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Introduction

Let be a finite group, a prime number which divides the order of , and
( O ) a -modular system, i.e.,O is a complete discrete valuation ring of charac-
teristic zero with maximal ideal (π), (:= O/(π)) is the residue field ofO of charac-
teristic > 0, and is the field of fractions ofO. is used to denote eitherO or
. All the -modules considered here are -free and finitely generated over .

Let ( ) be the Auslander-Reiten quiver of . For a connected component
of ( ), we denote by the stable part of obtained from by removing all
projective -modules and arrows attached to them. In [16], P. J. Webb showed that
the tree class of is either a Euclidean diagram or one of the infinite trees∞, ∞,

∞, ∞ and ∞
∞ if the modules in do not lie in a block of cyclic defect.

It was shown in [10] that if is a -group andO is of infinite representa-
tion type, and furthermore if (π) % (2) in the case where = 2 and is the Klein
four group, then the stable part of the connected component of (O ) containing the
trivial O -lattice O has tree class ∞. The purpose of this paper is to show the
following.

Theorem. Let be a -group and the connected component of(O ) con-
taining the projectiveO -lattice O . Suppose thatO is of infinite representation
type. Suppose further that(π) % (2) in the case where = 2 and is the Klein four
group. Then the tree class of the stable part of is∞.

It is known that the group ringO of a finite -group is of finite represen-
tation type if and only if one of the following cases arises: (i) =2; (ii) = 3

and (3)⊇ (π3); (iii) = and ( ) ⊇ (π2); (iv) = 2 and ( ) = (π), where
is the cyclic group of order . See [4]. Also, it is known that if is the Klein four
group and (π) = (2), then the tree class of the stable part of the connected component
of (O ) containing the projectiveO -latticeO is ˜ 4 (Proposition 3.4 of [5]).

In the rest of this paper will always be a finite -group. In Sections 1, we con-
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sider the Auslander-Reiten sequence where the projectiveO -lattice O occurs. We
treat the middle term of the Auslander-Reiten sequence terminating in the trivialO -
lattice O in Section 2. In Section 3, the case where the projective-free part of
the connected component of (O ) containingO has tree class ∞

∞ is excluded.
Also, we exclude the case where the tree class of is∞ or ∞ in Section 4. In
Section 5, we show that the tree class of any connected component of (O ) not con-
tainingO is not Euclidean. The proof of Theorem is completed in Section 6.

The notation is standard. For a non-projective indecomposable -module , we
write A( ) for the Auslander-Reiten sequence 0→ τ → ( )→ → 0, whereτ
is the Auslander-Reiten translation and we denote by ( ) the middle term ofA( ).
It is known thatτ = if = O, and τ = 2 if = , where is the Heller operator
(see [13] and [1]). The trivial -module will be denoted by . For an -module

, ∗ means the dual -module Hom ( ) of . ForO -lattices and ,
set HomO ( ) := HomO ( )/PHomO ( ), wherePHomO ( ) is the
subspace of HomO ( ) of all projective maps from to . Also, the -module
/π is denoted by . Concerning some basic facts and terminologies used here,

we refer to [12, 7, 2, 14].

1. Projective OG-lattices and Auslander-Reiten sequences

Let be a finite -group and := (O ) the Jacobson radical of the group ring
O . Then =πO +

∑
∈ O( − 1) is the unique maximalO -submodule ofO .

The following fact seems to be well-known, but we give an elementary proof here for
convenience.

Lemma 1.1. is decomposable if and only if(π) = (| |), i.e., is the cyclic
group of order and(π) = ( ).

Proof. Suppose that is decomposable. Considering a -decomposition=
(O · (π1) +π )/π ⊕ (

∑
∈ O( − 1) +π )/π ∼= ⊕ , we have anO -

decomposition = ⊕ such that ∼= and ∼= . Since ⊗O ∗ is
a maximal submodule ofO ⊗O ∗ (∼= O ), it follows that ∼= ⊗O ∗ =
O ⊕ ( ⊗O ∗). Thus we may assume that ∼= O . Then we see that ⊆ O ˆ ,
where ˆ =

∑
∈ , which implies that ⊆∑ ∈ O( − 1). As π1 ∈ = + , we

haveπ1 = ˆ +
∑

∈ ( − 1) for some ∈ O. This forces thatπ = | | and
(π) = (| |).

