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0. Introduction

In this paper we consider a semilinear Volterra diffusion equation in a
bounded domain Q(C R¥) with smooth boundary 9Q:

(0.1) O _ Ayt (a—bu—fru)u, t>0,x€Q.

ot

Here A is the usual Laplace operator with respect to x, a and b are positive
constants, and f*u denotes the convolution of a non-negative function f(#) and
u(t, x):

[ru(t, x) = S;f(t——s) u(s, x) ds .

We impose no-flux condition at 6Q and non-negativity on the initial data:

(0.2) o _ g, >0, x€0Q,
on
0.3) u(0, x) = u(x) >0, x€Q,

where 9/0n denotes the exterior normal derivative to 9Q and %y(x) is a function
of class C*Q2) satifying 0uy/on=0 on 3Q.

Equation (0.1) comes from population dynamics; u(t, x) denotes the popula-
tion density at time ¢ and position x of a single species which diffuses in Q and
grows obeying the logistic law (a is the difference of the ideal birth and death
rate, —bu—fxu expresses the crowding effect due not only to the present size
but also to the past ones of the population). For instance, some kinds of bac-
teria which are cultured in a laboratory without replacing their solid medium
are observed to die of the poisoning caused by the piled up stuff P that has
come of decomposition and metabolism by themselves. The growth rate of
their population density # seems to follow

(0.4) O _ Aut(a—bu—co)u, £>0,zeQ,

ot
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where ¢ is a positive constant and o(t, x) denotes the density of the poisonous
substance P at time ¢ and position x. Here we assume that P is in a solid state
and does not move. We propose two models describing the growth dynamics
of P: [model A] the poisonous substance P is directly produced by the bacteria
and its density v satisfies

v

= =du—d,v, t>0,x€Q,
(0.5) or AUTRT ETRE

2(0,x) =0, xEQ,

where the positive constants d, and d, denote the productivity of P by the bac-
teria and the decaying rate of P respectively; [model B] the poisonous sub-
stance P, is made, as a second product, from another first product P, which is
directly produced by the bacteria and the densities v,, v, of P,, P, respectively
satisfy

% =dyu—d,v,, t>0,x€Q,
ov, d d

(0.6) ot BUT %Y, t>0,x€Q,
2(0,x) =0, x€Q,
7)2(0,30)=0, xeﬂ’

where d;, d,, d; and d; are positive constants. The models A and B are biolo-
gically natural. For simplicity we assume that d,—=d;. For >0 and x€Q,
in the model A

0.7) o(t, x) = d, S: exp {—d,(t—s)} u(s, x) ds,
and in the model B
t
0, %) = d, So exp {—d,(1—s)} u(s, x) ds,

(0.8) oy(t, %) = dy ds S; (t—s) exp {—d,(t—s)} u(s, x) ds

are derived from (0.5) and (0.6) respectively. After combining (0.4) with (0.7)
,or (0.4) with (0.8) (by replacing v with v,), rewriting constants reduces the
models to (0.1), where

(0.9) f) = Zexp ( —52) (T>0, 2>0; model A),

(0.10) £@) = Z exp (“":tr_> (T>0, 0<a<8b; model B).

In this paper we do not treat the case: «t>8b for the model B (as to that case,



SEMILINEAR VOLTERRA DIFFUSION EQUATIONS 413

see, e.g., Tesei [15], Yamada [18], Yamada and Niikura [20]). The delay
kernels given by (0.9) or (0.10) are popular in population dynamics (cf. Cushing
[2]). Note that the kernel (0.9) represents the case when past densities have
monotone decreasing influence but the kernel (0.10) represents the case when the
maximum influence at any time ¢ is due to the density at the previous time ¢t—T.
In his book [16], Volterra has first introduced and studied the differential
equations with time delay, in a spatially homogeneous situation, such as

4 bu—fru)u, >0,
di
In this situation a useful survey of results is found in Cushing [2]. As for the
spatially inhomogeneous solutions of (0.1)-(0.3), Schiaffino, Tesei, Yamada and
Niikura have investigated existence, uniqueness, non-negativity, boundedness
and asymptotic behavior (see [9, 15, 18, 19, 20]). In particular, Schiaffino
has driven the global attractivity of the unique positive equilibrium %..=a/(b+«)
(a=S: f(t) dt) in [9] assuming monotonisity and, in some sense, smallness of
f, and Yamada has loosen these conditions on f in [18] by giving a sufficient
condition which is described in terms of the Laplace transform of f. Moreover,
in [19], Yamada has stutied the (local) asymptotic stability of u., as an application
of the stability of a fundamental solution associated with the linearized problem.
(For the results under Dirichlet boundary condition instead of (0.2), see Schiaf-
fino and Tesei [10, 11, 12].)

On the other hand, it is well-known that the positive solution % of a semili-
near diffusion equation (without time celay)

%ltf = Au+t(a—bu)u, t>0,xcQ
under the initial boundary conditions (0.2) and (0.3) converges to #”=a/b as

t—>oco. More precisely, the convergence rate of  is given by
(0.11) (2, <) —Bell. < C exp (—bdut) |ly—ts]l, 120,

where C is a positive constant depending on ||#%l|.. In this estimate we should
note that the spectrum of the corresponding linearized operator A-+b#,, lies in
{zeC; Re 2>bk..}. Here A denotes the operator —A with the homogeneous
Neumann boundary condition (cf. Henry [4; Theorem 5.1.1]). For the solu-
tions of a semilinear diffusion system with time delay, Yamada has estimated the
decaying rate in terms of the fractional power of 4 in [19]. But his estimate de-
pends on the spatial dimension N, so it is weaker than (0.11) (see Remark 2.6).

The main purpose of the present paper is to improve his estimate and to
give a similar one to (0.11) (i.e., an estimate independent of V) for the positive
solution of (0.1)-(0.3) under some conditions on the delay kernel f which allow
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the models A and B. In order to obtain such an estimate, we will study the
retarded spectrum associated with (0.1) and (0.2), then construct a fundamental
solution of a linear Volterra integrodifferential equation

Z—:’—J—Av—l—um(bv—{—f*v) =0, >0

by using a Dunford integral in the framework of L?-theory (whereas Yamada has
studied the stability of the fundamental solution within the framework of L?-
theory in [19]). This representation of the fundamental solution is analogous to
that of analytic semigroups by Dunford integals and it is already used by Da
Prato and Lunardi in the frame work of general Banach space theory (see, e.g.,
[3]). Its essential idea is based on the classical method of constructing solutions
of differential equations by Laplace transforms. Compared with the theory of
Da Prato and Lunardi, our results are new in point of accomplishing a uniform
L?-estimate of the fundamental solution with respect to p in order to apply it to
the nonlinear problem (0.1)~(0.3). Although our main results will be stated
for the models A and B because of biological importance, we will prove them
in a generalized form. In fact, the same results hold true for any delay model
which satisfies the conditions (H.1)—(H.4) (see Section 5.1).

