = 7 1G|OG +
> eeclg —1DOG C OG.

Lemma 2.1 (Proposition 3.2 of [9]). The middle termM (Og;) of A(Og) is inde-
composable.

In [3], J. F. Carlson and A. Jones defined the exponentW¥xp( ) abanlattice
W as the least power? of = such thatr” - idy is projective.

Lemma 2.2. Let W be a non-projective indecomposahieG-lattice. Suppose
that the Auslander-Reiten sequendéW) modulo(r) does not split. Theexp(W ) =r.

Proof. Letp be a generator of Soc(Egd(W)). Then A(W) is the pullback of
the projective cover oW along thekG -endomorphism of W. By the assumptionp
is not projective. In particularp ¢ © Endog(W). Thus it follows thatr Endyg(W) C
P Endog(W) and - idy is projective. ]

Lemma 2.3. (1) exp{ ) =m.
(2) expM ©Og)) = 7"~*, where(|G|) = (").
(3) J is isomorphic toM(Og) if and only if (|G|) = (z?).

Proof. (1) In the case wherer = (|G|), J is isomorphic toOs @& QOs and so
exp(/) =7 If (7) 2 (|G|), J is indecomposable and non-projective by Lemma 1.1,
and the Auslander-Reiten sequendé/) modulo ¢r) does not split by Lemma 1.2.
Hence the result follows by Lemma 2.2.

(2) Since expQg) = 7", the assertion holds by Theorem 2.4 of [3].
(3) Suppose that =~ M(Og). Then since exp{ ) = exp{ Ug)), we obtain {) =
(=71 G|) by (1) and (2). The converse is clear by the definition. Ol

From Lemma 2.3 (3), we get the following immediately.
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RemArRk 2.4. J is isomorphic to the middle terdt Of) of the Auslander-Reiten
sequenced(Og) if and only if one of the following cases arises:
(1) |G| = p? and ) = (p);
(2) |G|=p and @) = (p).
In these cases)s belongs to the connected componext TofDd) containingOG
by Proposition 1.5. Hence the tree class/f is AGt by Lemma 2.1.

3. Indecomposability of M

In this section, letG be @ -group and we assume thgt £ (|G|). Then J
and I are indecomposable by Lemma 1.1. We consider the indecomposability of the
projective-free partM I ;) of the middle term of the Auslander-Reiten sequetié¢e
terminating in 7/ . We have seen in Proposition 1.5 tldtl ; () M 1OG +
> cec(g —1OG +7~1G — |G|1)OG. We begin with the following easy fact.

Lemma 3.1. Let W be akG -module. Suppose that there are W@  -decompo-
sitions W =X @Y = X' @Y’ such thatX ,X’ are semisimple and none &f ard
has a simple summand. Then we have
(1) Socf ) = Socy’).

(2) The projection mapry, : W — X’ induces an isomorphismy|x : X = X'.

Proof. (1) LetY :@j Y; be an indecomposable decompositionlof , and let
y be any element in SoE{ ). Note that SBc(C)Rad(’; ) asY; is indecomposable.
Thus there are some elemenisc Y; andz, € Rad¢G ) such thad " a,z, = y. Since
eacha, € X' @ Y’, we see thaty € Soc(”’).
(2) It is enough to show thatx/|x is monomorphism since dix = dyX’. By (1)
we see that Ker#x/|x) =X NY C XNSoct’)=XnNSoc)=0. ]

The following lemma will be used later.

Lemma 3.2. (1) Let L be anyOG-lattice of O-rank one. ThenM ®» L = M.
In particular, L | M if and only if Og | M.
(2) M* > M.

Proof. SinceA(I) ®o L : 0 - J®o L — (M(); ®o L) ® (OG ®p L) —
I ®» L — 0 is an Auslander-Reiten sequence afid ®» L = OG occurs in its
middle term, A(/) ®o L is isomorphic to.A(/). Hence (1) holds. AlsoA(/)* : 0 —
I* — M) ® OG* — J* — 0 is an Auslander-Reiten sequence whér&é occurs.
Thus A(I)* is isomorphic toA(7) and (2) holds. Il

Lemma 3.3. Suppose thatG is neither the Klein four group nor a dihedral 2-
group. If M is decomposable, theWw  has some direct summartd-raink one.
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Proof. By Lemma 1.3M = kg @ kg @ RadkG )/SockG ). If G =C3, the con-
clusion is clearly holds and thus we may assume thatz C3, which implies that
RadkG YSockG ) is indecomposable of dimension greater than one by our assump-
tion and Theorem E of [16]. Assume to the contrary that  is decomposable but does
not have any direct summand d@¥-rank one. Then we have an indecomposable de-
compositionM =X @Y such thatX = ks @ k¢ andY = RadkG )/SockG ).

