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There is no known 6-fold transitive group other than .S,(#>6) and 4,(n>8).
The purpose of this paper is to prove the following two theorems.

Theorem 1. Let G be a 6-fold transitive group on Q={1,2, ---,n}. If a
stabilizer of six letters in G has a normal Sylow 2 subgroup P and P leaves nine
letters invariant, then G must be A,

Theorem 2. Let G be a 6-fold transitive group. If a stabilizer of five
letters in G has a non trivial normal Sylow 2 subgroup, then G must be S, or A,.

Let G be a 6-fold transitive group on Q={1, 2, ---, n}. Since the Mathieu
group M, has no transitive extention, by the theorems of M. Hall ([2], Th 5.8.1.)
and H. Nagao [5], we have the following two lemmas.

Lemma 1. (M. Hall) A Sylow 2 subgroup of the stabilizer G, ... ; in G of
six letters 1,2, -++, 6 is not trivial unless G is S,, S, A, or A,.

Lemma 2. (H. Nagao) G,, .., fixes exactly six letters unless G is S, or 4.
Furthermore by a theorem of Witt ([7], Th. 9.4) and Lemma 1, we have

Lemma 3. Let P be a Sylow 2 subgroup of G,,,,s, Then the number

of the fixed letters of P is 6, 7, 8 or 9, and the normalizer of P in G operates on the
letters fixed by P as S,, S,, A, or A, respectively.

Proof. See [3], Lemma 1.
By Lemma 2 we may assume that G, ,, s, fixes exactly six letters. Then

if a Sylow 2-subgroup P of G, ,.. , is normal in G, , .., P must fix six or nine
letters.

ReMARK 1. If the Mathieu group M,, admits a transitive extention G, then
G satisfies the assumption of Theorem 1. Therefore Theorem 1 gives another
proof of the non existence of a transitive extention of ,,.

REMARK 2. Since we make use of the non existence of a transitive extention
of M, in the proof of Lemma 2, Theorem 2 does not give a proof of the non
existence of M,,, though a transitive extention of M, if it exists, satisfies the



258 R. Nopa

assumption of the theorem. But it follows from the theorem in [6] and a remark
made by N. Burgoyne and P. Fong [1] that the outer automorphism group of
M,, is trivial.

NotaTioN. For a set X, let | X| denote the number of elements of X.
For a set of permutations S on , the set of letters left fixed by S will be
denoted by I(S). If asubset A of Q is a fixed block of S, then the restriction of
S on A will be denoted by S*. For a permutation x, let a;(x) denote the
number of i-cycles (cycles of length 1) of x.

Proof of Theorem 1

Our method of proving Theorem 1 is a combinatorial one. By a series of
steps we shall show the degree # of G must be nine.

Let a be an involution which fixes at least four letters and x an element of
order four which fixes at least two letters. Note that G contains such elements
since it is 6-fold transitive. Set |I(a)|=r and |I(x)|=s. Then

(@) 7=4+a('—20).
Proof. We may assume that a is of the following form:

a=(1)(2)BNE)(E) -

1959,%,

I}. Then a normalizes G\ .25.4,i,i, and hence P. Therefore a induces a permuta-
tion on I(P) as follows.

a'® = (1)(2) (34) (%) (=) (&) (D) .
We remark that a’® is an even permutation by Lemma 3. Now I(P) is

»4,9,%,

(k) of a, and we have the map
@: (i, iy — (k)

from the family of the subsets of I(a)—{1,2} consisting of two letters into
2 cycles of a different from (34). By the definition of @, it is easy to see that

..........

24,9,4,

........

Sylow 2-subgroup P, in common. Therefore we have P,=P, and {j,, j,} C
I(a)NI(P)={i, i, i,}. Thus we have that each inverse image of @ consists of
three subsets of I(a)— {1, 2} and hence the number of 2 cycles of a different

from (34) is &, _,C,.
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In this way, n=2+r+2x —:1,5— r—2Ce
(i) a,(x)>1, and az(x)=%s(s—1).

Proof. We may assume x is of the following form:

x=(1234)() @) .

3€,9,%,

»4,9,4,

permutation on J(P) as follows.

x> = (123 4) () () (@) (kD) -

»4,9,%,

quely a 2 cycle (k/) of x, and we have the map

P+ {iy i} - (k)
from the family of the subsets of J(x) consisting of two letters into 2 cycles of x.
It is easy to see ¢ is onto and that each inverse image of @ consists of three sub-

sets of I(x). Hence az(x)-———é-sCz:%s(s—l).
(i) a,(x) is also equal to 1 +%(s—2)(s—3).

Proof. We take the same x as in (ii) and assume that x is of the following
form:

3= (56)(7) (8) -
We remark that x has at least one 2 cycle and three fixed letters by (ii).

(o) Case s>4.
Set I(x)={7, 8,1, 4, -}. Let P be a Sylow 2-group of G;,,;;, and

Therefore x induces an even permutation on I{P) as follows.

&I = (5 6) (7) (8) (i) (1) (&) (1) -

Thus the set {7, 7,} determines uniquely a 2 cycle (kl) of x and we have the
map

@1 {in, i} — (k)

from the family of the subsets of I(x)-{7, 8} consisting of two letters into 2 cycles
of x different from (56). Then @ is onto and each inverse image of @ consists of

three subsets of I(x)-{7,8}. Hence a,(x)=1+ ls_ZC =1 —}—%(s——Z)(s— 3).
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(B) Case s=3.
The equality holds by (ii) in this case.

Now by (ii) and (iii) we have -+s(s—1)=1-+(s—2)(s—3) and hence, s=3,

a(x)=1. Since & is an involution which fixes at least four letters, we have

r=s+420a,(x)=3+2=5. Then n=9 by (i).

REMARK. Theorem 1 follows from the assumption that | I(P)| =9 and I(P)
is fixed by G,, ;.56 (see [4], p. 322-p. 324). For the combinatorial analysis

which is used in the proof of Theorem 1, the author is indebted to H. Nagao
and T. Oyama. He is grateful to them for their helpful advices.

Proof of Theorem 2

Let G satisfy the assumption of the theorem. G,,,,, fixes exactly five
letters. Since a Sylow 2-group P’ of G, ,,,;isnormalin G, ,,,,and G, , ;5 is
transitive on Q—{1, 2, 3, 4, 5}, P’ can not fix more than five letters. Thus the
degree # of G must be odd. Now assume that G is not S, or 4, Set P=

.....
39,49,

-----------

Hence P fixes nine letters and G must be 4, by Theorem 1. This is a contradic-
tion.
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