The plan of this paper is as follows. In Section 1 we will give a sum-
mary of basic results on solutions of (0.1)—(0.3) which will be necessary later.
In Section 2 we will state the main result (Theorem 2.5). The proof of the
main result will be given in Section 6 as a corollary from the abstract theory:
a reduction of a semilinear problem to a linearized one (Section 4), a represen-
tation and an estimate of the fundamental solution (Section 5). Section 3 is
devoted to derive some essential properties of the delay kernels for the models
A and B, as an introduction into the assumptions (A.1)-(A.4) in Section 4 and
(H.1)-(H.4) in Section 5.

1. Preliminaries

In this section we will summarize some preliminary results on solutions of
(0.1)-(0.3) where the delay kernel f need not be the type of (0.9) or (0.10).

For 1<p< o, ||+||, denotes the usual L,(Q)-norm. For 1<p<oco, we
define a closed linear operator 4, in L,(Q) with domain D(4,) by

Ayu=—Au, DA,)= {ucWQ); g_“ — 0 on 80} ,
n

where W??(Q) denotes the usual Sobolev space of measurable functions # on Q
such that # and its distributional derivatives up to order 2 belong to L?(Q).
The domain D(4,) is a Banach space with the graph norm of 4,. We some-
times write 4 instead of A4, if there is no counfusion.
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Let X be any Banach space. C([0, o0); X) is the space of X-valued con-
tinuous functions on [0, o). CY([0, c0); X) is the space of X-valued continu-
ously differentiable functions on [0, o). For a measurable function f: [0, o)
— X, its Laplace transform £ is defined by

(B) f@) =" exp (—an fe) at,

whenever this integral exists.
Many authors have proved the existence and the uniqueness of solutions
of (0.1)-(0.3) in the standard manner of parabolic differential equations.

Proposition 1.1. If f€CY([0, o)) and f(t)=0, then the initial boundary
value problem (0.1)-(0.3) has a unique solution u such that

u€CY([0, 0); LAQ))NC([0, 02); D(4,))  for 1<p<eo.

Moreover, u has the following properties:
() 0<u(t,x)<max {llt|l., a/b}  for t>0,x€q.
(i) If uo(=0) is not identically zero, then

u(t, x)>0  for t>0,x€Q.

For the proof, see, e.g., Schiaffino [9], Yamada [18, 19].

RemMaRk 1.2. Since D(4,)cC'(Q2) for p>N, the solution % of (0.1)-(0.3)
satisfies

usC([0, 0); C'(Q)) .

As for the asymptotic behavior of the solutions, we review some results on
the stability of the equilibrium associated with (0.1)-(0.3). By formal calculation
we can find that, if the solution u(Z, ) tends to an equilibrium as #— oo, then

the equilibrium should be a non-negative solution of the following boundary
value problem:

(1.2) Aut-(a—bu—au)u=0, x€Q,
(1.3) -0, xcon,

where a=$m f(t)dt.
0
Proposition 1.3. Let 0<a<<oco and 0<0<1. If the boundary wvalue
problem (1.2) and (1.3) has any non-negative solution u(x) € C***(Q), then

wx)=0 or ux)=u.onQ,

where u.=al(b+a).
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In the proof of this proposition, the maximal (or minimal) positive solution
and the concavity of the function G(u)=(a—bu—au)u play a great role (see,
e.g., [1])-

Clearly the constant functions 0 and u.. satisfy (1.2) and (1.3). It is a
positive equilibrium in which we are interested. So, hereafter we call %, the
equilibrium associated with (0.1)-(0.3). .

Schiaffino [9] and Yamada [18] have obtained some sufficient conditions for
the global asymptotic stability of u.. The following result is due to Yamada
[18; Theorem 3.2]: '

Proposition 1.4.  Suppose f = C'([0, o)) N LY(0, o), f(£)=0,
(1.4) tf(t)SL 0, ) and b+ infRe fany>o0.
Then, for each non-negative initial data u, which is not identically zero in Q, the
solution u(t, x) of (0.1)-(0.3) satisfies
llu(t, *)—ttullo =0 ast— oo,

Remark 1.5. In the model A, since (0.9) implies

(1.5) f(z) = T:; - (Re z>—%),

f(t) fullfill the conditions in this proposition. On the other hand, in the case
that we take f(¢)=(at/T?) exp (—¢/T) with T and « positive, the condition (1.4)
is equivalent to a<<8b (i.e., the model B) because of

__ a _1
(1.6) f(z)—(Tz—l—l)z (Rez>—-7).

For a>8b in this case, bifurcation of non-constant periodic solutions can take
place (see, e.g., Yamada [18, Section 5], Yamada and Niikura [20], Tesei [15]).

2. Main Result

We will state the asymptotic stability of ., more precisely in terms of spec-
tral analysis. Throughout this section, we assume that the kernel function f
is given by (0.9) or (0.10), unless otherwise stated.

To this end we follow the usual linearization procedure. Put w(t, x)=
u(t, x)—u.. and substitute u(¢, x)=u..+w(¢, x) into (0.1), then we will get

%‘tﬂ (t, x) = Aw(t, x)—u. {bu(t, x)+j: F(t—s) w(s, x) ds}
@.1) —a(t, x) {bu(, x)—f—S: F(t—s) w(s, x) ds}
tu.u(t, x) j:" f(s)ds..
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Here we have used a=bu.+au., and a=sw f(s)ds. Neglecting second-order
o

and residual terms in (2.1), we consider the following linear Volterra diffusion
equation with a boundary condition to be a linear approximation of (0.1) and
(0.2) about u..:

2.2) g_‘;’ — Av—u.(botfiv), £>0,xEQ,
(2.3) v _y, >0, x99
on

From a viewpoint of spectral analysis, we treat (2.2) and (2.3) as an ab-
stract integrodifferential equation in the Banach space L?(Q):

t
(L) Z_I’ 1)+ Av(t) . {bv(t)—l—so ft—s)v(s)ds} =0,
and introduce the characteristic problem associated with (L):

(24) ro+Av+u(b+F(\)v =0,

where F()\) is the analytic continuation of f(A) out of the right half plane {A&C;
Re A>—1/T}, namely,

f0 = ZLew(—L) 20,

(model A) . 1
F(\) = Trrl (»ec, 7\4=—?) ,
f0)=%ex(—£) @20,

(model B)

1
F()) (MEC A+ ).

- ®
(TA+1)?