Conversely, if (π) = (| |), then we see that =O ˆ ⊕∑ ∈ O( − 1).

Next, let

:= O + π−1( ˆ − | |1)O
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where ˆ =
∑

∈ . Then is the unique minimalO -submodule of ⊗O O con-

tainingO properly, sinceπ−1( ˆ −| |1) generates the simple socle ofπ−1O /O .
In this section we assume that (π) % (| |), so is indecomposable. Then is

isomorphic to −1 (see, e.g., [11]), and the Auslander-Reiten sequenceA( ) termi-
nating in has the form 0→ → ( ) ⊕ O → → 0, where ( ) is the
projective-free part of ( ). Note thatA( ) is the only Auslander-Reiten sequence
whereO occurs.

Lemma 1.2. Suppose that(π) % (| |). Then the short exact sequenceA( ) ob-
tained fromA( ) by reducing each term mod(π) is the direct sum of the standard
Auslander-Reiten sequence0→ → Rad( )/Soc( )⊕ → −1 → 0 and a
split sequence0→ → ⊕ → → 0.

Proof. See [11]. Note that the argument in the proof of Theorem 9 of [11] holds
if is indecomposable.

Now let us define anO -submodule of ⊗O O as follows:

:= πO +
∑

∈
( − 1)O + π−1( ˆ − | |1)O

We shall show that is isomorphic to the projective-free part ( ) of the middle
term ( ) of the Auslander-Reiten sequenceA( ) except the case where| | = and
(π) = ( ).

Lemma 1.3. Suppose that(π) % (| |). Then we have that ∼= ⊕ ⊕
Rad( )/Soc( ).

Proof. As ˆ −| |1 ∈ π ∩∑ ∈ O · ( − 1), we have = (O · (π1) +π )/π

⊕(
∑

∈ O · ( − 1) +π )/π ⊕(O · π−1( ˆ − | |1) +π )/π as -space. It is eas-
ily seen that (O · (π1) +π )/π ∼= . Note that

∑

∈
O · ( − 1) = O

and


∑

∈
O · ( − 1) +π


 /π ∼= O /( O ∩ π )

= O /(π O +O · ( ˆ − | |1))
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Since O /π O ∼= Rad( ) and

(O · ( ˆ − | |1) +π O )/π O = Soc( O /π O )

we see that (
∑

∈ O · ( − 1) +π )/π is isomorphic to Rad( )/Soc( ). To

complete the proof, it suffices to show that (O · π−1( ˆ − | |1) +π )/π is a -
submodule of . Let be any element of . Thenπ−1( ˆ −| |1) = π−1( ˆ −| | ) =
π−1( ˆ − | |1) +π−1| |(1− ). Sinceπ−1| | ∈ (π) by our assumption, it follows that
π−1( ˆ − | |1) ∈ O · π−1( ˆ − | |1) +π .

Lemma 1.4. Let be a finite -group, and suppose that(π) % (| |). Suppose
that ′ is an O -submodule of which contains as a maximalO -submodule.
Then ′ = or ′ ∼= O asO -lattices.

Proof. Suppose that ′ 6= . Note that = +O ·1 +O · π−1( ˆ − | |1) asO-
modules. Since ′ 6= , ′ contains an element := 1 +απ−1( ˆ − | |1) for some
α ∈ O. Then ′ = O + = O +

∑
∈ O · ( − 1) +O · (π1) asO-module. Let

be any element of . Then (− 1) = (1− α| |π−1)( − 1) and − 1 ∈ O
since | |π−1 ∈ (π) by our assumption. Also, we see thatπ1 = π −α∑ ∈ ( − 1) ∈
O . Thus we have that ′ = O . As rankO ′ = | |, it follows that ′ ∼= O .

Proposition 1.5. Suppose that(π) % (| |). Then is isomorphic to the
projective-free part ( ) of the middle term ( ) of the Auslander-Reiten sequence
A( ). In particular, A( ) has the form0→ → ⊕O → → 0.