First we claim thatX containg& = >_cec & From the proof of Lemma 1.3, we
have twokG -decompositiond? = (O - (x1) +7M)/7M & (O - 7= XG — |G|1) +TM)/
™™ & (60 (g —1)+7M)/rM =X ©Y. By Lemma 3.1,X contains an element
of the form 71 +« for somea € -, ;(¢ —1)OG + 7M. Hence we see thax >
(mr1+a)G = 3G for someB(# 0) € O. Since X is a pure?-submodule ofM X
containsG.

From the above claimk ®» X affords an ordinary charactdr+r, wherel is the
trivial character ofG and) is some linear character @ . NoW ®o (X @ Y) affords
the regular character aff . Since the multiplicity dfin the regular character is one,
it follows that  # 1. Hence we have thaf(g) # 1 for someg € G. Since the order
of g is a power ofp ,O contains primitivep -th roots of unity. Therefol®G has at
least p non-isomorphi@G-lattices of O-rank one. Moreover, iiG is not cyclic)G
has at leasip? non-isomorphicOG-lattices of O-rank one.

Here, we claim that rankX > p, and moreover, rakX > p2? unlessG is
cyclic: Let L be anyOG-lattice of O-rank one and\ the ordinary linear character
of G afforded byL . Then, by Lemma 3.2 (1), it follows that ®» L = X since
X ®o L kg @ kg. This implies that\ is a constituent of the character afforded by
X.

Now the above claim yields a contradiction jif is odd @r is not cyclic. Thus,
in the rest of this proof, we assume th@ (x) is the cyclic 2-group of order”2
with n > 2. Furthermore, we may assume that-1 ¢ O: Indeed, if/—1 € O, then
OG has at least four non-isomorphi@G-lattices of O-rank one and so ragkx > 4,

a contradiction. .

Puta =2, 'x% b:=ax € OG andU :=0-a+0O-b C OG. ThenU is a
pure OG-submodule of®G and 0— U —— OG is an injective hull ofU , where is
the inclusion map. Note that = Oz, .

Now we claim thatQY = U: Indeed,X affords an ordinary charactefn, where
n is the linear character with(x) = —1, asv/—1 ¢ O. Since bothY ® QY andY @ X
afford the regular character af QY  affords the charadters. In particular (x?)
acts onQY trivially. Since¥ = RadkG )SockG ) is uniserial of lengthG| — 2, we
see thatQY is uniserial of length two. ThuY is projective ask (x)/{x2))-module.
This implies thatQY = O, " >y,

Next, let us consider the Auslander-Reiten sequed¢®) terminating inU =
QY. Since rankY + rankysQY = |G| = rankpI and Q?Y = Y, the middle term
of A(U) is just I. Sincel = kg ® Q % (See Lemma 1.2), the Auslander-Reiten



494 S. KawaTa

sequenceA(U) modulo ¢r) does not split. Sor - idy is projective by Lemma 2.2.
Hence we have a factorization - idy = fo: U — OG L. U for some OG-
homomorphismf fromOG to U. Put f (1) =aa + b for somea, 5 € O. Then
ma =7 -idy(a) = [f 01)(a) = 2" Y(aa + #b) and it follows thatr = 2"~1a. This forces
thatrn =2 and £) = (2) sincen > 2. However, in this case); is a direct summand
of M by Remark 2.4, a contradiction. U

Lemma 3.4. Suppose thatG is the Klein four group arfd) ; (2). Then the
projective-free partM of the middle term of the Auslander-Reiten sequditkter-
minating in / is indecomposable.

Proof. Let A be the connected componentIofO() containing the projective
OG-lattice OG. Then from our assumptiony  does not contain the tri@af-lattice
Og by the argument in the proof of Lemma 4.2 of [10].

Now, OG has three non-isomorphic non-trivi#dG-lattices of O-rank one, say
Ly, Lo, L3 Letn; (1 < i < 3) be the linear character afforded By . Note that
affords the regular charactér+n; +n, +n3 of G. Thus some direct summand  of
affords a characteg having the trivial charactet as a constituent. Sinc€g is not
contained inA , the charactgr hasn; as a constituent for some ,<1i < 3.

Next, consider the action of the automorphism group &ut( )Gof . &ut( ) acts
on {n1, m2, n3} transitively. On the other hand, for any € Aut(G), A(I)” : 0 —
J? — M? ® OG° — I — 0 is isomorphic toA(I). Since X? is a direct summand
of M =% M and 1° = 1, we see that? = X. This forcesy = 1+, + 1, + 13, and
henceX =M . O

Lemma 3.5. Suppose thatG is a dihedral 2-group of ord2t > 8. Then the
projective-free partM of the middle term of the Auslander-Reiten sequdfLgter-
minating in I is indecomposable.