Lemma 2.1. Suppose an analytic function F(\) can be defined for a com-
plex number N. For such \, one of the following statements is true.
(i) For each g LX), there exists a unique element v & D(A;) such that

Ao+A, v+u(b+F\)v=g.
(it)  There exists a non-trivial element v D(A,) such that
Ao+4, v+u(b+F(\)v = 0.

This lemma is shown in Yamada [19] (Lemma 3.2). It is easily derived
from the compactness of the resolvents of the Laplace operator in a bounded
domain by virtue of the Riesz-Schauder theorem.
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DEFINITION 2.2. Let (ii) in Lemma 2.1 be true for a complex number A
(#—1/T). Such a \ is said to be a characteristic value of (2.4). Let o(L) be
the set of characteristic values of (2.4). We call o(L) the retarded spectrum as-
sociated with (L) (see, e.g., Nakagiri [7], Yamada [19]).

REMARK 2.3. Actually we may consider o(L) to be defined in the frame-
work of L?-theory for any p (1<p<co) in place of L*-theory, because the eigen-
values of the Laplace operator are independent of p.

DEFINITION 2.4. —v, = sup {Re r; AEq(L)}.

Our main result is the next theorem which says that », determines the
stability of ...
Theorem 2.5. In both the cases (0.9) and (0.10), v, in Definition 2.4 satis-
fies
1
2.5 0<v,=—-.

For any €(0<&<v,) and each non-negative initial data u,(=%0), the solution
u(t, x) of (0.1)-(0.3) converges like

(2.6) llu(z, «)—tallo = O (exp {—(v,—€)2}) as t—>oco.

REMARK 2.6. This theorem shows that positive solutions converges to
the equilibrium with an exponential rate as time goes on. Theorem 4.3 in
[19] combined with Sobolev’s inequality leads to

[lu(t, *)—t.||l. = O (exp (—Lt)) as t— oo,
where the constant { satisfies
2
N
hence ¢ depends on the spatial dimension N. On the other hand, in our The-
orem 2.5 the convergence rate of u(Z, +) is independent of N. Moreover, since &

is arbitrary, we may consider that (2.6) is almost the best estimate from a
viewpoint of spectral analysis.

<t<

ReMARKk 2.7. We can also prove (2.6) in some situatinos other than (0.9)
or (0.10) by making use of the results in Sections 4, 5. For example, let us con-
sider the delay kernel f in the form of

2.7 _ ap(e’+p)
2.7) f@) o+t ap

This kernel has infinitely many (local) maxima. In this case the condition

exp (—pt) (1+sin 0t) (@, w, p>0).
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p>w is sufficient to get »,>0 and (2.6).

3. Lemmas

In this section we derive some properties of the delay kernel f in the mo-
del A or B, and then some estimates of the nonlinear terms in (2.1) are given.
These will be essential when we use the results of Sections 4,5 in order to prove
Theorem 2.5. In the following lemmas (except for Lemma 3.5 and 3.6), we as-
sume that the delay kernel f is given by (0.9) or (0.10).

Lemma 3.1. (i) sup {AER; exp (M) f(t)€LY(0, o)} =1/T.
(it) The analytic continuation F(2) of the Laplace transform f(2) is analytic
everywhere except for the point z=—1/T.

Proof. (i) and (ii) are clear by the forms (0.9) or (0.10) of f.
Note that

-2 —_— o . del B .

DeFINITION 3.2. For 0<7y<w/2 and R>0, we define a sector excluding a
neighborhood of the origin by

Sy = {2€C; |2|>R, largz]<%+'>’} .

Lemma 3.3. (i) Let 0<y<=/2 and R>O0 be arbitrarily given. Then
there exist 0<vy'<m|2 and R'>0 such that 2 = Sy g implies 2+u.(b+F(2)) E Sy .
(it) For any 0<cy<m|2 there exists R>0 such that

(3.3) inf { |1+ G+F@E); zesm} >0.

Proof. (i) is easily derived from the facts bu.>>0 and lim F(2)=0 (see
(3.1) and (3.2)). e

In order to obtain the inequality (3.3), we have only to choose R sufficiently
large, for

1§m{1+&(b+F(z))}=1. |
|z]|->o P4
Lemma 3.4. 0<vf$%.

Proof. We prove this inequality for the model A here.
Let ) be a characteristic value of (2.4). Then there exists a non-trivial ele-
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ment v € D(4,) such that
Ao+A; v+ul(b+F(A)v=0.
In other words, —A—u..(b+F(\)) is an eigenvalue of 4,. Therefore, by vir-
tue of (3.1), M satisfies the quadratic equation
(34) Nk (bt ) A2 = 0

for some n, where 0= p,<p,<u,<--- are the eigenvalues of 4, Since the
roots of (3.4) are

1 00
—g Gt b= g L et b — Ly
it is easy to verify that
=1
AE% Z)Re A= T
for bu,a>-1— ,
T
max Rex = —— (bu.,,—{——)
A€
for bu,.S—;—, and a>(\/ au.. ——x/.%‘_)z s
_1 1 1 1, a
max Re = — L (bua+1) +/ + (it 1y

for bu,,<% and 0<ae<(\/ au. —VIT)Z.

Hence,

1
0 “m?
<st T

where the equality holds for bu..>1/T.
The proof for the model B are given in Appendix. W

By setting w,(t, x)=w(t+7, ) for +>0, (2.1) is changed into

%% 8, %)

(3.5) = Aw,(t, 2)—ue {bw(t, )+ [ f(t—5) wils, ) ds}

—u,(t, ) {bwo(t,5)-+ (1) wils, %) d}
tultr,x) fua|”fs) ds—{ fle+r—9)uis, %) a5 .
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The next lemma naturally follows from Proposition 1.4.
Lemma 3.5. Let the assumptions for f in Proposition 1.4 hold true and

u(t, x) be the solution of (0.1)-(0.3) with u,=0. Then, for any £>0, there eixsts a
positive number + such that

lw,(t, x)| <E  for t>0,x€0,
where w,(2, x)=u(t+7, X) —Uo.

In an application of an estimate for the linearized problem (L) to the non-
linear one (0.1)-(0.3), we will need some estimates for the nonlinear terms in
(3.5).

Lemma 3.6. Let fLY0, ) and f(£)=0 on [0, ). Then, for each
vEC([0, «0); L™(Q)),

IIsz(t)+S: f(t—=5) 0(s) dsll < (b+ @) max lfo(s)ll, 20
holds true with a=$°° 7).