Proof. Since rankO ( ) = | | = rankO , an irreducible map from ( ) to
is a monomorphism. Hence we may regard that⊂ O ⊂ ⊂ ⊗O O and
( ) ⊂ ⊂ ⊗O O . Note thatO and ( ) are maximalO -submodules of

, and so /O ∼= ∼= / ( ) . Here we claim that ( ) 6⊆ O : Indeed, if
( ) ⊆ O , the maximality forces that ( ) =O . However, Lemma 1.2 implies

that ( ) ∼= ⊕ ⊕ Rad( )/Soc( ), a contradiction.
Now sinceO $ O + ( ) ⊆ and is the unique minimalO -submodule

of ⊗O O containingO , we have thatO + ( ) = . Thus it follows that
O /O ∩ ( ) ∼= (O + ( ) )/ ( ) ∼= / ( ) ∼= . ThereforeO ∩ ( )
is a maximalO -submodule ofO and we getO ∩ ( ) = . Also, it follows
that ( ) /O ∩ ( ) ∼= ( ( ) +O )/O ∼= /O ∼= . Hence is a maximal
O -submodule of ( ) and the result follows by Lemma 1.4.
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2. Trivial OG-lattices and Auslander-Reiten sequences

Let be a finite -group andO the trivial O -lattice. Then EndO (O ) ∼=
O/(| |) and π−1| | · idO is a generator of Soc(EndO (O )). The Auslander-Reiten
sequenceA(O ) terminating inO is constructed as pullback of the projective cover
of O along π−1| | · idO (see [13, 15]):

0 −−−−→ O −−−−→ (O ) −−−−→ O −−−−→ 0 :A(O )
∥∥∥

y pull back

yπ−1| |·idO

0 −−−−→ O −−−−→ O ε−−−−→ O −−−−→ 0 : projective cover

where ε is the augmentation map. Here (O ) = {( ) | ∈ O ∈
O π−1| | = ε( )} ⊂ O ⊕ O . Hence we see that (O ) ∼= π−1| |O +∑

∈ ( − 1)O ⊆ O .

Lemma 2.1 (Proposition 3.2 of [9]). The middle term (O ) of A(O ) is inde-
composable.

In [3], J. F. Carlson and A. Jones defined the exponent exp( ) of anO -lattice
as the least powerπ of π such thatπ · id is projective.

Lemma 2.2. Let be a non-projective indecomposableO -lattice. Suppose
that the Auslander-Reiten sequenceA( ) modulo(π) does not split. Thenexp( ) =π.

Proof. Let ρ be a generator of Soc(EndO ( )). ThenA( ) is the pullback of
the projective cover of along the -endomorphismρ of . By the assumption,ρ
is not projective. In particular,ρ 6∈ πEndO ( ). Thus it follows thatπ EndO ( ) ⊆
P EndO ( ) and π · id is projective.

Lemma 2.3. (1) exp( ) =π.
(2) exp( (O )) = π −1, where(| |) = (π ).
(3) is isomorphic to (O ) if and only if (| |) = (π2).

Proof. (1) In the case where (π) = (| |), is isomorphic toO ⊕ O and so
exp( ) = π. If (π) % (| |), is indecomposable and non-projective by Lemma 1.1,
and the Auslander-Reiten sequenceA( ) modulo (π) does not split by Lemma 1.2.
Hence the result follows by Lemma 2.2.
(2) Since exp(O ) = π , the assertion holds by Theorem 2.4 of [3].
(3) Suppose that ∼= (O ). Then since exp( ) = exp( (O )), we obtain (π) =
(π−1| |) by (1) and (2). The converse is clear by the definition.

From Lemma 2.3 (3), we get the following immediately.
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REMARK 2.4. is isomorphic to the middle term (O ) of the Auslander-Reiten
sequenceA(O ) if and only if one of the following cases arises:
(1) | | = 2 and (π) = ( );
(2) | | = and (π2) = ( ).
In these cases,O belongs to the connected component of (O ) containingO
by Proposition 1.5. Hence the tree class of is not∞∞ by Lemma 2.1.