Proof. It is known that Rad&(G /BockG ) is a direct sum of two uniserial mod-
ules, sayH; and H», which are non-isomorphic duals (see 3.1 Lemma of [6]).

Here, we claim that¥ does not have any direct summan@-oénk one: Indeed,
if M has a direct summand ab-rank one, thenO; is a direct summand oM by
Lemma 3.2 (1). Thug/ is isomorphic to the middle term of the Auslander-Reiten se-
quence A(Og) terminating inOs by Lemma 2.1. However, this contradicts Remark
2.4,

Now we assume to the contrary thaf is decomposable. SHCE kg © kg ©
RadkG ySockG ) by Lemma 1.3, one of the following two cases would occur:
Case (I): M =X @Y, where X is indecomposable amd =~ kg & kg, andY =
RadkG )ySockG ), or
Case () M =X @Y, where bothX andr are indecomposable, dfid| X and
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Hy | 7.

First, we assume Case (l). Note thathas no simple direct summand. Thus, using
an argument similar to one in the proof of Lemma 3.3, we can derive a contradiction.
Next, assume Case (Il). Sindg X@ Y affords the regular character ¢f and

the multiplicity of the trivial characted in it is one, we may assume thétis a con-
stituent of the character afforded by  afhddoes not appear as a constituent in the
character afforded by . Then, sindé =1 and M* =~ M by Lemma 3.2 (2), it fol-
lows that X* = X and Y* = Y. Thus we see thatX)* = X* = X. However, this
implies thatH, =~ H; is a direct summand ofX)* = X, a contradiction. U

Proposition 3.6. Let G be a finitep -group. Thed is indecomposable except
the following cases
(1) |G| = p and (r) = ().
() |G| = p and (r?) = (p),
(3) |G| = p* and () = (p).

Proof. Assume that/ is decomposable. Ti®ga is a direct summand o#Z by
Lemmas 3.2 (1), 3.3, 3.4 and 3.5. Hence, unlgss = p and @) = (p), J is just
the middle term of the Auslander-Reiten sequent{®g) terminating inOg, and the
result follows by Remark 2.4. Ul

Remark 3.7. Let G be a finitep -group and\  the connected component of
I'(OG) containingOG. Then we see that the tree class/&f is AGE from Propo-
sition 3.6 and Remark 2.4,

4. Endomorphism rings

In this section, we assume that is a finjpe -group as usual and consider the
endomorphism rings of F dG) = 7OG + deG(g —1)OG and of M =70OG +
Y eeale = 1DOG + 774G - |G[1)OG.

Lemma 4.1. Let W be an indecomposabl@G-lattice. Suppose tha” has an
OG-submoduleV  satisfying the following two conditions
(i) w/v=0/(r);, and
(i) For any f € Endog(W), f(V)C V.
Then we have thaEndpg(W)/Rad(Enghg(W)) = O/(r) as ring.

Proof. Choose and fix an elemeate W \ V. For an endomorphisnf oW
put fle) = a-e+ g3 for somea € O and somes € V. Then it follows that
Im(f —a-idy) CV and f — « - idy € Rad(Engg(W)). ]
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Lemma 4.2. Let G be ap -group, and suppose that and are indecompos-
able. Then botrEndy(J/)/Rad(Ende(J)) and Endog(M)/Rad(Eng(M)) are iso-
morphic toO/(x) as ring.

Proof. Since{r1} U {g — 1}4c¢ is an O-basis of J , we have tha}_, (g —
1)0G = {x € J | xG = 0}, whereG = 3", ¢. Thus, for anyf € Endog(/), we
see thatf }:geG(g —1)0G) C deG(g —1)OG. HencernJ + deG(g —1)O0G is a
maximal OG-submodule of/ satisfying the two conditions in Lemma 4.1.

AIS0, 3= (¢ — DOG + 7 G ~ |GI1)OG = {x € M | xG = 0}. ThuszM +
dec(g - 1)0G + 774G — |G|1)OG is a maximalOG-submodule ofM satisfying
the two conditions in Lemma 4.1. Il

Remark 4.3. LetG be ap -group and suppose tifa6 is of infinite represen-
tation type. LetA be the connected componentlo®G() containing the projective
OG-lattice OG.