Lemma 3.7. Let u be the solution of (0.1)-(0.3) and w=u—u... Then,
in the case of (0.9),

(3.6) sup exp (L) hu(t-+r, ) ua |9 dello<oo

(3.7) sup exp (L) lu(t-+7, ) | f(t-+7—9) (s, ) dsll<eo
hold, and in the case of (0.10),

(8 sup (o exp (L) luttr yun |7 s dsllo<eo,
(9 sup 1407 exp (5) tetr, ) | fle+7—5) (s, ) defla<ceo

hold.

Proof. Proposition 1.1 (i) leads us to the following inequalities:

(3.10) llu(t+, )uS f(s)ds||°,<cs f(s) ds,
(3.11) llu(t+r, +) So F(t4-m—s) w(s, +) dsll<c S‘ £(s)ds,

where ¢ is a positive constant independent of ¢ and 7. In the case of (0.9), ob-
serving that
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S:Hf(s) ds = aexp (—L—;,—T)S o exp (——%) )

(0= awn(~£)1-om (-3 sams(-1).

(3.10) and (3.11) imply (3.6) and (3.7) respectively. Similarly, in the case of
(0.10), we obtain (3.8) and (3.9) by virtue of

S;f(s)ds -(T—|—t+~r)exp( +T)

exp (—?—) {(T+1) exp (——Tf)—l—'r exp (——;,—)}

@
T
a _i -1
TCXP( T)(T—I—t—l—Te)

IA

and

(70— S o~ £) oo (5

g% exp (-—%) (T+y. N

4. Stability for a Semilinear Functional Differential Equation
and Fundamental Solutions

In view of (3.5), we will investigate the asymptotic stability for a semili-
near functional differential equation in L?(Q):

% (1)1 ao@) = | gtt—5) o(0) doh[s]O+hD), £>0,
(0) = ;.

(4.1)

Here we impose the following conditions on 4, g, #[v] and &,:

(A.1) Let p(1<p<<oo) be arbitrarily fixed. A4 is a closed linear operator
densely defined in L#(Q) and — 4 is the infinitesimal generator of a se-
migroup exp (—2A4) of class (C,) on L¥(Q).

(A.2) geLX0, ).

(A.3) A nonlinear operator

h: C([0, ); C())Ev > Iy [v]€C([0, o0); C(D))
satisfies, for v C ([0, o0); C(f2)) and >0,
Im[0] @)l
llo(@)l]..
where A,[v](£) denotes the value ot h[v]E€C([0, 0); C(Q)) at tE[0, o0)

<c g;xax Ho(s)!lw ,
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and ¢, is a positive constant independent of 2.
(A.4) A function h,eC([0, o0); C(Q)) satisfies

()| <c, exp (—p, t) for >0,

where p, and ¢, are positive constants independent of 2.

We treat the nonlinear terms #,[v]+%, in (4.1) as if they were previously
given, and reduce (4.1) to a linear nonhomogeneous problem:

J Z_:) D)+ do(t) = S:g(t—‘) o(s) ds+h(t), >0,
( 2(0) = v,
with hEC([O, oo); L’(Q,)) and ‘UOEL’(.Q),

(4.2)

DrrFINITION 4.1.  Let 9= C([0, o0); L*(Q)) satisfy
v(t) = exp (—tA) v,
+$; exp {—(t—s) 4} {So g(s—7) o(r) dr+-h(s)} ds, £>0.

We call such a function v a mild solution of (4.2) (cf. Yamada [19; p. 305]).

It is easy to see that v&CY([0, o0); L¥(Q)) N C([0, «); D(A)) satisfying
(4.2) is a mild solution.

The existence of mild solutions is proved by the method of successive ap-
proximation:

(4.3)

Lemma 4.2. Let (A.1) and (A.2) be satisfied, and a function he C([0, o0);
L*(Q)) be given. Then for each v,L*(Q) there exists a unique mild solution v

of (4.2).

Now we introduce a fundamental solution associated with (4.2).
DEerFINITION 4.3. Let v be the mild solution of (4.2) with A=0 and 9,&€
LY(Q). Set

R(t; 4,8)vo=v() for t>0.

We call the operator R(t; 4, g) a fundamental solution of
t

(4.4) 4@ 4 Ao(t) = S g(t—s) o(s) ds
dt 0

(see, e.g., Yamada [19], Nakagiri [7]).

Proposition 4.4. Under the assumptions (A.1) and (A.2), the fundamental
solution R(t; A, g) possesses the following properties.

(i) R(t; 4,g) is a bounded linear operator from L*(Q) into L*(Q) for each
t=>0.
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(i) For each vyeL¥Q) and heC([0, «); LX(Q)), the mild solution v of
(4.2) is represented by

(4.5) o(t) = R(t; 4, g) vo+S' R(t—s; 4, g h(s)ds, 0.
0
For the proof, see Yamada [19; pp. 305-307].
Suppose that
(A.5) The fundamental solution R(¢; 4, g) satisfies, for all £>0 and v,€L=(Q),

IR(2; 4, g) vollo<c5exp (—p, 1) llv0ll»

where ¢; and p, are positive constants independent of ¢ and v,.
We will derive exponentially asymptotic stability for (4.1) from the above
estimate of the fundamental solution:

Theorem 4.5. Let (A.1), (A.2), (A.3), (A.4) and (A.5) be fullfilled. As-
sume that v& C'([0, o0); L¥(Q)) N C([0, «); D(A) N C(R)) satisfies (4.1). Then
for each €>0 there exist positive numbers C and 8 such that

(4.6) lo@l.<8, =0
implies
4.7) llo@)ll.<Cexp {—(p—&) 2} , t=0,

with p=min {p,, p,}. Here C and & depend only on &, ¢,, ¢, and c;.

Proof. Let €>0 be arbitrarily fixed.