3. Indecomposability of M

In this section, let be a -group and we assume that (π) % (| |). Then
and are indecomposable by Lemma 1.1. We consider the indecomposability of the
projective-free part ( ) of the middle term of the Auslander-Reiten sequenceA( )
terminating in . We have seen in Proposition 1.5 that ( ) = :=πO +∑

∈ ( − 1)O + π−1( ˆ − | |1)O . We begin with the following easy fact.

Lemma 3.1. Let be a -module. Suppose that there are two -decompo-
sitions: = ⊕ = ′ ⊕ ′ such that , ′ are semisimple and none of and′

has a simple summand. Then we have
(1) Soc( ) = Soc( ′).
(2) The projection mapπ ′ : → ′ induces an isomorphismπ ′ | :

∼→ ′.

Proof. (1) Let =
⊕

be an indecomposable decomposition of , and let
be any element in Soc( ). Note that Soc( )⊆ Rad( ) as is indecomposable.

Thus there are some elements∈ and ∈ Rad( ) such that
∑

= . Since
each ∈ ′ ⊕ ′, we see that ∈ Soc( ′).
(2) It is enough to show thatπ ′ | is monomorphism since dim = dim ′. By (1)
we see that Ker (π ′ | ) = ∩ ′ ⊆ ∩ Soc( ′) = ∩ Soc( ) = 0.

The following lemma will be used later.

Lemma 3.2. (1) Let be anyO -lattice of O-rank one. Then ⊗O ∼= .
In particular, | if and only ifO | .
(2) ∗ ∼= .

Proof. SinceA( ) ⊗O : 0 → ⊗O → ( ( ) ⊗O ) ⊕ (O ⊗O ) →
⊗O → 0 is an Auslander-Reiten sequence andO ⊗O ∼= O occurs in its

middle term,A( ) ⊗O is isomorphic toA( ). Hence (1) holds. Also,A( )∗ : 0 →
∗ → ( )∗ ⊕ O ∗ → ∗ → 0 is an Auslander-Reiten sequence whereO occurs.

ThusA( )∗ is isomorphic toA( ) and (2) holds.

Lemma 3.3. Suppose that is neither the Klein four group nor a dihedral 2-
group. If is decomposable, then has some direct summand ofO-rank one.
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Proof. By Lemma 1.3, ∼= ⊕ ⊕ Rad( )/Soc( ). If = 3, the con-
clusion is clearly holds and thus we may assume that6= 3, which implies that
Rad( )/Soc( ) is indecomposable of dimension greater than one by our assump-
tion and Theorem E of [16]. Assume to the contrary that is decomposable but does
not have any direct summand ofO-rank one. Then we have an indecomposable de-
composition = ⊕ such that ∼= ⊕ and ∼= Rad( )/Soc( ).

First we claim that containŝ =
∑

∈ : From the proof of Lemma 1.3, we

have two -decompositions = (O · (π1) +π )/π ⊕ (O · π−1( ˆ − | |1) +π )/
π ⊕ (

∑
∈ O · ( − 1) +π )/π = ⊕ . By Lemma 3.1, contains an element

of the form π1 + α for someα ∈ ∑ ∈ ( − 1)O + π . Hence we see that ∋
(π1 +α) ˆ = β ˆ for someβ( 6= 0) ∈ O. Since is a pureO-submodule of ,
contains ˆ .

From the above claim, ⊗O affords an ordinary character1+η, where1 is the
trivial character of andη is some linear character of . Now ⊗O ( ⊕ ) affords
the regular character of . Since the multiplicity of1 in the regular character is one,
it follows that η 6= 1. Hence we have thatη( ) 6= 1 for some ∈ . Since the order
of is a power of ,O contains primitive -th roots of unity. ThereforeO has at
least non-isomorphicO -lattices ofO-rank one. Moreover, if is not cyclic,O
has at least 2 non-isomorphicO -lattices ofO-rank one.