(1) Suppose thatM is indecomposable. Thén lies at the end\ of . Also, the
length of rad(Howg(J, M))/radZ(HomOG(J, M)) as Engg(J)-module and that as
Endog(M)-module are the same by Lemma 4.2. Therefore, the tree class of is nei-
ther B,, nor C.

(2) Suppose thaM is decomposable. Th&g is isomorphic to a direct summand of

M by Proposition 3.6 and Remark 2.4. Hence, unlé€ss is the Klein four group and
(7) = (2), the tree class of\; i%\, by Theorem of [10], and/ lies at the second
row from the end ofA .

5. Euclidean diagrams

Let G be ap -group an@® a connected componenf dPGj{. In this section, we
shall show that if® does not contain the trivi@lG-lattice O, then the tree class of
the stable par®®; of® is not Euclidean. For this purpose, we recall some additive
function due to T. Okuyama.

For anyOG-latticesX andW , Horg; (X, W) := Hompg (X, W)/PHomopg (X, W)
is an O-torsion moduled X, W ) denotes the composition length of Heifk, W) as
O-module. Putdy W )= X, W )d Q 71X, W).

Lemma 5.1 (Okuyama). Let G be ap -group and® a connected component of
r(OgG).
(1) Let X be an indecomposabl@G-lattice not contained ir® . Suppose th&t QW
is not projective for anyOG-lattice W in ®. Thendy is an additive function fa®,
(not necessarily2 -periodjc
(2) Let W be a non-projective indecomposahi®@G-lattice and Py the projective
cover of W . Then we have thaank, Py < |G|do,(W).
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Proof. See Corollary 2.4 of [10] for (1), and Lemma 1.3 of [10] for (2). [

Proposition 5.2. Let G be ap -group, and le® be any connected component
of T'(OG) not containing the trivialOG-lattice Og. Then the tree class @b, is not
Euclidean.

Proof. Assume that the tree class ©f is Euclidean. By Lemma 5.1d¢l),is
an additive function for®, andlp, takes bounded values by Corollary 2.4 of [16].
Hence {ranko W }wce is bounded by Lemma 5.1 (2). This implies th@G is of fi-
nite representation type by Theorem 2 of [17]. Thas, T ©G() must containOg, a
contradiction. O

Lemma 5.3. Suppose thaG is @ -group an@G is of infinite representation
type. Furthermore, in the case whepe= 2 and G is the Klein four group, suppose
that () 2 (2). Let A be the connected componentlffDG) containing the projective
OG-lattice OG. Then the tree class of; is not Euclidean.

Proof. First, we assume th& is cyclic. Sin€&; is of infinite representation
type and anyOG-lattice is 2 -periodic,A; is an infinite tube by [8].

Next, assume thatG is not cyclic and either of the following two conditions
holds: (i) |G| = p?, or (i) (7) 2 (p). Then, A does not contain the trivié?G-lattice
Og (see the argument in the proof of Lemma 4.2 of [10]). Hence the result follows
by Proposition 5.2.

Finally, assume thaG ~ C, x C, and ¢r) = (p) (p: odd). By Remark 2.4A
containsOg. Hence the tree class &f 6., by Theorem of [10]. ]

6. Proof of Theorem

Suppose thaG is @ -group andG is of infinite representation type. Let  be
the connected component 8f OG) containing the projective)G-lattice OG. If G is
cyclic, then A; is an infinite tube by [8]. Hence, in the rest, we assume @hat is
not cyclic. Then, by a result of Webb (Theorem A of [16]), the tree class\pf is
either an infinite Dynkin diagram or a Euclidean diagram. Moreover, by Remarks 3.7,
4.3 and Lemma 5.3, the tree class &f is A0, B, Coo Or Euclidean. Thus, in
order to show that the tree class af  As., we have to exclude only the case of
D..

Lemma 6.1. The tree class oA, is nab.,.

Proof. Assume that the tree class &Af Iis.. Then, by Remark 4.3 W is
indecomposable and lies at the end &f
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Now a part of A is as follows for some indecomposabl&-lattice Z :

\ / N /N /

Q27 QM - QZ - M - 7Z — QM - Q17
/! N / NS AN

QJ J — 0G — 1 Q-1r.

Considering the dual lattices, we get the Auslander-Reiten sequereeZl —
M* — (QZ2)* — 0. As M* = M by Lemma 3.2 (2), we see thaRlf * ¥ Z.

Since M affords the regular character @Gf , so d@es QZ =~ Z @ Z*. Note that
the multiplicity of the trivial characted in the regular character is one. This implies
that 1 appears as a constituent in the character afforde& by or in the one afforded
by Z*, but not in the both, a contradiction. ]

We have now completed the proof of the Theorem.
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