Since vC([0, «); C(22)), (A.3) and (A4) imply A [v]+h,EC([0, «);
L*(Q)). So we can consider v as a mild solution of (4.2) with h=h,[v]+A,, and
by (4.5) v satisfies

o(t) = R(t; 4, g) ot || R(t—s; 4, n[e]0)+h(s)} ds, £20,
which leads us to the following inequality:
o)l <cs exp (—p2 1) izl

(48) +as || exp 1= pu(t—o)} l1o(9)ll- max [fo(r)l. s

oty [, exp {—pit—9)} exp (—pis)ds, 120,
Thus, supposing that (4.6) holds,

@)l <es(8+-c; ) exp (—pt)

+a6s8 | exp {—p(t—)} ll0(0)l ds, 0.
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Consequently, an application of Gronwall’s lemma yields

llo (@)l
<exp (—pt) [cs(8+c, t)+¢,¢5 8 S: exp {c1¢; 3(1—9)} €4(8+¢;5) ds]

= exp (—pt){(cs 8-+-2) exp (¢,c; 8t)—-2.}
¢ d o
3(638—}—%) exp {—(p—c1c; &) 8}, >0,
1 .
Therefore, by choosing C and § such that

o & ¢, C3

we obtain (4.7). W

5. Representation and Estimate of Fundamental Solution
In what follows, we take A+bu.. and —u.. f as 4 and g respectively in (4.4)
with u.=a/(b+a) and a;Sw | f(2)| dt. But f need not be given by (0.9) or
0 -

(0.10). Instead we allow general f which satisfies the properties deduced in
Section 3: Lemma 3.1, 3.3 and 3.4 (see also (H.1)-(H.4) in Section 5.1). We
simply write R(t) in place of R(t; A+bu., —u..f). In other words, R(?) is a
fundamental solution of (L) in Section 2. For 1<p< oo, the operator norm of
the bounded linear operators on L?()) is denoted by |||]|l,, or simply |||-]|| if
there is no confusion.

In this section, we will provide a representation of R(¢) by a Dunford in-
tegral under some assumptions for the delay kernel f. This representation will
enable us to evaluate the decaying rate of R(t).

First of all, we give a resolvent estimate which will play a crucial role in
the proof of Theorem 5.4, 5.5 later.

Lemma 5.1. There exist My, R,™>0 and 0<ty,<r[2 such that
M,

Izl for zES-yo.Ro .

5.1) iz +4)ll,<

where the sector Sy, g, is the one in Definition 3.2.

This lemma is derived from a well-known estimate of a Green’s function
associated with an elliptic boundary value problem. For the proof, see, e.g.,
Tanabe [13, 14; Theorem 17-8].

REMARK 5.2. . In (5.1), the constants M,, R, and v, are independent of p
(1<p<oo).
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In the following subsections, let M, R, and 7, satisfy (5.1) and be fixed.
5.1. Notation and hypotheses on 7
For the delay kernel f, we set

Ay = sup (AER; exp (ML) f(2)ELY0, o)} .

Clearly the Laplace transform f(2) of f(f) can be defined by (1.1) at least in
{z€C; Re 2>—n/}.

We denote by F(2) the analytic continuation of f(2) into the maximal re-
gion D/CC) in which F(2) is a single-valued and holomorphic function. If
F(2) could be multiple-valued, then D, would be defined and fixed as any one of
the greatest possible regiosn each of which corresponds to a branch of F(2).
(Most typical examples of F(2) connected with bioligical models are single-valued
functions.)

Putting

5(2) = 24-u(b+F(2)) for z€D,,
we define the retarded spectrum associated with (L) by
o(L) = {x&€Dy;; s(\)Eo(—A)},

where o(—A4) denotes the spectrum of —A (cf. Remark 2.3).

Then
L Su L)Re A if o(L)*¢,
—As if o(L)y=4¢

is the right edge of the retarded spectrum o(L).
Impose the following conditions on f:

(H.1) a>0.
(H.2) For some 0<7y<z/2 and R>0,

holds true.

(H.3) »>0.

(H.4) There exist 0<y<z/2 and R>0 such that
(i) =&Sy implies 5(2)E Sy, &,

(i) c, = inf { ":) ; zeS,,R}>0,

Hereafter v and R are assumed to be fixed constants which satisfy (H.2)
and (H.4).
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Under the above assumptions, it is easy to see that the constant »,=min
{v, A/} has the following properties:

Lemma §.3. (i) »,>0.
(i) If Re 3>—v, or 2E S, ;, then s(2)Ep(—A), where p(—A) is the re-
solvent set of —A.

5.2. Submain theorems
Theorem 5.4. If (H.1), (H.2), (H.3) and (H.4) are fullfilled, the fundamen-
tal solution R(t) of (L) is explicitly given by
(5.2) R(t) = ~—L s exp (t2) (s(2)+A)'dz, t>0.
27t Jr

Here T' is a path running in the region SyrU {x€C; Re 3>—v,} from oo exp
(—18) to oo exp (i0) with n[2<0<m[2+7y.

Proof. First we are going to see that exp (¢2) (s(2)+4) ™" is integrable on T'.
Since (s(2)+A4)™" is holomorphic in Sy U {{; Re{>—w,} by virtue of
Lemma 5.3 (ii), we may change T" into T',=T', , UT,UT, _;

T,. = {pexp (L£i6); p2%} ,
Tyo= {% €Xp (ia'); —0$0'50} ,

where 0(z/2<0<m[2-+7) is a constant such that the whole ray {pexp (16);
p=>0} is included in the region Sy U {f;Re{>—w ;. It follows from (5.1)
and (H.4) that

(5.3) @+ MM for zes,,.
cflzl

Moreover, with the aid of the continuity of (s(2)4-4)™" on a neighborhood of
the origin, we get

M, M, .
—£ S. i R —
1+|2|<|3l in SypU{l; Relf>—»},

where the positive constant M, may possibly depend on p (1<p<co). (5.4)
implies

54 @)+,

[, _llexp (22) (s(z)+4)11, 1]
(5.5) Sr exp (tp cos ) M, dp
1t P

M,

, t>0
|cos@|
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and
Ji,  llexp (12) (s(=)-+4) 1l |
(5.6) . < S:’ exp (cos o) tM, ilftq—
<2zeM,, t>0,

which assure the integrability of exp (¢2) (s(2)+4)™" on T (thus on T).

Namely the right-hand side of (5.2) is well defined. Denote it by W(t)
for simplicity.

Next we will show that the Laplace trasnforms of both sides of (5.2) coin-
cide.

Let E(t; x, y) be the heat kernel of exp (—t4), i.e.,

(5.7) exp (—tA) u(x) = Sn E(t; %, ) u(y) dy .

Itis eas;y to see that the well-known properties of E(¢; x, y):

(5.8) E(t, x,y)>0, >0, x€Q,yeQ,
Sn E@;x,y)dy=1, t>0,x€Q

lead to

5.9 lllexp (—2A)IIl,<1, t=0,1<p<o0.

In particular, we have
llexp {—#(A+bu}lllSexp (—bu=2) (<1), 20,
so that an application of Gronwall’s lemma to (4.3) with 2=0 yields
HIR@|<exp (au..t), t>0.

Then as it is shown in Yamada [19; p. 306], the Laplace transform Ié(z) of R(z)
is given by

R(z) = (s(2)+A4)!  for Rez>au..