Here, we claim that rankO ≥ , and moreover, rankO ≥ 2 unless is
cyclic: Let be anyO -lattice of O-rank one andλ the ordinary linear character
of afforded by . Then, by Lemma 3.2 (1), it follows that ⊗O ∼= since
⊗O ∼= ⊕ . This implies thatλ is a constituent of the character afforded by
.

Now the above claim yields a contradiction if is odd or is not cyclic. Thus,
in the rest of this proof, we assume that =〈 〉 is the cyclic 2-group of order 2
with ≥ 2. Furthermore, we may assume that

√
−1 6∈ O: Indeed, if

√
−1 ∈ O, then

O has at least four non-isomorphicO -lattices ofO-rank one and so rankO ≥ 4,
a contradiction.

Put :=
∑2 −1−1

=0
2 , := ∈ O and :=O · +O · ⊂ O . Then is a

pureO -submodule ofO and 0→ ı−→ O is an injective hull of , whereı is
the inclusion map. Note that ∼= O〈 2〉

〈 〉.
Now we claim that ∼= : Indeed, affords an ordinary character1+η, where

η is the linear character withη( ) = −1, as
√
−1 6∈ O. Since both ⊕ and ⊕

afford the regular character of , affords the character1 + η. In particular 〈 2〉
acts on trivially. Since ∼= Rad( )/Soc( ) is uniserial of length| | − 2, we
see that is uniserial of length two. Thus is projective as (〈 〉/〈 2〉)-module.
This implies that ∼= O〈 2〉

〈 〉 ∼= .
Next, let us consider the Auslander-Reiten sequenceA( ) terminating in ∼=

. Since rankO + rankO = | | = rankO and 2 ∼= , the middle term
of A( ) is just . Since ∼= ⊕ −1 (See Lemma 1.2), the Auslander-Reiten



494 S. KAWATA

sequenceA( ) modulo (π) does not split. Soπ · id is projective by Lemma 2.2.

Hence we have a factorizationπ · id = ◦ ı :
ı−→ O −→ for someO -

homomorphism fromO to . Put (1) = α + β for someα β ∈ O. Then
π = π · id ( ) = [ ◦ ı]( ) = 2 −1(α + β ) and it follows thatπ = 2 −1α. This forces
that = 2 and (π) = (2) since ≥ 2. However, in this case,O is a direct summand
of by Remark 2.4, a contradiction.

Lemma 3.4. Suppose that is the Klein four group and(π) % (2). Then the
projective-free part of the middle term of the Auslander-Reiten sequenceA( ) ter-
minating in is indecomposable.

Proof. Let be the connected component of (O ) containing the projective
O -lattice O . Then from our assumption, does not contain the trivialO -lattice
O by the argument in the proof of Lemma 4.2 of [10].

Now, O has three non-isomorphic non-trivialO -lattices ofO-rank one, say

1 2 3. Let η (1 ≤ ≤ 3) be the linear character afforded by . Note that
affords the regular character1+η1 +η2 +η3 of . Thus some direct summand of
affords a characterχ having the trivial character1 as a constituent. SinceO is not
contained in , the characterχ hasη as a constituent for some , 1≤ ≤ 3.

Next, consider the action of the automorphism group Aut( ) of . Aut( ) acts
on {η1 η2 η3} transitively. On the other hand, for anyσ ∈ Aut( ), A( )σ : 0 →
σ → σ ⊕ O σ → σ → 0 is isomorphic toA( ). Since σ is a direct summand

of σ ∼= and 1σ = 1, we see that σ ∼= . This forcesχ = 1 + η1 + η2 + η3, and
hence = .

Lemma 3.5. Suppose that is a dihedral 2-group of order2 ≥ 8. Then the
projective-free part of the middle term of the Auslander-Reiten sequenceA( ) ter-
minating in is indecomposable.

Proof. It is known that Rad( )/Soc( ) is a direct sum of two uniserial mod-
ules, say 1 and 2, which are non-isomorphic duals (see 3.1 Lemma of [6]).

Here, we claim that does not have any direct summand ofO-rank one: Indeed,
if has a direct summand ofO-rank one, thenO is a direct summand of by
Lemma 3.2 (1). Thus is isomorphic to the middle term of the Auslander-Reiten se-
quenceA(O ) terminating inO by Lemma 2.1. However, this contradicts Remark
2.4.