On the other hand, the Laplace transform W(z) of W(t) can be defined at
least for Re >0 because of the boundedness of ||| (z)]||, which follows from
(5.5) and (5.6). Nowlet "' be ', UT_;

Ty = {pexp (£i0); p=0},

where @ is the same constant as one in the definition of T, Noting that Re
(6—2)<—Re 2z for LT, by virtue of (5.4), we can see that
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W(2) = S: exp (—at) W(t) dt

— [ e 1| ew @) O+ atr

- ZL S [ S” exp {(E—%) &} di] (s(t)+A) dt
i IT " Jo

__1{ ®O+a™
T 2mi Sr [ ¢

is valid for Re 2>0. Hence, by Cauchy’s integral formula and (5.4) again,
W(z) = (s()+4)" for Rez>0,
Therefore |
ﬁ(z) = W(z) for Re z>au..,

from which the conclusion of the theorem is derived by the uniqueness theorem
for Laplace transforms (see, e.g., Hille and Phillips [5; Theorem 6.3.2]). W

Lemma 5.5. Let «kCD, be a compact set and satisfy s(k)No(—A)=¢.
Then

(5.10) sup {llI(s()+4)7ll,; z€x, 2<p<oo}<oo.
Proof. First observe that the semigroup exp (—t4) satisfies

uweL¥(Q),

(5.11) |lexp (—4) ull,<c|Q|* exp (ot) ||l for { 1>1,2< p<coo

where |Q| denotes the volume of O and ¢>0, w ER are constants depending on
N and Q but independent of 4, ¢ and p.

To see this inequality, we invoke the following estimate of the heat kernel
which has appeared in the proof of Theorem 5.4:

N/2

’ a2
(5.12) |E(t; x, y)l Stc_ exp (wt—c” l‘”—t—}il——) for t>0, x,yEQ.

Here ¢’ and ¢” are positive constants depending on N and Q (see, e.g., Tanabe
[13, 14; Theorem 17-8]). By (5.7), (5.8) and Schwarz’ inequality,

|exp (—tA) u(x) | < B(t;%,9)1u(y)|dy
12
<{). B m 2y}
holds for u L*Q2). Since

E(t; x,y) = E(t; y, %)
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and
Sn E(t;x,y)E(s; y,x')dy = E(t+s; %, %'),
(5.12) implies

|lexp (—t4) ul|.< exp (ot) [lull, for usL*Q), t>0.

G
Hence (5.11) follows from the basic inequality:
(5.13) llul , <121 |lu]l. for weL=(Q).

As « is compact and contained by D/, there exists a real number s,=min

{Re s(2); 2€«x}. Let 9,;(j=0,1,2,---) be a complete orthonormal system in
L*Q) of the eigenfunctions of A corresponding to the eigenvalues u; (with
0= o<y, <p,<:). Define J by the smallest number such that
(5.14) B> =S,
Set

§ = min {|s(2)+1;1;0< < J—1, s} (>0),

® = max {||g;ll«; 0<j < J—1} (<o0).

By (-, -) we denote the usual L(Q)-inner product.
Let 2< p<oo be fixed. Take veL?(Q) (CL*Q)) and put

J-1 ©o
v, =0— 2 (v, 9) p; =2 (v, 9)) @; -
j=0 =T
Then we will show that

(5.15) @) +A) ol Sellell,,  sex,
(5.16) IS 6E@+4) @ o) @l < lloll,, e,

where ¢, is a positive constant depending on «, N and Q but independent of
p, 2 and v. Clearly (5.15) and (5.16) imply (5.10).
Parseval’s equality yields

llexp (—24) v ll.<exp (—pus t) llvdl,  for 220,
so that, by (5.11),
llexp (—tA4) v,ll, = llexp (—A4) exp{—(t—1) 4} v,
<c|Q|"? exp (o) llexp{—(t—1) 4} v.ll,
<c| Q| explo—p;t—1)} |lv.ll,
<c|Q|" exp (o+py) exp (—pus 1) llvdl,, t=1.
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Here we have used
(5.17) llull,< | Q| ¥2V2 |lu]l, for neL’(Q).
Moreover, with the aid of (5.9), we get
(5.18)  llexp (—td) vill,<c” exp (— s B lodll,, £20,
where ¢/’ =exp (u;) max{c|Q|¥2¢", 1}. Thus for 2=« we have
[ 1expi—ts(a)} | llexp (—24) vl de
<{ " exp (=15 " exp (— s ) llval, .
Hence (5.14) assures
(sR)+4) 1y = S: exp{—1s(2)} exp (—tA) v, dt for =zE«x,

and

(5.19) s @)+ A) vl < ¢

[l.ll, for ze«k.

By (5.13) and (5.17),

ledl,<llell,+ 33 1 2 llp,ll,
sllvll,+|ﬂl"’<1>2 @)

(5.20) <lloll,+ Q1% @ 2 51090137
<lill,+ 1014 @ ] ol
<{14+(1Q] Jy2 @} |loll,

Therefore (5.15) is derived from (5.19) and (5.20).
On the other hand, since

s (2)+A) " @sll, = 1s(2)+p;1 7" llpsll,
<87 lp;ll,

for zex and 0<j< J—1, (5.16) is deduced in the same way as (5.20). Thus
we complete the proof. W

Theorem 5.6. Assume (H.1), (H.2), (H.3) and (H4). For a given po-
sitive number &(<v ), the fundamental solution R(t) is evaluated like

(3.21) HR@I,<Cexp {—(v,—&) 8}, 2<p<oeo,t>0,
Here C is a positive constant which is independent of p and t.
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Proof. Set

d inf{lImzl zES1R, Rez=—'llf},
R= max{yv/d&*+vj?, R+ .

Let 0(n/2<0<8,) be arbitrarily fixed with tan §,=—d/€ (z/2<0,<r).
When 0<¢<1/R, we replace " with I*,=1I% L UT', ,UT, _ in (5.2):

Pis = {—v+6+p oxp (ib); p2 13,
o= {—v,+«s+% exp (ic); —0<a <0} .
Since I',C Sy, for 0<¢<<1/R, the following inequalities are deduced from (5.3):

m(s(z)+A)-1msMi for z€T,,,

(s (2)+-A) 11 < Mo f’

‘s

for zel,,.

Hence we have

[z, lexp @)1 ls(a)+4) 71 141

(5.22) SS;, exp{—(v,—&) 1} exp (tp cos 6) é‘% dp
scfé”Tolexp{ (v,—8) 1} .
and
[z 1exp (z2)1 M@+l 1ds|
(5.23) gS’ exp{—(v,—&) #} exp (cosa)Mof"‘ dt"

2we My R
R

Now let t>1/R and we take I'=1', UT,UI'_ as T" in (5.2) where

< exp{—(v,—&) 1} .