Now we assume to the contrary that is decomposable. Since∼= ⊕ ⊕
Rad( )/Soc( ) by Lemma 1.3, one of the following two cases would occur:
Case (I): = ⊕ , where is indecomposable and ∼= ⊕ , and ∼=
Rad( )/Soc( ), or
Case (II): = ⊕ , where both and are indecomposable, and1 | and
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2 | .
First, we assume Case (I). Note thathas no simple direct summand. Thus, using

an argument similar to one in the proof of Lemma 3.3, we can derive a contradiction.
Next, assume Case (II). Since =⊕ affords the regular character of and

the multiplicity of the trivial character1 in it is one, we may assume that1 is a con-
stituent of the character afforded by and1 does not appear as a constituent in the
character afforded by . Then, since1∗ = 1 and ∗ ∼= by Lemma 3.2 (2), it fol-
lows that ∗ ∼= and ∗ ∼= . Thus we see that ()∗ ∼= ∗ ∼= . However, this
implies that 2

∼= ∗
1 is a direct summand of ()∗ ∼= , a contradiction.

Proposition 3.6. Let be a finite -group. Then is indecomposable except
the following cases:
(1) | | = and (π) = ( ),
(2) | | = and (π2) = ( ),
(3) | | = 2 and (π) = ( ).

Proof. Assume that is decomposable. ThenO is a direct summand of by
Lemmas 3.2 (1), 3.3, 3.4 and 3.5. Hence, unless| | = and (π) = ( ), is just
the middle term of the Auslander-Reiten sequenceA(O ) terminating inO , and the
result follows by Remark 2.4.

REMARK 3.7. Let be a finite -group and the connected component of
(O ) containingO . Then we see that the tree class of is not∞∞ from Propo-

sition 3.6 and Remark 2.4.

4. Endomorphism rings

In this section, we assume that is a finite -group as usual and consider the
endomorphism rings of = (O ) = πO +

∑
∈ ( − 1)O and of =πO +∑

∈ ( − 1)O + π−1( ˆ − | |1)O .

Lemma 4.1. Let be an indecomposableO -lattice. Suppose that has an
O -submodule satisfying the following two conditions:
(i) / ∼= O/(π); and
(ii) For any ∈ EndO ( ), ( ) ⊆ .
Then we have thatEndO ( )/Rad(EndO ( )) ∼= O/(π) as ring.

Proof. Choose and fix an element∈ \ . For an endomorphism of ,
put ( ) = α · + β for some α ∈ O and someβ ∈ . Then it follows that
Im( − α · id ) ⊆ and − α · id ∈ Rad(EndO ( )).
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Lemma 4.2. Let be a -group, and suppose that and are indecompos-
able. Then bothEndO ( )/Rad(EndO ( )) and EndO ( )/Rad(EndO ( )) are iso-
morphic toO/(π) as ring.

Proof. Since{π1} ∪ { − 1} ∈ is an O-basis of , we have that
∑

∈ ( −
1)O = { ∈ | ˆ = 0}, where ˆ =

∑
∈ . Thus, for any ∈ EndO ( ), we

see that (
∑

∈ ( − 1)O ) ⊆ ∑ ∈ ( − 1)O . Henceπ +
∑

∈ ( − 1)O is a
maximalO -submodule of satisfying the two conditions in Lemma 4.1.

Also,
∑

∈ ( − 1)O + π−1( ˆ − | |1)O = { ∈ | ˆ = 0}. Thus π +∑
∈ ( − 1)O + π−1( ˆ − | |1)O is a maximalO -submodule of satisfying

the two conditions in Lemma 4.1.

REMARK 4.3. Let be a -group and suppose thatO is of infinite represen-
tation type. Let be the connected component of (O ) containing the projective
O -latticeO .
(1) Suppose that is indecomposable. Then lies at the end of . Also, the
length of rad(HonO ( ))/rad2(HomO ( )) as EndO ( )-module and that as
EndO ( )-module are the same by Lemma 4.2. Therefore, the tree class of is nei-
ther ∞ nor ∞.
(2) Suppose that is decomposable. ThenO is isomorphic to a direct summand of

by Proposition 3.6 and Remark 2.4. Hence, unless is the Klein four group and
(π) = (2), the tree class of is ∞ by Theorem of [10], and lies at the second
row from the end of .