By = {—v,+e+pexp (£if); p= R},
Ty = {—v;+&+pexp (—if); 0<p<R)
U{—v;+E+pexp (i8); 0<p< R} .

Since I', C Sy z and R>1/¢, a similar calculation to (5.22) yields

M,

— 0 exp{—(v,—€)#} .
o Joos o] P10 Y

(5:24) {5_lexp @)1 ll(s(2)+A)l [d=] <
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The path T, is compact and s(I%) N o(—A4)=¢ by virtue of Lemma 5.3 (ii).
Thus, by choosing I, as « in Lemma 5.5, we get

Ns)+A)7,<e  for 2<p<oo, zETh,

where ¢, is a positive constant independent of p and 2. Therefore,

(525) [, 1exp @)1 ls(2)+4)71 1ds]
<2 S: exp {—(v,—&) t} exp (¢p cos ) ¢, dp
<2¢, Rexp{—(v,—&)1} .

Consequently (5.21) follows from (5.2) combined with (5.22) and (5.23),
or (5.24) and (5.25). W

RemMaRK 5.7. From the above proof, the constant C in (5.21) is considered
to be

M,
.

1 M, +2 R max {co; me

C=_—~—[—_"%o
2z "c;|cos @] Ly

Here lim,,,|con 8| =0, so that we do not know whether & is negligible or not
in (5.21) under the conditions (H.1)-(H.4) only.

But in some cases we can drop & in (5.21). For instance, we will consider
the model A: (0.9).

In this case the retarded spectrum o (L) has at most one accumulation
point —1/7. To see this, we have only to note that there exist some subse-
quences {A\} Co(L) and {j,;} C N such that

J#/ o0 as k—> oo,

M= A¥ as k- oo,

Mot bt e =y (R=1,2,3,)

TanA1
for each accumulation point A* of (L), where O0=pu,<p,<p,<--- are the
eigenvalues of 4 (cf. (3.4)). Moreover, we will find that the set {Re »; AEo(L)}
has at most one accumulation point —1/T, because the set o(L) N {z; x—1<Re
z<«x} is bounded for each negative number x (see Lemma 5.3 (ii)).
If bu..<1/T holds true, we can get the following results:

1 — [T
1 (bu<—=,a> : —/\/_2 ;
case 1 (bu ¢ (V au. T))

1 1 1
=g Gt >

o(L)N {z;Res = —vj} = {—v,iiV%_y}}: simple roots,
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1 — [T
2 (b <y a = —\1n;
case ( < T a (\/auw T))
1 1 1
—v, = —— (bt —)>——,
o(L)N {2z; Rez = —v,} = {—w/}: double root,

1 — T
3 (bu.<-L,0 —V_z ;
case 3 ( <T <a<(V au., T))

S § 1 1 lo a~_1
vy = = Gt T)JW/ 7 Gt 7T

o(L)N{z; Rez = —v,;} = {—v,}: simple root

(see the proof of Lemma 3.4). Thus, by replacing T" properly, we can prove
that there exists a positive constant C (independent of p and ¢) such that

Cexp(—wv,t), : casel, 3,
(5.26) |||R(t)lll,s{ p(=2,1)

C(1+4t)exp (—w,t),: case?2,

2<p<o0, 120

(cf. [3; Proposition 1.4]). On the other hand, the condition du..>1/T implies
that —v, coincides the accumulation point —1/T of (L) as mentioned in the
proof of Lemma 3.4.

6. Proof of Theorem 2.5

As we have proved (2.5) (i.e., Lemma 3.4), we will show (2.6) for a given
positive number &.

The hypotheses (H.1), (H.2), (H.3) and (H.4) are verified by Lemmas
3.1 (i), 3.1 (ii), 3.4, 3.3 respectively. In particular, A ,=1/T and » in Section 5
is v, in Definition 2.4. Hence, by Theorem 5.6, we have

IR(2) vll,<C exp{—(v,—€) t} llvoll,, 2=<p<oco,t20,

for each element v,&L=(Q). Since the constant C is independent of p, letting
D> we get

(6.1) IR (%) vyll- < C exp{—(v;—E) t} l|vgll, t=0.
Now we apply the results of Section 4 by taking A+bu.. and —u..f as 4

and g respectively.

The inequality (6.1), in other words, asserts that the assumption (A.5) is
valid for R(t) and p,=v,—&. Needless to say, the assumptions (A.1) and (A.2)
hold true (note that exp (—?4)is an analytic semgiroup on L?(Q) for 1<p<<co).
In view of Lemma 3.6, we define an operator A, by
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m[o] () = —o(®) o)+ ft—s) v(s) s

for veC ([0, ); C(Q2)) and ¢>0 in order that &, may satisfy (A.3). Let &, be
the last two terms in (3.5):

fe) = e, Vo |10 ds—{ fle+e—9)uis, -y, 120

Remark 1.2 and Lemma 3.7 assure that 4, satisfies (A.4) where p,=1/T in the
case of (0.9) and p,=1/T—¢&' for any small &'>0 in the case of (0.10). Set
v(t)=w.(t, -) and v,=w,(0, ) (=u(r, +)—u..) in (3.5), and we will find that (4.1)
holds for . Moreover, for each §>0, (4.6) follows from Lemma 3.5 by choos-
ing 7>0 sufficiently large. Thus, by virtue of Theorem 4.5, we can see that

(6.2) (2, )|l <C exp{—(v,—26) 8}, >0,

for some 7>0. Here C is a positive constant independent of = and &.
To complete the proof, we have only to rewrite (6.2) as an estimate for
u—u, and replace ¢t by t—7. W

7. Some Improvements of the Main Result

7.1. As we have mentioned in Remark 2.7, we can show (2.6) for the de-
lay kernel (2.7) with p>w in the following way.

The facts
1 1)
%)= + y
(7.1) fo=a {2+P (z+p)”+w’}
¢ = (@ +p) par
wz+P2+wP

and p>o lead us to
inf Re fervy=o,

which assures that the delay kernel f satisfies the assumptions of Proposition
1.4.