5. Euclidean diagrams

Let be a -group and a connected component of (O ). In this section, we
shall show that if does not contain the trivialO -latticeO , then the tree class of
the stable part of is not Euclidean. For this purpose, we recall some additive
function due to T. Okuyama.

For anyO -lattices and , HomO ( ) := HomO ( )/PHomO ( )
is anO-torsion module. ( ) denotes the composition length of HomO ( ) as
O-module. Put ( ) := ( ) + ( −1 ).

Lemma 5.1 (Okuyama). Let be a -group and a connected component of
(O ).

(1) Let be an indecomposableO -lattice not contained in . Suppose that∗⊗
is not projective for anyO -lattice in . Then is an additive function for
(not necessarily -periodic).
(2) Let be a non-projective indecomposableO -lattice and the projective
cover of . Then we have thatrankO ≤ | | O ( ).
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Proof. See Corollary 2.4 of [10] for (1), and Lemma 1.3 of [10] for (2).

Proposition 5.2. Let be a -group, and let be any connected component
of (O ) not containing the trivialO -lattice O . Then the tree class of is not
Euclidean.

Proof. Assume that the tree class of is Euclidean. By Lemma 5.1 (1),O is
an additive function for and O takes bounded values by Corollary 2.4 of [16].
Hence{rankO } ∈ is bounded by Lemma 5.1 (2). This implies thatO is of fi-
nite representation type by Theorem 2 of [17]. Thus, = (O ) must containO , a
contradiction.

Lemma 5.3. Suppose that is a -group andO is of infinite representation
type. Furthermore, in the case where= 2 and is the Klein four group, suppose
that (π) % (2). Let be the connected component of(O ) containing the projective
O -lattice O . Then the tree class of is not Euclidean.

Proof. First, we assume that is cyclic. SinceO is of infinite representation
type and anyO -lattice is -periodic, is an infinite tube by [8].

Next, assume that is not cyclic and either of the following two conditions
holds: (i) | | 	 2, or (ii) (π) % ( ). Then, does not contain the trivialO -lattice
O (see the argument in the proof of Lemma 4.2 of [10]). Hence the result follows
by Proposition 5.2.

Finally, assume that ∼= × and (π) = ( ) ( : odd). By Remark 2.4,
containsO . Hence the tree class of is∞ by Theorem of [10].

6. Proof of Theorem

Suppose that is a -group andO is of infinite representation type. Let be
the connected component of (O ) containing the projectiveO -latticeO . If is
cyclic, then is an infinite tube by [8]. Hence, in the rest, we assume that is
not cyclic. Then, by a result of Webb (Theorem A of [16]), the tree class of is
either an infinite Dynkin diagram or a Euclidean diagram. Moreover, by Remarks 3.7,
4.3 and Lemma 5.3, the tree class of is not∞∞, ∞, ∞ or Euclidean. Thus, in
order to show that the tree class of is∞, we have to exclude only the case of

∞.

Lemma 6.1. The tree class of is not ∞.

Proof. Assume that the tree class of is∞. Then, by Remark 4.3 (2), is
indecomposable and lies at the end of .
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Now a part of is as follows for some indecomposableO -lattice :

ց ր ց ր ց ր
2 → → → → → −1 → −1

ր ց ր ց ր ց
→ O → −1

Considering the dual lattices, we get the Auslander-Reiten sequence 0→ ∗ →
∗ → ( )∗ → 0. As ∗ ∼= by Lemma 3.2 (2), we see that ( )∗ ∼= .

Since affords the regular character of , so does⊕ ∼= ⊕ ∗. Note that
the multiplicity of the trivial character1 in the regular character is one. This implies
that 1 appears as a constituent in the character afforded by or in the one afforded
by ∗, but not in the both, a contradiction.

We have now completed the proof of the Theorem.
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