By virtue of (7.1), we see that A is a characteristic value of (2.4) if and
only if \ satisfies

N+ (Bt 1) N {6 theo 00>+ 307+ 3p(Bhe+ )} N?
(7.2) + {0 ¢ #~4-2p ¢y U+ 0* p+ P+ (w0 + 3p%) (Bt 1)} A
+0” € e tp? o theatwp € Uea (00 p+-p°) (Bthat-p1;) = O

for some j, where 0= p,<p, < u,<::- are the eigenvalues of 4,. After some te-
dious calculation which use the similar technique to the one in Appendix, we
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can see that the 100ts of the algebraic equation (7.2) belong to {z€C; Re AL —}
for some »>0. (Note that p>w.) Hence (H.3) is valid.

Moreover we can verify the similar results for the delay kernel (2.7) to Lemma
3.1,3.3,3.7.

Therefore we can apply the results of Sections 4, 5 to the case of (2.7) in
order to prove (2.6).

It seems to the author that the condition p>e indicates that the more
rapidly the delay kernel f decays or the more slowly f oscillates, the more stable
%, is.

7.2. In Section 4, instead of (A.3) and (A.5), we will assume the following
conditions respectively:
(A.3)" A nonlinear operator

hy: C([0, ); C(QY) Ev = Iy[v]€C([0, o0); C(D))
satisfies, for v &€ C([0, o0); C(Q2)) and >0,

P [0] Dl <cs 0@l Allo@llo-+ {] exp—pst—} 1ol ds} ,

where ¢, and p; are positive constants independent of 2.
(A.5)" The fundamental solution R(¢; 4, g) satisfies, for all £>0 and v, L~(Q),

”R(t; A) g) WOH»SC:% Q(t) ”volleo ’

where g(t)=(1+1") exp ( p2t) and ¢, p,(>0), m(=>0) are constants indepen-
dent of ¢ and v,.

Lemma 7.1. Let (A.1), (A.2), (A.3), (A4) and (A.5) be fullifilled, and
o >>py hold.  Assume that ve CY([0, «); LY Q)N C([0, «); D(A)NC(Q)) sat-
isfies (4.1). Then there exist positive numbers C and & such that (4.6) implies

4.7y llo@®ll.<Cq(®), =0,
where C and & depend only on ¢y, c,, Cs, py, P2, ps ad m.

For the proof of this lemma, after deriving

e (@)l
<3 q(2) llvoll

73) +[. agt—s a oIz &
+ So c3 q(t—s) ¢ ||v(s)|] So exp{—py(s—)} lo(7)|l. dr ds

¢
—I-S'o c3q(t—s)c,exp (—p, 8)ds, t=0
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in place of (4.8), we have only to apply (4.7) to the right-hand side of (7.3).

In the model A with du.<1/T, the assumptions (A.3)" and (A.5)" hold
true for p;=1/T, p,=v, and m=0 or m=1 instead of (A.3) and (A.5) in Section
6 (see Remark 5.7). Thus, by using Lemma 7.1 in place of Theorem 4.5, we
can prove

”u(t’ ° )—um“m

I R A b <L e (v am—y LY,
O ((1+t)exp (—w,t)) : bu“‘<%f’ az(\/a—u‘”_«/lT)z

ast— o

for the solution # of (0.1)-(0.3) with non-negative initial data #,(3%£0). There-
fore &€ in (2.6) can be dropped and (7.4) is the best estimate in this case. We
will discuss this result in detail elsewhere.

Appendix

We will prove Lemma 3.4 for the model B.
Before proceeding to the proof, we review a lemma on the distribution
of zero of polynomials:

Lemma. A cubic equation
P4a, 2 a,2+a; =0
with real coefficients has no roots with non-negative real parts if and only if
a,>0,

a;>0,
a, a,—a;>0.
This lemma is a special case of Hurwitz’ criterion (see, e.g., Wall [17;

Section 6], Marden [8; p. 141]).

Proof of Lemma 3.4 for the model B. In the same way as the proof for
the model A, it follows from (3.2) that A is a characteristic value of (2.4) if and
only if

() TN AT (Btht 1)) +2} TANA+ 2T (Bt )+ 1} A-a+p; = 0

for some j, where 0= p,<p, < p,< -+ are the eigenvalues of 4,.
By setting A=T(A+v), N=Tv, B=Tbu,, and M;=Tp;(j=0, 1,2, ---) for
a fixed real number », (1) is rewritten as
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(2)  AH(M,+B+2—3N) A?
+[2(1—N) M+ {3N>—2(B+2) N+2B+1}] A
+(1—NY M;— {N°—(B+2) N*+(2B+1) N—aT} = 0.

By the preceding lemma, (2) has no roots with Re A>0 for every j (=0, 1, 2, -+*)
if and only if

3) M;>3N—B-2,
*) (I-Ny M>P(N),
(5) 2(1—N) M3+4(1—N) (B-+1—2N) M;>P,N)

for any j. Here P(IN) and Py(N) are defined by

P(N) = N*—(B+2) N*+(2B+1) N—aT,
P,(N) = 8N°*—8(B+2) N*+2 (B*+6B+5) N
—2B*—5B—2+aT.

If N<min {1, (B+1)/2}, P(N)<0 and P,(N)<<0, then the inequalities (3), (4)
and (5) hold true for every j because of M;>0. Since @ <8b and a=(b+a)u..,

Py(0) = —2(B—1)>—(9B—aT)<0.

This inequality and P,(0)=—aT<0 imply that P,(N)<<O and P,(N)<O0 hold
true on some neighborhood of N=0. Hence there exists a positive number N,
such that any root A of (2) satisfies Re A<<0 for each j>0 whenever 0<N<N,,.

Therefore the inequality Re A<<—w» holds for each characteristic value A
if 0<v<N,/T. Namely,

v, = — sup ReA>0.

Aeo(L)
On the other hand, in order to prove »,<<1/T, it suffices to show that there
exists a positive number & and a root A of (1) for j=0 such that Re A>—1/T-¢&.
To see this, set A= T(A—&)+1, 8=—14T¢ and B=Tbu., for a fixed real
number & Then the equation (1) with j=0 is reduced to

(6) K34 (38+B+2) A2+ {38°+2(B+2) §+2B+1} K
+8°+(B+2) 8*+(2B+1) 8+aT =0.
Taking account of the preceding lemma, we put

a, = 38+B+2,
a, = 38°+2(B+2) §+2B+1,
a3 = 8+(B+2) 8+(2B+1) 8+aT,

and
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Py(3) = aya,—a;..
It is easy to see
P(—1)=B—aTl = —au.. T<O0,

which imply that P;(8)<<0 holds in a neighborhood of §=-—1. Since the
inequality P4(8)<<0 means that (6) has a root A with Re A>0, by choosing a
positive number & sufficiently small, we can find a root A of (1) with Re A>—
1/T+¢&. Thus we complete the proof. W
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